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We principally consider rings R of the form R = S[G], generated as a ring by the
subring S of R and the subgroup G of the group of units of 7? normalizing 5. (All our
rings have identities except the nilrings.) We wish to deduce that certain semiprime
images of R are Goldie rings from ring theoretic information about S and group theoretic
information about G. Usually the latter is given in the form that GIN has some solubility
or finiteness property, where N is some specified normal subgroup of G contained in 5.
Note we do not assume that N = G DS; in particular N = (1) is always an option.

We call a ring R thin (resp. right thin, resp. left thin) if every prime image of R with
the maximal and the minimal condition on right annihilators (in brief max-ra and min-ra)
is Goldie (right Goldie, left Goldie). A ring is thin, note, if and only if it is both right and
left thin. Clearly every commutative ring and every Noetherian ring is thin. It follows
from Lemma 1.3 below that if R is a thin ring then every semiprime image of R with
max-ra and min-ra is Goldie (similarly for right thin rings and left thin rings).

In the notation of P. Hall, (P,L)(%%) denotes the smallest class of groups
containing all abelian and all finite groups and closed under the poly and local operators P
and L; see the opening pages of [4]. This class may look esoteric, but it contains a large
number of interesting groups, including the soluble groups, the finite groups, the locally
soluble groups, the locally finite groups and even some torsion-free infinite simple groups.

THEOREM. Let R = S[G] be a ring generated by its subring S and subgroup G of its
group of units normalizing S. Suppose N is a normal subgroup of G contained in S. If S is
thin and G/N e (P, L)($l%) then R is thin.

There has to be some restriction on G; for example, if R — SG is the group algebra
over the field S of a free group G of rank 2 then 5 is thin while R is not. The theorem has
a number of immediate corollaries.

COROLLARY 1. If J is a commutative ring and if G is a (P, L){W$)-group then the
group ring JG is thin.

For any group G, denote the unique maximal locally finite normal subgroup of G by
r(G) and define a(G) to be the inverse image in G of the centre of the Hirsch-Plotkin
radical of G/r(G). If G is soluble-by-finite Zal G denotes a canonical characteristic
FC-subgroup of G defined in paragraph 3 of [11]. (If G is a soluble it coincides with the
Zalesskii subgroup of G as defined in [3] and [5].) The following is an immediate
corollary of Corollary 1 and [11, Corollary 1]. (See [3] for the definition of control.)

COROLLARY 2. Let F be a field, G a (P, L)(%%)-group and p an ideal of the group
algebra FG. Suppose that G D ( l + p) = ( l ) , FG/p satisfies max-ra and min-ra and
p D FN is a prime ideal of FN for every characteristic subgroup N of G. Then Corollary 1
of [11] applies; in particular p is controlled by a(G). If T(G) is soluble-by-finite, for
example if char F = 0, then p is controlled by the characteristic FC-subgroup Zal a{G) of
G.

Glasgow Math. J. 33 (1991) 297-308.
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COROLLARY 3. Let F be a field, G a (P, L)C$l%)-group and p a completely prime
ideal of the group algebra FG such that G fl (1 + p) = (1). Then p is controlled by a
normal subgroup B of G with B/T abelian and T trivial, quaternion of order 8, binary
tetrahedral of order 24 or binary icosahedral of order 120.

Corollary 3 is an immediate consequence of Corollary 1 and paragraph 13 of [11]. If,
in Corollaries 2 and 3, in fact G e ( P , L ) 2 t then [10,1.3] and [9, Corollary 1] are
applicable.

We do not know whether there is a one-sided version of the theorem. (But see the
addendum.) Specifically let R = S[G] be a ring with S a subring and G a subgroup
normalizing 5 and let N be a normal subgroup of G contained in S.

QUESTION 1. If S is right thin andG/Ne(P, L)(3lg) is R right thinl

Some partial answers are contained in Sections 6 and 7 below. In particular we have
the following extension of the theorem of [8]. (This can be proved by adapting the proof
given in [8], but we give a proof based on the proof of our theorem above.)

PROPOSITION 1. Let A be a ring with a nilpotent ideal x such that A/T is Artinian.
Suppose S is a right thin subring of A and G is a subgroup of the group of units of A
normalizing S such that for some normal subgroup N of G contained in S we have
GIN e (P, L)(2lg). Then the subring R = S[G] of A generated by S and G has a nilpotent
semiprime ideal n such that R/n is right Goldie.

The following corollary of the theorem is actually an alternative statement of it. The
proof we give in Section 6.

COROLLARY 4. Let R = S[G] be a prime ring satisfying max-ra and min-ra, where S is
a Goldie subring of R and G is a subgroup of the group of units of R normalizing S.
Suppose that G has a normal subgroup N contained in S such that G/N e (P, L)(9l$).
Then R is a Goldie ring.

Note that it is not sufficient in Corollary 4 to assume that R is semiprime, even if R is
a subring of an Artinian ring; see the main counter-example in the introduction of [8], the
obstruction being that a minimal prime of R need not intersect 5 in an intersection of
minimal primes of S. The following corollary stands in the same relation to Proposition 1
as Corollary 4 does to the theorem, though we will in fact prove it first. It generalises 24
of [8].

COROLLARY 5. Let A be a ring with a nilpotent ideal x such that A/T is Artinian.
Suppose S is a right Goldie subring of A and G is a subgroup of the group of units of A
normalizing S such that for some normal subgroup N of G contained in S we have
G/Ne (P, L)(2lg). Assume the subring R = S[G] of A is prime. Then R too is right
Goldie.

The next proposition is an important step in the proof of the theorem. By analogy
with group theoretical usage we will say a ring R is "locally" in some class of rings if every
finite subset of R lies in a subring of R in that class. Now a locally Goldie ring need not be
Goldie; if R is the cartesian product of infinitely many copies of some field and if R is the
subring of R of elements whose entries are virtually constant, the R is locally (semiprime
Goldie), indeed locally (semisimple Artinian), but clearly R is not Goldie.
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PROPOSITION 2. Let R be a ring satisfying max-ra and min-ra and suppose R is locally
{semiprime-Goldie). Then R is semiprime and Goldie.

The huge class of locally Goldie rings seems to have received relatively little
attention and much of its behaviour under the imposition of finiteness conditions remains
to be resolved. As a sample of the obvious open questions we ask the following.

QUESTION 2. Let R be a ring satisfying max-ra and min-ra and suppose R is locally
right Goldie. Is R always a right Goldie ring!

Clearly Proposition 2 settles one special case of Question 2; Proposition 3 below
settles another.

PROPOSITION 3. Let R be a semiprime ring satisfying max-ra and min-ra and suppose
R is locally right Artinian. Then R is semisimple Artinian.

Suppose R is a semiprime ring and 5£ is a set of subrings of R such that each finite
subset X of R lies in some member of J£. There is no need for A' to lie in a semiprime
member of X. Indeed possibly no member of i£ is semiprime. For example let F be a field
of positive characteristic p, G an infinite locally finite p-group with no non-trivial finite
normal subgroups, R the group algebra FG and L the set of subrings FH of R as H runs
over the finite non-trivial subgroups of G. Here R is even prime [3, 4.2.10]. However, in
certain circumstances, each X will indeed lie in a semiprime member of if: see Section 3
below for details; this forms the second main ingredient of the proof of the theorem. We
have not investigated the extent to which semiprime can be replaced by prime in Section
3, although 3.3 below gives a partial result.

If a is an ideal of a ring R then ^ ( a ) denotes the set of elements of R that are
regular modulo a. If X is a subset of R then rR(X) and lR(X) denote the right and left
annihilators of A' in R. We now embark on the proofs.

1. Preliminary lemmas.

1.1. Let b be an ideal of the ring R and set a = rR{b). If X is a subset of R then

rRla{X + a/a) = rR(bX)/a.

In particular if R satisfies max-ra (resp. min-ra), then so does R/a.

Proof. Here bX denotes {bx : b e b and x e X}. Set Y = {r e R : Xr c a}. The claim
is that Y = rR(bX). Now XYca by the definition of Y, so bX. Ycba = {0}. Thus
YcrR(bX). Conversely bX. rR(bX) = {0}, so X. rR(bX) <= rR(b) = a and rR(bX)cY.
All parts of 1.1 follow easily.

1.2. Let R be a semiprime ring with max-ra {resp. min-ra). Then R has only a finite
number of minimal prime ideals and, modulo each, R also has max-ra {resp. min-ra).

Proof. By [1, 1.16] the ring R has only a finite number of minimal prime ideals and
each is an annihilator ideal. The result now follows from 1.1.

1.3. Let R be a ring such that every prime image of R with max-ra {resp. max-ra and
min-ra) is right Goldie. Then every semiprime image of R with max-ra {resp. max-ra and
min-ra) is right Goldie.

https://doi.org/10.1017/S0017089500008363 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008363


300 K. A. BROWN AND B. A. WEHRFRITZ

Proof. Suppose R is also semiprime with max-ra (resp. and also min-ra). Then R has
only a finite number of minimal prime ideals p , , . . . , pr by 1.2 and each R/p, is right
Goldie. Then R has finite right uniform dimension (e.g. [7, 2.1]). Since R at least has
max-ra, so R is right Goldie.

1.4. Let R be a ring and 9? a {left and right) divisor subset of regular elements of R. If
Xisa subset of R^'1 = ̂ ~lR then

In particular if R satisfies max-ra (resp. min-ra), then so does the ring i?^"1 of quotients.

Proof. Clearly we may assume X is not empty. If x e C€~XR then rR(x) = rR(R (~1%x).
Thus rR(X) = rR(R D <€X). Also rR^-,(X) is a right ideal of R^'1, so

rR<€-<X) = (R n ^ - ( X ) ) ^ - 1 = rR(X) . <g~l = rR(R n <€X). «" ' .

If Y c X then rR(R D <€Y) 3 rR(R n <€X). The lemma follows easily.

The annihilator dimension a-dim R of a ring R is the dimension (length of a chain of
maximal length) of the poset of right annihilators of subsets of R; so a-dim R is a
non-negative integer or °°. Replacing right annihilators by left annihilators does not
change this invariant of R.

1.5. Let R be a semisimple Artinian ring. Then every right ideal of R is a right
annihilator. In particular a-dim R is the composition length of RR and every maximal chain
of right annihilators of R has length a-dim R.

Proof. If A is a right ideal of R then A = eR for some idempotent e, and so
A = rR(\ — e). The claim follows.

1.6. Let R be a semiprime (left and right) Goldie ring with quotient ring Q = R%~x =
<<T'/?, where <€ = <£R(0). Then

a-dim R = a-dim Q = u-dim QQ = u-dim RR = u-dim RR

and every maximal chain of right annihilators has length a-dim R.

Here u-dim MR denotes the uniform dimension of the right /?-module M. Similarly
we define u-dim RM.

Proof. HXcR then rR(X) = RC\ rQ(X). Thus a-dim R =£ a-dim Q, and the converse
follows from 1.4. It is well known that u-dim RR = u-dim QQ (e.g. [2, 2.2.12]). In view of
1.5 the chain of equalities is now clear.

Suppose X and Z are subsets of R with rR(X)< rR(Z) and let Y be a subset of Q with
rQ(X) < rQ(Y) < rQ(Z). Then by 1.4 we have

rR(X) = rR(R n <%X) < rR(R n <€Y) < rR(R n <€Z) = rR(Z).

Thus a maximal chain of right annihilators of R is the intersection with R of a maximal
chain of right annihilators of Q. Hence the final part of 1.6 follows from 1.5.

We need a very slight generalisation of annihilators in rings to annihilators in subsets.
If X and Y are subsets of a ring R then the right annihilator of Y in X is
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rx(Y) = {x e X : Yx = {0}} = X D rR(Y). Similarly we define lx(Y). Denote by 0t(X) the
poset {rx(Y):YcX}.

1.7. LetScT be subsets of a ring R and let X e 3£(S). Then

X = SDrTls(X) and ls(X) = S D lTrTls(X).

If also X c X' e »(5) tfierc /5(A") c ^(X) and ^ ( A " ) 2 ^ ( J f ) .

/Voo/. If A' is any subset of 5, clearly ls(X). X = {0} = ls(X). rTls{X), and so
Z c 5 n r ^ s M and /s(A

r) c 5 D lTrTls(X). Hence

W 5 W . X S W S (A") . rTls(X) = {0},

so 5 n lTrTls(X) = lsrTls(X) c ls(X), which proves the second equality.
If A' e 92(5), say X = rs(Y), then replacing X by Y and left by right in the second

equality yields rs(Y) = 5 C\rTlTrs{Y), i.e. X = S DrTlT(X), and setting S = T gives
AT = rsls(X), which thus equals 5 D rTls(X) in general. The claims concerning A" are
obvious.

2. Local criteria for Goldie rings.

2.1. The proof of Proposition 2. Suppose a-dim/? is infinite. Then there exist finite
subsets Aj of R such that i < a-dim At (=dim 3?(/4,)) for / = 0 , 1 , . . . . Inductively define
finite subsets Sx c 5^ c . . . of /? and, for each i, a chain % in £%(S,) as follows.

Let S\ = /40 and let <£, be any chain in 3?(Si) of length 1. Suppose 5, is chosen and %
is the chain Xo c Ar

1 cz. . . a Xr. There exists a semiprime subring /?, of R containing
5, U At. Refine the chain

rRilSi(X0) c rrfdXJ c . . . (= r^(Jfr)

to a maximal chain 9?,' in 9t{Rj). By 1.6 this maximal chain <£• has length a-dim/?,, and
since At c /?, note that a-dim /?, > i. By max-ra every right annihilator in /?, is the right
annihilator of a finite subset of /?,. For each term in % choose such a finite subset of Rh

Let S1+1 be any finite subset of /?, containing 5, and all these finite subsets such that the
51+1 n y for y e %\ are all distinct. Then %+l = {5,+1 n Y : Y e <<?;} is a chain in
of length at least i + 1 and containing

Set S = U Si. We define a set <g of subsets of 5 as follows. Let Xm e <gm. Set

X=\JrSilSi_/Si_l...lSm(Xm)

and let *# be the set of all such X as Xm runs over ^m and m runs over 1 , 2 , . . . . We claim
that ^ is an infinite chain in $1{S), not necessarily well ordered.

Given Xm e <<?m define A1, and Yt inductively by Y( = /s.(A
r
1) and Ar,+1 = rs.+](y,). Then

X = U Ar,. Set 7 = U !/• We prove that Ar = rs(Y). (A similar argument shows that
y = /5(A').) By 1.7 and a simple induction, 5,nAr = Ar, and S , n y = y , for i^m. Let
x e X and y e Y. There exists i s= m with x, v G 5,. Then J: e Xj and v e Y,', = lSi(Xj). Hence
yx = 0 and consequently YX = {0} and X c r5(y) . Suppose x e rs(Y). Pick / > m with
^ € 5,, Then Ytx QYX = {0} and x e rs.(Yi) = X, c X Hence r5(y) = X.

https://doi.org/10.1017/S0017089500008363 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008363


302 K. A. BROWN AND B. A. WEHRFRITZ

Now suppose Xm e <€„, and X'n e %, where m =s n. Then

Xn = rsjs^ . . . lSm(Xm) e <€„

and either XncX'n or X'ncXn. If X and A" denote the members of "# generated
respectively by Xm and X'n, a simple induction using 1.7 shows that either I c X ' or
A' cX. Therefore <g is a chain. Again, by 1.7, we have % c {S,- n A": A e <<?}. Thus <#
contains at least as many terms as <<£,. Hence % is infinite. We have now proved the claims
concerning c€.

This is a contradiction of the max-ra and min-ra conditions on R and hence on 5.
Thus a-dim R is finite. Suppose t/j © . . . © Un is a direct sum of non-zero right ideals of
R. There is a semiprime Goldie subring T of R such that each T fl £/, =£ {0}. Then

n =£ u-dim Tr = a-dim T *s a-dim /? < °°,

by 1.6 again. Thus u-dim RR is finite, and i? satisfies max-ra by hypothesis. Therefore R is
right Goldie. Similarly R is left Goldie. Clearly any locally semiprime ring is semiprime.

2.2. The proof of Proposition 3.
(a) A non-zero right ideal A of R contains a non-zero idempotent. HA is nil then A is

nilpotent [1, 1.34] and consequently so is the ideal RA of the semiprime ring R. But
A # {0} and so A is not nil. Let a eA be a non-nil element of R. There exists a right
Artinian subring 5 of R containing a. Then the right ideal A n 5 of 5 is not nil and it
therefore contains a non-zero idempotent.

(b) Let A be a right ideal of R with u-dim^5= 2. Then A = B@C for some
non-zero right ideals B and C of R. By hypothesis there exist non-zero right ideals X and
Y of R with A~©Y=sA There is by (a) a non-zero idempotent e of R in X. Then
R = eR © (1 - e)R and eR ^A, so A = eR © (A n (1 - e)R). Now e =£ 0, so c« * {0}, and
efl =£ A<>1, so e/? =£A This proves (b).

(c) u-dim /?K is finite. Suppose otherwise. Assume we have constructed non-zero
right ideals Au . . . ,An and Bn of R with R = Ax ©. . .©>!„© Bn and u-dim Bn infinite;
this is certainly possible if n = 0. By (b), we have Bn = An+1 © Bn+X for some right ideals
An+l and Bn+1 of R with /4n+1 ^ {0} and u-dim Bn+l infinite. By induction, we define An

and Bn for all n 3= 1.
Let 13s 1, pick / ^ i and let e, e /? — End /?R be the projection of R onto A, along

i4i © . . . ©A--1 © B, =^4i © • • • © A - i © A+i • • • ®Aj © fl,,

Then eu e2, • • • are orthogonal idempotents. Set Rn = rR(e,, e2 , . . . , en). Then Rn^Rn+l

and en+1 e Rn\Rn+1. This contradicts min-ra and (c) is proved.
(d) R is semisimple Artinian. By hypothesis and (c) the ring R is semiprime and

right Goldie, so R has a semisimple Artinian ring Q of right quotients. Let c be a regular
element of R. There exists a right Artinian subring 5 of R containing c. Then c is regular
in 5 and hence is a unit of S and hence of R. It follows that R = Q, which is semisimple
Artinian. The proof of Proposition 3 is complete.
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3. Semi-prime subring criteria.

3.1. Let R be a prime ring with max-ra such that every nil subring of R is nilpotent.
Suppose R is the union of its subrings Ra for a<X, a and A ordinals, where

Then for some a<\ the ring Rp is semiprime for a =s /3 < A.

Proof. Trivially A>0 and if A - l exists we can set <* = A - 1 . Thus assume A is a
limit ordinal. Let n^ denote the nil radical of Ra and set N = T,a<x na. If a =£ /? < A then
rip is a nilpotent ideal of Rp with n^n^ + n^n,,. =£ n^. Therefore N is a nil subring of R and
as such is nilpotent. Pick the integer n minimal with N" = {0}. If n = 1 then each Ra is
semiprime, so assume otherwise. In particular N"~l =£ {0}.

For each a<k set Aa = rR(T.a^p<\np). If ar^j8<A then Aa^Ap. By max-ra, there
exists a < A with Aa = Ap for /3 s= a. Set a = Aa. If a =£ /3 < A then

Rpna = RpnAl}= Pi Rf>nrR(nY).
/3sy<A

Thus RpDa is an ideal of Rp whenever a ^ /? < A and consequently a is an ideal of
U Rp = R- Also W1"1 c a . s o a ^ {0}. But R is a prime ring. Therefore

Hence n^ = {0} and Rp is semiprime whenever or ^ j8 < A.

3.2. Le/ R be a semiprime ring with max-ra and min-ra. Suppose R is the union of its
subrings Ra for a<X, a and A ordinals, where

Then for some a<X the ring Rp is semiprime for a ^ /3 < A.

Proof. If R is actually prime the conclusion follows immediately from 3.1 and [1,
1.34]. In general R has only a finite number of minimal prime ideals pu. . . , pm, each
R/pi satisfies max-ra and min-ra and f) Pi = {0}, see 1.2. Then, for i = 1,2,. . . , m, there
exists or,,. . . , am < A such that, for each i, if a,, «£ j8 < A then Rp/Rp n p, = Rp + p,/p, is
semiprime. Let a = max{ai,.. . , am}. Then a < A and if a ^ /3 < A then each Rp/Rp D p,
is semiprime, p | 7?̂  D p, = {0} and /?p is semiprime.

If R is actually prime in 3.2, are the Rp also prime for large enough /3? The following
gives a positive partial answer.

3.3. Assume the notation of 3.2. Suppose R is a prime subring of A, where A has a
semiprime nilpotent ideal r such thatA/t is a subring of an Artinian ring (e.g. A/t might be
left or right Goldie). Then for some a<k, whenever a «/3 < A the ring Rp is prime.

Proof. Clearly / ? n r = { 0 } , so we may pass to A/v and assume r = {0}. Hence we
may choose A to be Artinian and, reducing again to r = {0}, semiprime. Then since R is
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prime, R embeds into a simple component of A and we may assume that A is the matrix
ring D"x" for some division ring D.

Let V = D(n) denote row n-space over D, regarded as a D-v4-bimodule in the
obvious way. Let V = Vo> V, > . . . > Vm = {0} be a composition series of V as D-R-
bimodule and denote the annihilator of V^JVi in R by a,. Then Va^. . . am = {0},
aiCt2. . . am = {0} and the primeness of R ensures that some a, = {0}. Hence we may
replace A by EndD(V;_1/V;) and assume that V is D-R-irreducible.

There exists or, < A such that among the a < A the composition length of V as
D-R^-bimodule is minimal. Suppose ax =s a =£ /3 < A. Then a composition series of V as
D-Z^-bimodule is also one as D-/?a-bimodule. In particular every irreducible D-Rp-
submodule of V is Z)-/?a-irreducible. Let Sa denote the socle of V as D-/?a.-bimodule.
We have now proved that Sa^Sp> {0} whenever or, =s a =£ /3 < A.

Choose a2 with ax =£ ar2 < A and dimD Sff2 minimal. Then 5^ = S^ whenever a2 =£ /3 <
A and 5ff2 is a non-zero submodule of the irreducible Z)-/?-bimodule V. Consequently
Sp = V and V is completely D-^-reducible for a-2^/3<A. If a - 2 ^ /3«y<A the
homogeneous components of V as £>-Z?y-bimodule are also D-Rp-homogeneous. Thus
the homogeneous O-Z^-components are direct sums of homogeneous D-RY-
components, and so are D-/?y-submodules. Hence they are D-/?-submodules, and yet V
is D-ft-irreducible. Therefore V is D-Rp-homogeneous for a-2=s/3<A. Pick /3 with
a2 ^ P < A and let W be an irreducible D-/?^-submodule of V. Suppose a and b are ideals
of Rp with ab = {0}. If W = Wa then V̂ fj = Wab = {0}, Vb = {0} by homogeneity and so
b = {0}. If W^Wa then Wa = {0} by irreducibility, Va = {0} by homogeneity and so
a = {0}. Consequently Rp is prime and the proof is complete.

4. Classes of groups.

4.1. Let H be a subgroup-closed class of groups. Then X is locally closed if (and
trivially only if) £ is closed under unions of ascending chains of £-groups.

Proof. Thus whenever Gx =£ G2 =£. . . =s Ga . . . is an ascending chain of 3£-subgroups
of some group G, we assume that 1J Gtt e I . Let G e L£. We prove by induction on \G\
that G e 3£. If G is finite this is trivial so assume G is infinite. Let A be the least ordinal of
cardinal \G\ and enumerate G; say G = {ga : 0=s a< A}. Set Gp = (ga : 0«a '< /3 ) for

Suppose or is finite. Then Ga is finitely generated. But G e L£, so Ga^H for some
S-subgroup / / of G. Hence GaeS£ = £. Now suppose G is uncountable and consider
any a < A. Then |Ga| < |G|. Also Ga € SL3E c LS£ = L3£. By induction, we assume that
Ga e 36. Thus now in all cases G is the union of an ascending chain of 36-subgroups. By
hypothesis, G e 3£.

4.2. Let 36 be any c/ass o/ groups closed under unions of ascending chains of
subgroups. Then the class 3£s is locally closed.

Here, 3£s denotes the class of all groups G such that every subgroup of G lies in 36.

Proof. Suppose Gx =s G2 ̂ . . . ^ Ga =s. . . is an ascending chain of 3£5-subgroups of a
group G with union G. If /f is a subgroup of G then G , n / / ^ G 2 n / / ^ . . . = s G a . n / / «
...UGaHH = H. Each Gff n # e S3ES c 3£. By hypothesis, H e I. This is for all such H,
so G e Xs. Now Xs is locally closed by 4.1.
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5. Extension lemmas. Throughout this section R = S[G] is a prime ring satisfying
max-ra and min-ra generated by its subring 5 and its subgroup G of its group of units
normalizing 5. Further N denotes some normal subgroup of G lying in S.

5.1. The subring S is semiprime with max-ra and min-ra.

Proof. If n is the (say upper) nilradical of 5 then n is nilpotent [1, 1.34] and
normalized by G, so nG is a nilpotent ideal of the prime ring R. Then n = {0} and 5 is
semiprime. The remaining claims are trivial.

5.2. Suppose S is right Goldie and G/N is polycydic-by-finite. Then R is right Goldie.

Proof. Let % = <gs(0). Then <€ is a right divisor subset of 5 by Goldie's theorem, and
it is normalized by G. Hence <€ is a right divisor subset of R by [5, 5.6.3a]. Since R is
prime with min-ra, R is right- % -torsion-free [6,13]; that is, the elements of <€ are left
regular in R. Thus <<? c <gR(0) by [1, 1.30a].

We now form the partial quotient ring Z?^"1 of R. Since G normalizes c€, we have
R<€~1 = S<€-l[G] and S^'1 is semiprime Artinian. By a theorem of P. Hall (cf. [3,
10.2.6]), the ring R<€~1 is Noetherian. Thus Z?^"1 has finite right uniform dimension, and
consequently so does R [2, 2.2.12]. Therefore R is right Goldie as claimed.

5.3. Suppose every finite subset of G lies in a subgroup H of G such that the subring
S[H] of R is semiprime and Goldie. Then R is Goldie.

Proof. This is an immediate consequence of Proposition 2.

5.4. Suppose G = U Hais the union of an ascending chain of subgroups Ha such that

whenever the subring S[Ha] of R is semiprime it is Goldie. Then R is Goldie.

Proof. By 3.2, there is an ordinal a<y such that S[Hp] is semiprime whenever
a =s /3 < y. By hypothesis, each such S[Hp] is Goldie. Hence R too is Goldie by 5.3.

6. Thin rings and thin groups. In this section we use the following notation:
R = S[G] is a ring generated by its subring 5 and its subgroup G of its group of units
normalizing S, and N is a normal subgroup of G contained in 5.

Call a group K thin (resp. right thin, left thin) if whenever we have R = S[G] as
above with G/N isomorphic to an image of K then R is thin (resp. right thin, left thin)
whenever S is. The class of all such groups K we denote by S£ (resp. rSt, IS). Note that
trivially r ^ n f S c S , but equality here seems unlikely. By definition these three classes
S£, r£ and I!£ are 0-closed and it is almost immediate that they are P-closed. By 5.2 we
have the following. We let 5$$ denote the class of polycyclic-by-finite groups.

6.1. g*g E r£ = (P, G)rS and similarly with (£.

6.2. 5E is closed under unions of ascending chains.

Proof. Consider K = (J Ka, where each Ka e % and /C, «= K2 =s . . . s= Ka =£

Suppose we have R = S[G] as above with 5 thin, and a homomorphism of K onto G/N.
Let Ha/N be the image of Ka in G/N. We need to consider certain prime images of R. It
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suffices to assume also that R is prime with max-ra and min-ra and to prove that R is
Goldie. Since Ka e S£, the ring S[Ha] is thin, so if it is also semiprime then it is Goldie by
the definition of thinness and 1.3. Consequently R is Goldie by 5.4 and the proof is
complete.

6.3. THEOREM. <P,L)(2 lg)c£ 5 = (P, L, Q,S)%S ^^= (P, Q)%.

Proof. By 6.1 we have ?$$ c r$£ D l!E c S£, so by the remarks preceding 6.1 we have

Also L£ s = £ s by 4.2 and 6.2 and clearly (P, L)(g$g) = (P, L)(2lg). The proof is
complete.

QUESTION 3. Are any of £ , r£ and f£ locally closed?

The theorem of the introduction is an immediate consequence of 6.3 and its first
three corollaries also follow with no further argument. Its Corollary 4 is a consequence of
(a) implies (c) of the next result.

6.4. For a group K the following are equivalent.
(a) K is thin.
(b) Whenever we have R = S[G] and N as above, with S Artinian, G/N an image of

K and R prime with max-ra and min-ra, then R is Goldie.
(c) Whenever we have R = S[G] and N as above, with S Goldie, G/N an image of K

and R prime with max-ra and min-ra, then R is Goldie.

Proof, (a) implies (b). Every Artinian ring is thin, so here S is thin, R is thin and
therefore R is Goldie.

(b) implies (c). 5 is also semiprime by 5.1, so % = ^ ( 0 ) is a divisor subset of 5
normalized by G. Hence % is a divisor subset of R, and further % c 9^(0) by [6, 13] and
[1, 1.30]. Thus we can form the ring (€~1R=R<€~1 = S^'^G] of quotients. Now S^'1 is
Artinian and R%~1 is prime and, by 1.4, satisfies max-ra and min-ra. By the definition of
thinness the ring R%~1 is Goldie. It follows that R is too.

(c) implies (a). Suppose we have R = S[G] and N with 5 thin and G/N an image of
K. If p is a prime ideal of R such that R/p satisfies max-ra and min-ra then (5 + p)/p is
semiprime with max-ra and min-ra (5.1) and 5 is thin, so (S + p)/p is Goldie.
Consequently Rip = (5 + p/p)[G + p/p] is Goldie by (c). Therefore K is thin.

7. Subrings of Artinian rings. It remains only to prove Proposition 1 and 2. We
need a few lemmas.

7.1. Let A be a ring with nilpotent ideal r such that A/xis Artinian and suppose R is a
subring of A. Then R has a semiprime nilpotent ideal n such that R/n is embeddable in a
semisimple Artinian ring.

Proof. Both A and R have nilpotent nilradicals. Let n be the nilradical of R; we may
assume r is the nilradical of A. Clearly r D R c n, so we may pass to A/t and assume that

n

A is semisimple Artinian. Now n is nilpotent, say n" = {0}. Set B = 0 (.4n'~!A4n').
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Clearly B is an /4-fl-bimodule. Let f be the kernel of the action of R on B. Then n «f.
Also An'~lt ^An' for each /, so At" = {0}, f is nilpotent and f = n. Consequently R/n
embeds into End^B. But A is semisimple Artinian, so AB is completely reducible and
End ,,5 is also semisimple Artinian.

7.2. Assume the notation of 1.1. If p is a minimal prime ideal of R then Rip is
embeddable in a simple Artinian ring.

Proof. By 7.1, we may assume R is semiprime and A is semiprime Artinian. Let

A=Ao>Al>...>An = {0}

be a composition series of A as ^4-i?-bimodule and set p, = Ann R(Ai^1/Ai). Since
Ai-i/Ai is irreducible, p, is prime. Also Ap$2. . . pn = {0}, so Ylpi = {0} c p and the
minimality of p yields that p = p, for some i. Then Rip embeds into the semisimple
Artinian ring E = End^^ . jM,- ) . Since p is prime, in fact R/p will embed into a simple
(Artinian) component of E.

7.3. Let R be a semiprime subring of the matrix ring £)"*" over the division ring D
and suppose <€ is a right divisor subset of regular elements of R. Then, for some m^n, the
ring R^~l of right quotients is isomorphic to a subring of DmXm.

Proof. Repeat the proof of [5, 5.7.7]. (This is the special case of 7.3 where
<# = %?(()), but the proof given makes no use of this condition.)

7.4. The proof of Corollary 5. By 7.1 we may assume that A is semisimple Artinian.
But R is prime, so we may in fact assume that A = D"X" for some division ring D and
positive integer n. Also 5 is semiprime and right Goldie. Set <# = ^s(0). Then ^ is a right
divisor set of regular elements of R([S, 5.6.3], [6, 13] and [1, 1.30a]). Thus we can form
the over-ring R<€~1 = S<6~l[G] of R and, by 7.3, embed it into DmXm for some m. Now
S%>~1, being Artinian, is certainly thin. By the Theorem, R%~1 is thin, as well as prime
with max-ra and min-ra. Therefore R^~l is Goldie, from which it follows that R is right
Goldie.

7.5. The Proof of Proposition 1. (If S is thin then R is thin by the theorem and a
simple application of 7.1 and 1.2 yields the desired conclusion. In general we need to use
7.2 and Corollary 5 and hence also 7.3.)

By 7.1, we may assume that R is semiprime and that A is Artinian. Then, by 1.2,
there is only a finite number of minimal prime ideals p of R and, by 7.2, each R/p embeds
into an Artinian ring. If each R/p right Goldie, so is R. Hence we may assume that
p = {0} and R is prime. Then 5 ^^4 is semiprime with max-ra and min-ra, and also 5 is
right thin. Consequently 5 is right Goldie and therefore R is too by Corollary 5.

ADDENDUM

In response to our paper, Hajarnavis has produced his note [12], which is devoted to
an ingenious proof of the following extension of our 1.6.

1.6'. (Hajarnavis). Let R be a semiprime right Goldie ring. Then every maximal
chain of right annihilators in R has length M-dim RR.

Using this in place of 1.6, our proof of Proposition 2 immediately yields the
following.
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PROPOSITION 2'. Let R be a ring satisfying max-ra and min-ra and suppose R is locally
(semiprime and right Goldie). Then R too is semiprime and right Goldie.

This proposition in turn produces one-sided versions of 5.3, 5.4, 6.2 and 6.3 and
hence answers Question 1 as follows.

THEOREM'. Let R, S, G and N be as in the Theorem. If S is right thin and
G/Ne(P, L)(?Ig) then R is right thin.

REMARK (added May 1990). In a revised version of [12], Hajarnavis has now pushed
his methods further, to answer Question 2 positively in the special case where R is
semiprime.
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