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Letter
Regularized Regression Can Reintroduce Backdoor Confounding:
The Case of Mass Polarization
JONATHAN MELLON West Point, United States

CHRISTOPHER PROSSER Royal Holloway, University of London, United Kingdom

Regularization can improve statistical estimates made with highly correlated data. However, any
regularization procedure embeds assumptions about the data generating process that can have
counterintuitive consequences when those assumptions are untenable. We show that rather than

simply shrinking estimates, regularization can reopen backdoor causal paths, inflating the estimates of
some effects, and in the wrong circumstances, even reversing their direction. Recently, Cavari and
Freedman (2023), argued that declining cooperation rates in surveys have inflated measures of mass
polarization. We show that this finding is driven by large penalty terms in their regularized regressions,
which leads to the estimates being confounded with time. Alternative methods do not show a clear positive
or negative effect of declining cooperation on estimated levels of mass polarization.

INTRODUCTION

R egression models are ubiquitous in political
science, but standard estimators can produce
extreme and unstable inferences, particularly

with highly correlated predictors (Gelman et al. 2008).
These extreme results overinflate effect size estimates,
especially when filtered on statistical significance. One
solution is to apply regularization techniques, either
through Bayesian priors or frequentist methods such as
ridge regression or least absolute shrinkage and selec-
tion operator (LASSO). Regularization techniques
have become popular in the last decade, with at least
102 articles in the top three political science journals
(see Appendix R5 for details).
Regularization reduces the variance of estimates

by deliberately biasing them toward zero. In
repeated samples, unregularized estimators con-
verge on the population value of a parameter, but
individual estimates may be far from this value. By
contrast, regularized estimators are biased in expec-
tation (i.e., closer to zero than the population value),
but there is less variation in estimates between
different samples. The degree of bias is determined
by making assumptions about the likely distribu-
tion of effects. Different methods make different

assumptions. Faced with a set of correlated predic-
tors, a researcher who thought there was likely to be a
large number of small effects would choose ridge
regression, but one who thought there was likely to
be a small number of large effects—while other vari-
ables had no effect at all—would choose LASSO.
Bayesian methods are more flexible, allowing
researchers to specify ridge, LASSO, and elastic net
equivalent priors, but also to use a range of other
distributions (Carvalho, Polson, and Scott 2009).
Used judiciously, regularization stabilizes estimates
and improves out-of-sample predictions.

However, regularization has underappreciated con-
sequences for making causal inferences: with strong
regularization, as some coefficients are shrunk, the
coefficients of correlated variables can be inflated. This
happens because regularized coefficients do not
account for all the variance associated with a variable,
leaving residual variance open to be modeled by other
variables. In other words, regularization partially
reopens backdoor causal paths that were previously
blocked by covariate adjustment.

In this letter, we first demonstrate how regulariza-
tion can reopen backdoor casual paths. We then
discuss this problem with respect to an American
Political Science Review letter by Cavari and
Freedman (2023, hereafter CF2), which employs
regularized regression to argue that falling survey
cooperation rates have exaggeratedmass polarization
in the United States. CF2 include a linear time control
in their model to guard against spurious correlations
due to trending variables. However, their use of
regularization entails the assumption that the effect
of time is small. We argue that a priori we should
have strong expectations that any two (causally
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unrelated) variables measured over time are likely to
be correlated with one another. Shrinking the time
effect reopens the backdoor path between response
rates and polarization via time. We reanalyze CF2’s
data in light of these problems and show it does not
support the claim that declining response rates have
inflated estimates of mass polarization.

REGULARIZED REGRESSION

Ordinary Least Squares (OLS) and regularized regres-
sion methods are both approaches for estimating the
model y = Xβ + ϵ. Frequentist regularized methods
shrink coefficient estimates by adding a penalty term
to the OLS cost function, but differ in how they do
so. We examine three common frequentist regulariza-
tionmethods: ridge regression, LASSO, and elastic net.
We also contextualize thesemethods against theBayes-
ian approach of specifying explicit priors.
Ridge regression minimizes the cost function:

XM
i¼1

ðyi − β0 −
Xp
j¼1

βjxijÞ2

þ λ
Xp
j¼1

β2j : (1)

The ridge cost function is the OLS cost function, which
minimizes the sum of squared residuals, plus an addi-

tional penalty term λ
Pp
j¼1

β2j : Regularization penalties

shrink coefficients because any reduction in the sum of
squared residuals produced by larger coefficients is par-
tially offset by an increase in the size of the penalty term.
For example, while a model with two coefficients 2 and
1 might result in a lower sum of squares compared to a
modelwith coefficients 1.9 and0.9, the latterhasa smaller
penalty term, and with a sufficiently large λ will have a
smaller overall sum. Importantly, the size of the ridge
penalty is proportional to the squareof the coefficients, so
if coefficient β1 is twice themagnitude of coefficient β2, β1
contributes four times as large a penalty as β2. Conse-
quently, for a marginal increase in the sum of squared
residuals, ridge regression prefers two coefficients of
similar sizes to one large and one small coefficient.
LASSO minimizes the cost function:

XM
i¼1

ðyi − β0 −
Xp
j¼1

βjxijÞ2

þ λ
Xp
j¼1

jβjj: (2)

The difference between Equation 2 and Equation 1
being that the LASSO loss function regularizes coeffi-
cients proportional to their absolute size rather than
their square, and so does not produce the effect of ridge
regression of preferring many small coefficients to a
smaller set of larger coefficients.
The elastic net incorporates both of these penalty

terms, adding an additional term α, which controls the
relative weight between the two.When α = 1, the elastic
net is equivalent to LASSO, and when α = 0, it is
equivalent to ridge regression:

XM
i¼1

ðyi − β0 −
Xp
j¼1

βjxijÞ2

þ λ
Xp
j¼1

ðαjβjj þ ð1−αÞβ2j Þ:

(3)

These penalty terms encode assumptions about
the likely size of the βj effects, which can be inter-
preted as Bayesian priors (Hastie, Tibshirani, and
Friedman 2009). In Bayesian terms, the ridge
regression penalty expects that βj are normally dis-
tributed around zero, which implies that coefficients
are increasingly unlikely the further away from zero
they are. As a Bayesian prior the LASSO penalty
follows a Laplace distribution, which is sharply
peaked at zero, entailing the expectation that large
values of βj are unlikely, but furthermore that many
effects are exactly zero. The elastic net prior is a
mixture of these two distributions. Larger λs imply
stronger versions of these assumptions, or in Bayes-
ian terms, prior distributions with smaller standard
deviations and/or scale parameters.

Choosing λ

Given the role of the penalty term in regularized estima-
tors, λ must be chosen with care. The most common
approach is to choose λ based on out-of-sample predic-
tive performance, typically using cross-validation (CV).
For ridge regression, an alternative approach is based on
a transformation of sample variance and covariance.CF2
take this latter approach, using the “KM4” method
(Muniz andKibria 2009).Differentmethods for choosing
λ can result in radically different values. In our simula-
tions below, KM4 tends to choose considerably higher λs
(mean = 4.1) compared to CV (mean = 0.9), and so a
KM4 approach to choosing λ would result in much
stronger regularization.

Thinking about penalty terms as being equivalent
to Bayesian priors suggests an alternative approach.
In Bayesian statistics, a common choice is to use
weakly informative priors, such as N(0, 1) when all
variables are standardized to have mean 0 and SD
1 (Betancourt 2017). For a regression where all vari-
ables are unit-scaled, a ridge regression with penalty λ
is equivalent to a Bayesian estimate with a normally
distributed prior with mean 0 and standard deviationffiffiffiffiffiffiffiffiffiffi

Varðϵ̂Þ
λ

q
(Hastie, Tibshirani, and Friedman 2009, 64).

In practice, the conversion between λ and priors can
be further complicated by rescaling procedures
applied by particular software, which we discuss in
Section S5 of the Supplementary Material.

Regularized Regressions Can Reopen
Backdoor Causal Paths

In order to demonstrate the counter-intuitive effects
that regularization can have, we run simulations in
which X causes Y, and X and Z are correlated, but Z
has no causal effect on Y, illustrated in the directed
acyclic graph (DAG) (4) below.
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(4)

Where X and Z are multivariate standard normal vari-
ables with a correlation ρ, and Y is a linear function of
βXX and a standard normal error term (in CF2’s data, if
the response rate effect on polarization was actually
zero, thenXwould be equivalent to time,Z to response
rate, and Y to polarization):

X

Z

" #
� Nð 0

0

" #
,

1 ρ

ρ 1

" #Þ,

Y � βXX þNð0, 1Þ:
(5)

From this DGP, we simulate ten thousand datasets
with βX � U(0, 1) and ρ = −0.9 (approximately the
correlation between time and response rate in CF2’s
data).
We then fit the following model to the simulated

data:

yi ¼ β0 þ βXXi þ βZZi þ ϵi (6)

using four estimators: OLS, ridge regression, LASSO,
and elastic net (with α = 0.5, an equal mix of the two
penalties). For each regularized estimator, we set four λ
penalties: 0.00615, 0.154, 0.615, and 2.46, which corre-
spond approximately to a weakly informative prior for
the average simulated case, and priors that are 20%,
10%, and 5% the width of the standard deviation of
that weakly informative prior for ridge regression.
Figure 1 shows the average coefficient estimates for

βX and βZ for each estimator, which illustrates the
interaction between effect size and λ. We first con-
sider bias (the average signed difference between the
estimate and simulated coefficient). The OLS esti-
mate is unbiased for both βX and βZ across the range
of the simulated βX terms. With a penalty equivalent
to a weakly informative prior (λ = 0.00615, rowA), the
regularized estimates are only marginally biased.
With a larger penalty (λ = 0.154, row B), the bias in
the estimated βx is substantially larger. For ridge
regression, this bias increases linearly as the simu-
lated βX increases. For LASSO (and to a lesser extent
elastic net), the level of bias flattens off with suffi-
ciently large βX values. As λ gets larger, the bias in the
βX estimates also increases (rows C and D). These
biases are strongest for LASSO—which with the high-
est penalty almost always shrinks the estimates to
zero—and smallest for ridge regression, with elastic
net in between.

That regularized regression induces bias and
shrinks βX toward zero is well understood—this is
the price these estimators pay for reducing variance.
What is less appreciated is that regularized estima-
tors also bias βZ away from zero. This occurs because
some of the X ! Y effect is left unaccounted for by
the biased βX estimate, and so is transferred to Z via
the Z $ X ! Y backdoor path (for a demonstration,
see Section S3 of the Supplementary Material). The
βZ bias is most pronounced for ridge regression: as
the λ penalty increases, the bias in βZ initially
increases (compare the ridge regression lines in rows
B/C). As λ increases further, the ridge βZ estimates
are themselves regularized, and move back toward
zero. Although this means the absolute bias in βZ is
reduced with the largest λ terms, the effect of βZ
relative to βX continues to increase, with estimators
with large penalties assigning almost equal values to
βX and βZ. For LASSO, the bias in βZ is only notice-
able at the smaller levels of λ (i.e., row B); with
higher penalties βZ is almost always pulled to zero.
Elastic net is again between the ridge and LASSO
estimates.

Making Statistical Inferences with
Regularized Regressions

To make inferences about underlying population
parameters (e.g., the true effect of response rate on
estimates of mass polarization), we typically use esti-
mates of sampling variance. With unbiased estima-
tors this is straightforward; in repeated samples, we
would expect 95% of our confidence intervals (CIs)
to overlap the population value. With regularized
estimators, this is more complicated because (1) the
sampling variance of some regularized estimators is
poorly defined, and (2) even where it is well defined
(such as for ridge regression) the resulting CIs may
have no overlap with the underlying population
parameter.

A particular challenge for the LASSO and elastic net
estimators is that “we still do not have a general,
statistically valid method of obtaining standard errors
of LASSO estimates” (Kyung et al. 2010, 377) even
using bootstrap methods. LASSO and elastic net are
therefore poorly suited to inference.

This problem does not apply to ridge regression,
where the variance of ridge estimates is

Varðβ̂ridgejXÞ ¼ σ2ðXTX þ λIÞ−1XTXðXTX þ λIÞ−1:
(7)

We must be clear what this variance captures: how
much a ridge estimate β̂ridge is expected to differ across
repeated samples (when λ = 0, this is the same as OLS).
By design, the λ penalty decreases variance. However, λ
also increases bias (indeed, it reduces variance by
increasing bias). This has the pernicious effect of
shrinking the ridge CIs at the same time as increasing
the distance between the ridge estimates and the
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underlying parameter of interest. As bias grows, CI
coverage falls because more of the discrepancy
between β̂ridge and β is due to bias (which the CIs do
not account for) rather than sampling variation (which
the CIs do account for). If the bias is large enough, CIs
routinely exclude the true value of β. Narrow ridge
regression CIs do not necessarily indicate a precise
estimate of the parameter of interest, but simply that

ridge regression would produce similar estimates with
new samples. The resulting CIs may lead to misleading
inferences about population parameters.

We can again demonstrate this problem using sim-
ulations. Returning to the simulated data we used in
Figure 1, we calculate CIs for OLS and ridge regres-
sion. For each simulation, we record whether the CI
overlaps the simulated parameters for βX and βZ,

FIGURE1. EstimatedOLS, Ridge, LASSO, andElastic Net Coefficients for Simulated Values of βX and λ
(Local Linear Smooths)
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illustrated in Figure 2. The OLS CIs have the appro-
priate coverage (95%) across all simulated values of
βX. For the ridge CIs, however, we again see an
interaction between λ and the size of βX. When λ is
small and βX is small, the CIs still have coverage close
to the 95% benchmark. As βX gets larger the coverage
rate begins to fall for both βX and βZ. This problem is

exacerbated by larger values of λ—the coverage rate
falls precipitously and approaches zero. At the highest
levels of λ and βX, this means that the CIs for βX and βZ
never overlap the population values for these param-
eters. In all but the most favorable of circumstances,
ridge regression is simply not an appropriate tool for
statistical inference.

FIGURE 2. Estimated OLS and Ridge CI Coverage for Simulated Values of βX and λ (Local Logistic
Smooths)
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AN EXAMPLE OF RIDGE REGRESSION
ESTIMATES IMPLYING UNREALISTIC
PRIORS ABOUT THE EFFECT OF TIME

In light of the issues we discuss above, we turn to CF2’s
analysis. CF2 analyze the relationship between survey
response/cooperation rate and partisan polarization for
survey questions asked by Pew between 2004 and 2018.
They operationalize polarization as the absolute
Cohen’s D of mean differences between Republican
and Democrat identifiers’ responses. They estimate
models for six issue areas: economy, energy, immigra-
tion, civil rights, welfare, and foreign policy, specified as

yit ¼ β0 þ β1rrit þ β2congresst þ β3yeart þ ϵit, (8)

where rrit is survey i’s response rate at time t, congresst
is congressional polarization at time t, and yeart is the
year in which the survey was conducted. For the
contact and cooperation rate versions of these models,
the β1rrit term is replaced with β4contactit and β5coop-
erationit. Equation 8, which adds a year term to an
earlier model estimated by Cavari and Freedman
(2018, henceforth CF1) was suggested by Mellon and
Prosser (2021, hereafter MP) in a critique of CF1 as
one of several ways they could deal with the problem
of time trends.1 CF2 estimate their models using ridge
regression (unlikeMP, who use OLS) with λ chosen by
the KM4 method. CF2 reports statistically significant
negative effects of response and cooperation rates
(i.e., lower response rates increase the estimated level
of polarization) for three areas: economy, energy, and
immigration.
CF2’s KM4 ridge regression estimates imply strong

priors that are between 1.5% and 5.9% the width of a
weakly informative prior. Are these priors plausible
when considering time trends?A priori, there are good
reasons to think not. Many social processes can be
modeled as random walks or similar processes. Inde-
pendent random walks will tend to correlate with time
(Granger and Newbold 1974) because their variance
increases as a function of time (see Section S2 of the
Supplementary Material).
Moreover, we can show that many social science

variables are correlated with time in practice. We
calculate the annual mean of binary, ordinal and
continuous variables asked in 15 or more years of
the GSS (Smith et al. 2019) and estimate a linear
model of each variable on time using OLS. Figure 3
shows a histogram of the standardized coefficients for
the effect of time on each variable. The distribution
has a far higher dispersion than CF2’s priors imply,
with a standard deviation of 0.657 and heavy tails close
to 1 and −1.
To show how different these priors are from CF2’s,

we can consider how likely we are to observe a 0.5 or
larger magnitude unit-scale coefficient. The weakest of
CF2’s priors implies the probability of observing a 0.5

or larger unit-scale coefficient (considerably smaller
than the mean OLS-year estimate on their data) is 2.8
× 10−17. By contrast, a N(0, 0.657) prior gives a proba-
bility of 0.447 of observing an effect size magnitude of
0.5 or larger.

CF2’s narrow priors mean they strongly shrink the
year coefficient in their models, which risks reopening
the backdoor causal paths that the inclusion of a time
control is designed to block.

ANEXAMPLEOFHOWALARGESHRINKAGE
PARAMETER AFFECTS EMPIRICAL
RESULTS

To demonstrate the impact of CF2’s regularization
approach, we reestimate their models using a variety
of approaches: their original KM4 ridge regressions,
OLS, ridge regression with λ chosen by CV, a weakly
informative N(0, 1) unit-scaled prior, a prior informed
by the GSS distribution of time effect sizes N
(0, 0.657), LASSO with λ chosen by CV, and elastic
net (α = 0.5) with λ again chosen by CV. These esti-
mators show the impact of different regularization
approaches, but they all share a common approach
to controlling for time (a linear trend), which may not
fully account for time-series problems. Given this, we
benchmark them against a more sophisticated
repeated cross-section model suggested by Lebo and
Weber (2015) (ARIMA-MLM—we elaborate on this
approach in Section S1 of the Supplementary Mate-
rial). These estimates for the key response and coop-
eration rate variables are shown in Figure 4.2

FIGURE 3. Two Hundred Forty Nine
Standardized Coefficients of Time on GSS
Variable Annual Averages
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1 Section S1 of the Supplementary Material examines the other MP
models.

2 CF2 report scaled coefficients. We report unscaled coefficients to
facilitate comparison between estimators.
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The results in Figure 4 present a striking pattern—six
of the seven estimators of the linear-time-trend model
produce similar results, and one does not. With the
exception of the economy issue area, CF2’s KM4 results
are considerably closer to zero than either the OLS
estimate or the other regularized estimates. All of the
unregularized estimates, and nearly all of the other
regularized estimates apart from KM4, have estimates
in theoppositedirection to those reportedbyCF2.Those
estimates that CF2 report as negative have swapped
directions compared to their unregularized equivalents
—the same effect we demonstrated earlier in our

simulations—and are driven not by the data, but by high
λ penalties.3 Only in one other case—ridge regression
with λ chosen byCV for the economy—are the estimates
of response and cooperation rate effects negative. Even
these estimates donot support an effect of response rates
on mass polarization: the CIs for both overlap zero.

Appendix R3 presents further simulations that
examine the likelihood of false positives using CF2’s
approach if the true effect of response/cooperation

FIGURE 4. Estimated Effects of Response and Cooperation Rates from Replication of CF2’s Analysis
Using Six Estimators: OLS, Ridge Regression (λ Chosen Using KM4), Ridge Regression (λ Chosen by
CV), LASSO (λChosen by CV), Elastic Net (λChosen by CV), Bayesian Regression (Weakly Informative
Priors), Bayesian Regression (Informed Priors Based on the GSS Distribution of Time Trends), and
ARIMA-MLM

Immigration Welfare

Energy Foreign affairs

Civil rights Economy

−0.04 0.00 0.04 0.08 −0.04 0.00 0.04 0.08

ARIMA−MLM

GSS−informed Prior

Weakly Informative Prior

Elastic net

LASSO

Ridge (CV)

Ridge (KM4)

OLS

ARIMA−MLM

GSS−informed Prior

Weakly Informative Prior

Elastic net

LASSO

Ridge (CV)

Ridge (KM4)

OLS

ARIMA−MLM

GSS−informed Prior

Weakly Informative Prior

Elastic net

LASSO

Ridge (CV)

Ridge (KM4)

OLS

Estimated effect of response/cooperation rate on measured polarization

Response rate Cooperation rate

Note: CIs omitted from LASSO and elastic net estimates for the reasons discussed in Section “Making Statistical Inferences with
Regularized Regressions.” CIs for the ridge (KM4) estimates are drawn, but are smaller than the size of point estimate marker. See
Appendix R6 for full tables.

3 Appendix R1 analyses CF2’s data across a range of λ ridge penalties.
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rates was zero. The results are stark. We observe false
positives more than 98% of the time for the effect of
response/cooperation rates for energy, immigration,
and foreign policy andmore than 83% for the economy.
In other words, CF2’s results are what we would expect
to see if there were no true effect of response/cooper-
ation rate on mass polarization.
Should we conclude that the effects of response/

cooperation rates on mass polarization are null or
even positive (i.e., the opposite of CF2’s claims)?
While there are plausible theoretical models that
lower response rates could deflate measures of mass
polarization (see Appendix R4), the evidence is
insufficient to make that claim. While some OLS
estimates of the linear-time-trend model suggest pos-
itive effects, the ARIMA-MLM approach (and sev-
eral other alternate model specifications) never find
significant effects in either direction, suggesting that
the linear-time-trend specification does not fully
account for structural properties such as auto-
correlation. We believe that ARIMA-MLM is a bet-
ter model specification for removing spurious time
effects, so prioritize its result over the linear specifi-
cation used by CF2.
We also refrain from claiming a precise null effect. As

Section S4 of the SupplementaryMaterial shows, the data
are underpowered even if the linear time trend specifica-
tion is correct. We suspect that matched individual-level
and administrative data (e.g., Clinton, Lapinski, and
Trussler 2022) may be a more fruitful avenue for explor-
ing this question. Our claim is merely that the apparent
evidence of an effect of response rates on mass polariza-
tion is driven by an inappropriate estimator and that the
data are insufficient to test for effects of the claimed size.

CONCLUSIONS

The problem of correlated predictors is a real con-
cern for scholars. Regularization through weakly
informative priors or equivalent frequentist regular-
ized estimators may be helpful for reducing variance
in these cases with only a limited increase in bias.
However, we urge scholars to avoid using data-driven
regularization procedures without assessing their
substantive implications. With overly strong penalty
terms, regularization can reintroduce confounding
through backdoor causal paths that are blocked by covar-
iate adjustment with an unregularized estimator.4 We
recommend either directly using Bayesian priors, or
translating the implicit assumptions of frequentist regu-
larized regressions into priors so that their plausibility and
impact can be assessed.
There are also broader lessons that can be taken from

our analysis. First, correlation with time is a serious
threat to valid statistical inference. Many—perhaps
most—social science variables are correlated with time.

Any statisticalmodel that uses longitudinal data needs to
account for time. Second, social scientists frequently use
complex methods to try to extract the maximum avail-
able information from limited data, which often entail
opaque assumptions about the world. These assump-
tions should be made explicit and justified. Third, simu-
lation should be part of any social scientist’s toolkit.
Simulations make clear the impact that different model-
ing choice can have on our estimates and require little
expertise beyond that required to estimate the same
statistical models on observed data.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please
visit https://doi.org/10.1017/S0003055424000935. Fur-
ther supplementary material (indicated with by appen-
dices labeled with R) can be found with the replication
material.
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