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Abstract
The authors‘ previous research has demonstrated that parallel mechanisms (PMs) with hybrid branch chains (i.e.,
branch chains containing planar or spatial loops) can possess symbolic forward position (SFP) solutions and motion
decoupling (MD). In order to further study the conditions of a three-chain six degrees of freedom (DOF) parallel
mechanism with SFP and MD, this paper proposes one 6-DOF branch chain A and two 5-DOF branch chains B and
C. Based on these, a class of four 6-DOF PMs with three branch chains is devised. The symbolic position analysis of
three of four such PMs is performed consequently, featuring partial MD and SFPs, which reveals that if the position
or orientation of a point on the moving platform can be determined by the position of the hybrid branch chain, the
PM exhibits partial MD and SFP. Finally, the accuracy of the symbolized forward and inverse solution algorithms
is verified through numerical examples. This research brings a new insight into the design and position analysis of
6-DOF PMs, particularly those with SFP and partial MD.

1. Introduction
Generally, as the number of parallel branch chains increases in a parallel mechanism (PM), the
workspace-to-volume ratio decreases and flexibility decreases, increasing the likelihood of interference.
Additionally, there are more singular configurations, and the kinematic solutions become more complex
[1]. Therefore, for a 6-DOF PM with a complex topology and strong loop coupling, reducing the number
of branch chains and cleverly designing the topology can effectively address these drawbacks.

Consequently, a minimally-constrained 6-DOF PM proves to be a viable solution. Some progress
has been made in researching 6-DOF PMs with three limbs such as 3-PPSP, 3-RRPS, 3-PRPS, and 3-
URS. However, these minimally-constrained 6-DOF PMs still exhibit limitations such as non-decoupled
motion and complex forward kinematics.

Currently, there are very few 6-DOF PMs with decoupled position and motion, as well as symbolic
forward and inverse kinematics. Nevertheless, a 6-DOF 6-SPU PM with a spherical joint, double spher-
ical joint, and triple spherical joint (1-2-3 type) on the moving platform does possess symbolic forward
and inverse kinematics, as well as decoupled position and orientation [2]. Consequently, subsequent
kinematic studies, dynamic analysis, and control research of this mechanism are facilitated [3].

The position analysis of 6-DOF PMs, which is a critical issue in kinematic problems, has been exten-
sively studied by many researchers. There are two main methods commonly adopted algebraic analytical
methods and numerical methods [3, 4]. The author has recently proposed a distinction between analyt-
ical solutions, categorizing them as either symbolic solutions or closed-form solutions (in the form of
a univariate polynomial equation). These two types of solutions differ in their mathematical represen-
tation: symbolic solutions can be expressed as formulaic expressions, while closed-form solutions can
only be represented as univariate polynomial equations, and the final solution is in numerical form. This
differentiation provides a clear and distinct categorization [3].
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Algebraic methods are widely used for the analysis of 6-DOF PMs, particularly for 6-SPS PMs and
their derived types. Among them, Innocenti et al. [5] solved the closed-form solution of the 5-5 type
PM. Lin et al. [6] conducted a forward position analysis of the 4-5 type PM and obtained closed-form
solutions. Huang et al. [7] utilized algebraic algorithms to solve the forward kinematics of a 6-6 type
PM, resulting in a high-order equation of degree 40 in one variable. Lin [8] and others derived 20 input-
output equations for the 6-5 platform spatial PM and obtained 40 different poses for the moving platform.
Zhang et al. [9] proposed an algebraic elimination method to solve the forward kinematics of the general
6-4 PM and obtained a high-order equation of degree 1 for its forward kinematics. Su et al. [10] applied
Dixon’s resultant to analyze the forward kinematics of a 5-5 PM, resulting in its input-output equation
of degree 40 in one variable and all the solutions. Yun et al. [11] designed a three-legged 6-DOF PM
and analyzed its forward and inverse kinematics. Gao [12, 13] studied the closed-form solutions of the
forward and inverse kinematics of the 6-DOF 2-SRU mechanism and 3-UPS mechanism, respectively.
Yu et al. [14] analyzed the position of the 6-DOF 3-UrSR PM and obtained the closed-form solution of
its forward kinematics.

On the other hand, scholars who employ numerical methods include Innocenti et al. [15], Dasgupta
et al. [16], Husty et al. [17], Wampler et al. [18], Nanua et al. [19], and Lin et al. [20], who conducted
research on the kinematic position analysis of 6-SPS PMs and their derived types. He et al. [21, 22]
utilized a hybrid algorithm based on genetic algorithms and neural networks to analyze the forward
kinematics of a 6-DOF PM with a 5R closed-loop five-bar linkage structure. Zhao et al. [23] used the
direction cosine matrix method to solve the forward and inverse kinematics of the proposed orthogonal
6-DOF 6-PPPS PM. Shen et al. [24] proposed a new type of 6-DOF PM and proposed a numerical
method for solving the forward kinematics of 6-SPS PMs based on a topological structure analysis in
ref. [2], and in ref. [25], they suggested a 1-2-3-SPS PM and obtained its symbolic solutions. Wang
et al. [26] proposed a mixed strategy combining a linear decoupling geometric analysis method and
a high-order convergence iteration method to solve the forward kinematics of PMs. Chen et al. [27]
proposed a 6-DOF PM with a branched closed-loop dual-drive unit capable of achieving hybrid output
and conducted kinematic studies on it. Qu et al. [28] conducted a kinematic analysis of the 6-SPS parallel
robot based on the differential evolution algorithm.

In Ref. [29], a three-branch 6-DOF PM is proposed and its kinematic position is analyzed. The numer-
ical solution of the forward kinematics of the PM is obtained by Newton iteration method, and the
symbolic forward position solution of the PM is derived. As we all know, it has the characteristics of
symbolic forward position (SFP), which brings a lot of convenience for the subsequent error analysis,
dynamic analysis, and real-time motion control of PM. In order to further study the conditions of a
three-chain 6-DOF parallel mechanism with SFP and MD. Therefore, this paper proposes a class of four
three-chain 6-DOF PMs, consisting of a designed 6-DOF chain A and 5-DOF chain C. Three of four
PMs are revealed to exhibit SFP and partial DM. Furthermore, SFP and inverse solutions are derived
for the three 6-DOF PMs. Numerical validations of the symbolic position solutions are also performed.

The work reveals a new rule, i.e., if the position or orientation of a point on the moving platform can
be determined by the position of its one branch chain, the PM exhibits partial MD and SFP, which is
a new insight for the design and position analysis of 6-DOF PMs, particularly for those with SFP and
partial MD.

2. Design of a 6-DOF chain A and two 5-DOF chains B and C
According to the topological design theory of serial mechanism based on the position and orientation
characteristics (POC) equation [3, 30], the following hybrid chains containing a 2-DOF planar five-bar
mechanism (i.e., hybrid chain A, B) or a 1-DOF planar four-bar mechanism (i.e., hybrid chain C) are
proposed.

For hybrid chain A, it consists of a 2-DOF planar five-bar mechanism connected in series with a
1-DOF rotating joint (R) and a 3-DOF spherical joint (S), resulting in a total of 6-DOF, as shown in
Fig. 1(a).
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Table I. Types of parallel mechanisms.

POC 0T3R 1T3R 2T3R 3T3R
2A1B 3A

1A2B
Configuration 3B 1A1B1C 2A1C
of mechanism 3C

1C2B 1B2C
1A2C

Figure 1. Hybrid branch chains A of 6-DOF, B and C of 5-DOF.

For hybrid chain B, it directly connects a 2-DOF planar five-bar mechanism with a 3-DOF spherical
joint (S), resulting in a total of 5-DOFs, as shown in Fig. 1(b).

Here, "2-DOF planar five-bar mechanism" refers to a planar mechanism composed of five rotating
joints and five components. It has 2 degrees of freedom.

For hybrid chain C, it combines the base link of a 1-DOF planar four-bar mechanism with a 1-DOF
rotating joint (R) and further connects it with a 3-DOF spherical joint (S) on its link, resulting in a total
of 5-DOF, as shown in Fig. 1(c).

According to the topological design theory of PM based on the POC [30], the following three
branched-chain mechanisms can be constructed from the above three hybrid branched-chain mecha-
nisms, as shown in Table I. There are four three-branched 6-DOF mechanisms, respectively, referred to
as 3A, 3C, 1A + 2C, and 2A + 1C mechanisms, as shown in Fig. 2.

The position analysis of PM1 has been conducted in Ref. [29], which indicates that this PM exhibits
non-MD and lacks SFPs.

However, the work of the paper reveals that the proposed PM2, PM3, and PM4 possess SFP solutions
and partially MD. Thus, in this paper, the position analysis of these three 6-DOF PMs is carried out,
shedding light on the paradigm for solving the position equations of such three-chain 6-DOF PMs.

3. Kinematic position analysis of PMs
3.1. Position analysis of the PM2
The coordinate system established by PM2 is illustrated in Fig 3(a). The base coordinate system is
established at one corner of a regular cube with edge length 2a. The X, Y, and Z axes are perpendicular
and orthogonal to each other. Each hybrid branch chain is located at the geometric center of one of
the three orthogonal faces of the cube. Moreover, the X-axis is perpendicular to the line A12A22, the Y-
axis is perpendicular to the line A32A41, and the Z-axis is perpendicular to the line A52A61. The moving
coordinate system is established at the geometric center of the moving platform (an equilateral triangle).
The x-axis points toward S1, the y-axis is parallel to the line S2S3, and the z-axis is determined by the
right-hand screw rule.
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Figure 2. A class of four 6-DOF parallel mechanisms.
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Figure 3. Kinematic parameters labeling of parallel mechanism 2.

The distance from the geometric center of the movable platform to each vertex of the equilateral
triangle is denoted as b, as shown in Fig 3(b). The parameters of each hybrid branch are labeled as
shown in Figs 3(c-e), and the rod length parameters are as follows:

A11A12=A11A21=A31A32=A31A41=A51A52=A51A61=l0, A12A13=A32A33=A52A53=l1, A13S1=A33

S2=A53S3=l2, A21A22=A41A42=A61A62=l3, A22S1=A42S2=A62S3=l4, A13A22=A33A42=A53A62=l5.

The distance between each spherical joint center and rod 5 is denoted as h.

3.1.1. Forward position analysis of the PM2
Given the input θi(i = 1 ∼ 6) of the driving joints, to determine the posture of the moving platform.

Suppose the coordinates of any point Si (i = 1 ∼ 3) on the moving platform in the moving coordinate
system are denoted as Si’, and the origin O‘ of the moving coordinate system has coordinates So (x, y, z)
in the base coordinate system. Then, the coordinates of any point Si on the moving platform in the base
coordinate system can be expressed as follows:
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Si = QS′
i + S0 (1)

Here, Q represents the transformation matrix from the moving coordinate system to the base
coordinate system.

Due to the end POC of the moving platform being 3T3R, where α, β, and γ represent the rotating
angles of the moving platform around the x, y, and z axes, respectively, Q can be expressed as:

Q =
⎡
⎢⎣

cos β cos γ − cos β sin γ sin β

sinα sin β cos γ + cos α sin γ cos α cos γ − sinα sin β sin γ − sin α cos β

sin α sin γ − cosα sin β cos γ cosα sin β sin γ + sin α cos γ cos α cos β

⎤
⎥⎦ (2)

The coordinates of the vertices of the moving platform in the moving coordinate system are given as:

S′
1 = (b, 0, 0), S′

2 =
(
−b/2,

√
3b/2, 0

)
, S′

3 =
(
−b/2, −√

3b/2, 0
)

.

According to Eq. (1), the coordinates of the three vertices S1∼S3 of the moving platform in the base
coordinate system can be obtained as follows:⎧⎪⎨

⎪⎩
xs1 = b cos β cos γ + x

ys1 = b (sinα sin β cos γ + cos α sin γ ) + y

zs1 = b (sin α sin γ − cosα sin β cos γ ) + z

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xs2 = −b

2
cos β cos γ −

√
3

2
b cos β sin γ + x

ys2 = −b

2
(sinα sin β cos γ + cos α sin γ ) +

√
3b

2
(cos α cos γ − sinα sin β sin γ ) + y

zs2 = −b

2
(sin α sin γ − cosα sin β cos γ ) +

√
3b

2
(cosα sin β sin γ + sin α cos γ ) + z

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xs3 = −b

2
cos β cos γ +

√
3b

2
cos β sin γ + x

ys3 = −b

2
(sinα sin β cos γ + cos α sin γ ) −

√
3

2
b (cos α cos γ − sinα sin β sin γ ) + y

zs3 = −b

2
(sin α sin γ − cosα sin β cos γ ) −

√
3

2
b (cosα sin β sin γ + sin α cos γ ) + z

(5)

1) Analysis of hybrid branch chain 1
For analysis of forward position for hybrid branch chain 1, the line A13S1 is perpendicular to the line

A22S1 in hybrid branch chain 1, and the angle between the line A13S1 and A13A22 is γ1 = 30◦.
Furthermore, the angle between link A13A22 and the negative direction of the Z-axis is set as α1 and

used as an intermediate variable.
It’s easy to know the coordinates of the following points.
A11 = (a, 0, a), A21 = (a, 0, a − l0), A12 = (a, 0, a + l0), A13 = (a + l1 sin θ2 cos θ1, l1 sin θ2 sin θ1, a +

l0 − l1 cos θ2),
A22 = (a + (l1 sin θ2 + l5 sin α1) cos θ1, (l1 sin θ2 + l5 sin α1) sin θ1, a + l0 − l1 cos θ2 − l5 cos α1).
According to the link length equation by constraint A21A22 = l3, the intermediate variable α1 is

found as

α1 = 2 arctan

(
N1 + n

√
N2

1 + N2
2 − N2

3

N2 + N3

)
(n = ±1) (6)
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Where: N1 = 2l1l5 sin θ2, N2 = −2l5(2l0 − l1 cos θ2), N3 = l2
3 − l2

5 − (l1 sin θ2)2 − (2l0 − l1 cos θ2)2.
Then the coordinates of S1 are expressed as⎧⎪⎨

⎪⎩
xs1 = a + (l1 sin θ2 + l2 sin (γ1 + α1)) cos θ1

ys1 = (l1 sin θ2 + l2 sin (γ1 + α1)) sin θ1

zs1 = a + l0 − l1 cos θ2 − l2 cos (γ1 + α1)

(7)

2) Analysis of hybrid branch chain 2
The angle between link A33A42 in hybrid branch chain 2 and the negative direction of the X-axis is

defined as α2, and serves as an intermediate variable. It is easy to know the following coordinates.
A31 = (a, a, 0), A32 = (a + l0, a, 0), A41 = (a − l0, a, 0),
A33 = (a + l0 − l1 cos θ4, a + l1 sin θ4 cos θ3, l1 sin θ4 sin θ3),
A42 = (a + l0 − l1 cos θ4 − l5 cos α2, a + (l1 sin θ4 + l5 sin α2) cos θ3, (l1 sin θ4 + l5 sin α2) sin θ3).
Based on the link length equation by constraint A41A42 = l3, we get the intermediate variable α2

below

α2 = 2 arctan

(
M1 + m

√
M2

1 + M2
2 − M2

3

M2 + M3

)
(m = ±1) (8)

Where: M1 = 2l5l1 sin θ4, M2 = −2l5(2l0 − l1 cos θ4), M3 = l2
3 − l2

5 − (l1 sin θ4)2 − (2l0 − l1 cos θ4)2.
Then the coordinates of S2 are expressed as⎧⎪⎨

⎪⎩
xs2 = a + l0 − l1 cos θ4 − l2 cos (γ1 + α2)

ys2 = a + (l1 sin θ4 + l2 sin (γ1 + α2)) cos θ3

zs2 = (l1 sin θ4 + l2 sin (γ1 + α2)) sin θ3

(9)

3) Analysis of hybrid branch chain 3
Similarly, let the angle between the link A53A62 in hybrid branch chain 3 and the negative Y-axis be

α3, which serves as an intermediate variable. It is also easy to know the following coordinates.
A51 = (0, a, a), A52 = (0, a + l0, a), A61 = (0, a − l0, a), A53 = (l1 sin θ6 sin θ5, a + l0 − l1 cos θ6, a +

l1 sin θ6 cos θ5),
A62 = ((l1 sin θ6 + l5 sin α3) sin θ5, a + l0 − l1 cos θ6 − l5 cos α3, a + (l1 sin θ6 + l5 sin α3) cos θ5).
Based on the link length equation by constraint A61A62 = l3, the intermediate variable α3 is given

below

α3 = 2 arctan

(
Q1 + q

√
Q2

1 + Q2
2 − Q2

3

Q2 + Q3

)
(q = ±1) (10)

Where: Q1 = 2l5l1 sin θ6, Q2 = −2l5(2l0 − l1 cos θ6), Q3 = l2
3 − l2

5 − (l1 sin θ6)2 − (2l0 − l1 cos θ6)2.
Then the coordinates of S3 are expressed as⎧⎪⎨

⎪⎩
xs3 = (l1 sin θ6 + l2 sin (γ1 + α3)) sin θ5

ys3 = a + l0 − l1 cos θ6 − l2 cos (γ1 + α3)

zs3 = a + (l1 sin θ6 + l2 sin (γ1 + α3)) cos θ5

(11)

To here, the coordinate values of S1, S2, and S3 are determined. Therefore, according to Eqs. (3)-(5),
it is easy to know that the expression of the posture parameters of the moving platform of the 6-DOF
PM is given below.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = xs1 + xs2 + xs3

3

y = ys1 + ys2 + ys3

3

z = zs1 + zs2 + zs3

3

γ = arctan
[
(xs3 − xs1) /

(√
3 (xs1 − x)

)]
β = arccos

[
(xs1 − x) / (b cos γ )

]

α = arctan

[ √
3 (ys1 − y) cos γ − (ys2 − ys3) sin γ√

3 (ys1 − y) sin γ sin β + (ys2 − ys3) cos γ sin β

]

(12)

Obviously, from the forward position analysis of the PM2, it can be inferred that the coordinate values
of points S1, S2, and S3 on the moving platform of PM2 can be obtained by solving the hybrid branch
chain to which it belongs. Therefore, when any one of the points S1, S2, and S3 is taken as the base point,
i.e., the origin of the moving coordinate system, the PM has partial motion decoupling.

3.1.2 Inverse position analysis of the PM2
Given the position and postures of the moving platform of the PM2, to get the driving input θi(i = 1 ∼ 6).
1) Hybrid branch chain 1

From Eq (7), it is easy to know the following formula.

θ1 = arctan

(
ys1

xs1 − a

)
(13)

θ2 = 2 arctan

(
f1 + F

√
f 2
1 + f 2

2 − f 2
3

f2 + f3

)
(F = ±1) (14)

Where: f1 = −2l1ys1
sin θ1

, f2 = 2l1 (zs1 − a − l0) , f3 = l2
2 − l2

1 − (ys1/ sin θ1)
2 − (zs1 − a + l0)

2.
2) Hybrid branch chain 2

From Eq. (9), we have

θ3 = arctan

(
zs2

ys2 − a

)
(15)

θ4 = 2 arctan

(
g1 + G

√
g2

1 + g2
2 − g2

3

g2 + g3

)
(G = ±1) (16)

Where: g1 = −2l11zs2
sin θ3

, g2 = 2l1 (xs2 − a − l0) , g3 = l2
2 − l2

1 − (zs2/ sin θ3)
2 − (xs2 − a + l0)

2.
3) Hybrid branch chain 3

From Eq. (11), we get

θ5 = arctan

(
xs3

zs3 − a

)
(17)

θ6 = 2 arctan

(
k1 + K

√
k2

1 + k2
2 − k2

3

k2 + k3

)
(K = ±1) (18)

Where: k1 = −2l1xs3
sin θ5

, k2 = 2l1 (ys3 − a − l0) , f3 = l2
2 − l2

1 − (xs3/ sin θ5)
2 − (ys3 − a + l0)

2.
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Figure 4. Kinematic parameter labeling of the parallel mechanism 3.

3.2. Position analysis of the PM3
The coordinate system established by PM3 is shown in Fig. 4(a). The base coordinate system is estab-
lished at one corner of a regular cube with edge length of 2a, where the X-axis, Y -axis, and Z-axis are
perpendicular and orthogonal. Each hybrid branch chain is located at the geometric center of one of the
three orthogonal faces of the regular cube. In addition, the X-axis is perpendicular to the line A11A21,
the Y-axis is perpendicular to the line A32A41, and the Z-axis is perpendicular to the line A52A61. The
dynamic coordinate system is established at the geometric center of the moving platform (an equilat-
eral triangle), where the x-axis points toward S1, the y-axis is parallel to the line S2S3, and z-axis is
determined by the right-hand screw rule.

The moving platform geometry and parameter annotation of PM3 are the same as those of PM2, as
shown in Fig. 3(b). The parameter annotation of hybrid branch chain 1 is shown in Fig. 4(b), and the
rod length parameters are as follows: A11A21 = l10, A11A12 = l11, A12A13 = l12, A21A22 = l13, A22A13 = l14,
A13A14 = l15, A14S1 = l16. The parameters of the other hybrid branch chains are the same as PM2.

3.2.1 Forward position analysis of the PM3
The angle between the link A12A13 and the positive direction of the Z-axis is denoted as α1, and serves
as an intermediate variable. It’s easy to know the coordinates of the following points.

A11 = (a, 0, a + l10/2), A21 = (a, 0, a − l10/2), A12 = (a, l11 sin θ1, a + l10/2 − l11 cos θ1),
A22 = (a, l13 sin θ2, a − l10/2 + l13 cos θ2), A13 = (a, l11 sin θ1 + l12 sin α1, a + l10/2 − l11 cos θ1 −

l12 cos α1),
A14 = (a, l11 sin θ1 + (l12 + l15) sin α1, a + l10/2 − l11 cos θ1 − (l12 + l15) cos α1).
According to the link length equation by constraint A13A22 = l4, the intermediate variable α1 is

obtained as

α1 = 2 arctan

(
N1 + n

√
N2

1 + N2
2 − N2

3

N2 + N3

)
(n = ±1) (19)

Where: N1 = 2l12(l11 sin θ1 − l13 sin θ2), N2 = −2l12(l10 − l11 cos θ1 − l13 cos θ2),
N3 = l2

14 − l2
12 − (l11 sin θ1 − l13 sin θ2)2 − (l10 − l11 cos θ1 − l13 cos θ2)2.

Let the rotation angle of R10 from the YOZ plane be ϕ1, as shown in Fig. 4(b). Then the coordinates
of S1 can be expressed as ⎧⎪⎨

⎪⎩
xs1 = xA14 − l16 sin ϕ1

ys1 = yA14 + l16 cos ϕ1 cos α1

zs1 = zA14 + l16 cos ϕ1 sin α1

(20)
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The angle ϕ1 in the hybrid branch chain 1 can be obtained by the link length constraint S1S2 = √
3b.

ϕ1 = 2 arctan

(
W1 + w

√
W2

1 + W2
2 − W2

3

W2 + W3

)
(w = ±1) (21)

Where, W1 = −2l16 cos α1(xA14 − xs2), W2 = 2l16(yA14 − ys2) cos α1 + 2l16(zA14 − zs2) sin α1, W3 = 3b2−
l2
16 − (xs2 − xA14)2 − (ys2 − yA14)2 − (zs2 − zA14)2.

The hybrid branch chains 2 and 3 in PM3 are the same as the PM2, so the forward solution analysis
of the kinematic position is the same. For details, see Eqs. (8) to (11).

Here, the coordinate values of S1, S2, and S3 are obtained. Therefore, according to Eq. (12), it is easy
to determine the posture parameters of the moving platform of the PM3.

Obviously, from the above analysis process, it is easy to know that the coordinate values of points
S2 and S3 on the moving platform of the PM3 can be solved by the hybrid branch chain in which they
are located. Therefore, taking any point in S2 and S3 as the base point, the PM3 has partial motion
decoupling.

3.2.2 Inverse position analysis of the PM3
It is easy to know from the topological analysis that the link 6 in hybrid branch chain 1 is perpendicular
to the link 5, as shown in Fig. 4(b). Therefore, in the triangles S1A14A13 and S1A14A12, we have

S1A13 =√
l2
16 + l2

15 = l17, S1A12 =√
l2
16 + (l12 + l15)2 = l18.

According to the link length equation by constraint S1A12 = l18, it is easy to know

θ1 = 2 arctan

(
n1 + N

√
n2

1 + n2
2 − n2

3

n2 + n3

)
(N = ±1) (22)

Where: n1 = −2l11ys1, n2 = −2l11(a + l10/2 − zs1), n3 = l18
2 − l2

11 − (a − xs1)2 − y2
s1 − (a + l10/2 − zs1)2.

According to the link length equation by constraint S1A13 = l17, we have

α1 = 2 arctan

(
m1 + M

√
m2

1 + m2
2 − m2

3

m2 + m3

)
(M = ±1) (23)

Where: m1 = 2l12(l11 sin θ1 − ys1), m2 = −2l12(a + l10/2 − l11 cos θ1 − zs1), m3 = l2
17 − l2

18 − l12
2.

According to the link length equation by constraint A13A22 = l14, it is easy to know

θ2 = 2 arctan

(
q1 + Q

√
q2

1 + q2
2 − q2

3

q2 + q3

)
(Q = ±1) (24)

Where: q1 = −2l13(l11 sin θ1 + l12 sin α1), q2 = 2l13( − l10 + l11 cos θ1 + l12 cos α1),
q3 = l2

14 − l2
13 − (l11 sin θ1 + l12 sin α1)2 − ( − l10 + l11 cos θ1 + l12 cos α1)2.

Because the hybrid branched chains 2 and 3 in PM3 are the same as PM2, the inverse solution analysis
of their positions is the same. For details, see Eqs. (15) to (18).

3.3. Forward position analysis of the PM4
The coordinate system established for PM4 is similar to the PM3, as shown in Fig. 5(a). The hybrid
branch chain 1 parameters are labeled as shown in Fig 5(b), and the link length parameters are as follows:
A11A12=A11A21=l10, A12A13=l11, A13S1=l12, A21A22=l13, A22S1=l14, A13A22=l15.

3.3.1. Forward position analysis of the PM4
For forward solution analysis of hybrid branch chain 1, the line A13S1 is perpendicular to the line A22S1

in hybrid branch chain 1, and the angle between the line A13S1 and A13A22 is γ1 = 30◦.
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Figure 5. Kinematic parameter labeling of the parallel mechanism 4.

Also assign the angle between the link A13A22 and the negative direction of Z-axis as α1, which is
taken as the intermediate variable. It’s easy to know the coordinates of the following points.

A11 = (a, 0, a), A21 = (a, 0, a − l10), A12 = (a, 0, a + l10), A13 = (a + l11 sin θ2 cos θ1, l1 sin θ2 sin θ1, a +
l10 − l11 cos θ2),

A22 = (a + (l11 sin θ2 + l15 sin α1) cos θ1, (l11 sin θ2 + l15 sin α1) sin θ1, a + l10 − l11 cos θ2 − l15 cos α1).
According to the link length equation by constraint A21A22 = l3, the intermediate variable α1 is

given by

α1 = 2 arctan

(
N1 + n

√
N2

1 + N2
2 − N2

3

N2 + N3

)
(n = ±1) (25)

Where: N1 = 2l11l15 sin θ2, N2 = −2l15(2l10 − l11 cos θ2), N3 = l2
13 − l2

15 − (l11 sin θ2)2

−(2l10 − l11 cos θ2)2.
Then we have

S1 = (a + (l11 sin θ2 + l12 sin (γ1 + α1)) cos θ1, (l11 sin θ2 + l12 sin (γ1 + α1)) sin θ1, a + l10 − l11 cos θ2

−l12 cos (γ1 + α1))

The hybrid branch chains 2 and 3 in the PM4 are the same as the PM1. Therefore, their forward
position solution analysis is the same. For details, please refer to Eqs. (10)-(13) in Ref. [29].
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Among them, the angle ϕ2 and ϕ3 set in the hybrid branch chain 2 and 3 can be obtained successively
by the link length constraint S1S2 = √

3b and S1S3 = √
3b, respectively

ϕ2 = 2 arctan

(
H1 + h

√
H2

1 + H2
2 − H2

3

H2 + H3

)
(h = ±1) (26)

Where, H1 = 2l6(ys1 − yA34), H2 = −2l6(xs1 − xA34) sin α2 − 2l6(zs1 − zA34) cos α2, H3 = 3b2 − l2
6 − (xs1 −

xA34)2 − (ys1 − yA34)2 − (zs1 − zA34)2.

ϕ3 = 2 arctan

(
G1 + g

√
G2

1 + G2
2 − G2

3

G2 + G3

)
(g = ±1) (27)

Where, G1 = 2l6(zs1 − zA54), G2 = −2l6(xs1 − xA54) cos α3 − 2l6(ys1 − yA54) sin α3, G3 = 3b2 − l2
6 − (xs1 −

xA54)2 − (ys1 − yA54)2 − (zs1 − zA54)2.
By substituting the coordinate values of S1, S2, and S3 into Eq. (12), the posture parameters of the

moving platform of the PM4 can be solved.
Through the position analysis of the PM4, it can be easily known that the coordinate values of point

S1 on its moving platform can be obtained by solving the hybrid chain 1 to which it belongs. Therefore,
when taking S1 as the base point, PM4 has the characteristic of partial motion decoupling.

3.3.2 Analysis of inverse position solution of the PM4
For analysis of the inverse solution of the position of the hybrid branch chain 1.

From the forward solution analysis, it is easy to know that S1 coordinates are given below.⎧⎪⎨
⎪⎩

xs1 = a + (l11 sin θ2 + l12 sin (γ1 + α1)) cos θ1

ys1 = (l11 sin θ2 + l12 sin (γ1 + α1)) sin θ1

zs1 = a + l10 − l11 cos θ2 − l12 cos (γ1 + α1)

(28)

From Eq. (36), we have

θ1 = arctan

(
ys1

xs1 − a

)
(29)

θ2 = 2 arctan

(
f1 + F

√
f 2
1 + f 2

2 − f 2
3

f2 + f3

)
(F = ±1) (30)

where: f1 = −2l11ys1
sin θ1

, f2 = 2l11 (zs1 − a − l10) , f3 = l2
12 − l2

11 − (ys1/ sin θ1)
2 − (zs1 − a + l10)

2.
The hybrid branch chains 2 and 3 in the PM4 are the same as the PM3. Therefore, their inverse

position solution analysis is the same. See Eqs. (19)–(24) for details in Ref. [29].

3.4. Deterministic analysis of MD and SFP for a three-chain 6-DOF PMs
According to Ref. [29], it is known that the 3A model discussed in this paper does not have SFP solutions.

From the analysis of Section 2.1.1, Section 2.2.1, and Section 2.3.1 above, it is found that all the
PM2, PM3, and PM4 (i.e., 3C, 1A + 2C, 2A + 1C) have SFP solutions and MD. The reasons can be
revealed and concluded below.

All positions of the 5-DOF branch chain C contained in these three mechanisms can be solved
by the constraints of the branch chain itself, that is, the position of the branch chain C is completely
deterministic.

It also means that when the center of spherical joint S at the end of the PM is taken as the base point,
the PM has the character of partial MD. Therefore, for a general three-branch 6-DOF PM, if one of its
hybrid branches has position determinism, the PM has partial MD and SFP performance.
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Table II. Forward position solution for parallel mechanism 2.

x/mm y/mm z/mm α/rad β/rad γ /rad
1 276.4340 149.7005 170.2476 −0.5150 1.4079 −0.8250
2 270.9279 168.2787 284.7002 −1.2233 1.3910 0.0004
3 309.2812 258.2219 169.4936 1.0058 0.3516 −0.1272
4∗ 303.7751 276.8002 283.9462 0 0 0

Figure 6. Three-dimensional computer-aided design model of parallel mechanism 2.

4. Numerical examples of position analysis
4.1. An example of position analysis of the PM2
4.1.1 Forward position solution
Let the dimensional parameters of the PM2 be (unit: mm):

a = 300, l0 = 100, l1=l4 = 120, l2 = 120
√

3, l3 = 220, l5 = 240, h = 60
√

3.
According to the dimensional parameters, a three-dimensional (3-D) computer-aided design (CAD)

model of the PM2 was established, and from which the initial input angles (unit: rad) of the six actu-
ated joints Ri(i = 1 ∼ 6), namely θ1 = 1.2769, θ2 = 1.6087, θ3 = 1.4099, θ4 = 1.4488, θ5 = 1.6315, θ6 =
0.8430 as well as the corresponding output values of the moving platform center point O′, namely
x = 303.77, y = 276.80, z = 283.94, α = 0, β = 0, γ = 0, are measured. The 3-D CAD model of PM2
is shown in Fig. 6.

By substituting the initial input angles θi(i = 1 ∼ 6) (unit: rad) of the six actuated joints obtained
from the measured 3-D CAD model into the coordinates of each point and solving for ϕ2 and ϕ3, the
coordinate values of S1, S2, and S3 can be determined. Through the forward equation Eq. (12), the output
value of the moving platform center O’ point can be obtained. The PM2 has eight groups of forward
solutions, four of which are real solutions, as shown in Table II.
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Table III. Inverse position solution of the parallel mechanism 2.

Hybrid branch chains Inverse solution/(rad)
1 0.7697

Hybrid branch chain 1 θ 1 1.2769 θ 2 2∗ 1.6086
1 0.8082

Hybrid branch chain 2 θ 3 1.4099 θ 4 2∗ 1.4488
1∗ 0.8427

Hybrid branch chain 3 θ 5 1.6316 θ 6 2 1.0386

Table IV. Forward position solution for parallel mechanism 3.

x/mm y/mm z/mm α/rad β/rad γ /rad
1 179.6915 288.5342 290.6154 0.0000–0.1592i 0.0000 + 1.9871i −0.8046
2 115.2887 276.7235 281.3321 0.0000–0.2606i 0.0000 + 1.7068i −1.2244
3∗ 303.3581 274.2836 283.0300 0 0 0
4 238.9553 262.4729 273.7467 −0.3780 2.1889 0

The relative error values of the calculated theoretical values compared to the measured values of
the positional parameters from the fourth group of forward position solutions, as given by Eq. (6) with
n = −1, Eq. (8) with m = −1, and Eq. (10) with q = −1, are all within 0.1%. Therefore, the derivation of
the symbolic forward position solution formulas is correct. Here, we calculate the relative error by taking
the difference between the theoretical calculated values and the measured values and then dividing it
by the measured values. The measured values can be obtained by using the ruler tool in SolidWorks
software to directly measure the virtual simulation model.

4.1.2 The inverse solution example of the PM2
The output values of the center of the moving platform point O′ measured in the 3-D model of the PM2
arex = 303.77, y = 276.80, z = 283.94, α = 0, β = 0, γ = 0, respectively, and which are substituted into
the inverse solution Eqs. (13)–(18) to obtain the inverse solution input values corresponding to each
branch chain, as shown in Table III.

According to Table III, the relative error values of inverse solution and 3-D model measurement in
each hybrid branch chain are within 0.01%, indicating that the derivation of the position inverse solution
formula is correct.

4.2. An example of kinematic position analysis of the PM3
4.2.1 Example of forward position solution for the PM3
Let the dimension parameter of hybrid branch chain 1 in PM3 be (unit: mm):a = 300, l10 = 130, l11 =
l13 = 100, l12 = l14 = 120, l15 = 150, l16 = 110. The size parameters of other members are the same as
PM2.

According to these dimensional parameters, a 3-D model of the PM3 is established, and from
which six initial input angles (unit: rad) of the actuated joints Ri(i = 1 ∼ 6) are measured, namely
θ1 = 2.6060, θ2 = 1.5273, θ3 = 1.4146, θ4 = 1.4354, θ5 = 1.6321, θ6 = 0.8126. The corresponding out-
put values of the moving platform center O’ are x = 302.14, y = 275.41, z = 283.92, α = 0, β = 0, γ = 0,
respectively.

By inputting the initial input angles θi(i = 1 ∼ 6) (unit: rad) of the six actuated joints measured from
the 3-D model into the coordinates of each point, the coordinate values of S1, S2, and S3 can be easily
obtained by solving αi(i = 1, 2, 3) and ϕ1. Using the position forward kinematics Eq. (12), the output
value of the center O’ of the moving platform can be obtained. There are 16 groups of forward equations
for the PM3, but only four groups of which have real solutions, as shown in Table IV.
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Table V. Inverse position solution of the parallel mechanism 3.

Inverse Intermediate
Hybrid branch chains solution/(rad) variables/(rad) Inverse solution/(rad)

1 0.3224
1 1.3736

2 2.7028
1 −0.0470

3 −0.0730
2 1.9027

4 2.0811
Hybrid branch chain 1 θ1 α1 θ2 5 0.0639

3 0.6643
6∗ 1.5265

2∗ 2.6140
7 0.7546-0.4182i

4 1.1935
8 0.7546 + 0.4182i

1 0.8090
Hybrid branch chain 2 θ3 1 1.4181 θ4 2∗ 1.4377

1 0.8397
Hybrid branch chain 3 θ5 1 1.6321 θ6

2∗ 1.0251

The third group of position-real solutions corresponds to the values of the position parameter mea-
sured by the 3-D model, and the relative error value is less than 0.1%, which shows that the symbolic
positional forward solution formulas are correctly derived.

4.2.2 Example of inverse position solution of the PM3
The output values of the center of the moving platform point O’ measured in the 3-D model of the
PM3 are x = 302.14, y = 275.41, z = 283.92, α = 0, β = 0, γ = 0, respectively, and are substituted into
the inverse solution formula in Section 3.2.2. Inverse solution input values corresponding to each branch
chain are obtained, as shown in Table V.

According to Table V, we found that the relative errors of the theoretical calculated values of inverse
solution marker (∗) and the measured values of the 3D model are both within 0.01%, so the symbolic
position inverse solution formula is correctly derived.

4.3. An example of kinematic position analysis of the PM4
4.3.1 Example of forward position solution for the PM4
The parameters of the hybrid branch chains 2 and 3 in the PM4 are set to be the same as those in the
PM1, while the parameters of the hybrid branch chain 1 are specified as follows (unit: mm):

l10 = 100, l11 = l14 = 120, l12 = 120
√

3, l13 = 220, l15 = 240.
According to the corresponding dimensional parameters, a 3-D CAD model of the PM4 is established,

and the initial input angles (unit: rad) of the six actuated joints Ri(i = 1 ∼ 6) are measured from it, namely
θ1 = 1.3626, θ2 = 1.2748, θ3 = 2.6182, θ4 = 1.7171, θ5 = 2.3880, and θ6 = 1.1126. The respective out-
put values of the moving platform center O’ point are x = 278.61, y = 277.31, z = 243.53, α = 0, β = 0,
γ = 0.

According to the verification process of the PM1, the output value of the center point O’ of the moving
platform is obtained through the position forward kinematics Eq. (12). There are 32 groups of position
forward kinematics equations for the PM4, but only 2 groups of which have real solutions, as shown in
Table VI.

The second group of positional real forward solutions corresponds to n = −1 in Eq. (25), h = −1 in
Eq. (26), g = −1 in Eq. (27), and the positional parameter values measured by the 3-D model, and their
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Table VI. Forward position solution for the parallel mechanism 4.

x/mm y/mm z/mm α/rad β/rad γ /rad
1 314.8944 330.6946 278.2279 0.9407 0.2956 0.9631
2∗ 278.6097 277.3345 243.5465 0.0000 0.0214 −0.0002

Table VII. Inverse position solution of the parallel mechanism 4.

Inverse Intermediate
Hybrid branch chains solution/(rad) variables/(rad) Inverse solution/(rad)

1 0.8579
Hybrid branch chain 1 θ1 1 1.3625 \ θ2 2∗ 1.2749

1 0.2428
1 1.0930

2 −2.9009
1 −0.4340

3 −0.4423
2 1.8001

4 2.1298
Hybrid branch chain 2 θ3 α2 θ4 5 −0.2502

3 0.3840
6∗ 1.7171

2∗ 2.6182
7 0.7703 – 0.2247i

4 1.0911
8 0.7703 + 0.2247i

1 0.4060
1 1.0043

2 −2.7431
Hybrid branch chain 3 θ5 1 –0.4101 α3 θ6 3 −0.3293

2 1.6769
4 2.3295

2∗ 2.3879 3 0.3009 5 −0.1561
6 1.8897
7 0.6698

4 0.9736
8∗ 1.1128

relative error values are all within 0.1%. Therefore, the symbolic positional forward solution formula is
derived correctly.

4.3.2 Example of inverse position solution of the PM4
The measured output value of the center O’ point of the moving platform in the 3-D model of the PM4
is substituted into the inverse solution Eqs. (28)–(30) in this paper and Eqs. (19)–(24) in Ref. [29] to
obtain the inverse input value corresponding to each branch chain, as shown in Table VII.

As can be seen from Table VII, the relative error values of the theoretical values of the PM4 and
the measured values of the 3-D model are within 0.01%, which shows the symbolic position inverse
solution formula is correctly derived.

5. Workspace analysis
In order to understand the workspace characteristics of different topologies, PM1 and PM2 are selected
for workspace analysis.

5.1. Position workspace
The positional workspace mentioned in this paper refers to the set of points that can be reached by the
center of the moving platform when the posture angles of the end moving platform of the mechanism
are all zero degrees (α = 0, β = 0, γ = 0).
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Figure 7. Flow chart of calculating the position workspace of the parallel mechanism.

This paper uses the numerical discrete search method based on the inverse solution of kinematics to
calculate the position workspace of the PM, that is, according to the structural parameters of the PM1
and PM2 and the three-dimensional model established by SolidWorks software, the posture angle of the
mechanism is set as α = 0, β = 0, γ = 0, and the workspace range of the PM1 and PM2 is estimated
as x ∈ [100, 400], y ∈ [100, 400], z ∈ [100, 450]. Then, the angles of PM1 and PM2 actuated joints are
calculated, respectively, by using the formula (16–24) in Ref. [29] and the inverse kinematics solution
formula (13–18) in this paper to check whether the angles of PM1 and PM2 meet the set range of actuated
joints (θi ∈ [0, π ](i = 1, 2, 3, 4, 5, 6)). The specific calculation process is shown in Fig. 7.

When α = 0, β = 0, γ = 0, the position workspace of PM1 and PM2 is shown in Fig. 8 and Fig. 9.

5.2. Posture workspace
The posture workspace is a collection of points in the space where the moving platform at the end
of the PM is fixed. Firstly, the fixed position of the moving platform was set as x = 250, y = 250, z =
250, and the spatial range of the posture angle of the PM was estimated as α ∈ [ − π/2, π/2], β ∈ [ −
π/2, π/2], γ ∈ [ − π/2, π/2]. Then, the inverse position solution formula of PM1 and PM2 is used to
calculate the angle of the actuated joint and determine whether it is within the set angle range of the
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Figure 8. Position workspace for parallel mechanism1 (α = 0, β = 0, γ = 0).

actuated joint (θi ∈ [0, π ](i = 1, 2, 3, 4, 5, 6)). The calculation process of the posture workspace is similar
to that of the position workspace, as shown in Fig. 7.

When x = 250, y = 250, z = 250, the posture workspace of PM1 and PM2 is shown in Fig. 10.
Based on Figs. 8–10 above, we find that
When the posture angles are the same (α = 0, β = 0, γ = 0), the position workspace of PM1 is much

larger than that of PM2.
In the same position state (x = 250, y = 250, z = 250), the posture workspace of PM1 is also larger

than that of PM2.

6. Conclusions
Based on the designed 6-DOF branch chain A and 5-DOF branch chain C, three 6-DOF parallel mech-
anisms with motion decoupling and symbolic forward position solutions are proposed in this paper, the
symbolic forward and inverse position formulas of three of which are derived and verified by numerical
examples.

It is found from this work that if the position or orientation of a point on the moving platform can be
determined by the determination of the known positions of the hybrid branch chains, then the PM has
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Figure 9. Position workspace for parallel mechanism 2 (α = 0, β = 0, γ = 0).

Figure 10. Posture workspace (x = 250, y = 250, z = 250).
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partial motion decoupling and symbolic forward position solutions. Therefore, all 6-DOF PMs contain-
ing the 5-DOF branch chain C (PMs 2, 3, and 4) have the characteristics of partial motion decoupling
and symbolic forward position solutions, which is the contribution of the work.

This paper provides a new insight into the design and position analysis of 6-DOF PMs with
symbolical forward and inverse kinematics solutions, as well as partial motion decoupling.
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