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In this paper, we classify simple smooth modules over the mirror
Heisenberg–Virasoro algebra D, and simple smooth modules over the twisted
Heisenberg–Virasoro algebra D̄ with non-zero level. To this end we generalize
Sugawara operators to smooth modules over the Heisenberg algebra, and develop
new techniques. As applications, we characterize simple Whittaker modules and
simple highest weight modules over D. A vertex-algebraic interpretation of our result
is the classification of simple weak twisted and untwisted modules over the
Heisenberg–Virasoro vertex algebras. We also present a few examples of simple
smooth D-modules and D̄-modules induced from simple modules over finite
dimensional solvable Lie algebras, that are not tensor product modules of Virasoro
modules and Heisenberg modules. This is very different from the case of simple
highest weight modules over D and D̄ which are always tensor products of simple
Virasoro modules and simple Heisenberg modules.
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1. Introduction

Throughout the paper we denote by Z, Z
∗, N, Z+, Z�0, R, C and C

∗ the sets
of integers, non-zero integers, non-negative integers, positive integers, non-
positive integers, real numbers, complex numbers and non-zero complex numbers,
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respectively. All vector spaces and Lie algebras are assumed to be over C. For a Lie
algebra G, the universal algebra of G is denoted by U(G).

The Virasoro algebra Vir and the Heisenberg algebra H are infinite-dimensional
Lie algebras with bases {c, dn : n ∈ Z} and {l, hn : n ∈ Z}, respectively. Their Lie
brackets are given by

[Vir, c] = 0, [dm, dn] = (m − n)dm+n +
m3 − m

12
δm+n,0c, m, n ∈ Z,

and

[H, l] = 0, [hm, hn] = mδm+n,0l, m, n ∈ Z,

respectively. The twisted Heisenberg–Virasoro algebra D̄ is the universal central
extension of the Lie algebra{

f(t)
d

dt
+ g(t) : f, g ∈ C[t, t−1]

}
of differential operators of order at most one on the Laurent polynomial alge-
bra C[t, t−t]. Since the Lie algebra D̄ contains the Virasoro algebra Vir and the
Heisenberg algebra H as subalgebras (but not the semi-direct product of the two
subalgebras), many properties of D̄ are closely related to the algebras Vir and H.

The Virasoro algebra Vir, the Heisenberg algebra H and the twisted Heisen-
berg–Virasoro algebra D̄ are very important infinite-dimensional Lie algebras in
mathematics and mathematical physics because of their beautiful representation
theory (see [31, 32]), and their widespread applications to vertex operator algebras
(see [19, 23]), quantum physics (see [26]), conformal field theory (see [18]) and so
on. Many other interesting and important algebras contain the Virasoro algebra as
a subalgebra, such as the Schrödinger–Virasoro algebra (see [29, 30]), the mirror
Heisenberg–Virasoro algebra D (see [7, 25, 38]) and so on. These Lie algebras have
nice structures and perfect theory on simple Harish–Chandra modules. The mirror
Heisenberg–Virasoro algebra D is the even part of the mirror N = 2 superconformal
algebra (see [7]), and is the semi-direct product of the Virasoro algebra and the
twisted Heisenberg algebra (see definition 2.1).

1.1. Connection with representation theory of Lie algebras

Representation theory of Lie algebras has attracted a lot of attention of mathe-
maticians and physicists. For a Lie algebra G with a triangular decomposition G =
G+ ⊕ h ⊕ G− in the sense of [49], one can study its weight and non-weight represen-
tation theory. For weight representation approach, to some extent, Harish–Chandra
modules are well understood for many infinite-dimensional Lie algebras, for exam-
ple, the affine Kac–Moody algebras in [12, 49], the Virasoro algebra in [20, 32, 44],
the twisted Heisenberg–Virasoro algebra in [4, 41], the Schrödinger–Virasoro alge-
bra (partial results) in [29, 30, 37] and the mirror Heisenberg–Virasoro algebra in
[38]. There are also some researches about weight modules with infinite-dimensional
weight spaces (see [9, 16, 43]).

Recently, non-weight module theory over Lie algebras G attracts more atten-
tions from mathematicians. In particular, U(h)-free G-modules, Whittaker modules
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and smooth modules have been widely studied for many Lie algebras. The nota-
tion of U(h)-free modules was first introduced by Nilsson [50] for the simple
Lie algebra sln+1. At the same time these modules were introduced in a very
different approach in the paper [53]. Later, U(h)-free modules for many infinite-
dimensional Lie algebras are determined, for example, the Kac–Moody algebras
in [11, 17, 28], the Virasoro algebra in [39, 42, 46], the Witt algebra in [53],
the twisted Heisenberg–Virasoro algebra and W (2, 2) algebra in [13, 15, 43],
and so on.

Whittaker modules for sl2(C) were first constructed by Arnal and Pinczon
(see [5]). Whittaker modules for arbitrary finite-dimensional complex semisim-
ple Lie algebra L were introduced and systematically studied by Kostant in [34],
where he proved that these modules with a fixed regular Whittaker function (Lie
homomorphism) on a nilpotent radical are (up to isomorphism) in bijective corre-
spondence with central characters of U(L). In recent years, Whittaker modules for
many other Lie algebras have been investigated (see [1, 2, 8, 10, 17, 47, 48]).

1.2. Smooth modules

The smooth modules for a Z-graded Lie algebra are the modules in which any
vector can be annihilated by sufficiently large positive part of the Lie algebra. Whit-
taker modules and highest weight modules are smooth modules, and, in some sense,
smooth modules can be seen as generalization of Whittaker modules and highest
weight modules. Understanding smooth modules for an infinite-dimensional Lie
algebra with a Z-gradation is one of the core topics in Lie theory, for this class of
modules are closely connected with the modules for corresponding vertex operator
algebras. The first step of studying smooth modules is to classify all simple smooth
modules for a Lie algebra. But this is a difficult challenge. Up to now all simple
smooth modules for the Virasoro algebra are classified in [46]. There are some par-
tial results of simple smooth modules for other Lie algebras. Some simple smooth
modules for twisted Heisenberg–Virasoro algebra and mirror Heisenberg–Virasoro
algebra with level 0 were constructed in [14, 24, 38]. Different from the case of
level 0, the situation of non-zero level is much more challenging, we develop new
techniques to deal with the classification of simple smooth modules over the mir-
ror Heisenberg–Virasoro algebra and the twisted Heisenberg–Virasoro algebra with
non-zero level in this paper. Rudakov investigated a class of simple modules over
Lie algebras of Cartan type W, S, H in [51, 52], and these modules are smooth
modules over the Cartan-type Lie algebras of the formal power series.

1.3. Vertex algebraic approach

For many infinite-dimensional Z-graded Lie algebras and superalgebras G, one
can construct the associated (universal) vertex algebra VG with the property:

• Any smooth G-module is a weak VG-module;

• Any weak module for the vertex algebra VG has the structure of a smooth
G-module.

This approach is very prominent for the following cases:
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• Affine Kac–Moody algebra of type X
(1)
n , when the associated vertex algebra is

the universal affine vertex algebra V k(g) for certain simple Lie algebra g. This
approach was used in [2] for studying Whittaker modules.

• Virasoro Lie algebra, when the associated vertex algebra is the universal
Virasoro vertex algebra V c

V ir (cf. [35])

• Heisenberg vertex algebra, when the associated vertex algebra is M(1) (cf. [35]).

• Heisenberg–Virasoro algebra; super conformal algebras, etc.

From the vertex-algebraic point of view, the twisted Heisenberg–Virasoro algebra
and its untwisted modules were investigated in [3, 27].

The smooth representations of non-zero level for the twisted Heisenberg–Virasoro
algebra corresponds to representations of the Heisenberg–Virasoro vertex algebra
Vc = V c

V ir ⊗ M(1), where V c
V ir is the universal Virasoro vertex algebra of cen-

tral charge c = �1 − 1, and M(1) is the Heisenberg vertex algebra of level 1 (see
definition 2.6). Since M(�2) ∼= M(1) for �2 �= 0 (cf. [35]), we usually assume that
the level �2 = 1.

Moreover, the smooth representations of the mirror Heisenberg–Virasoro algebra
D can be treated as twisted modules for the Heisenberg–Virasoro vertex algebra
Vc = V c

V ir ⊗ M(1).
We summarize the preceding discussion as follows.

• The category of smooth D̄-modules of level 1 is equivalent to the category of
weak (untwisted) modules for the vertex algebra Vc;

• The category of smooth D-modules of level 1 is equivalent to the category of
weak twisted modules for the vertex algebra Vc.

1.4. Main results

In this paper, our main goal is to classify simple smooth modules for mirror
Heisenberg–Virasoro algebra D, and classify simple smooth modules with non-zero
level for the twisted Heisenberg–Virasoro algebra D̄. As applications, we describe
the simple untwisted and twisted modules for Heisenberg–Virasoro vertex algebras
Vc. The main results are the following theorems:
Main theorem A (theorem 4.13) Let S be a simple smooth module over the
mirror Heisenberg–Virasoro algebra D with level � �= 0. Then

(i) S ∼= HD where H is a simple smooth module over the Heisenberg algebra H,
or

(ii) S is an induced D-module from a simple smooth D(0,−n)-module, or

(iii) S ∼= UD ⊗ HD where U is a simple smooth Vir-module, and H is a simple
smooth module over the Heisenberg algebra H.

Main theorem B (theorem 5.8) Let M be a simple smooth module over the
twisted Heisenberg–Virasoro algebra D̄ with level � �= 0. Then
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(i) M ∼= K(z)D̄ where K is a simple smooth H̄-module and z ∈ C, or

(ii) M is an induced D̄-module from a simple smooth D̄(0,−n)-module for some
n ∈ Z+, or

(iii) M ∼= K(z)D̄ ⊗ U D̄ where z ∈ C, K is a simple smooth H̄-module and U is a
simple smooth Vir-module.

These simple smooth modules over the (mirror) Heisenberg–Virasoro algebra
are actually all simple weak (twisted) modules over Heisenberg–Virasoro vertex
algebras Vc. As a consequence, we obtain the classification of twisted and untwisted
simple modules for the Heisenberg–Virasoro vertex algebra Vc, i.e. we obtain all
weak simple Vc-modules and all weak simple twisted Vc-modules.

It is important to notice that certain weak modules induced from simple smooth
D(0,−n)-modules do not have the form M1 ⊗ M2 as (twisted) modules for V c

V ir ⊗
M(�2) (see § 7). This is interesting, since in the category of ordinary (twisted)
modules for the vertex algebras, such modules don’t exist (see [21, Theorem 4.7.4]
and its twisted analogues).

1.5. Organization of the paper

The present paper is organized as follows. In § 2, we recall notations related to the
algebras D and D̄, collect some known results and generalize Sugawara operators
to smooth H-modules. Moreover, we establish a general result for a simple module
to be a tensor product module over a class of Lie algebras (theorem 2.12). In § 3,
we construct a class of induced simple D-modules (theorem 3.1). In § 4, by taking
difference of Sugawara operators and the Virasoro operators we construct a new
associative algebra on the smooth module. Then the universal enveloping algebra
of D can be considered as a tensor product of the new associative algebra and the
enveloping algebra of the Heisenberg algebra. Using this tensor product, we are able
to determine all simple smooth modules over the mirror Heisenberg–Virasoro alge-
bra D (theorems 4.13 and 2.10). In § 5, we use a similar method as in § 4 to classify
the simple smooth modules of level non-zero over the twisted Heisenberg–Virasoro
algebra D̄ (see theorem 5.8). In § 6, we apply theorem 4.13 to generalize the result
in [45] to the algebra D, i.e. we give a new characterization of simple highest weight
modules over D (theorem 6.1). We also characterize simple Whittaker modules over
D (theorem 6.3). In § 7, we present a few examples of simple smooth D-modules
and D̄-modules induced from simple modules over finite dimensional solvable Lie
algebras, that are not tensor product modules of Virasoro modules and Heisenberg
modules. This is very different from the case of simple highest weight modules over
D and D̄ which are always tensor products of simple Virasoro modules and simple
Heisenberg modules.

2. Notations and preliminaries

In this section, we recall some notations and known results related to the algebras
D and D̄.
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Definition 2.1. The twisted Heisenberg–Virasoro algebra D̄ is a Lie algebra
with a basis

{dm, hr, c̄1, c̄2, c̄3 : m, r ∈ Z}
and subject to the commutation relations

[dm, dn] = (m − n)dm+n + δm+n,0
m3 − m

12
c̄1,

[dm, hr] = −rhm+r + δm+r,0(m2 + m)c̄2,

[hr, hs] = rδr+s,0c̄3,

[c̄1, D̄] = [c̄2, D̄] = [c̄3, D̄] = 0,

(2.1)

for m, n, r, s ∈ Z.

It is clear that D̄ contains a copy of the Virasoro subalgebra Vir = span{c̄1, di :
i ∈ Z} and the Heisenberg algebra H̄ =

⊕
r∈Z

Chr ⊕ Cc̄3. So D̄ has a quotient
algebra that is isomorphic to a copy of Heisenberg–Virasoro algebra

D̃ = spanC {dm, hr, c̄1, c̄3 : m, r ∈ Z}
whose relations are defined by (2.1) (but the second and fourth equalities are
replaced by [dm, hr] = −rhm+r and [c̄1, D̃] = [c̄3, D̃] = 0).

Note that D̄ is Z-graded and equipped with a triangular decomposition: D̄ =
D̄+ ⊕ h ⊕ D̄−, where

D̄± =
⊕

n,r∈Z+

(Cd±n ⊕ Ch±r), h = Cd0 ⊕ Ch0 ⊕ Cc̄1 + Cc̄2 + Cc̄3.

Moreover, D̄ = ⊕i∈ZD̄i is Z-graded with D̄i = Cdi ⊕ Chi for i ∈ Z
∗, D̄0 = h.

Another compatible Z-grading on D can be given by deg(Vir) = 0, deg(hr)=1,
deg(c2) = 2.

Definition 2.2. The mirror Heisenberg–Virasoro algebra D is a Lie algebra
with a basis {

dm, hr, c1, c2 | m ∈ Z, r ∈ 1
2

+ Z

}
and subject to the commutation relations

[dm, dn] = (m − n)dm+n + δm+n,0
m3 − m

12
c1,

[dm, hr] = −rhm+r,

[hr, hs] = rδr+s,0c2,

[c1,D] = [c2,D] = 0,

for m, n ∈ Z, r, s ∈ 1
2 + Z.
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It is clear that D is the semi-direct product of the Virasoro subalgebra Vir =
span{c1, di | i ∈ Z} and the twisted Heisenberg algebra H =

⊕
r∈ 1

2+Z
Chr ⊕ Cc2.

Note that D is 1
2Z-graded and equipped with triangular decomposition: D = D+ ⊕

D0 ⊕ D−, where

D± =
⊕

n∈Z+

Cd±n ⊕
⊕

r∈ 1
2+N

Ch±r, D0 = Cd0 ⊕ Cc1 ⊕ Cc2.

Moreover, D = ⊕i∈ZDi is Z-graded with Di = Cdi ⊕ Chi+ 1
2

for i ∈ Z
∗ \ {−1}, D0 =

Cd0 ⊕ Ch 1
2
⊕ Cc1 and D−1 = Cd−1 ⊕ Ch− 1

2
⊕ Cc2.

Definition 2.3. Let G = ⊕i∈ZGi be a Z-graded Lie algebra. A G-module V is called
the smooth module if for any v ∈ V there exists n ∈ N such that Giv = 0, for i > n.
The category of smooth modules over G will be denoted as RG.

Smooth modules for affine Kac–Moody algebras g were introduced and studied
by Kazhdan and Lusztig in [33].

Definition 2.4. Let a be a subalgebra of a Lie algebra G, and V be a G-module.
We denote

KerV (a) = {v ∈ V : av = 0}.
Definition 2.5. Let G be a Lie algebra and V a G-module and x ∈ G.

(1) If for any v ∈ V there exists n ∈ Z+ such that xnv = 0, then we say that the
action of x on V is locally nilpotent.

(2) If for any v ∈ V we have dim(
∑

n∈N
Cxnv) < +∞, then the action of x on

V is said to be locally finite.

(3) The action of G on V is said to be locally nilpotent if for any v ∈ V
there exists an n ∈ Z+ (depending on v) such that x1x2 · · ·xnv = 0 for any
x1, x2, · · · , xn ∈ L.

(4) The action of G on V is said to be locally finite if for any v ∈ V there is a
finite-dimensional G-submodule of V containing v.

Definition 2.6. If W is a D-module (resp. D̄-module) on which c1 (resp. c̄1) acts
as complex scalar c, we say that W is of central charge c. If W is a D-module
(resp. D̄-module) on which c2 (resp. c̄3) acts as complex scalar �, we say that W is
of level �.

Note that if V is a Vir-module, then V can be easily viewed as a D-module ( resp.
D̄-module) by defining HV = 0 ( resp. (H̄ + Cc̄2)V = 0), the resulting module is
denoted by V D( resp. V D̄).

For any H ∈ RH with the action of c2 as a non-zero scalar �, we can give H a
D-module structure denoted by HD via the following map

dn �→ Ln =
1
2�

∑
k∈Z+ 1

2

hn−khk, ∀n ∈ Z, n �= 0, (2.2)
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d0 �→ L0 =
1
2�

∑
k∈Z+ 1

2

h−|k|h|k| +
1
16

, (2.3)

hr �→ hr, ∀r ∈ 1
2

+ Z, c1 �→ 1, c2 �→ �. (2.4)

The above operators were defined on highest weight modules H over H in [22].
We find that they are valid for smooth H-modules. This is crucial to our further
discussion on determining smooth D-modules in § 4.

According to (9.4.13) and (9.4.15) in [22] which are also valid in our case, we
know that for all m, n ∈ Z, r ∈ 1

2 + Z, we have

[Ln, hr] = −rhn+r,

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm+n,0. (2.5)

Moreover, since

[dm, hn−khk] = [dm, hn−k]hk + hn−k[dm, hk] = [Lm, hn−k]hk + hn−k[Lm, hk]

= [Lm, hn−khk],

we see that

[dm, Ln] = [Lm, Ln] (2.6)

By [43], for any z ∈ C and H ∈ RH̄ with the action of c̄3 as a non-zero scalar �,
we can give H a D̄-module structure (denoted by H(z)D̄) via the following map

dn �→ L̄n =
1
2�

∑
k∈Z

: hn−khk : +
(n + 1)z

�
hn, ∀n ∈ Z, (2.7)

hr �→ hr, ∀r ∈ Z, c̄1 �→ 1 − 12z2

�
, c̄2 �→ z, c̄3 �→ �, (2.8)

where the normal order is defined as

:hrhs: = :hshr: = hrhs, if r � s.

According to (8.7.9), (8.7.13) in [22] which are also valid in our case and by some
simple computation, we deduce that for all m, n, r ∈ Z,

[L̄m, hr] = −rhm+r + δm+r,0(m2 + m)z,

[L̄m, L̄n] = (m − n)L̄m+n +
m3 − m

12
δm+n,0

(
1 − 12z2

�

)
. (2.9)

Remark 2.7. The relations (2.9) can be obtained using commutator formula,
similarly as in [3].
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Moreover, since

[dm, hn−khk] = [dm, hn−k]hk + hn−k[dm, hk] = [L̄m, hn−k]hk + hn−k[L̄m, hk]

= [L̄m, hn−khk],

we see that

[dm, L̄n] = [L̄m, L̄n]. (2.10)

For convenience, we define the following subalgebras of D. For any m ∈ N, n ∈ Z,
set

D(m,n) =
∑
i∈N

Cdm+i ⊕ Chn+i+ 1
2
⊕ Cc1 ⊕ Cc2,

D(m,−∞) =
∑
i∈N

Cdm+i ⊕
∑
i∈Z

Chi+ 1
2

+ Cc1 + Cc2,

Vir(m) =
∑
i∈N

Cdm+i ⊕ Cc1,

Vir�m =
∑
i∈N

Cdm+i,

Vir�0 =
∑
i∈N

Cd−i,

Vir+=span{c1, di : i � 0},
H(n) =

∑
i∈N

Chn+i+ 1
2
⊕ Cc2,

H�n =
∑
i∈N

Chn+i+ 1
2
.

(2.11)

Similarly, we define the subalgebras of D̄ as following: for m ∈ N, n ∈ Z, set

D̄(m,n) =
∑
i∈N

Cdm+i ⊕ Chn+i ⊕ Cc̄1 ⊕ Cc̄2 + Cc̄3,

D̄(m,−∞) =
∑
i∈N

Cdm+i ⊕
∑
i∈Z

Chi + Cc̄1 ⊕ Cc̄2 + Cc̄3,

Vir(m) =
∑
i∈N

Cdm+i ⊕ Cc̄1,

Vir�m =
∑
i∈N

Cdm+i,

Vir�0 =
∑
i∈N

Cd−i, (2.12)

Vir+=span{c̄1, di : i � 0},
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H̄(n) =
∑
i∈N

Chn+i ⊕ Cc̄3,

H̄�n =
∑
i∈N

Chn+i.

Note that we use the same notations Vir(m), Vir�m, Vir�0, Vir+ to denote the
subalgebras of D and of D̄ since there will be no ambiguities in later contexts.

Denote by M the set of all infinite vectors of the form i := (. . . , i2, i1) with entries
in N, satisfying the condition that the number of non-zero entries is finite. We can
make (M, +) a monoid by

(. . . , i2, i1) + (. . . , j2, j1) = (. . . , i2 + j2, i1 + j1).

Let 0 denote the element (. . . , 0, 0) ∈ M and for i ∈ Z+ let εi = (. . . , 0, 1, 0,
. . . , 0) ∈ M, where 1 is in the i’th position from right. For any i ∈ M we define

w(i) =
∑

n∈Z+

in · n, (2.13)

Let ≺ be the reverse lexicographic total order on M, that is, for any i, j ∈ M,

j ≺ i ⇐⇒ there exists r ∈ N such that jr < ir and js = is,∀ 1 � s < r.

We extend the above total order on M × M, that is, for all i, j, k, l ∈ M,

(i, j) ≺ (k, l) ⇐⇒ (j,w(j),w(i) + w(j)) ≺ (l,w(l),w(k) + w(l)), or

(j,w(j),w(i) + w(j)) = (l,w(l),w(k) + w(l)), and i ≺ k.

Now we define another total order ≺′ on M × M: for all i, j, k, l ∈ M,

(i, j) ≺′ (k, l) ⇐⇒ (j, i) ≺ (l,k).

The symbols � and �′ have the obvious meanings.
It is not hard to verify that

(a, b) � (c, d) & (c′, d′) ≺ (a′, b′) =⇒ (a − a′, b − b′) ≺ (c − c′, d − d′),

provided (a, b), (c, d) (c′, d′), (a′, b′), (a − a′, b − b′), (c − c′, d − d′) ∈ M × M,
where the difference is the corresponding entry difference.

For n ∈ Z, let V be a simple D(0,−n)-module. According to the PBW theorem,
every non-zero element v ∈ IndD

D(0,−n)(V ) can be uniquely written in the following
form

v =
∑

i,k∈M

hidkvi,k, (2.14)

where

hidk = . . . hi2
−2−n+ 1

2
hi1
−1−n+ 1

2
. . . dk2

−2d
k1
−1 ∈ U(D−), vi,k ∈ V,

and only finitely many vi,k are non-zero. For any non-zero v ∈ Ind(V ) as in (2.14),
we will use the following notations for later use:
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(1) Denote by supp(v) the set of all (i, k) ∈ M × M such that vi,k �= 0.

(2) Denote by

w(v) = max{w(i) + w(k) : (i,k) ∈ supp(v)},

called the length of v.

(3) Denote by deg(v) to be the largest element in supp(v) with respect to the
total order ≺.

(4) Denote by deg′(v) to be the largest element in supp(v) with respect to the
total order ≺′.

We first recall from [46] the classification for simple smooth Vir-modules.

Theorem 2.8. Any simple smooth Vir-module is a highest weight module, or
isomorphic to IndVir

Vir+V for a simple Vir+-module V such that for some k ∈ Z+,

(a) dk acts injectively on V ;

(b) diV = 0 for all i > k.

Simple smooth D-modules with level 0 are classified in [38] by the following two
theorems.

Theorem 2.9. Let V be a simple D(0,−n)-module for some n ∈ Z+ and c ∈ C such
that c1v = cv, c2v = 0 for any v ∈ V . Assume that there exists an integer k � −n
satisfying the following two conditions:

(a) the action of hk+ 1
2

on V is bijective;

(b) hm+ 1
2
V = 0 = dm+nV for all m > k.

Then the induced D-module IndD
D(0,−n)(V ) is simple.

Theorem 2.10. Every simple smooth D-module S of level 0 is isomorphic to a
smooth Vir-module with HS = 0, or S ∼= IndD

D(0,−n)(V ) for some n ∈ N and a simple
D(0,−n)-module V as in theorem 2.9.

Actually the simple D(0,−n)-module V can be considered as a simple module over
a finite dimensional solvable Lie algebra D(0,−n)/D(t+n+1,t−n) for some t ∈ Z+ and
injective action of ht+ 1

2
on V .

For simple smooth D̄-modules with level 0, we know the following results from
[14].

Theorem 2.11. Let n ∈ N and V be a simple module over D̄(0,−n) or over D̄(0,−∞)

with � = 0, h0 = μ, c̄2 = z. If there exists k ∈ N such that
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(a) {
hk acts injectively on V, if k �= 0,

μ + (1 − r)z �= 0,∀r ∈ Z \ {0}, if k = 0;

(b) hiV = djV = 0 for all i > k and j > k + n.

then

(1) Ind(V ) is a simple D̄-module;

(2) hi, dj act locally nilpotently on Ind(V ) for all i > k and j > k + n.

Now we generalize Theorem 12 in [43] as follows.
Let g = a � b be a Lie algebra where a is a Lie subalgebra of g and b is an ideal of

g. Let M be a g-module with a b-submodule H so that the b-submodule structure
on H can be extended to a g-module structure on H. We denote this g-module by
Hg. For any a-module U , we can make it into a g-module by bU = 0. We denote
this g-module by Ug.

Theorem 2.12. Let g = a � b be a countable dimensional Lie algebra where a is a
Lie subalgebra of g and b is an ideal of g. Let M be a simple g-module with a simple
b-submodule H so that an Hg exists. Then M ∼= Hg ⊗ Ug as g-modules for some
simple a-module U .

Proof. Define the one-dimensional b-module Cv0 by bv0 = 0. Then H ∼= H ⊗ Cv0

as b-modules. Now from Lemma 8 in [43], we have

Indg
bH ∼= Indg

b (H ⊗ Cv0) ∼= Hg ⊗ Indg
bCv0.

Note that Indg
bCv0

∼= W g for the universal a-module W . Since M is a simple
quotient of Indg

bH, from Theorem 7 in [43] we know that there is a simple quo-
tient a-module U of W such that M ∼= Hg ⊗ Ug as g-modules. Now the theorem
follows. �

Remark. This theorem has particular meaning for g = a ⊕ b since Hg automat-
ically exists (see e.g. [36]). Also, theorem 2.12 holds for associative algebras.

Applying the above theorem to our mirror Heisenberg–Virasoro algebra D =
Vir � H and twisted Heisenberg–Virasoro algebra D̄ = Vir � (H̄ + Cc̄2), we have
the following results.

Corollary 2.13. Let V be a simple D-module with non-zero action of c2. Then
V ∼= HD ⊗ UD as a D-module for some simple module H ∈ RH and some simple
Vir-module U if and only if V contains a simple H-submodule H ∈ RH.

Proof. The sufficiency follows from theorem 2.12; and the necessity follows from
that H ⊗ u is a simple H-submodule of HD ⊗ UD for any non-zero u ∈ U . �
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3. Induced modules over the mirror Heisenberg–Virasoro algebra D

In this section, we construct some simple smooth D-modules induced from some
simple ones over some subalgebras D(0,−n) for n ∈ Z+. For that, we need the follow-
ing formulas in U(D) which can be shown by induction on t: let i, js ∈ Z, 1 � s � t
with j1 � j2 � · · · � jt,[

hi− 1
2
, hj1+

1
2
hj2+

1
2
· · ·hjt+

1
2

]
=

∑
1�s�t

δi+js,0

(
i − 1

2

)
c2hj1+

1
2
· · · ĥjs+ 1

2
· · ·hjt+

1
2
,

(3.1)[
di, hj1+

1
2
hj2+

1
2
· · ·hjt+

1
2

]
=

∑
1�s�t

(
−js − 1

2

)
hj1+

1
2
· · · ĥjs+ 1

2
· · ·hjt+

1
2
hi+js+ 1

2

+
∑

1�s1<s2�t

(
−js1 −

1
2

) (
i + js1 +

1
2

)
δi+js1+js2+1,0c2hj1+

1
2
· · ·

ĥjs1+ 1
2
· · · ĥjs2+ 1

2
· · ·hjt+

1
2
, (3.2)[

hi− 1
2
, dj1dj2 · · · djt

]
=

∑
1�s�t

(
i − 1

2

)
dj1 · · · d̂js

· · · djt
hi+js− 1

2

+
∑

1�s1<s2�t

as1,s2dj1 · · · d̂js1
· · · d̂js2

· · · djt
hi+js1+js2− 1

2
+ · · ·

+ a1,2,··· ,thi+j1+j2+···+jt− 1
2
, (3.3)

[di, dj1dj2 · · · djt
] =

∑
1�s�t

(i − js)dj1 · · · d̂js
· · · djt

d̃i+js

+
∑

1�s1<s2�t

bs1,s2dj1 · · · d̂js1
· · · d̂js2

· · · djt
d̃i+js1+js2

+ · · ·

+ b1,2,··· ,td̃i+j1+j2+···+jt
, (3.4)

where ĥjs+ 1
2
, d̂js

mean that hjs+ 1
2
, djs

are deleted in the corresponding prod-
ucts, as1,s2 , · · · , a1,2,··· ,t, bs1,s2 , · · · , b1,2,··· ,t ∈ C, and d̃i+j1+···+js

= di+j1+···+js
+

j2
s−1
24 δi+j1+···+js,0c1, 1 � s � t.
We are now in the position to present the following main result in this section.

Theorem 3.1. Let k ∈ Z+ and n ∈ Z with k � n. Let V be a simple D(0,−n)-module
with level � �= 0 such that there exists l ∈ N satisfying both conditions:

(a) hk− 1
2

acts injectively on V ;

(b) hi− 1
2
V = djV = 0 for all i > k and j > l.

Then IndD
D(0,−n)(V ) is a simple D-module if one of the following conditions holds:

(1) k = n, l � 2n and dl acts injectively on V ;
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(2) k > n, k + n � 2 and l = n + k − 1.

Theorem 3.1 follows from lemmas 3.2–3.5 directly.

Lemma 3.2. Let n ∈ Z+ and V be a D(0,−n)-module such that hn− 1
2

acts injectively
on V , and hi− 1

2
V = 0 for all i > n. For any v ∈ Ind(V ) \ V , let deg(v) = (i, j). If

i �= 0, then deg(hp+n− 1
2
v) = (i − εp, j) where p = min{s : is �= 0}.

Proof. Write v in the form of (2.14) and let (k, l) ∈ supp(v).
Noticing that hp+n− 1

2
V = 0, we have

hp+n− 1
2
hkdlvk,l = [hp+n− 1

2
, hk]dlvk,l + hk[hp+n− 1

2
, dl]vk,l.

First we consider the term [hp+n− 1
2
, hk]dlvk,l which is zero if kp = 0. In the case

that kp > 0, since the level � �= 0, it follows from (3.1) that [hp+n− 1
2
, hk] = λhk−εp

for some λ ∈ C
∗. So

deg([hp+n− 1
2
, hk]dlvk,l) = (k − εp, l) � (i − εp, j),

where the equality holds if and only if (k, l) = (i, j).
Now we consider the term hk[hp+n− 1

2
, dl]vk,l which is by (3.3) a linear combi-

nation of some vectors in the form hkdlj hp+n− 1
2−jvk,l with j ∈ Z+ and w(lj) =

w(l) − j. If hkdlj hp+n− 1
2−jvk,l �= 0, we denote deg(hkdlj hp+n− 1

2−jvk,l) = (k∗, l∗).
We will show that

(k∗, l∗) ≺ (i − εp, j). (3.5)

We have four different cases to consider.

(a) j < p. Then p + n − j > n and hp+n− 1
2−jvk,l = 0. Hence hkdlj hp+n− 1

2−jvk,l =
0.

(b) j = p. Noting that hn− 1
2

acts injectively on V , we see (k∗, l∗) = (k, lp) and
w(k∗) + w(l∗) = (k) + w(l)-p with w(lp) = w(l) − p < w(l).
If w(k) + w(l) < w(i) + w(j), then (k∗, l∗) ≺ (i − εp, j).
If w(k) + w(l) = w(i) + w(j), then there is τ ∈ M such that w(τ) = p and
lp = l − τ . Since (εp, 0) ≺ (0, τ) and (k, l) � (i, j), we see that

(k∗, l∗) = (k, l) − (0, τ) ≺ (i, j) − (εp,0) = (i − εp, j).

In both cases, (3.5) holds.

(c) p < j < 2n + p. Then hp+n− 1
2−j ∈ D(0,−n) and hp+n− 1

2−jvk,l ∈ V. So

w(k∗) + w(l∗) = w(k) + w(l) − j < w(k) + w(l) − p

and (3.5) holds.
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(d) j � 2n + p. Then p + n − 1
2 − j < −n + 1

2 . Assume p + n − 1
2 − j = −s −

n + 1
2 for some s ∈ Z+, that is, −j + s = −2n − p + 1 < −p. Clearly, the

corresponding vector hkdlj hp+n− 1
2−jvk,l can be written in the form

hkh−s−n+ 1
2
dlj vk,l + lower terms,

which means

w(k∗) + w(l∗) = w(k) + w(l) − j + s < w(k) + w(l) − p,

and hence (3.5) holds.

In conclusion, deg(hp+n− 1
2
hkdlvk,l) � (i − εp, j), where the equality holds if and

only if (k, l) = (i, j), that is, deg(hp+n− 1
2
v) = (i − εp, j). �

Lemma 3.3. Let n ∈ Z+ and V be a D(0,−n)-module satisfying conditions (a), (b)
and (1) in theorem 3.1. If v ∈ Ind(V ) \ V with deg(v) = (0, j), then deg(dq+lv) =
(0, j − εq) where q = min{s : js �= 0}.
Proof. Write v in the form of (2.14) and let (k, l) ∈ supp(v).

Since dq+lV = 0, we have

dq+lh
kdlvk,l = [dq+l, h

k]dlvk,l + hk[dq+l, d
l]vk,l.

We first consider the degree of hk[dq+l, dl]vk,l with dq+lh
kdlvk,l �= 0. Clearly,

by (3.4) we see that hk[dq+l, dl]vk,l is a linear combination of some vectors of
the forms hkdlj dq+l−jvk,l, j ∈ Z+ and hkdlq+lvk,l where w(lj) = w(l) − j. Clearly,
deg(hkdlq+lvk,l) = (k, lq+l) has weight

w(k) + w(l) − q − l < w(k) + w(l) − q � w(j) − q,

so deg(hkdlq+lvk,l) ≺ (0, j − εq). Then we need only to consider hkdlj dq+l−jvk,l.
Denote deg(hkdlj dq+l−jvk,l) by (k, l∗). We will show that

(k, l∗) � (0, j − εq), (3.6)

where the equality holds if and only if (k, l) = (0, j). We have four different cases
to consider.

(i) j < q. Then q + l − j > l and hkdlj dq+l−jvk,l = 0.

(ii) j = q. Then q + l − j = l. Since dl acts injectively on V , we see
(k, l∗) = (k, lq) and w(k) + w(l∗) = w(k) + w(l) − q. If w(k) + w(l) <
w(< brc > 0) + w(j), then (k, l∗) ≺ (0, j − εq). If w(k) + w(l) = w(< brc >
0) + w(j), there is τ ∈ M such that w(τ) = q and lq = l − τ . Then (0, εq) �
(0, τ). Since (k, l) � (0, j), we see that

(k, l∗) = (k, l) − (0, τ) � (0, j) − (0, εq) = (0, j − εq).

In both cases we have that

(k, l∗) � (0, j − εq),

where the equality holds if and only if (k, l) = (0, j).
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(iii) q + 1 � j � q + l. Then 0 � q + l − j � l − 1 and dq+l−jvk,l ∈ V . So if
hkdlj dq+l−jvk,l �= 0, then w(k) + w(l∗) = w(k) + w(l) − j < w(k) + w(l) − q.

(iv) j > q + l. Then q + l − j < 0. Clearly, w(l∗) = w(lj) + (j − q − l) = w(l) −
q − l, and hence

w(k) + w(l∗) = w(k) + w(l) − q − l < w(k) + w(l) − q.

Therefore, we conclude that (3.6) holds, i.e.
∑

(k,l) hk[dq+l, dl]vk,l has degree
(0, j − εq).

Next we consider the degree of the non-zero vector [dq+l, hk]dlvk,l. By (3.2) we
can see that [dq+l, hk]dlvk,l is a linear combination of some vectors of the forms
hkshq+l−s−n+ 1

2
dlvk,l, s ∈ Z+ and hkq+l+1−2ndlvk,l, where w(ks) = w(k) − s. Noting

that l � 2n, the degree of hkq+l+1−2ndlvk,l has weight

w(k) − (q + l + 1 − 2n) + w(l) < w(k) + w(l) − q.

So

deg(hkq+l+1−2ndlvk,l) ≺ (0, j − εq).

Next we will show that

deg(hkshq+l−s−n+ 1
2
dlvk,l) ≺ (0, j − εq). (3.7)

We have two different cases to consider.

(a) s > q + l. The degree of hkshq+l−s−n+ 1
2
dlvk,l has weight

w(ks) + (s − q − l) + w(l) = w(k) + w(l) − q − l < w(k) + w(l) − q.

So, (3.7) holds in this case.

(b) 1 � s � q + l. We have

hkshq+l−s−n+ 1
2
dlvk,l = hks [hq+l−s−n+ 1

2
, dl]vk,l + hksdlhq+l−s−n+ 1

2
vk,l.

Noting that hq+l−s−n+ 1
2
vk,l ∈ V (in particular, hq+l−s−n+ 1

2
vk,l = 0 for 1 �

s � q + l − 2n), we see that if hksdlhq+l−s−n+ 1
2
vk,l �= 0 for q + l − 2n + 1 �

s � q + l, its degree has weight

w(ks) + w(l) = w(k) + w(l) − s < w(k) + w(l) − q.

Now we consider deg(hks [hq+l−s−n+ 1
2
, dl]vk,l) which is denoted by (k̃, l̃).

(b1) 1 � s � q, that is, q + l − s − n � n. Then q + l − s − n + 1
2 = n + p − 1

2
for some p ∈ Z+ and hence s + p = q + l − 2n + 1 � q + 1. Thus, by the
same arguments in the proof of lemma 3.2, we see

w(k̃) + w(̃l) � w(ks) + w(l) − p = w(k) − s + w(l) − p

� w(k) + w(l) − q − 1 < w(k) + w(l) − q.
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So, (3.7) holds in this case.

(b2) q + 1 � s � q + l. Then by (3.3) and the same arguments in the proof of
lemma 3.2, we see

w(k̃) + w(̃l) � w(ks) + w(l) = w(k) + w(l) − s � w(k) + w(l) − q − 1

< w(k) + w(l) − q.

So, (3.7) holds in this case as well.
Therefore, deg(dq+lv) = (0, j − εq), as desired.

�

Lemma 3.4. Let k ∈ Z+, n ∈ Z with k � n and k + n � 2, and let V be a D(0,−n)-
module such that hk− 1

2
acts injectively on V , and hi− 1

2
V = 0 for all i > k. If v ∈

Ind(V ) \ V with deg′(v) = (i, j) and j �= 0, then deg′(hp+k− 1
2
v) = (i, j − εp) where

p = min{s : js �= 0}.

Proof. As in (2.14), write v =
∑

(k,l) hkdlvk,l. Consider deg′(hp+k− 1
2
hkdlvk,l) if

hp+k− 1
2
hkdlvk,l �= 0. Noting that hp+k− 1

2
V = 0, we see

hp+k− 1
2
hkdlvk,l = [hp+k− 1

2
, hk]dlvk,l + hk[hp+k− 1

2
, dl]vk,l.

First we consider the term [hp+k− 1
2
, hk]dlvk,l which is zero if kp′ = 0 for p′ :=

p + k − n. In the case that kp′ > 0, since the level � �= 0, it follows from (3.1)
that [hp+k− 1

2
, hk] = λhk−εp′ for some λ ∈ C

∗. Note that (k, l) �′ (i, j), (0, εp) ≺′

(εp′ , 0). So

deg′([hp+k− 1
2
, hk]dlvk,l) = (k − εp′ , l) = (k, l) − (εp′ ,0) ≺′ (i, j) − (0, εp)

= (i, j − εp).

Now we consider the term hk[hp+k− 1
2
, dl]vk,l which is by (3.3) a linear combination

of some vectors in the form hkdlj hp+k− 1
2−jvk,l with j ∈ Z+ and w(lj) = w(l) − j.

We will show that

deg′(hkdlj hp+k− 1
2−jvk,l) = (k∗, l∗) �′ (i, j − εp), (3.8)

where the equality holds if and only if (k, l) = (i, j). We have four different cases
to consider.

(a) j < p. Then p + k − j > n and hp+k− 1
2−jvk,l = 0. Hence, hkdlj hp+k− 1

2−jvk,l =
0.

(b) j = p. Noting that hk− 1
2

acts injectively on V , we see (k∗, l∗) = (k, lp) and
w(k∗) + w(l∗) = w(k) + w(l)-p.

If w(k) + w(l) < w(i) + w(j), then (k∗, l∗) �′ (i, j − εp).
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If w(k) + w(l) = w(i) + w(j), then there is τ ∈ M such that w(τ) = p and lp =
l − τ . Since (0, εp) �′ (0, τ) and (k, l) �′ (i, j), we see that

(k∗, l∗) = (k, l) − (0, τ) �′ (i, j) − (0, εp) = (i, j − εp),

where the equality holds if and only if (k, l) = (i, j).

(c) p < j < n + k + p. Then hp+k− 1
2−j ∈ D(0,−n) and hp+k− 1

2−jvk,l ∈ V. So

w(k∗) + w(l∗) = w(k) + w(l) − j < w(k) + w(l) − p

and (k∗, l∗) ≺′ (i, j − εp).

(d) j � n + k + p. Then p + k − 1
2 − j < −n + 1

2 . Assume p + k − 1
2 − j =

−s − n + 1
2 for some s ∈ Z+, that is, −j + s = −n − k − p + 1 < −p

since k + n � 2. Since the corresponding vector hkdlj hp+k− 1
2−jvk,l =

hkh−s−n+ 1
2
dlj vk,l − hk[h−s−n+ 1

2
, dlj ]vk,l, by (3.3) and simple computa-

tions, we see hkdlj hp+k− 1
2−jvk,l can be written as a linear combina-

tion of vectors in the form hkh−s′−s−n+ 1
2
dls′+j vk,l where s′ ∈ N and

deg′(hkh−s′−s−n+ 1
2
dls′+j vk,l) has weight

w(k) + s′ + s + w(ls′+j) = w(k) + w(l) + s − j.

So

w(k∗) + w(l∗) = w(k) + w(l) − j + s < w(k) + w(l) − p � w(i) + w(j) − p,

and hence (k∗, l∗) ≺′ (i, j − εp).

In conclusion, deg′(hp+k− 1
2
hkdlvk,l) �′ (i, j − εp), where the equality holds if and

only if (k, l) = (i, j), that is, deg′(hp+k− 1
2
v) = (i, j − εp). �

Lemma 3.5. Let k ∈ Z+, n ∈ Z such that k > n and k + n � 2, and V be a D(0,−n)-
module such that hk− 1

2
acts injectively on V , and hi− 1

2
V = djV = 0 for all i > k,

j > k + n − 1. Assume that v =
∑

(k,l) hkdlvk,l ∈ Ind(V ) \ V with deg′(v) = (i, 0).
Set q = min{s : is �= 0}.

(1) If the sum
∑

(k,l) hkdlvk,l does not contain terms hkdlvk,l satisfying

w(k) + w(l) = w(i),w(i) − q � w(k) < w(i), (3.9)

then deg′(dq+k+n−1v) = (i − εq, 0);

(2) Assume that the sum
∑

(k,l) hkdlvk,l contains terms hkdlvk,l satisfying (3.9).
Let v′=v−∑

w(k)=w(i) hkvk,0 and deg′(v′)=(k∗, l∗) with t=min{s : l∗s �= 0}.
Then deg′(hk+t− 1

2
v) = (k∗, l∗ − εt).
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Proof. Consider deg′(dq+k+n−1h
kdlvk,l) with dq+k+n−1h

kdlvk,l �= 0. Noting that
dq+k+n−1V = 0, we see that

dq+k+n−1h
kdlvk,l = [dq+k+n−1, h

k]dlvk,l + hk[dq+k+n−1, d
l]vk,l.

First we consider the term [dq+k+n−1, hk]dlvk,l. It follows from (3.2)
that [dq+k+n−1, hk]dlvk,l is a linear combination of vectors in the forms
hkj h(q−j)+k− 1

2
dlvk,l and hsdlvk,l where kj = k − εj , w(s) = w(k) − (k + q − n). If

l = 0, it is not hard to see that deg′(dq+k+n−1h
kdlvk,l) �′ (i − εq, 0) where the

equality holds if and only if (k, l) = (i, 0).
Next we assume that l �= 0, and continue to consider the term [dq+k+n−1, hk]dlvk,l.

We first consider the term hkj h(q−j)+k− 1
2
dlvk,l. We break the arguments into four

different cases next.

(a) j < q. In this case, we have hkj h(q−j)+k− 1
2
dlvk,l = hkj [h(q−j)+k− 1

2
, dl]vk,l.

Then it follows from (3.3) that hkj [h(q−j)+k− 1
2
, dl]vk,l is a linear combination

of vectors in the form hkj dlsh(q−j−s)+k− 1
2
vk,l where w(ls) = w(l) − s.

(a1) If s < q − j, then hkj dlsh(q−j−s)+k− 1
2
vk,l = 0.

(a2) If s = q − j, then deg′(hkj dlshk− 1
2
vk,l) has weight

w(kj) + w(ls) = w(k) + w(l) − j − s = w(k) + w(l) − q.

If w(k) + w(l) < w(i), or w(k) + w(l) = w(i) and w(k) < w(i) − q, then
deg′(hkj dlshk− 1

2
vk,l) ≺′ (i − εq, 0). We will discuss the remaining cases that

(k, l) satisfies (3.9) in case (2) later.

(a3) If q − j < s � q + k + n − 1 − j, then h(q−j−s)+k− 1
2
vk,l ∈ V and deg′(hkj dls

hk− 1
2
vk,l) has weight

w(kj) + w(ls) = w(k) + w(l) − j − s < w(k) + w(l) − q � w(i) − q.

So deg′(hkj dlsh(q−j−s)+k− 1
2
vk,l) ≺′ (i − εq, 0).

(a4) If s > q + k + n − 1 − j, then q − j − s + k − 1
2 = −s′ − n + 1

2 for some s′ ∈
Z+. It is easy to see hkj dlsh(q−j−s)+k− 1

2
vk,l can be written as a linear combi-

nation of vectors of the form hkj h−s′−s′′−n+ 1
2
dls+s′′ vk,l, 0 � s′′ � w(ls). Note

that both deg′(hkj h−s′−s′′−n+ 1
2
dls+s′′ vk,l) and deg′(hkj h−s′−n+ 1

2
dlsvk,l)

have the same weight and −j − s + s′ = −q − k − n + 1 < −q, we see
deg′(hkj dlsh(q−j−s)+k− 1

2
vk,l) has weight

w(kj) + w(ls) + s′ = w(k) + w(l) − j − s + s′ < w(k) + w(l) − q � w(i) − q.

So deg′(hkj dlsh(q−j−s)+k− 1
2
vk,l) ≺′ (i − εq, 0).

(b) j = q. In this case, we have hkqhk− 1
2
dlvk,l = hkqdlhk− 1

2
vk,l + hkq [hk− 1

2
, dl]vk,l.

Clearly, deg′(hkqdlhk− 1
2
vk,l) = (kq, l) ≺′ (i − εq, 0) since l �= 0. By (3.3)
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and the similar arguments in cases (a3) and (a4) we can deduce
that deg′(hkq [hk− 1

2
, dl]vk,l) ≺′ (i − εq, 0). Hence, deg′(hkqhk− 1

2
dlvk,l) ≺′

(i − εq, 0).

(c) q < j � q + k + n − 1. In this case, we have hkj h(q−j)+k− 1
2
dlvk,l =

hkj dlh(q−j)+k− 1
2
vk,l + hkj [h(q−j)+k− 1

2
, dl]vk,l. Clearly, deg′(hkj dl

h(q−j)+k− 1
2
vk,l) = w(k) + w(l) − j < w(i) − q. Then by (3.3) and the

similar arguments in cases (a3) and (a4) we can deduce that
deg′(hkq [h(q−j)+k− 1

2
, dl]vk,l) ≺′ (i − εq, 0). Hence, deg′(hkj h(q−j)+k− 1

2
dlvk,l)

≺′ (i − εq, 0).

(d) j > q + k + n − 1. In this case, we have hkj h(q−j)+k− 1
2
dlvk,l = hkj

h−(j−(q+k+n−1))−n+ 1
2
dlvk,l. Then deg′(hkj h(q−j)+k− 1

2
dlvk,l) = (k∗, l) with

weight w(k∗) + w(l) = w(k) + w(l) − (q + k + n − 1) < w(i) − q. Hence,
deg′(hkj h(q−j)+k− 1

2
dlvk,l) ≺′ (i − εq, 0).

Next consider the term hsdlvk,l. Since w(deg′(hsdlvk,l)) = w(s) + w(l) < w(k) +
w(l)-q � w(i)-q, it follows that deg′(hsdlvk,l) ≺′ (i − εq, 0).

Thus, if hkdlvk,l does not satisfy (3.9) we have

deg′([dq+k+n−1, h
k]dlvk,l) �′ (i − εq,0)

where the equality holds if and only if (k, l) = (i, 0).
Now, consider the term hk[dq+k+n−1, dl]vk,l where we still assume that

l �= 0. By (3.4) we see hk[dq+k+n−1, dl]vk,l is a linear combination of vec-
tors hkdlj dq+k+n−1−jvk,l and hkdlq+k+n−1vk,l where w(lj) = w(l) − j, j ∈ N. Since
deg′(hkdlq+k+n−1vk,l) has weight

w(k) + w(l) − (q + k + n − 1) < w(k) + w(l) − q � w(i) − q,

we see deg′(hkdlq+k+n−1vk,l) ≺′ (i − εq, 0). So we need only to consider the vectors
hkdlj dq+k+n−1−jvk,l. There are four different cases.

(i) j < q. Then q + k + n − 1 − j > k + n − 1 and hkdlj dq+k+n−1−jvk,l = 0. In
particular, for w(l) < q we have hkdlj dq+k+n−1−jvk,l = 0.

(ii) j = q. Then q + k + n − 1 − q = k + n − 1 and hence deg′(hkdlqdk+n−1vk,l) =
(k, lq) ( in the case dk+n−1vk,l �= 0 ) with w(k) + w(lq) = w(k) + w(l) − q.
If w(k) + w(l) < w(i), or w(k) + w(l) = w(i) and w(k) < w(i) − q, then
(k, lq) ≺′ (i − εq, 0). We will discuss the remaining cases that (k, l) satisfies
(3.9) in case (2) later.

(iii) q < j � q + k + n − 1. Then dq+k+n−1−jvk,l ∈ V and hkdlj dq+k+n−1−jvk,l =
0 or deg′(hkdlj dq+k+n−1−jvk,l) has weight

w(k) + w(lj) = w(k) + w(l) − j < w(k) + w(l) − q � w(i) − q,

so deg′(hkdlj dq+k+n−1−jvk,l) ≺′ (i − εq, 0).
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(iv) j > q + k + n − 1. Then q + k + n − 1 − j < 0. Assume q + k + n − 1 −
j = −j′, j′ ∈ Z+. Then −j + j′ = −(q + k + n − 1) < −q. So deg′(hkdlj

dq+k+n−1−jvk,l) has weight

w(k) + w(lj) + j′ = w(k) + w(l) − j + j′ = w(k) + w(l) − (q + k + n − 1)

< w(i) − q,

which means deg′(hkdlj dq+k+n−1−jvk,l) ≺′ (i − εq, 0).

(1) If v =
∑

(k,l) hkdlvk,l does not contain a term hkdlvk,l satisfying (3.9), then
by the above arguments we see deg′(dq+k+n−1v) = (i − εq, 0).

(2) If v =
∑

(k,l) hkdlvk,l contains terms hkdlvk,l satisfying (3.9), then we see
deg′(v′) = (k∗, l∗) with

w(k∗) + w(l∗) = w(i), w(k∗) � w(i) − q, 1 � w(l∗) � q.

Then by lemma 3.4 we see deg′(ht+k− 1
2
v′) = (k∗, l∗ − εt).

Noticing that k > n, by (3.1) we see ht+k− 1
2
hkvk,0 = 0 or λhkt′ vk,0, λ ∈ C

∗ with
t′ = t + k − n > t and w(kt′) = w(k) − t′, so deg′(ht+k− 1

2
(hkvk,0)) = (kt′ , 0) has

weight w(kt′) = w(k) − t′ < w(k∗) + w(l∗) − t = w(k∗) + w(l∗ − εt). Hence

deg′(ht+k− 1
2
v) = deg′

(
ht+k− 1

2

(
v −

∑
w(k)=w(i)

hkvk,0

))
= (k∗, l∗ − εt).

�

4. Simple smooth D-modules

In this section, we will determine all simple smooth D-modules. Based on theorem
2.10, we only need to determine all simple smooth D-modules S of level � �= 0.

For a given simple smooth D-module S with level � �= 0, we define the following
invariants of S as follows:

S(r) = KerS(H�r), nS = min{r ∈ Z : S(r) �= 0},W0 = S(nS),

and

U(r) = KerW0(Vir�r),mS = min{r ∈ Z : U(r) �= 0}, U0 = U(mS).

Lemma 4.1. Let S be a simple smooth D-module with level � �= 0.

(i) hnS− 1
2

acts injectively on W0, dmS−1 acts injectively on U0.

(ii) nS , mS ∈ N.

(iii) W0 is a non-zero D(0,−nS)-module, and is invariant under the action of the
operators Ln defined in (2.2)–(2.4) for n ∈ N.
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(iv) If mS � 2nS, then U0 is a non-zero D(0,−nS)-submodule of W0, and is
invariant under the action of the operators Ln defined in (2.2)–(2.4) for
n ∈ N.

Proof. (i) follows from the definitions of nS and mS .

(ii) Suppose nS < 0, take any non-zero v ∈ W0, we then have

h 1
2
v = 0 = h− 1

2
v.

This implies that 1
2�v = [h 1

2
, h− 1

2
]v = 0, a contradiction. Hence, nS ∈ N.

Suppose mS < 0. Take any non-zero v ∈ U0, we then have d−1v = 0 =
hnS+ 1

2
v. Then

−(nS +
1
2
)hnS− 1

2
v = [d−1, hnS+ 1

2
]v = 0,

a contradiction with (1). Hence, mS ∈ N.

(iii) It is obvious that W0 �= 0 by definition. For any w ∈ W0, i, j, k ∈ N, we have

hk+nS+ 1
2
diw = dihk+nS+ 1

2
w +

(
k + nS +

1
2

)
hi+k+nS+ 1

2
w = 0,

and

hk+nS+ 1
2
hj−nS+ 1

2
w = hj−nS+ 1

2
hk+nS+ 1

2
w = 0.

Hence, diu ∈ W0 and hj−nS+ 1
2
u ∈ W0, i.e. W0 is a non-zero D(0,−nS)-module.

For n ∈ N, i ∈ N, w ∈ W0, by (2.5) we have

hi+nS+ 1
2
Lnw =

(
Lnhi+nS+ 1

2
−

(
i + nS +

1
2

)
hn+i+nS+ 1

2

)
w = 0.

This implies that Liw ∈ W0 for i ∈ N, that is, W0 is invariant under the action
of the operators Li for i ∈ N.

(iv) It is obvious that 0 �= U0 ⊆ W0. Suppose that mS � 2nS . For any u ∈
U0, i, j, k ∈ N, it follows from (iii) that diu ∈ W0 and hj−nS+ 1

2
u ∈ W0.

Furthermore,

dk+mS
diu = didk+mS

u + (k − i − mS)dk+i+mS
u = 0,

and

dk+mS
hj−nS+ 1

2
u = hj−nS+ 1

2
dk+mS

u −
(

j − nS +
1
2

)
hk+j+mS−nS+ 1

2
u = 0.

Hence, diu ∈ U0 and hj−nS+ 1
2
u ∈ U0, i.e. U0 is a non-zero D(0,−nS) submodule

of W0.
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Furthermore, if in addition mS > 0, then for n, i ∈ N, u ∈ U0, it follows from
(iii) that Lnu ∈ W0. Moreover, for n ∈ N, using (2.2–2.6) we have

di+mS
Lnu = Lndi+mS

u + [di+mS
, Ln]u = [di+mS

, Ln]u

= (n − i − mS)Li+n+mS
u = 0.

This implies that Liu ∈ U0 for i ∈ N, that is, U0 is invariant under the action
of the operators Li for i ∈ N.

�

Proposition 4.2. Let S be a simple smooth D-module with level � �= 0.

(i) If nS = 0, then S ∼= HD ⊗ UD as D-modules for some simple modules H ∈
RH and U ∈ RVir.

(ii) If mS > 2nS > 0, then S ∼= IndD
D(0,−nS)(U0) and U0 is a simple D(0,−nS)-

module.

(iii) If mS < 2nS, then U0 is a non-zero D(0,−(mS−nS))-submodule of W0. More-
over,

(iii-1) If mS � 2, then S ∼= IndD
D(0,−(mS−nS))(U0) and U0 is a simple

D(0,−(mS−nS))-module.

(iii-2) If mS = 0 or 1, and nS > 1, then U(2) is a simple D(0,−(2−nS))-module,
and S ∼= IndD

D(0,−(2−nS))(U(2)).

Proof. (i) Since nS = 0, we take any non-zero v ∈ W0. Then Cv is a trivial H(0)-
module. Let H = U(H)v, the H-submodule of S generated by v. It follows
from representation theory of Heisenberg algebras (or from the same argu-
ments as in the proof of lemma 3.2) that IndH

H(0)(Cv) is a simple H-module.
Consequently, the following surjective H-module homomorphism

ϕ : IndH
H(0)(Cv) −→ H∑

i∈M

aih
i ⊗ v �→

∑
i∈M

aih
iv

is an isomorphism, that is, H is a simple H-module, which is certainly smooth.
Then the desired assertion follows directly from corollary 2.13.

(ii) By taking V = U0, k = n = nS and l = mS − 1 in theorem 3.1(1) we see that
any non-zero D-submodule of IndD

D(0,−nS)(U0) has a non-zero intersection with
U0. Consequently, the surjective D-module homomorphism

ϕ : IndD
D(0,−nS)(U0) −→ S∑

i,k∈M

hidk ⊗ vi,k �→
∑

i,k∈M

hidkvi,k

is an isomorphism, i.e. S ∼= IndD
D(0,−nS)(U0). Since S is simple, we see U0 is a

simple D(0,−nS)-module.
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(iii) Suppose that mS < 2nS . For any u ∈ U0, i, j, k ∈ N, it follows from lemma
4.1 (iii) that diu ∈ W0 and hj−(mS−nS)+ 1

2
u ∈ W0. Furthermore,

dk+mS
diu = didk+mS

u + (k − i + mS)dk+i+mS
u = 0,

and

dk+mS
hj−(mS−nS)+ 1

2
u = hj−(mS−nS)+ 1

2
dk+mS

u

−
(

j − (mS − nS) +
1
2

)
hk+j+nS+ 1

2
u = 0.

Hence, diu ∈ U0 and hj−(mS−nS)+ 1
2
u ∈ U0, i.e. U0 is a non-zero D(0,−(mS−nS))

submodule of W0.
Now suppose mS � 2. Then it follows from theorem 3.1(2) that any non-

zero D-submodule of IndD
D(0,−(mS−nS))(U0) has a non-zero intersection with U0

by taking k = nS , n = mS − nS and l = mS − 1 therein. Consequently, S ∼=
IndD

D(0,−(mS−nS))(U0) by similar arguments as in (ii). Since S is simple, we see U0 is
a simple D(0,−nS)-module.

Suppose that mS = 0 or 1, and nS > 1. Then D(0,−(2−nS)) ⊆ D(0,−nS). Hence,
W0 is a D(0,−(2−nS))-module. Moreover, for any u ∈ U(2), i, j ∈ N, we have

dj+2diu = didj+2u = 0,

and

dj+2hi−(2−nS)+ 1
2
u = hi−(2−nS)+ 1

2
dj+2u +

(
2 − nS − i − 1

2

)
hi+j+nS+ 1

2
u = 0.

Therefore, U(2) is a D(0,−(2−nS))-module. Then it follows from theorem 3.1(2) that
any non-zero D-submodule of IndD

D(0,−(2−nS))(U(2)) has a non-zero intersection with
U(2) by taking V = U(2), k = nS , n = 2 − nS and l = 1 therein. Consequently,
S ∼= IndD

D(0,−(2−nS))(U(2)) by similar arguments as in (ii). In particular, U(2) is a
simple D(0,−(2−nS))-module. �

From proposition 4.2, what remains to consider are the following two cases: (1)
mS = 2nS > 0, (2) mS = 0 or 1, and nS = 1.

Now we first consider case (1): mS = 2nS > 0. For that, we define the operators
d′n = dn − Ln on S for n ∈ Z. Since S is a smooth D-module, then d′n is well-defined
for any n ∈ Z. By (2.5) and (2.6), we have

[d′m, c1] = 0, [d′m, d′n] = (m − n)d′m+n +
m3 − m

12
δm+n,0(c − 1),m, n ∈ Z, (4.1)

where c′1 = c1 − idS and c is the central charge of S. So the operator algebra

Vir′ =
⊕
n∈Z

Cd′n ⊕ Cc′1

is isomorphic to the Virasoro algebra Vir. Since [dn, hk+ 1
2
] = [Ln, hk+ 1

2
] =

−(k + 1
2 )hn+k+ 1

2
, we have [d′n, hk+ 1

2
] = 0, n, k ∈ Z and hence [Vir′, H] = 0.
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Clearly, the operator algebra D′ = Vir′ ⊕H is a direct sum, and S = U(D)v =
U(D′)v, 0 �= v ∈ S. Similar to (2.11) we can define its subalgebras, D′(m,n) and the
likes.

Let

Yn =
⋂
p�n

KerU0(d
′
p), rS = min{n ∈ Z : Yn �= 0},K0 = YrS

.

If Yn �= 0 for any n ∈ Z, we define rS = −∞. Denote by K = U(H)K0.

Lemma 4.3. Let S be a simple smooth D-module with level � �= 0. Assume that
mS = 2nS > 0. Then the following statements hold.

(i) −1 � rS � mS or rS = −∞.

(ii) K0 is a D(0,−nS)-module and hnS− 1
2

acts injectively on K0.

(iii) K is a D(0,−∞)-module and KD has a D-module structure by (2.2)-(2.4).

(iv) K0 and K are invariant under the action of d′n for n ∈ N.

(v) If rS �= −∞, then d′rS−1 acts injectively on K0 and K.

Proof. (i) Since mS = 2nS > 0, the operators dm and Lm = 1
2�

∑
k∈Z+ 1

2
hm−khk

act trivially on U0 for any m � mS . This implies that YmS
= U0 �= 0.

Consequently, rS � mS by the definition of rS .
If Y−2 �= 0, then d′−2K0 = d′−1K0 = 0. We deduce that Vir′K0 = 0 and hence
rS = −∞.
If Y−2 = 0, then rS � −1 and hence −1 � rS � mS .

(ii) For any 0 �= v ∈ K0 and x ∈ D(0,−nS), it follows from lemma 4.1(iv) that xv ∈
U0. We need to show that d′pxv = 0, p � rS . Indeed, d′phk+ 1

2
v = hk+ 1

2
d′pv = 0

by (2.5) for any k � −nS . Moreover, it follows from (2.6) and (4.1) that

d′pdnv = dnd′pv + [d′p, dn]v = (p − n)d′p+nv = 0.

Hence, d′pxv = 0, p � rS , that is, xv ∈ K0, as desired.
Since 0 �= K0 ⊆ U0 ⊆ W0, we see that hnS− 1

2
acts injectively on K0 by lemma

4.1(i).

(iii) follows from (ii).

(iv) It follows from lemma 4.1(iv) that U0 is invariant under the action of d′n for
n ∈ N, so is K0 by (4.1). Moreover, since [Vir′, H] = 0, K is also invariant
under the action of d′n for n ∈ N.

(v) follows directly from the definition of rS and K.
�

Proposition 4.4. Let S be a simple smooth D-module with central charge c and
level � �= 0. Assume that mS = 2nS > 0. If rS = −∞, then c = 1. Moreover, S =
KD and K is a simple H-module.
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Proof. Since rS = −∞, we see that Vir′K0 = 0. This together with (4.1) implies
that c = 1. Noting that [Vir′, H] = 0, we further obtain that Vir′K = 0, that is,
dnv = Lnv ∈ K for any v ∈ K and n ∈ Z. Hence, KD is a D-submodule of S,
yielding that S = KD. In particular, K is a simple H-module. �

Proposition 4.5. Let S be a simple smooth D-module with level � �= 0. If rS � 2,
then K0 is a simple D(0,−nS)-module and S ∼= IndD

D(0,−nS)K0.

Proof. We first show that IndD(0,−∞)

D(0,−ns)K0
∼= K as D(0,−∞) modules. For that, let

φ : IndD(0,−∞)

D(0,−ns)K0 −→ K∑
k∈M

hk ⊗ vk �→
∑
k∈M

hkvk,

where hk = · · ·hk2
−2−nS+ 1

2
hk1
−1−nS+ 1

2
. Then φ is a D(0,−∞)-module epimorphism and

φ|K0 is one-to-one. By similar arguments in the proof of lemma 3.2 we see that any
non-zero submodule of IndD(0,−∞)

D(0,−ns)K0 contains non-zero vectors of K0, which forces
that the kernel of φ must be zero and hence φ is an isomorphism.

By lemma 4.3(v), we see that d′rS−1 acts injectively on K.
As D-modules,

IndD
D(0,−nS)K0

∼= IndD
D(0,−∞)(Ind(0,−∞)

D(0,−nS)K0) ∼= IndD
D(0,−∞)K.

And we further have IndD
D(0,−∞)K ∼= IndVir′

Vir′(0)K as vector spaces. Moreover, we
have the following D-module epimorphism

π : IndD
D(0,−∞)K = IndVir′

Vir′(0)K → S,∑
l∈M

d′l ⊗ vl �→
∑
l∈M

d′lvl,

where d′l = · · · (d′−2)
l2(d′−1)

l1 . We see that π is also a Vir′-module epimorphism.
By the proof of Theorem 2.1 in [46] we know that any non-zero Vir′-submodule
of IndVir′

Vir′(0)K contains non-zero vectors of K. Note that π|K is one-to-one, we
see that the image of any non-zero D-submodule ( and hence Vir′-submodule ) of
IndD

D(0,−∞)K must be a non-zero D-submodule of S and hence be the whole module
S, which forces that the kernel of π must be 0. Therefore, π is an isomorphism.
Since S is simple, we see K0 is a simple D(0,−nS)-module. �

As a direct consequence of proposition 4.5, we have

Corollary 4.6. Let S be a simple smooth D-module with level � �= 0. If mS � 1
and nS = 1, then K0 is a simple D(0,−1)-module and S ∼= IndD

D(0,−1)K0.
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Proof. For any non-zero u ∈ U0, since mS � 1 and nS = 1, it follows from the
definitions of mS , nS and lemma 4.1(i) that

d1u = 0, L1u =
1
2�

∑
k∈Z+ 1

2

h1−khku =
1
2�

(h 1
2
)2u �= 0.

This implies that d′1u �= 0, i.e. d′1 acts injectively on U0. Hence, rS � 2. More
precisely, since

d2+iv = L2+iv = 0, ∀ i ∈ N, v ∈ U0,

we see that rS = 2. Now the desired assertion follows directly from proposition
4.5. �

Remark 4.7. From corollary 4.6, we have dealt with case (2).

What remains to consider for case (1) is that mS = 2nS � 2 and rS � 1. In this
case, we will show that K is a simple H-module.

For the Verma module MVir(c, h) over Vir, it is well-known from [6, 20]
that there exist two homogeneous elements P1, P2 ∈ U(Vir−)Vir− such that
U(Vir−)P1w1 + U(Vir−)P2w1 is the unique maximal proper Vir-submodule of
MVir(c, h), where P1, P2 are allowed to be zero and w1 is the highest weight vector
in MVir(c, h).

Lemma 4.8. Let d = 0, −1. Suppose M is a Vir(d)-module on which d0 acts as
multiplication by a given scalar λ. Then there exists a unique maximal submodule
N of IndVir

Vir(d)M with N ∩ M = 0. More precisely, N is generated by P1M and
P2M , i.e. N = U(Vir−)(P1M + P2M).

Proof. Note that d0 acts diagonalizably on IndVir
Vir(d)M and its submodules, and

M = {u ∈ IndVir
Vir(d)M | d0u = λu},

i.e. M is the highest weight space of IndVir
Vir(d)M . Let N be the sum of all Vir-

submodules of IndVir
Vir(d)M which intersect with M trivially. Then N is the desired

unique maximal Vir-submodule of IndVir
Vir(d)M with N ∩ M = 0.

Let N ′ be the Vir-submodule generated by P1M and P2M , i.e. N ′ =
U(Vir−)(P1M + P2M). Then N ′ ∩ M = 0. Hence, N ′ ⊆ N . Suppose there is a
proper submodule U of IndVir

Vir(d)M that is not contained in N ′. There is a non-zero
homogeneous v =

∑r
i=1 uivi ∈ U \ N ′ where ui ∈ U(Vir−) and v1, ...vr ∈ M are

linearly independent. Note that all ui have the same weight. Then some uivi /∈ N ′,
say u1v1 /∈ N ′. There is a homogeneous u ∈ U(Vir) such that uu1v1 = v1. Noting
that all uui has weight 0, so uuivi ∈ Cvi. Thus, uv ∈ M \ {0}. This implies that
N ⊆ N ′. Hence, N = N ′, as desired. �

Proposition 4.9. Let S be a simple smooth D-module with level � �= 0. If mS =
2ns � 2, and rS = 0 or −1, then K is a simple H-module and S ∼= UD ⊗ KD for
some simple U ∈ RVir.
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Proof. By lemma 4.3 (iii), we see that KD is a D-module, and hence KD′
is a

D′-module with d′nK = 0 for any n ∈ Z. Let Cv0 be a one-dimensional D′(rS ,−∞)-
module with module structure defining by d′nv0 = hk+ 1

2
v0 = c2v0 = 0, n � rS , k ∈

Z, c′1v0 = (c − 2)v0. Then Cv0 ⊗ KD′
is a D′(rS ,−∞)-module with central charge

c − 1 and level �. It is easy to see that we have the following D′(rS ,−∞)-module
homomorphism

τK : Cv0 ⊗ KD′ −→ S,

v0 ⊗ u �→ u,∀u ∈ K.

Clearly, τK is an injective map and can be extended to a D′-module epimorphism

τ : IndD′
D′(rS,−∞)(Cv0 ⊗ KD′

) −→ S,

x(v0 ⊗ u) �→ xu, x ∈ U(D′), u ∈ K.

By Lemma 8 in [43] we know that

IndD′
D′(rS,−∞)(Cv0 ⊗ KD′

) ∼= (IndD′
D′(rS,−∞)Cv0) ⊗ KD′

= (IndVir′
Vir′(rS)Cv0)D′ ⊗ KD′

.

Then we have the following D′-module epimorphism

τ ′ : (IndVir′
Vir′(rS)Cv0)D′ ⊗ KD′ −→ S,

xv0 ⊗ u �→ xu, x ∈ U(Vir′), u ∈ K.

Note that (IndVir′
Vir′(rS)Cv0)D′ ⊗ KD′ ∼= IndVir′

Vir′(rS)(Cv0 ⊗ KD′
) as Vir′-modules,

and τ ′ is also a Vir′-module epimorphism, τ ′|
Cv0⊗KD′ is one-to-one, and

(IndVir′
Vir′(rS)Cv0)D′ ⊗ KD′

is a highest weight Vir′-module.
Let V = IndVir′

Vir′(rS)Cv0 and K = Ker(τ ′). It should be noted that

Cv0 ⊗ KD′
= {u ∈ V D′ ⊗ KD′ | d′0u = 0}.

We see that (Cv0 ⊗ KD′
) ∩ K = 0. Let K′ be the sum of all Vir′-submodules

W of V D′ ⊗ KD′
with (Cv0 ⊗ KD′

) ∩ W = 0, that is, the unique maximal Vir′-
submodule of V D′ ⊗ KD′

with trivial intersection with (Cv0 ⊗ KD′
). It is obvious

that K ⊆ K′. Next we further show that K = K′. For that, take any Vir′-submodule
W of V D′ ⊗ KD′

such that (Cv0 ⊗ KD′
) ∩ W = 0. Then for any weight vec-

tor w =
∑

l∈M
d′lv0 ⊗ ul ∈ W , where ul ∈ KD′

, d′l = · · · (d′−2)
l2(d′−1)

l1 if rS = 0,
or d′l = · · · (d′−2)

l2 if rS = −1, and all w(l) � 1 are equal. Note that hk+ 1
2
w =∑

l∈M
d′lv0 ⊗ hk+ 1

2
ul either equals to 0 or has the same weight as w under the

action of d′0. So U(D′)K′ ∩ (Cv0 ⊗ KD′
) = 0. The maximality of K′ forces that

K′ = U(D′)K′ is a proper D′-submodule of V D′ ⊗ KD′
. Since K is a maximal proper

D′-submodule of V D′ ⊗ KD′
, it follows that K = K′.

By lemma 4.8 we know that K is generated by P1(Cv0 ⊗ KD′
) = CP1v0 ⊗ KD′

and P2(Cv0 ⊗ KD′
) = CP2v0 ⊗ KD′

. Let V ′ be the maximal submodule of V
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generated by P1v0 and P2v0, then K = V ′D′ ⊗ KD′
. Therefore,

S ∼= (V D′ ⊗ KD′
)/(V ′D′ ⊗ KD′

) ∼= (V/V ′)D′ ⊗ KD′
,

which forces that KD′
is a simple D′-module and hence a simple H-module. So S

contains a simple H-module K. By corollary 2.13 we know there exists a simple
Vir-module U ∈ RVir such that S ∼= UD ⊗ KD, as desired. �

Lemma 4.10. Let M be a Vir(0)-module on which Vir(1) acts trivially. If any
finitely generated C[d0]-submodule of M is a free C[d0]-module, then any non-zero
submodule of IndVir

Vir(0)M intersects with M non-trivially.

Proof. Let V be a non-zero submodule of IndVir
Vir(0)M . Take a non-zero u ∈ V . If

u ∈ M , there is nothing to do. Now assume u ∈ V \M . Write u =
∑n

i=1 aiui where
ai ∈ U(Vir�0), ui ∈ M . Since M1 =

∑
1�i�n C[d0]ui ( a Vir(0)-submodule of M )

is a finitely generated C[d0]-module, we see M1 is a free module over C[d0] by the
assumption. Without loss of generality, we may assume that M1 = ⊕1�i�nC[d0]ui

with basis u1, · · · , un over C[d0]. Note that each ai can be expressed as a sum of
eigenvalue subspaces of ad d0 for 1 � i � n. Assume that a1 has a maximal eigen-
value among all ai for 1 � i � n. Then a1u1 /∈ M . For any λ ∈ C, let M1(λ) be the
C[d0]-submodule of M1 generated by u2, u3, · · · , un, d0u1 − λu1. Then M1/M1(λ)
is a one-dimensional Vir(0)-module with d0(u1 + M1(λ)) = λu1 + M1(λ). By the
Verma module theory for Virasoro algebra, we know that there exists some
0 �= λ0 ∈ C such that the corresponding Verma module V = IndVir

Vir(0)(M1/M1(λ0))
is irreducible. We know that u = a1u1 �= 0 in V. Hence, we can find a homogeneous
w ∈ U(Vir+) such that wa1u1 = f1(d0)u1 in IndVir

Vir(0)M , where 0 �= f1(d0) ∈ C[d0].
So wu =

∑n
i=1 waiui =

∑n
i=1 fi(d0)ui for fi(d0) ∈ C[d0], 1 � i � n. Therefore, 0 �=

wu ∈ V ∩ M1 ⊂ V ∩ M, as desired. �

Proposition 4.11. Let S be a simple smooth D-module with level � �= 0. If mS =
2ns � 2, rS = 1, then d′0 has an eigenvector in K.

Proof. Suppose first that any finitely generated C[d′0]-submodule of K =
IndH

H(−nS)K0 is a free C[d′0]-module. By lemma 4.10 we see that the following
D′-module homomorphism

τ : IndD′
D′(0,−∞)K = IndVir′

Vir′(0)K −→ S,

x ⊗ u �→ xu, x ∈ U(Vir′), u ∈ K

is an isomorphism. So S = IndVir′
Vir′(0)K, and consequently, K is an irreducible

D′(0,−∞)-module. Since Vir′(1)K = 0, we consider K as an irreducible module over
the Lie algebra H⊕ Cd′0. Since d′0 is the centre of the Lie algebra H⊕ Cd′0, we see
that the action of d′0 on K is a scalar, a contradiction. So this case does not occur.

Now there exists some finitely generated C[d′0]-submodule M of K that is
not a free C[d′0]-module. Since C[d′0] is a principal ideal domain, by the struc-
ture theorem of finitely generated modules over a principal ideal domain, there
exists a monic polynomial f(d′0) ∈ C[d′0] with positive degree and non-zero element
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u ∈ M such that f(d′0)u = 0. Furthermore, we can write f(d′0) = (d′0 − λ1)(d′0 − λ2)
· · · (d′0 − λp) for some λ1, · · · , λp ∈ C. Then there exists some s � p such that
w := Πp

i=s+1(d
′
0 − λj)u �= 0 and d′0w = λsw, where we make convention that w = u

if s = p. Then w is a desired eigenvector of d′0. �

Proposition 4.12. Let S be a simple smooth D-module with level � �= 0. If mS =
2ns � 2, rS = 1, then K is a simple H-module and S ∼= UD ⊗ KD for some simple
U ∈ RVir.

Proof. We see that S is a weight D′-module since S is a simple D′-module and d′0
has an eigenvector. From lemma 4.3(iii), K and K0 are weight D′-modules as well.
We can take some 0 �= u0 ∈ K such that d′0u0 = λu0 for some λ �= 0 by proposition
4.11. Set K ′ = U(H)u0, which is an H submodule of K. Then we have the D′-
module K ′D′

, on which Vir′ acts trivially by definition for any n ∈ Z. Let Cv0

be the one-dimensional D′(0,−∞)-module defined by d′0v0 = λv0, d′nv0 = hk+ 1
2
v0 =

c2v0 = 0, n ∈ Z+, k ∈ Z, c′1v0 = (c − 2)v0. Then Cv0 ⊗ K ′D′
is a D′(0,−∞)-module

with central charge c − 1 and level �. There is a D′(0,−∞)-module homomorphism

τK′ : Cv0 ⊗ K ′D′ −→ S,

v0 ⊗ u �→ u,∀u ∈ K ′,

which is injective and can be extended to be the following D′-module homomor-
phism

τ : IndD′
D′(0,−∞)(Cv0 ⊗ K ′D′

) −→ S,

x(v0 ⊗ u) �→ xu, x ∈ U(D′), u ∈ K ′.

Since S is a simple D′ module and τ �= 0, we see that τ is surjective. By similar
arguments in the proof of proposition 4.9, we can obtain that K ′ is a simple H-
module. By corollary 2.13 we know there exists a simple Vir-module U ∈ RVir such
that S ∼= UD ⊗ K ′D, as desired. Now it is clear that K = K ′. �

We are now in a position to present the following main result on a classification
of simple smooth D-modules with non-zero level.

Theorem 4.13. Let S be a simple smooth D-module with level � �= 0. The invariants
mS , nS , rS of S, U0, U(2), K0, K are defined as before. Then one of the following
cases occurs.

Case 1: nS = 0.
In this case, S ∼= HD ⊗ UD as D-modules for some simple modules H ∈ RH and

U ∈ RVir.

Case 2: nS > 0.
In this case, we further have the following three subcases.
Subcase 2.1: mS > 2nS.
In this subcase, S ∼= IndD

D(0,−nS)(U0).
Subcase 2.2: mS = 2nS.
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In this subcase, we have

S ∼=

⎧⎪⎨⎪⎩
KD, if rS = −∞,

UD ⊗ KD, if − 1 � rS � 1,

IndD
D(0,−nS)K0, otherwise,

where U ∈ RVir.
Subcase 2.3: mS < 2nS.
In this subcase, we have

S ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
IndD

D(0,−(mS−nS))(U0), if mS � 2,

IndD
D(0,−(2−nS))(U(2)), if mS < 2, nS > 1,

IndD
D(0,−1)K0, otherwise.

Proof. The assertion follows directly from proposition 4.2, proposition 4.4,
proposition 4.5, corollary 4.6, proposition 4.9 and proposition 4.12. �

Remark 4.14. By theorems 2.10 and 4.13, we know that any simple smooth module
S is a highest weight Vir-module with trivial action of H, or a tensor product of a
simple smooth Vir-module and a simple smooth H-module, or an induced module
from some simple module M over certain subalgebra of D. Moreover, M can be
viewed as a simple module over some finite-dimensional solvable Lie algebra. This
reduces the study of such D-modules to the study of simple modules over the
corresponding finite-dimensional solvable Lie algebras.

5. Simple smooth D̄-modules with non-zero level

In this section, we will determine all simple smooth D̄-modules M of level � �= 0.
The main method we will use is similar to the one used in § 4.

For a given simple smooth D̄-module M with level � �= 0, we define the following
invariants of M as follows:

M(r) = KerM (H̄(r)), nM = min{r ∈ Z : M(r) �= 0},M0 = M(nM ).

Lemma 5.1. Let M be an irreducible smooth D̄-module with level � �= 0.

(i) nM ∈ N, and hnM−1 acts injectively on M0.

(ii) M0 is a non-zero D̄(0,−(nM−1))-module, and is invariant under the action of
the operators L̄n defined in (2.7) for n ∈ N.

Proof. (i) Assume that nM < 0. Take any non-zero v ∈ M0, we then have

h1v = 0 = h−1v.

This implies that v = 1
� [h1, h−1]v = 0, a contradiction. Hence, nM ∈ N.

The definition of nM means that hnM−1 acts injectively on M0.

(ii) It is obvious that M0 �= 0 by definition. For any w ∈ M0, i, j, k ∈ N, we have
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hk+nM
diw = dihk+nM

w + (k + nM )hi+k+nM
w = 0,

and

hk+nM
hj−nM+1w = hj−nM+1hk+nM

w = 0.

Hence, diw, hj−nM+1w ∈ M0, i.e. M0 is a non-zero D(0,−(nM−1))-module.
For i, n ∈ N, w ∈ M0, noticing nM � 0 by (i), it follows from (2.4) that

hi+nM
L̄nw =

(
L̄nhi+nM

+ (i + nM )hn+i+nM

)
w = 0.

This implies that L̄nw ∈ M0 for n ∈ N, that is, M0 is invariant under the action of
the operators L̄n for n ∈ N. �

Proposition 5.2. Let M be a simple smooth D̄-module with level � �= 0. If nM =
0, 1, then M ∼= HD̄ ⊗ U D̄ as D̄-modules for some simple modules H ∈ RH̄ and
U ∈ RVir.

Proof. Since nM = 0, 1, we take any non-zero v ∈ M0. Then Cv is a H̄(0)-module.
Let H = U(H̄)v, the H̄-submodule of M generated by v. It follows from repre-
sentation theory of Heisenberg algebras that IndH̄̄

H(0)(Cv) is a simple H̄-module.
Consequently, the following surjective H̄-module homomorphism

ϕ : IndH̄̄
H(0)(Cv) −→ H∑

i∈M

aih
i ⊗ v �→

∑
i∈M

aih
iv

is an isomorphism, that is, H is a simple H̄-module, which is certainly smooth.
Then the desired assertion follows directly from [43, Theorem 12]. �

Next we assume that nM � 2.
We define the operators d′n = dn − L̄n on M for n ∈ Z. Since M is a smooth

D̄-module, then d′n is well-defined for any n ∈ Z. By (2.4) and (2.10), we have

[d′m, c̄′1] = 0, [d′m, d′n] = (m − n)d′m+n +
m3 − m

12
δm+n,0c̄′1,m, n ∈ Z, (5.1)

where c̄′1 = c − (1 − 12z2

� )idM and c is the central charge of M . So the operator
algebra

Vir′ =
⊕
n∈Z

Cd′n ⊕ Cc̄′1

is isomorphic to the Virasoro algebra Vir. Since [dn, hk] = [L̄n, hk] = −khn+k +
δn+k,0(n2 + n)c̄2, we have

[d′n, hk] = 0, n, k ∈ Z (5.2)
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and hence [Vir′, H̄ + Cc̄2] = 0. Clearly, the operator algebra D̄′ = Vir′ ⊕
(H̄ + Cc̄2) is a direct sum, and M = U(D̄)v = U(D̄′)v for any v ∈ M \ {0}. Let

Yn =
⋂
p�n

KerM0(d
′
p), rM = min{n ∈ Z : Yn �= 0},K0 = YrM

.

Noting that M is a smooth D̄-module, we know that rM < +∞. If Yn �= 0 for any
n ∈ Z, we define rM = −∞. Denote by K = U(H̄)K0.

Lemma 5.3. Let M be a simple smooth D̄-module with level � �= 0. Then the
following statements hold.

(i) rM � −1 or rM = −∞.

(ii) If rM � −1, then K0 is a D̄(0,−(nM−1))-module and hnM−1 acts injectively on
K0.

(iii) K is a D̄(0,−∞)-module and K(z)D̄ has a D̄-module structure by (2.7)–(2.8).

(iv) K0 and K are invariant under the actions of L̄n and d′n for n ∈ N.

(v) If rM �= −∞, then d′rM−1 acts injectively on K0 and K.

Proof. (i) If Y−2 �= 0, then d′pK0 = 0, p � −2. We deduce that Vir′K0 = 0 and
hence rM = −∞.
If Y−2 = 0, then rM � −1.

(ii) For any 0 �= v ∈ K0 and x ∈ D̄(0,−(nM−1)), it follows from lemma 5.1(ii) that
xv ∈ M0. We need to show that d′pxv = 0, p � rM . Indeed, d′phkv = hkd′pv =
0 by (5.2) for any k � −(nM − 1). Moreover, it follows from (2.10) and (5.1)
that

d′pdnv = dnd′pv + [d′p, dn]v = (n − p)d′p+nv = 0,∀n ∈ N.

Hence, d′pxv = 0, p � rM , that is, xv ∈ K0, as desired.
Since 0 �= K0 ⊆ M0, we see that hnM−1 acts injectively on K0 by lemma
5.1(i).

(iii) follows from (ii).

(iv) Note that if nM = 0, then L̄nK0 = 0 for any n ∈ N. For nM > 0 we compute
that

L̄n =
1
2�

∑
k∈Z

: hn−khk : +
(n + 1)z

�
hn

=
1
2�

∑
−(nM−1)�k�nM−1

: hn−khk : +
(n + 1)z

�
hn, n ∈ N.

We see L̄nK0 ⊂ K0 and L̄nK ⊂ K by (ii), and hence d′nK0 ⊂ K0 and
d′nK ⊂ K.
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(v) follows directly from the definitions of rM and K.
�

We first consider the case rM = −∞.

Proposition 5.4. Let M be a simple smooth D̄-module with central charge c and
level � �= 0. If rM = −∞, then M = K(z)D̄ for some z ∈ C. Hence, c = 1 − 12z2

�
and K is a simple H̄-module.

Proof. Since rM = −∞, we see that Vir′K0 = 0. This together with (5.1) implies
that c = 1 − 12z2

� . Noting that [Vir′, H̄ + Cc̄2] = 0, we further obtain that Vir′K =
0, that is, dnv = L̄nv ∈ K for any v ∈ K and n ∈ Z. Hence, K(z)D̄ is a D̄-submodule
of M , yielding that M = K(z)D̄. In particular, K is a simple H̄-module. �

Proposition 5.5. Let M be a simple smooth D̄-module with level � �= 0. If rM � 2
and nM � 2, then K0 is a simple D̄(0,−(nM−1))-module and M ∼= IndD̄

D̄(0,−(nM−1))K0.

Proof. We first show that IndD̄(0,−∞)

D̄(0,−(nM−1))K0
∼= K as D̄(0,−∞) modules. For that,

let

φ : IndD̄(0,−∞)

D̄(0,−(nM−1))K0 −→ K∑
k∈M

hk ⊗ vk �→
∑
k∈M

hkvk,

where hk = · · ·hk2
−2−(nM−1)h

k1
−1−(nM−1) ∈ U(H̄). Then φ is a D̄(0,−∞)-module epi-

morphism and φ|K0 is one-to-one.
Claim. Any non-zero submodule V of IndD̄(0,−∞)

D̄(0,−(nM−1))K0 does not intersect with
K0 trivially.

Assume V ∩ K0 = 0. Let v =
∑

k∈M
hk ⊗ vk ∈ V \K0 with minimal degree i.

Then 0 ≺ i.
Let p = min{s : is �= 0}. Since hp+nM−1vk = 0, we have hp+nM−1h

kvk =
[hp+nM−1, hk]vk. The following equality

[hi, hj1hj2 · · ·hjt
] =

∑
1�s�t

δi+js,0ic̄3hj1 · · · ĥjs
· · ·hjt

, i, j1 � j2 � · · · � jt ∈ Z

implies that if kp = 0 then hp+nM−1h
kvk = 0; and if kp �= 0, noticing the level � �= 0,

then [hp+n, hk] = λhk−εp for some λ ∈ C
∗ and hence

deg([hp+nM−1, h
k]vk) = k − εp � i − εp,

where the equality holds if and only if k = i. Hence, deg(hp+nM−1v) = i − εp ≺ i
and hp+nM−1v ∈ V , contrary to the choice of v. Thus, the claim holds.

From the claim we know that the kernel of φ must be zero and hence φ is an
isomorphism.

By lemma 5.3(v), we see that d′rM−1 acts injectively on K.
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As D̄-modules,

IndD̄
D̄(0,−(nM−1))K0

∼= IndD̄
D̄(0,−∞)(IndD̄(0,−∞)

D̄(0,−(nM−1))K0) ∼= IndD̄
D̄(0,−∞)K.

And we further have IndD̄
D̄(0,−∞)K ∼= IndVir′

Vir′(0)K as vector spaces. Moreover, we
have the following D̄-module epimorphism

π : IndD̄
D̄(0,−∞)K = IndVir′

Vir′(0)K → M,∑
l∈M

d′l ⊗ vl �→
∑
l∈M

d′lvl,

where d′l = · · · (d′−2)
l2(d′−1)

l1 . We see that π is also a Vir′-module epimorphism.
By the proof of Theorem 2.1 in [46] we know that any non-zero Vir′-submodule
of IndVir′

Vir′(0)K contains non-zero vectors of K. Note that π|K is one-to-one, we
see that the image of any non-zero D̄-submodule (and hence Vir′-submodule) of
IndD̄

D̄(0,−∞)K must be a non-zero D̄-submodule of M and hence be the whole module
M , which forces that the kernel of π must be 0. Therefore, π is an isomorphism.
Since M is simple, we see K0 is a simple D̄(0,−(nM−1))-module. �

Proposition 5.6. Let M be a simple smooth D̄-module with level � �= 0. If rM = 1,
then d′0 has an eigenvector in K.

Proof. Lemma 5.3 (iv) means that K is a D̄′(0,−∞)-module. Assume that any finitely
generated C[d′0]-submodule of K is a free C[d′0]-module. By lemma 4.10 we see that
the following D̄′-module homomorphism

τ : IndD̄′
D̄′(0,−∞)K = IndVir′

Vir′(0)K −→ M,

x ⊗ u �→ xu, x ∈ U(Vir′), u ∈ K

is an isomorphism. So M = IndVir′
Vir′(0)K, and consequently, K is a simple D̄′(0,−∞)-

module. Since rM = 1 and Vir′(1)K = 0, K can be seen as a simple module over the
Lie algebra H⊕ Cc2 ⊕ Cd′0 where Cd′0 lies in the centre of the Lie algebra. Schur’s
lemma tells us that d′0 acts as a scalar on K, a contradiction. So this case will not
occur.

Therefore, there exists some finitely generated C[d′0]-submodule W of K that is
not a free C[d′0]-module. Since C[d′0] is a principal ideal domain, by the structure
theorem of finitely generated modules over a principal ideal domain, there exists
a monic polynomial f(d′0) ∈ C[d′0] with minimal positive degree and non-zero ele-
ment u ∈ W such that f(d′0)u = 0. Write f(d′0) = Π1�i�s(d′0 − λi), λ1, · · · , λs ∈ C.
Denote w :=

∏s−1
i=1 (d′0 − λi)u �= 0, we see (d′0 − λs)w = 0 where we make convention

that w = u if s = 1. Then w is a desired eigenvector of d′0. �

Proposition 5.7. Let M be a simple smooth D̄-module with level � �= 0. If rM = 0,
±1, then K is a simple H-module and M ∼= K(z)D̄ ⊗ U D̄ for some simple module
U ∈ RVir and some z ∈ C.
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Proof. If rM = 1, then by proposition 5.6 we know that there exists 0 �= u ∈ K such
that d′0u = λu for some λ �= 0; if rM = 0, −1, then d′0K = 0. In summary, for all
the three cases, d′0 has an eigenvector in K. Since M is a simple D̄′-module, Schur’s
lemma implies that h0, c̄′1, c̄2, c̄3 act as scalars on M . So M is a weight D̄′-module,
and K is a weight module for D̄′(rM−δr

M
, 1,−∞). Take a weight vector u0 ∈ K with

d′0u0 = λ0u0 for some λ0 ∈ C.
Set K ′ = U(H̄)u0, which is an H̄ submodule of K. Now we define the D̄′-module

K ′D̄′
with trivial action of Vir′. Let Cv0 be the one-dimensional D̄′(rM−δr

M
, 1,−∞)-

module defined by

c̄′1v0 = (c − 1 +
12z2

�
)v0,

d′0v0 = λ0v0, d′nv0 = hkv0 = c̄2v0 = c̄3v0 = 0, 0 �= n � rM , k ∈ Z.

Then Cv0 ⊗ K ′D̄′
is a D̄′(rM−δr

M
, 1,−∞)-module with central charge c − 1 + 12z2

�

and level �. There is a D̄′(rM−δr
M

, 1,−∞)-module homomorphism

τK′ : Cv0 ⊗ K ′D̄′ −→ M,

v0 ⊗ u �→ u,∀u ∈ K ′,

which is injective and can be extended to be the following D̄′-module epimorphism

τ : IndD̄′

D̄
′(rM −δr

M
,1,−∞)(Cv0 ⊗ K ′D̄′

) −→ M,

x(v0 ⊗ u) �→ xu, x ∈ U(D̄′), u ∈ K ′.

By Lemma 8 in [43] we know that

IndD̄′

D̄
′(rM −δr

M
,1,−∞)(Cv0 ⊗ K ′D̄′

) ∼= (IndD̄′

D̄
′(rM −δr

M
,1,−∞)Cv0) ⊗ K ′D̄′

= (IndVir′

Vir
′(rM−δr

M
,1)Cv0)D̄′ ⊗ K ′D̄′

.

Then we have the following D̄′-module epimorphism

τ ′ : (IndVir′

Vir
′(rM −δr

M
,1)Cv0)D̄′ ⊗ K ′D̄′ −→ M,

xv0 ⊗ u �→ xu, x ∈ U(Vir′), u ∈ K ′.

Note that (IndVir′

Vir
′(rM −δr

M
, 1)Cv0)D̄′ ⊗ K ′D̄′ ∼= IndVir′

Vir
′(rM−δr

M
, 1)(Cv0 ⊗ K ′D̄′

) as
Vir′-modules, and τ ′ is also a Vir′-module epimorphism, τ ′|

Cv0⊗K′D̄′ is one-to-
one, and (IndVir′

Vir
′(rM −δr

M
, 1)Cv0)D̄′ ⊗ K ′D̄′

is a highest weight Vir′-module. Let V =

IndVir′

Vir
′(rM −δr

M
, 1)Cv0 and K = Ker(τ ′). It should be noted that

Cv0 ⊗ K ′D̄′
= {u ∈ V D̄′ ⊗ K ′D̄′ | d′0u = λ0u}.

We see that (Cv0 ⊗ K ′D̄′
) ∩ K = 0. Let K′ be the sum of all Vir′-submodules W

of V D̄′ ⊗ K ′D̄′
with (Cv0 ⊗ K ′D̄′

) ∩ W = 0, that is, the unique maximal (weight)
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Vir′-submodule of V D̄′ ⊗ K ′D̄′
with trivial intersection with (Cv0 ⊗ K ′D̄′

). It is
obvious that K ⊆ K′. Next we further show that K = K′. For that, take any Vir′-
submodule W of V D̄′ ⊗ K ′D̄′

such that (Cv0 ⊗ K ′D̄′
) ∩ W = 0. Then for any weight

vector w =
∑

l∈M
d′lv0 ⊗ ul ∈ W , where ul ∈ K ′D̄′

, d′l = · · · (d′−2)
l2(d′−1)

l1 if rM =
1, 0, or d′l = · · · (d′−2)

l2 if rM = −1, and all w(l) � 1 are equal. Note that hkw =∑
l∈M

d′lv0 ⊗ hkul either equals to 0 or has the same weight as w under the action
of d′0. So U(D̄′)W ∩ (Cv0 ⊗ K ′D̄′

) = 0, i.e. U(D̄′)W ⊂ K′. Hence, U(D̄′)K′ ∩ (Cv0 ⊗
K ′D̄′

) = 0. The maximality of K′ forces that K′ = U(D̄′)K′ is a proper D̄′-submodule
of V D̄′ ⊗ K ′D̄′

. Since K is a maximal proper D̄′-submodule of V D̄′ ⊗ K ′D̄′
, it follows

that K = K′.
By lemma 4.8 we know that K is generated by P1(Cv0 ⊗ KD̄′

) = CP1v0 ⊗ K ′D̄′

and P2(Cv0 ⊗ K ′D̄′
) = CP2v0 ⊗ K ′D̄′

. Let V ′ be the maximal submodule of V
generated by P1v0 and P2v0, then K = V ′D̄′ ⊗ K ′D̄′

. Therefore,

M ∼= (V D̄′ ⊗ K ′D̄′
)/(V ′D̄′ ⊗ K ′D̄′

) ∼= (V/V ′)D̄′ ⊗ K ′D̄′
, (5.3)

which forces that K ′D̄′
is a simple D̄′-module and hence a simple H̄-module. So

K ′ is a simple H̄-module. By [43, Theorem 12] we know there exists a simple
Vir-module U ∈ RVir such that M ∼= K ′D̄ ⊗ U D̄. From this isomorphism and some
computations we see that K0 ⊆ K ′D̄ ⊗ v0 where v0 is a highest weight vector. So
K = K ′. �

We are now in a position to present the following main result on characterization
of simple smooth D̄-modules with non-zero level.

Theorem 5.8. Let M be a simple smooth D̄-module with level � �= 0. The invariants
nM , rM of M , K0, K are defined as before. Then

M ∼=

⎧⎪⎪⎨⎪⎪⎩
K(z)D̄, if rM = −∞,

K(z)D̄ ⊗ U D̄, if − 1 � rM � 1 or nM = 0, 1,

IndD̄
D̄(0,−(nM−1))K0, otherwise,

for some U ∈ RVir and some z ∈ C.

Proof. The assertion follows directly from proposition 5.2, proposition 5.4,
proposition 5.5 and proposition 5.7. �

The following result characterizes simple Whittaker modules over the twisted
Heisenberg–Virasoro algebra D̄.

Theorem 5.9. Let M be a D̄-module (not necessarily weight) on which the algebra
D̄+ acts locally finitely. Then the following statements hold.

(i) The module M contains a non-zero vector v such that D̄+ v ⊆ Cv.

(ii) If M is simple, then M is a Whittaker module or a highest weight module.
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Proof. (i) Let (M1, ρ) be a finite dimensional D̄+-submodule of M . Then M1 is
also a finite dimensional Vir�1-module. Let a := ker(ρ|Vir�1) be the kernel
of the representation map of Vir�1 on M1. Then a is an ideal of Vir�1 of
finite codimension. We claim that dn ∈ a for some n ∈ Z+. If this is not true,
then there exists a minimal m ∈ Z+ such that a contains an element of the
form ai1di1 + ai2di2 + · · · + aim+1dim+1 for positive integers i1 < i2 < · · · <
im+1 and non-zero complex numbers ai1 , ai2 , · · · , aim+1 . We further see that
a contains

[di1 , ai1di1 + ai2di2 + · · · + aim+1dim+1 ]

= ai2(i2 − i1)di1+i2 + ai3(i3 − i1)di1+i3 + · · · + aim+1(im+1 − i1)di1+im+1 ,

which contradicts with the minimality of m. Hence, the claim follows.
Consequently,

Ṽir�n :=
∑

i�n, i �=2n

Cdi = Cdn + [dn,Vir�1] ⊆ a.

Then

Ṽir�n + H̄�n+1 = Ṽir�n + [H̄�1, Ṽir�n] ⊆ ker(ρ).

This implies that M1 is a finite dimensional module over a finite dimensional
solvable Lie algebra D̄+/(Ṽir�n + H̄�n+1). The desired assertion follows
directly from Lie theorem.

(ii) follows directly from (i) and [46].
�

Remark 5.10. From theorem 5.9 we know that if M is a simple Whittaker module
over D̄ with non-zero level, and D̄+v ⊂ Cv for some non-zero vector v ∈ M , then
K = U(H̄)v = U(⊕r∈−Z+Chr)v is a simple Whittaker module over H̄. Therefore,
[43, Theorem 12] implies that M ∼= U D̄ ⊗ K(z)D̄ for some U ∈ RVir. Clearly, U is
a simple Whittaker module or a simple highest weight module over Vir.

6. Application: characterization of simple highest weight modules and
Whittaker modules over the mirror Heisenberg–Virasoro algebra

Based on the results on the structure of simple smooth modules over the mirror
Heisenberg–Virasoro algebra D given in theorems 2.10 and 4.13, we give charac-
terization of simple highest weight D-modules and simple Whittaker D-modules in
this section.

We first have the following result characterizing simple highest weight modules
over the mirror Heisenberg–Virasoro algebra.

Theorem 6.1. Let D be the mirror Heisenberg–Virasoro algebra with the triangular
decomposition D = D+ ⊕ D0 ⊕ D−. Let S be a D-module (not necessarily weight)
on which every element in the algebra D+ acts locally nilpotently. Then the following
statements hold.
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(i) The module S contains a non-zero vector v such that D+ v = 0.

(ii) If S is simple, then S is a highest weight module.

Proof. (i) It follows from [45, Theorem 1] that there exists a non-zero vector
v ∈ S such that div = 0 for any i ∈ Z+. If h 1

2
v = 0, then D+ v = 0 as d1, d2

and h 1
2

generate D+. Assume that w := h 1
2
v �= 0. Then

d1w = d1h 1
2
v = h 1

2
d1v + [d1, h 1

2
]v = −1

2
h 3

2
v.

Similar arguments yield that the element dj
1w = λhj+ 1

2
v for some λ ∈ C

∗ and
j ∈ Z+. As d1 acts locally nilpotently on S, it follows that there exists some
n ∈ Z+ such that hj+ 1

2
v = 0 for j � n.

We now show that for every m ∈ N there exists some non-zero element u ∈ S
such that diu = hk+ 1

2
u = 0 for i ∈ Z+ and k � m by a backward induction on

m. The above arguments imply that the assertion is true for m � n. Assume
that 0 �= u ∈ S satisfies that diu = hk+ 1

2
u = 0 for i ∈ Z+ and k � m > 0. If

hm− 1
2
u = 0, then the induction step is proved. Otherwise, hm− 1

2
u �= 0, and

there exists some l ∈ N such that u′ := hl
m− 1

2
u �= 0 and hm− 1

2
u′ = hl+1

m− 1
2
u =

0. Moreover, diu
′ = hk+ 1

2
u′ = 0 for i ∈ Z+ and k � m − 1. The induction step

follows.

(ii) By (i), we know that S is a simple smooth D-module with nS = 0 and mS � 1.
From theorem 2.10 and case 1 of theorem 4.13 we know that S ∼= HD ⊗ UD

as D-modules for some simple modules H ∈ RH and U ∈ RVir. Moreover,
H = IndH

H(0)(Cv) is a simple highest weight module over D. Note that every
element in the algebra Vir(1) acts locally nilpotently on Cv ⊗ U by the
assumption. This implies that the same property also holds on U . From
[45, Theorem 1] we know that U is a simple highest weight Vir-module.
This completes the proof.

�

As a direct consequence of theorem 6.1, we have

Corollary 6.2. Let S be a simple smooth D-module with mS � 1 and nS = 0.
Then S is a highest weight module.

Proof. The assumption that mS � 1 and nS = 0 implies that there exists a non-zero
vector v ∈ M such that D+v = 0. Then M = U(D− + D0)v. It follows that each
element in D+ acts locally nilpotently on M . Consequently, the desired assertion
follows directly from theorem 6.1. �

The following result characterizes simple Whittaker modules over the mirror
Heisenberg–Virasoro algebra.

Theorem 6.3. Let M be a D-module (not necessarily weight) on which the algebra
D+ acts locally finitely. Then the following statements hold.
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(i) The module M contains a non-zero vector v such that D+ v ⊆ Cv.

(ii) If M is simple, then M is a Whittaker module or a highest weight module.

Proof. (i) Let (M1, ρ) be a finite dimensional D+-submodule of M . Then M1 is
also a finite dimensional Vir�1-module. Let a := ker(ρ|Vir�1) be the kernel
of the representation map of Vir�1 on M1. Then a is an ideal of Vir�1 of
finite codimension. We claim that dn ∈ a for some n ∈ Z+. If this is not true,
then there exists a minimal m ∈ Z+ such that a contains an element of the
form ai1di1 + ai2di2 + · · · + aim+1dim+1 for positive integers i1 < i2 < · · · <
im+1 and non-zero complex numbers ai1 , ai2 , · · · , aim+1 . We further see that
a contains

[di1 , ai1di1 + ai2di2 + · · · + aim+1dim+1 ]

= ai2(i1 − i2)di1+i2 + ai3(i1 − i3)di1+i3 + · · · + aim+1(i1 − im+1)di1+im+1 ,

which contradicts with the minimality of m. Hence, the claim follows.
Consequently,

Ṽir�n :=
∑

i�n, i �=2n

Cdi = Cdn + [dn,Vir�1] ⊆ a.

Then

Ṽir�n + H�n = Ṽir�n + [Ch 1
2

+ Ch 3
2
, Ṽir�n] ⊆ ker(ρ).

This implies that M1 is a finite dimensional module over a finite dimen-
sional solvable Lie algebra D+/(Ṽir�n + H�n). The desired assertion follows
directly from Lie theorem.

(ii) follows directly from (i).
�

7. Examples

In this section, we will give a few examples of simple smooth D̄- and D-modules,
which are also weak (simple) untwisted and twisted Vc-modules.

Example 7.1. For any n ∈ Z+, let W0 = C[x1, · · · , xn] be the polynomial algebra
in indeterminates x1, · · · , xn. Define the H(−n)-module structure on W0 by

hi− 1
2
· f(x1, · · · , xi, · · · , xn) = λif(x1, · · · , xi − 1, · · · , xn),

h−i+ 1
2
· f(x1, · · · , xi, · · · , xn) = −�(i − 1

2 )
λi

(xi + ai)f(x1, · · · , xi + 1, · · · , xn),

hn+j+ 1
2
· f(x1, · · · , xi, · · · , xn) = 0,

c2 · f(x1, · · · , xn) = �f(x1, · · · , xn)
(7.1)
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where �, λi ∈ C
∗, ai ∈ C, j ∈ N, 1 � i � n. It is not hard to check that W0 is a

simple H(−n)-module. Then the induced H-module K = IndH
H(−n)W0 is a simple

smooth H-module. So KD is a simple smooth D-module with central charge 1 and
level �. We may denote KD = KD(�, Λn, an) for any � ∈ C

∗, Λn = (λ1, · · · , λn) ∈
(C∗)n, an = (a1, · · · , an) ∈ C

n.
Let U be a simple smooth Vir-module (theorem 2.8 classified all simple smooth

Vir-modules). From corollary 2.13, then S = UD ⊗ KD(�, Λn, an) is a simple
smooth D-module.

If we replace (7.1) by

hi · f(x1, · · · , xi, · · · , xn) = λif(x1, · · · , xi − 1, · · · , xn),

h−i · f(x1, · · · , xi, · · · , xn) = − �i

λi
(xi + ai)f(x1, · · · , xi + 1, · · · , xn),

hn+j+1 · f(x1, · · · , xi, · · · , xn) = 0,

c̄3 · f(x1, · · · , xn) = �f(x1, · · · , xn)

for �, λi ∈ C
∗, ai ∈ C, j ∈ N, 1 � i � n, then W0 is a simple H̄(−n)-module, and the

induced H̄-module K̄ = IndH̄̄
H(−n)W0 is a simple smooth H̄-module. Hence, for any

z ∈ C, we have the simple D̄-module K̄(z)D̄ = K̄(z)D̄(�, Λn, an) for any � ∈ C
∗,

Λn = (λ1, · · · , λn) ∈ (C∗)n, an = (a1, · · · , an) ∈ C
n. For any simple Vir-module

U ∈ RVir, the tensor product M = U D̄ ⊗ K̄(z)D̄(�, Λn, an) is a simple smooth D̄-
module.

For characterizing simple induced smooth D- and D̄-module which are not tensor
product modules, we need the following

Lemma 7.2. Let S = UD ⊗ V D be a simple smooth D-module with nS > 0 and
non-zero level, where U ∈ RVir and V ∈ RH. Let V0 = KerV (H(nS)) and W0 =
KerS(H(nS)). Then V0 is a simple D(0,−nS)-module, and W0 = U ⊗ V0. Hence W0

contains a simple H(−nS) submodule.

Proof. This is clear. �

We also have the D̄-module version of lemma 7.2:

Lemma 7.3. Let M = H(z)D̄ ⊗ U D̄ be a simple smooth D̄-module with nM > 1 and
non-zero level, where z ∈ C, H ∈ RH̄ and U ∈ RVir. Let H0 = KerH(H̄(nM )) and
M0 = KerM (H̄(nM )). Then H0 is a simple D̄(0,−nM+1)-module, and M0 = H0 ⊗ U .
Hence, M0 contains a simple H̄(−nM+1) submodule.

Lemma 7.2 (resp. lemma 7.3) means that if S ∈ RD (resp. M ∈ RD̄) is not a
tensor product module, then W0 (resp. M0) contains no simple H(−nS)-submodule
(resp. H̄(−nM+1)-submodules).

Here we will first consider the case nS = 1 (resp. nM = 2). Let b = Ch + Ce be
the 2-dimensional solvable Lie algebra with basis h, e and subject to Lie bracket
[h, e] = e. The following concrete example using [40, Example 13] tells us how
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to construct induced smooth D-module (resp. D̄-module) from a C[e]-torsion-free
simple b-module.

Example 7.4 Simple induced smooth module, nS = 1/nM = 2. Let c1, c2 ∈ C with
c2 �= 0. Let W ′ = (t − 1)−1

C[t, t−1]. From [40, Example 13] we know that W ′ is a
simple b-module whose structure is given by

h · f(t) = t
d

dt
(f(t)) +

f(t)
t2(t − 1)

, e · f(t) = tf(t),∀f(t) ∈ W ′.

We can make W ′ into a D(0,0)-module by

c1 · f(t) = c1f(t), c2 · f(t) = c2f(t),

d0 · f(t) = −1
2
h · f(t), h 1

2
· f(t) = e · f(t), di · f(t) = h 1

2+i · f(t) = 0, i ∈ Z+.

Then W ′ is a simple D(0,0)-module. Clearly, the action of h 1
2

on W ′ implies that

W ′ contains no simple H(0)-module. Then W0 = IndD(0,−1)

D(0,0) W ′ is a simple D(0,−1)-
module and contains no simple H(−1)-module. So W0 is not a tensor product
D(0,−1)-module. Let S = IndD

D(0,−1)W0. It is easy to see nS = 1, mS = 2 = rS and
W0 = U0 = K0. The proof of proposition 4.5 implies that S is a simple smooth
D-module. And lemma 7.2 means that S is not a tensor product D-module.

For c, z, z′ ∈ C, � ∈ C
∗, we also can make W ′ into a D̄(0,0)-module by

d0 · f(t) = h · f(t), h1 · f(t) = e · f(t),

h0 · f(t) = z′f(t), h1+i · f(t) = di · f(t) = 0, i ∈ Z+,

c̄1 · f(t) = cf(t), c̄2 · f(t) = zf(t), c̄3 · f(t) = �f(t),

where f(t) ∈ W ′. Then W ′ is a simple D̄(0,0)-module. Clearly, the action of h1

on W ′ implies that W ′ contains no simple H̄(0)-module. Then M0 = IndD̄(0,−1)

D̄(0,0) W ′

is a simple D̄(0,−1)-module and contains no simple H̄(−1)-module. Let M =
IndD̄

D̄(0,−1)M0. It is easy to see nM = 2, rM = 3. The proof of proposition 5.5 implies
that M is a simple smooth D̄-module. And lemma 7.3 means that M is not a tensor
product D̄-module.

Example 7.5 Simple induced modules of semi-Whittaker type, nS � 2, nM � 3.
Take p, q ∈ Z+, a = (a1, . . . , aq) ∈ (C∗)q, b = (b1, . . . , bp) ∈ (C∗)p, c, � ∈ C with
� �= 0. Define the 1-dimensional D(p,q)-module Ca, b = Cv0 with

c1 · v0 = cv0, c2 · v0 = �v0,

dpv0 = a1v0, · · · , dp+q−1v0 = aqv0, div0 = 0 for i > p + q − 1,

h
q+

1
2
v0 = b1v0, · · ·h

p+q−1
2
v0 = bpv0, h

i− 1
2
v0 = 0 for i > p + q.

(7.2)

It is not hard to show that U(a, b) := IndD(0,−1)

D(p,q) Ca, b is a simple D(0,−1)-module.
Then in theorem 3.1 (2) we have V = U(a, b), n = 1, k = p + q = l, and so S =
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Û(a, b) := IndD
D(0,−1)U(a, b) is a simple smooth D-module. In lemma 7.2, nS =

p + q, and W0 = IndH(−(p+q))

H(q) (IndD(0,q)

D(p,q)Ca, b) does not contain any simple H(−(p+q))-
module ( for h±1/2 acts freely on W0). Hence, by lemma 7.2, Û(a, b) is not a tensor
product D-module.

If we, in the above example, replace (7.2) by

c̄1 · v0 = cv0, c̄2 · v0 = zv0, c̄3v0 = �v0,

dpv0 = a1v0, · · · , dp+q−1v0 = aqv0, div0 = 0 for i > p + q − 1,

hq+1v0 = b1v0, · · ·hp+qv0 = bpv0, hiv0 = 0 for i > p + q,

where z ∈ C and leave other parts invariant, then for any z′ ∈ C, the induced
D̄(0,−(p+q))-module

V̄ = IndD̄(0,−(p+q))

D̄(p,q+1) Ca,b/
(
U(D̄(0,−(p+q)))(h0 − z′)(1 ⊗ v0)

)
is a simple D̄(0,−(p+q))-module. Let M = IndD̄

D̄(0,−(p+q)) V̄ . The proof of theorem
5.5 implies that M is a simple smooth D̄-module where nM = p + q + 1, rM =
2(p + q) + 1 and K0 = V̄ = M0. Since V̄ contains no simple H̄(−nM+1)-module, we
see, by lemma 7.3, that M is not a tensor product D̄-module.

Remark 7.6. From theorem 4.13 (resp. theorem 5.2) we know that if nS = 0 (resp.
nM = 0, 1), then simple smooth D-modules(resp. D̄-modules) must be tensor prod-
uct modules. And Examples 7.4–7.5 mean that for any nS > 0 (resp. nM > 1), there
do exist simple smooth D-modules (resp. D̄-modules) which are not tensor product
modules. Clearly, the D̄-modules here are simple smooth D̃-modules for z = 0.

Remark 7.7. A connection between smooth modules over the Heisenberg–Virasoro
algebra and vertex algebra modules in untwisted cases was considered by Guo and
Wang in [27]. It is a routine to extend this correspondence for smooth modules for
the mirror Heisenberg–Virasoro algebra, so that smooth modules of non-zero level
for the mirror Heisenberg–Virasoro algebra can be treated as weak twisted modules
for the Heisenberg–Virasoro vertex algebras, and smooth modules of non-zero level
for the twisted Heisenberg–Virasoro algebra can be treated as weak modules for
the Heisenberg–Virasoro vertex algebras.
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