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On elements of prescribed norm in
maximal orders of a quaternion algebra
Eyal Z. Goren and Jonathan R. Love
Abstract. Let O be a maximal order in the quaternion algebra over Q ramified at p and∞. We prove
two theorems that allow us to recover the structure of O from limited information. The first says that
for any infinite set S of integers coprime to p, O is spanned as a Z-module by elements with norm
in S. The second says that O is determined up to isomorphism by its theta function.

1 Introduction

Let p be a prime. Up to isomorphism, there is a unique quaternion algebra Bp over Q
ramified at exactly p and ∞. The quaternion algebra Bp comes equipped with a
canonical involution x ↦ x, a norm x ↦ N(x) ∶= xx, and a trace x ↦ Tr(x) ∶= x + x.
For background on quaternion algebras and their orders, the reader may consult
[4, 21].

There will typically be many non-isomorphic maximal orders in Bp : the number of
isomorphism classes of maximal orders in Bp (the type number of a maximal order)
is between p−1

24 and p+13
12 inclusive [21, Exercise 30.6, Proposition 30.9.2]. This article

presents two theorems, each of which allows one to recover information about a
maximal order O in Bp , given only information about elements in O with prescribed
norms.
Theorem 1.1 Let O be a maximal order in Bp, and let S be an infinite set of positive
integers coprime to p. There is a generating set forO as aZ-module consisting of elements
with norm in S.
Remark 1.2 See Remark 2.11 for a discussion of the coprime to p condition. The
theorem still holds if we take O to be an Eichler order in Bp with index coprime to 6,
but is false for every other Eichler order in Bp (see Section 2.3.4).

To prove Theorem 1.1, we first establish a local–global principle for lattices having
the property of being generated as a Z-module by elements of norm in a given set S
(Theorem 2.2). In Section 2.3, we check that under the conditions of Theorem 1.1, all
the local conditions of Theorem 2.2 are satisfied.

As a special case, we can take S = {�k ∶ k ≥ 0} for any prime � ≠ p, and conclude
that maximal orders are generated by elements of norm equal to a power of �. This
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2 E. Z. Goren and J. R. Love

has implications for the study of isogeny graphs of supersingular elliptic curves. If E
is a supersingular elliptic curve over Fp , then End(E) is a maximal order in Bp , and
endomorphisms of E with norm a power of � can be generated by finding cycles from E
in the �-isogeny graph of supersingular curves over Fp (see, for instance, [1, 9, 14]).
Theorem 1.1 implies that such endomorphisms generate the entire endomorphism
ring as an abelian group. This is used as a heuristic assumption in [9, Section 3.3].
This question is considered by [1], who determine when two cycles generate a full
rank sublattice of End(E) (as an order), as well as a necessary condition for these
cycles to generate End(E), but show by example that these necessary conditions are
not sufficient.

The second result is that the isomorphism type of O is determined by the number
of elements of each norm. Given a lattice Λ with integral quadratic form Q, we define
the theta function of Λ,

θΛ(q) ∶= ∑
x∈Λ

qQ(x) ,

so that the coefficient of qn is the number of elements of norm n. This function encodes
the spectrum of the Laplace operator of the Riemannian manifold Λ ⊗R/Λ (see [16]
for more on this analytic interpretation). When O is a maximal order in Bp , θO(q) is
a modular form of weight 2 and level Γ0(p).

We say two lattices are isospectral if their theta functions are equal. Lattices of rank
n ≤ 3 are uniquely determined up to isometry by their theta function [18], but in rank 4
and above, there exist pairs of non-isometric isospectral lattices. Even if we restrict to
the set of lattices in the genus of a fixed maximal order of Bp , there may exist pairs of
non-isometric integral lattices in Bp whose left and right orders are maximal and yet
have the same theta function (see Section 3.1 for examples). However, we prove that
this does not occur if we restrict to maximal orders in Bp .

Theorem 1.3 If O,O′ are maximal orders in Bp with θO = θO′ , then O ≃ O′.

As an immediate consequence, a supersingular elliptic curve over Fp can be
identified uniquely up to Frobenius twist by the number of endomorphisms of each
degree.

The proof of Theorem 1.3 is divided into two steps: the first may be of independent
interest so we state it here as a separate theorem. Given an order O in Bp , we define its
Gross lattice

OT ∶= {2x − Tr(x) ∶ x ∈ O}.

This is a strict subset of the set of trace 0 elements in O; see Section 3.3 for further
details and discussion of the Gross lattice. For i = 1, 2, 3, the ith successive minimum
of OT is the minimum value D i such that the span of all elements α ∈ OT with N(α) ≤
D i has dimension at least i (Definition 3.3).

In [6], Chevyrev and Galbraith determine conditions under which the successive
minima of the Gross lattice of O determine the isomorphism class of O. The following
result is a strengthening of [6, Theorem 1], and uses many of the same methods.
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Elements of prescribed norm in maximal orders 3

Theorem 1.4 Let p be an odd prime. Suppose O1, O2 are orders of Bp, each of index r
in some (not necessarily the same) maximal order. Suppose OT

1 and OT
2 have the same

successive minima D1 ≤ D2 ≤ D3, and that D1 ≥ 8r2. Then O1 ≃ O2.

In particular, for all primes p, a maximal order in Bp is determined up to isomor-
phism by the successive minima of its Gross lattice: this is vacuously true if p = 2
or D1 < 8 because this information determines a unique maximal order in Bp (see
Lemma 3.10), and it holds for D1 ≥ 8 by Theorem 1.4.

After setting up some preliminary results on the geometry of quaternion orders in
Section 3, we prove Theorem 1.4 in Section 4.1. The remainder of Section 4 is used to
show that the theta function of O determines the successive minima of OT , allowing
us to conclude Theorem 1.3.

In future work, we will explore similar questions for quaternion algebras over
totally real fields.

1.1 Lattice definitions and conventions

Let R = Z or R = Z� for some prime �, and K the fraction field of R. A lattice Λ is
a free finite-rank R-module (so that Λ ≃ Rn for some positive integer n) equipped
with a nondegenerate quadratic form Q∶Λ → K. A quadratic form Q is integral if it
takes values in R. For x ∈ Λ, we will refer to the value Q(x) as the norm of x. Any
quadratic form defines a bilinear form x ⋅ y ∶= 1

2 (Q(x + y) − Q(x) − Q(y)); if Q is
integral than the bilinear form is valued in 1

2 R. Given a basis v1 , . . . , vn for Λ, the
Gram matrix for Λ (we will also say “the Gram matrix of Q”) is the symmetric matrix
AΛ ∈ 1

2 Mn(R) defined by

AΛ ∶= (v i ⋅ v j)1≤i , j≤n .

If we write x ∈ Λ as a vector in terms of the basis v1 , . . . , vn , then the Gram matrix
satisfies the relation

Q(x) = xT AΛx.

If there is no room for confusion, the subscript of AΛ may be dropped. The deter-
minant of Λ, det Λ, is defined to be the determinant of a Gram matrix for Λ. When
R = Z and Q is positive definite, we have det Λ > 0 and the value does not depend on
the choice of basis.

Given a1 , . . . , ak ∈ Λ, we use the notation ⟨a1 , . . . , ak⟩ to denote the sublattice of Λ
generated by a1 , . . . , ak as an R-module. We say that a subset C ⊆ Λ is a generating set
for Λ if C generates Λ as an R-module.

2 Generating sets for maximal orders

2.1 A local–global principle for being generated by elements of prescribed norms

Let Q∶Zn → Z be a quadratic form with Gram matrix A ∈ 1
2 Mn(Z). For a prime �, set

τ� = {
1, � > 2,
3, � = 2.
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Aside from the last line, the following definition appears in Browning and
Dietmann [3].

Definition 2.1 For s ∈ Z>0 and A ∈ Mn(Z), the pair (s, Q) satisfies the strong local
solubility condition (“strong LSC”) if for every prime �, there exists x ∈ (Z/�τ�Z)n with
Q(x) ≡ s (mod �τ�) and � ∤ Ax.

If A ∈ 1
2 Mn(Z)/Mn(Z), then we say (s, Q) satisfies strong LSC if (2s, 2Q) does.

Note that the strong LSC condition does not depend on the basis for Zn used to
define the Gram matrix A.

If for every prime �, there exists x ∈ Zn
� with Q(x) = s, we say (s, Q) satisfies the

weak local solubility condition (“weak LSC”). Strong LSC implies weak LSC by Hensel-
lifting, but the converse does not hold (Example 2.7).

The following theorem is a local–global principle for lattices with the property of
being generated by elements with norm in S.

Theorem 2.2 Let n ≥ 4, Q a nondegenerate integral quadratic form on Zn , and S ⊆
Z>0. Suppose that for all M ≥ 0 and all primes �, there exists a generating set C� for Zn

�

such that for all x ∈ C�, the norm s ∶= Q(x) satisfies:
(a) s ∈ S,
(b) s ≥ M,
(c) (s, Q) satisfies strong LSC.
Then Zn has a generating set consisting of elements with norm in S.

We prove this in Section 2.2. Before that we draw a corollary, and then discuss the
necessity of the conditions in the theorem.

A quadratic form Q∶Zn → Z is primitive if gcd({Q(x) ∶ x ∈ Zn}) = 1.

Corollary 2.3 Let n ≥ 4, Q a nondegenerate primitive integral quadratic form on Zn ,
and S ⊆ Z>0 an infinite set. Suppose that for all s ∈ S and that for all primes �, there exists
a basis for Zn

� consisting of elements of norm s. Then Zn has a generating set consisting
of elements with norm in S.

Proof Since s can be arbitrarily large, we just need to check that (s, Q) satisfies strong
LSC. We have a basis consisting of elements x ∈ Zn

� with Q(x) = s, so it suffices to show
that one such basis vector has � ∤ Ax (or � ∤ (2A)x when A ∉ Mn(Z)).

Let � be an odd prime, and for the sake of contradiction, suppose � ∣ Ax for all x in
a basis for Zn

� . Then � ∣ Ax for all x ∈ Zn
� , so

� ∣ xtAx = Q(x),
contradicting the assumption that Q is primitive. Thus (s, Q)must satisfy strong LSC
at �.

Now suppose � = 2. If A ∈ Mn(Z), the same argument as above applies. Now
suppose A ∈ 1

2 Mn(Z)/Mn(Z), and for the sake of contradiction suppose 2 ∣ (2A)x
for all x in a basis for Zn

2 . Letting B ∈ GLn(Z2) denote the matrix with columns
corresponding to this basis, we have (2A)B ∈ 2Mn(Z2). This implies AB ∈ Mn(Z2),
so multiplying on the right by B−1 ∈ GLn(Z2), we have A ∈ Mn(Z2). This contradicts
our initial assumption on A, so (2s, 2Q) – and therefore also (s, Q) – satisfies strong
LSC at 2. ∎
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We now discuss the technical conditions in the statement of Theorem 2.2, and
demonstrate through example that they cannot be removed or substantially weakened.

Remark 2.4 The conditions n ≥ 4, (b), and (c) of Theorem 2.2 will be familiar
to experts in the study of representability of integers by quadratic forms. When
Q∶Zn → Z is a quadratic form with n ≥ 4, Browning and Dietmann find an explicit
lower bound M such that whenever k ≥ M and (k, Q) satisfies strong LSC, k is
representable by Q [3, Theorem 5]. In [3, Section 1.2], they discuss examples due to
Watson [22, Section 7.7] demonstrating that a local–global principle can fail if k < M
or if (k, Q) does not satisfy strong LSC.

In each of the counterexamples below, on the other hand, every value in S is globally
represented by Q. Even in this setting, we show that if we drop any of the conditions
n ≥ 4, (b), or (c), the existence of generating sets for Zn

� with norms in S for all
primes � is not sufficient to conclude the existence of a generating set for Zn with
norms in S.

Example 2.5 If we remove the condition n ≥ 4 from Theorem 2.2, a counterexample
is given by the quadratic form

Q(x , y) = x2 + 21y2

on Z2 and S = {192k ∶ k ≥ 0}. The elements in Z2 with norm in S generate an index 4
sublattice of Z2: using the observation that 52 + 21 ⋅ 42 = 192, we can factor each side of
the equation x2 + 21y2 = 192k into prime ideals ofZ[

√
−21] to show that we must have

4 ∣ y. But for any k ≥ 0 and any prime �, there is a basis for Z2
� consisting of elements

of norm 192k : we have:

Q(19k , 0) ≡ Q(19k , 1) ≡ 192k (mod �) for � = 3, 7,
Q(1, 0) ≡ Q(2, 1) ≡ 192k (mod 8), and
Q(6, 1) ≡ Q(6,−1) ≡ 192k (mod 19),

and for remaining �, we can use the fact that x2 + 21y2 − 19k t2 = 0 defines a smooth
projective conic over F� to find two independent points (x , y) ∈ F2

� with Q(x , y) ≡
19k (mod �). In each case these Hensel-lift to a basis for Z2

� of elements with
norm 19k .

We do not currently know whether or not it is sufficient to assume n ≥ 3 in
Theorem 2.2.

Example 2.6 Condition (b) of Theorem 2.2 (that the local generators have norm at
least M) can be thought of as a constraint coming from the infinite place of Q. If we
remove it, a counterexample is given by the quadratic form

Q(x , y, z, w) = x2 + 9y2 + 9z2 + 9w2

on Z4 with S = {37}. The only x ∈ Z satisfying x2 ≡ 37 (mod 9) and x2 ≤ 37 is x = ±1,
so the set of vectors of norm 37 generate an index 16 sublattice of Z4 with basis

(1, 2, 0, 0), (−1, 2, 0, 0), (1, 0, 2, 0), (1, 0, 0, 2).
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However, for all primes �, there is a basis for Z4
� consisting of elements of norm 37:

for odd � we can use the above basis because 16 is a unit in Z×� , and for � = 2 we can let
u be a square root of 11

3 in Z×2 and use

(1, 2, 0, 0), (2, u, 0, 0), (2, 0, u, 0), (2, 0, 0, u).
Example 2.7 If we weaken condition (c) to merely requiring that (s, Q) satisfies weak
LSC, a counterexample is given by the quadratic form

Q(x , y, z, w) = 3x2 + 5y2 + 11 ⋅ 152z2 + 11 ⋅ 153w2

on Z4 and S = {3k ∶ k ≥ 1 odd} ∪ {5k ∶ k ≥ 1 odd}. The elements (3(k−1)/2 , 0, 0, 0) and
(0, 5(k−1)/2 , 0, 0) show that every element of S is globally represented (and hence
everywhere locally represented). Further, for any odd k ≥ 1 and � ≠ 5, Z4

� has a basis
of elements of norm 5k , using the observations that

Q(1, 1, 0, 1) ≡ Q(0, 1, 1, 1) ≡ Q(0, 1, 0, 0) ≡ Q(0, 0, 0, 1) ≡ 5k (mod 8),
Q(0, 1, 0, 0) ≡ Q(1, 1, 0, 0) ≡ Q(0, 1, 1, 0) ≡ Q(0, 1, 0, 1) ≡ 5k (mod 3),

Q(3r, 0, 0, 0) ≡ Q(0, r, 0, 0) ≡ Q(0, r, 1, 0) ≡ Q(0, r, 0, 1) ≡ 5k (mod 11)

with r = 5(k−1)/2. In a similar way, we can show that for any odd k ≥ 1 and � ≠ 3, Z4
�

has a basis of elements of norm 3k .
However, for k ≥ 4, the only elements of norm 5k in Z4

5 are in 5Z4
5 :

0 ≡ Q(x , y, z, w) ≡ 3x2 (mod 5) ⇒ 5 ∣ x;
0 ≡ Q(5x1 , y, z, w) ≡ 5y2 (mod 25) ⇒ 5 ∣ y;

0 ≡ Q(5x1 , 5y1 , z, w) ≡ 25(3x2
1 + 4z2) (mod 125) ⇒ 5 ∣ x1 , z;

0 ≡ Q(25x2 , 5y1 , 5z1 , w) ≡ 125(y2
1 + 2w2) (mod 625) ⇒ 5 ∣ y1 , w .

Thus (5k , Q) does not satisfy strong LSC at 5. In a similar way, for k ≥ 4, the only
elements of norm 3k in Z4

3 are in 3Z4
3 , so (3k , Q) does not satisfy strong LSC

at 3. In particular, every element of Z4 with norm in S satisfies 15 ∣ z, w (using the
argument above for k ≥ 4 and checking explicitly for small k), so such elements do
not generate Z4.

2.2 Proof of Theorem 2.2

The proof is a direct application of a strong approximation theorem of Sardari. We
quote a special case of this theorem here.

Given an integer s, a prime �, an integer t� ≥ 0, and a� ∈ Zn
� , define the local density

σ�(a� , t� , s) ∶= lim
k→∞

n(�k)
�(n−1)k ,

where

n(�k) ∶= #{x ∈ (Z/�k+t�Z)n ∶ Q(x) ≡ s (mod �k+t�), x ≡ a� (mod �t�)}.
Given a choice of t� and a� for all � with t� = 0 for all but finitely many �, set S(s) ∶=
∏� σ�(a� , t� , s) and V = ∏� �

−t� .
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Theorem 2.8 [17, Theorem 1.6]1 Let n ≥ 4, Q∶Zn → Z a nondegenerate quadratic
form, and ε > 0. For all primes � and all integers s, the number of x ∈ Zn satisfying
Q(x) = s and x ≡ a� (mod �t�) for all primes � is

≫S(s)V n−1s
n−2

2 (1 + O(V−3(n−3)/2sε− n−3
4 )) ,

where the implied constants in≫ and O depends only on ε and Q.

Lemma 2.9 Let � be a prime, s an integer, and a� ∈ Zn
� satisfying Q(a�) = s. Let t� = 1

and t�′ = 0 for �′ ≠ �. Suppose (s, Q) satisfies strong LSC. Then for all δ > 0, we have
S(s) ≫ ∣s∣−δ , where the implicit constant depends only on Q, �, and δ (not on s).

Proof Consider the modified singular series

S
′(s, Q) ∶= ∏

�′ prime
lim

k→∞

#{x ∈ (Z/�′kZ)n ∶ Q(x) ≡ s (mod �′
k)}

�(n−1)k .

Note that for �′ ≠ �, the term at �′ is equal to the term at �′ of S(s). The terms at � are
each bounded above and below by nonzero constants in s that depend on � (the lower
bound follows by an application of Hensel’s lemma), soS′(s) andS(s) have the same
rate of decay in s.

Browning and Dietmann prove [3, Proposition 2] that for any δ > 0, if A ∈ Mn(Z)
and (s, Q) satisfies strong LSC, then

S
′(s, Q) ≫ ∣sΔQ ∣−δ ,

with ΔQ the discriminant of Q, and the implicit constant depending only on δ.
If A ∉ Mn(Z), then (s, Q) satisfying strong LSC implies

S
′(2s, 2Q) ≫ ∣2sΔ2Q ∣−δ .

Now S′(2s, 2Q) and S′(s, Q) are the same at every prime except 2, where they differ
by at most a constant factor. So we reach the same conclusion for S′(s, Q). ∎
Proof of Theorem 2.2 Fix any prime �, and let M be large (we will specify how
large later). Let C� be a generating set for Zn

� satisfying conditions (a) through (c), let
a� ∈ C�, and let s ∶= Q(a�). Set t� = 1 and t�′ = 0 for all primes �′ ≠ �. By Lemma 2.9, the
corresponding singular series is asymptotically larger than s− n−2

2 . So by Theorem 2.8,
if M is sufficiently large, there exists y ∈ Zn satisfying Q(y) = s and y ≡ a� (mod �).
Here, “sufficiently large” may depend on �, Q, and a choice of 0 < ε < n−3

4 , but these
choices can all be made at the outset.

Thus, there is a set Ĉ� ⊆ Zn such that for each a� ∈ C�, there is a corresponding
y ∈ Ĉ� with Q(y) = Q(a�) ∈ S and y ≡ a� (mod �). Since the inclusion Zn → Zn

�

induces an isomorphism Zn/�Zn → Zn
� /�Zn

� , and C� generates Zn
� , Ĉ� generates

Zn/�Zn .
Since elements in Zn with norm in S generate Zn/�Zn for all primes �, we can

conclude that such elements generate Zn . ∎

1The full theorem has a stronger bound when n ≥ 5, and includes terms accounting for Archimedean
constraints.
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Remark 2.10 If every element of S is coprime to 2p, then a much shorter proof of
Theorem 2.2 can be given using Theorem 1.2 of [17]. The authors were informed by
Naser Sardari that a correction needs to be made to this result: as written it only
requires N to be odd, but in fact N must also be relatively prime to the discriminant
of Q.

2.3 Local generating sets for maximal orders

Let O be a maximal order in Bp , and let s be any positive integer relatively prime to p.
We will show that for all primes �, O⊗Z� has a basis consisting of elements of norm s,
so that Theorem 1.1 follows from Corollary 2.3.

2.3.1 � ≠ p

In this case O⊗Z� ≃ M2(Z�), with the norm on O inducing the determinant on
M2(Z�). The elements

(s 0
0 1) , (s 1

0 1) , (s 0
1 1) , (1 −1

s 0 )

each have norm s, and these evidently span M2(Z�).

2.3.2 � = p ≠ 2

Let K/Qp be the unique unramified quadratic extension, with Galois group generated
by σ . Then

Bp ⊗Zp ≃ {(
u pv

σ(v) σ(u)) ∶ u, v ∈ K} ⊆ M2(K)

[21, Corollary 13.3.14], andO⊗Zp is the corresponding valuation ring [21, Proposition
13.3.4], obtained by restricting u and v to be in the valuation ring of K. The norm on
O⊗Zp is uσ(u) − pvσ(v).

Remark 2.11 If u is not a multiple of p, then uσ(u) − pvσ(v) is not a multiple of p.
This shows that any basis of a maximal orderO ⊆ Bp must contain at least two elements
with norm relatively prime to p.

If p ≠ 2, we have K ≃ Qp(
√

a) for some a ∈ Qp such that a is not a square modulo p.
Therefore O⊗Zp ≃ Z4

p with quadratic form

(x , y, z, w) ↦ Q(x , y, z, w) ∶= x2 − ay2 − pz2 + apw2 .

Since p ∤ s, the equation x2 − ay2 − st2 = 0 defines a smooth projective conic overFp .
This curve has p + 1 ≥ 3 Fp-points, none of which has t = 0, and no three of which lie
on a common line. Thus, there exist two linearly independent points (c1 , d1), (c2 , d2) ∈
F2

p with c2
1 − ad2

1 = c2
2 − ad2

2 = s in Fp , so we have

Q(c1 , d1 , 0, 0) ≡ Q(c1 , d1 , 1, 0) ≡ Q(c1 , d1 , 0, 1) ≡ Q(c2 , d2 , 0, 0) ≡ s (mod p).

By Hensel lifting, we obtain a basis for Z4
p consisting of elements of norm s.
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2.3.3 � = p = 2

As above, the norm on O⊗Zp is uσ(u) − pvσ(v), but this time, we have K ≃ Q2(ζ3),
where ζ3 ∈ K satisfies ζ2

3 + ζ3 + 1 = 0. Therefore O⊗Z2 ≃ Z4
2 with quadratic form

(x , y, z, w) ↦ Q(x , y, z, w) ∶= x2 + x y + y2 − 2z2 − 2zw − 2w2 .

We have

Q(1, 0, 0, 0) ≡ Q(0, 1, 0, 0) ≡ Q(1, 1, 1, 0) ≡ Q(1, 1, 0, 1) ≡ 1 (mod 2),
Q(1, 1, 0, 0) ≡ Q(1, 0, 1, 1) ≡ Q(0, 1, 1, 2) ≡ Q(0, 1, 2, 1) ≡ 3 (mod 8),
Q(1, 1, 1, 1) ≡ Q(1, 1, 1, 2) ≡ Q(1, 1, 2, 1) ≡ Q(2, 1, 1, 0) ≡ 5 (mod 8),

Q(1, 0, 1, 0) ≡ Q(0, 1, 1, 0) ≡ Q(1, 0, 0, 1) ≡ Q(0, 1, 1, 3) ≡ 7 (mod 8),

and for each row, the four vectors define a matrix with odd determinant. So regardless
of the value of s, we can Hensel lift to obtain a basis for Z4

2 consisting of elements of
norm s.

2.3.4 Eichler orders

An Eichler order is an intersection of two maximal orders. If O is an Eichler order in
Bp , then O⊗Zp is maximal, and for � ≠ p, O⊗Z� is conjugate to ( Z� Z�

�r�Z� Z�
) for some

r� ≥ 0 [21, Section 23.4.19]. The exponent r� is nonzero only for finitely many primes �,
and the product∏� �

r� is the index of O (equal to the index of O in any maximal order
containing it).

Let � be a prime dividing the index of O (we necessarily have � ≠ p). If � ∣ s, then
the elements

(s 0
0 1) , (s 1

0 1) , ( s 0
�r� 1) , (1 0

0 s)

each have norm s and form a basis for O⊗Z�. If � ∤ 6s, then the elements

(s 0
0 1) , (s 1

0 1) , ( s 0
�r� 1) , (2s 0

0 1
2
)

each have norm s and contain ( 3s 0
0 0 ) and ( 0 0

0 3 ) in their span, so they form a basis for
O⊗Z�. So if the index of O is not divisible by 2 or 3, then for all primes �, there is a
basis for O⊗Z� consisting of elements of norm s; by Corollary 2.3, we can conclude
that O has a generating set with norms in S.

On the other hand, if the index of O is even, then O is not generated by elements
of odd norm. This is because for r ≥ 1, det( x y

2r z w ) ≡ 1 (mod 2) implies x ≡ w ≡
1 (mod 2), and the span of elements of this form lie in a proper sublattice of O⊗Z2.
For a similar reason, if the index of O is a multiple of 3 and i = 1 or 2, then O is not
generated by elements of norm congruent to i (mod 3). So additional constraints on
S are necessary if the index is not relatively prime to 6.
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10 E. Z. Goren and J. R. Love

3 Theta function determines maximal order:
background and setup

We now turn to the second topic of this article: determining maximal orders of Bp by
their theta functions. In this section, we discuss some examples of isospectral lattices
and then set up some results about the lattice structure of quaternion orders; the main
results of Theorems 1.3 and 1.4 are proven in Section 4.

3.1 Isospectral lattices

Two integral lattices Λ, Λ′ are isospectral if their theta functions are equal. Schiemann
proved that there do not exist any pairs of non-isometric isospectral lattices of rank at
most 3 [18], but there are many pairs of non-isometric but isospectral lattices of rank 4,
including a four-parameter family due to Conway and Sloane [7].

Now, suppose we restrict to integral lattices in a quaternion algebra Bp whose
left and right orders are maximal (every such lattice is locally similar to a maximal
order of Bp , and every quadratic form locally similar to a maximal order can be
obtained in this way up to oriented similarity [21, Section 19.6.7]). Equivalently, one
can ask if a pair E , E′ of supersingular elliptic curves over Fp can be identified (up to
Frobenius) by counting the number of isogenies of given degree from E to E′. Even
in this constrained setting, it is common to find multiple lattices with the same theta
function; the first instance of this occurring is for p = 67. At p = 151, we even find two
non-isometric right ideals of the same maximal order that have equal theta functions.
These observations were explored in depth by Shiota [19].

Example 3.1 We include a brief description of the isospectral right ideals in the case
p = 151. Take Bp = Q⟨1, i , j, k⟩ with i2 = −1, j2 = −151, and k ∶= i j = − ji. Consider the
maximal order

O ∶= ⟨ 1
2
+ 1

2
j + 4k, 1

32
i + 3

4
j + 69

32
k, j + 8k, 16k⟩ .

This order has right ideals

I1 ∶= ⟨−5 + i − j − 3k, 10 − 42i + 2 j − 2k,−7 + 11i + 5 j − k, 74 + 22i + 2 j − 2k⟩ ,
I2 ∶= ⟨−16 + 26i + 2k, 12 + 19i + 4 j − k, 48 + 26i + 2k,−4 − 31i + 4 j + 5k⟩ ,

each of norm 512, and we can check that I1 and I2 have non-isomorphic left orders.
For each of I1 and I2, we take the basis x1 , x2 , x3 , x4 given above and compute the
corresponding (normalized) Gram matrix 1

1024 (Tr(x i x j))1≤i , j≤4, yielding

A1 =
1
2

⎛
⎜⎜⎜
⎝

6 2 −1 1
2 12 5 4
−1 5 16 6
1 4 6 28

⎞
⎟⎟⎟
⎠

, A2 =
1
2

⎛
⎜⎜⎜
⎝

6 0 2 3
0 12 3 4
2 3 14 2
3 4 2 28

⎞
⎟⎟⎟
⎠

.

Both matrices have determinant 1512

16 , as expected (by [21, Proposition 16.4.3] and Eq.
(3.1)). The theta functions of both lattices begin with

1 + 2q3 + 2q6 + 2q7 + 2q8 + 4q9 + 2q10 + 2q11 + 4q12 + 4q14 + 4q15 + . . .
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and are weight 2 cusp forms for Γ0(151) [21, Section 40.4.5]. One can find a basis of
M2(Γ0(151)) consisting of 13 elements, and check that under projection to the first
13 Fourier coefficients they remain independent. (The Sturm bound predicts that the
first 25 coefficients are sufficient, but we can get by with fewer in this case.) Thus, if two
elements of M2(Γ0(151)) agree on these coefficients, they must be equal. Hence, these
lattices are isospectral. However, the lattices are not isometric because the vectors of
norm 3 are orthogonal to the vectors of norm 6 in the second lattice but not in the
first.

Remark 3.2 Even if two non-isometric lattices have equal theta functions, the lattices
may be distinguished using an enriched theta function that carries more information
about the structure of the lattice than just the number of elements of each norm.
For k ≥ 1, let Hk be the Siegel upper half-space, consisting of symmetric matrices
Z ∈ Mk(C) with positive-definite imaginary part. For an integral lattice Λ, one may
define the degree k theta function of Λ by

θ(k)Λ (Z) ∶= ∑
(v1 , . . . ,vk)∈Λk

exp(2πi Tr(T(v1 , . . . , vk)Z)),

where Z ∈ Hk and T(v1 , . . . , vk) ∈ 1
2 Mk(Z) has v i ⋅ v j in the i , j component. We

recover the classical theta function by taking k = 1 and setting q = e2πiz for z in the
complex upper half-plane.

Kitaoka showed that for any collection of rank n lattices that are pairwise non-
isometric, the corresponding degree n − 1 theta functions are linearly independent
[13]. Suppose we restrict our attention to the set of rank 4 integral lattices in a definite
quaternion algebra over Q whose left and right orders are maximal. Böcherer and
Schulze-Pillot classified all linear relations between the degree 2 theta functions of
integral lattices of this form, and showed that two such lattices are isometric if and
only if their degree 2 theta functions are equal [2, Corollary 9.2]). In this light, our
Theorem 1.3 shows that for maximal orders, at least in Bp , already their degree 1 theta
function distinguishes between them.

3.2 Lattice geometry of quaternion orders

As before, let Bp denote the quaternion algebra over Q ramified at p and ∞. There
exists an isometry Bp ⊗R ≃ R4, with the norm on Bp corresponding to the square
of the standard Euclidean distance on R4, and 1

2 Tr(x ȳ) giving the standard inner
product x ⋅ y.

Let Λ be a lattice in Bp of rank 1 ≤ k ≤ 4; we say Λ is an integral lattice if for all
x ∈ Λ, we have N(x), Tr(x) ∈ Z. Given a basis {v1 , . . . , vk} of an integral lattice Λ, we
can define a Gram matrix

AΛ ∶= (v i ⋅ v j)1≤i , j≤k = ( 1
2 Tr(v iv j))1≤i , j≤k ,

and determinant det Λ ∶= det AΛ as in Section 1.1. The quaternion norm N on Bp
defines an integral quadratic form on Λ, and AΛ ∈ 1

2 Mk(Z).
Now suppose Λ is an order in Bp , so it is contained in a maximal order O with

finite index. We define the discriminant of Λ to be disc Λ ∶= det(2AΛ). Note that the
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12 E. Z. Goren and J. R. Love

discriminant of Λ is a positive integer, while the determinant may not be an integer.
In particular, if O is a maximal order containing Λ then

disc Λ = 16 det Λ = [O ∶ Λ]2 p2(3.1)

[21, Lemma 15.2.15, Theorem 15.5.5]. If Λ has basis v1 , . . . , v4, then we have

disc Λ = det(Tr(v i v̄ j))1≤i , j≤4 = ∣det(Tr(v iv j))1≤i , j≤4∣(3.2)

[21, Exercise 15.13], where we call (Tr(v iv j))1≤i , j≤4 the trace matrix of the basis
{v1 , . . . , v4}.
Definition 3.3 Let Λ be a lattice of rank k with a positive definite quadratic form
Q. For 1 ≤ i ≤ k, the ith successive minimum of Λ is the minimum value D i such that
the rank of the Z-module generated by {v ∈ Λ ∶ Q(v) ≤ D i} is greater than or equal
to i. An ordered list v1 , . . . , vk ∈ Λ attains the successive minima of Λ if it is linearly
independent and Q(v i) = D i for each i = 1, . . . , k.

Remark 3.4 This is a nonstandard definition, following the notation of [6]; if (Λ, Q)
is embedded isometrically in a Euclidean space Rn , then the successive minima under
Definition 3.3 are the squares of the corresponding successive minima under the
standard definition. There always exists a list of elements attaining the successive
minima, for instance, by [5, Section VIII.1.2, Lemma 1].

Lemma 3.5 Let Λ be a lattice of rank k ≤ 3. If a list of k vectors attains the successive
minima of Λ, then these vectors form a basis for Λ. The same holds true for k = 4 if we
additionally assume that Λ is an order in Bp for p odd.

Note that a counterexample for p = 2 is given by the Hurwitz quaternions,
Z ∶= ⟨1, i , j, 1

2 (1 + i + j + k)⟩where i2 = j2 = −1 and i j = k. The elements 1, i , j, k attain
the successive minima, but 1

2 (1 + i + j + k) is not contained in their span.

Proof Among all lattices of rank at most 4, the rank 4 cubic centered lattice D4
(which is isometric to Z after rescaling) is the only lattice up to similarity for which
an arbitrary list of vectors attaining the successive minima is not always a basis [15,
Corollary 6.2.3]. If Λ is an order in Bp for p odd then the first successive minimum
is equal to 1, so if Λ were a cubic centered lattice then its Gram matrix would have
determinant 1

4 . This contradicts the fact that the determinant of an order in Bp must
be an integer multiple of p2

16 by Eq. (3.1). ∎

3.3 The Gross lattice

We define an additive map τ∶Bp → Bp by

τ(x) = 2x − Tr(x).
If we restrict τ to an order O ⊆ Bp , then the kernel of this map is Z, and the image is
the Gross lattice of O,

OT ∶= τ(O) = {2x − Tr(x) ∶ x ∈ O}
(cf. [11, Section 12]). The Gross lattice is a strict subset of O0, the subset of O consisting
of trace zero elements; more precisely, we have OT = O0 ∩ (Z + 2O). Some relations
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between sublattices of O are given below: inclusion arrows below are labeled by the
index of one sublattice in the other, and k denotes orthogonal direct sum.

Z + 2O = Z k OT Z k O0 O (rank 4)

2O0 OT O0 (rank 3)

4 2

τ τ

2 4

(3.3)

The index of Z k O0 in O can be computed by noting that Z k O0 consists of all
elements of O with even trace, and that O must contain an element of odd trace (since
detO = p2

16 implies the Gram matrix of O cannot be an integer matrix).

Remark 3.6 Given a lattice Λ ⊆ Bp , define the dual lattice Λ♯ by

Λ♯ ∶= {y ∈ QΛ ∶ Tr(x ȳ) ∈ Z for all x ∈ Λ}.

While this will not be used in the rest of the article, we note that OT can be
related to (O♯)0, the trace zero part of the dual lattice of O. (This lattice arises in
the correspondence between quaternion orders and ternary quadratic forms via the
Clifford algebra construction; see [21, Chapter 22].) Specifically, we have the equality

( 1
2O

T)♯ = (O♯)0 ,

because when Tr(y) = 0 and x ∈ O we have Tr(τ(x) ȳ) = 2 Tr(x ȳ). Since 1
2O

T is the
orthogonal projection of O onto B0

p , we can summarize this by saying that the dual of
the projection equals the restriction of the dual.

The primary motivation for studying the Gross lattice is that elements of OT

correspond to embeddings of imaginary quadratic orders in O. Observe that for any
x ∈ Bp , we have the equality

N(τ(x)) = 4N(x) − Tr(x)2 .(3.4)

So for any β ∈ OT/{0}, −N(β) is equal to the discriminant of the quadratic order
generated by a preimage of β under τ.

Given an imaginary quadratic order R of discriminant−D for D > 0, an orientation
of R is a choice of x ∈ R satisfying x2 + D = 0 (which we will usually denote

√
−D).

Given two oriented orders (R, x) and (R, x′), an oriented isomorphism is an isomor-
phism R → R′ sending x ↦ x′. Note that for every imaginary quadratic discriminant
−D, there are exactly two oriented quadratic orders R up to oriented isomorphism,
sent to each other by the nontrivial Galois action on R.

Given an imaginary quadratic order R and an embedding ϕ ∶ R ↪ O, we say the
embedding is optimal if Qϕ(R) ∩O = ϕ(R). Given a nonzero element v of a lattice L,
we say v is primitive if there does not exist w ∈ L and n ≥ 2 with v = nw. The following
proposition is implicit in [11, Proposition 12.9]; we include the proof for completeness.

Proposition 3.7 There is a one-to-one correspondence between nonzero elements
β ∈ OT and embeddings R ↪ O of oriented imaginary quadratic orders R up to oriented
isomorphism. Under this correspondence, we have disc R = −N(β), and the embedding
R ↪ O is optimal if and only if the corresponding β is primitive.
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Proof The imaginary quadratic order R = Z[ 1
2 (D +

√
−D)] has discriminant −D

and orientation determined by the element
√
−D. To an embedding ϕ∶R → O, we

associate the element

β ∶= ϕ(
√
−D) = 2ϕ(D +

√
−D

2
) − Tr(ϕ(D +

√
−D

2
)) ∈ OT .

Conversely, given an element β = 2x − Tr(x) of OT , set D = N(β) and associate
to β the embedding of Z[ 1

2 (D +
√
−D)] into O determined by

D +
√
−D

2
↦ x + D − Tr(x)

2
.

We have x + D−Tr(x)
2 ∈ O because D ≡ Tr(x) (mod 2) by Eq. (3.4). Further, both sides

have trace D, and applying Eq. (3.4) to the fact that τ (x + D−Tr(x)
2 ) = β we find that

both sides have norm 1
4 (D

2 + D). Hence, this map is well-defined. It is straightforward
to verify that these two associations are inverses and that the remaining claims are
satisfied. ∎

Note that if two embeddings R → O are related by Galois conjugation on R, then
the corresponding elements of OT are negatives of each other.

For any β ∈ OT , there exists a unique α ∈ O satisfying τ(α) = β and Tr(α) ∈ {0, 1}
(explicitly, we can let δ ∈ {0, 1} satisfy δ ≡ N(β) (mod 2) and set α = 1

2 (δ + β)). By
Eq. (3.4), this element α attains the minimal norm among all elements of O mapping
under τ to β.

Lemma 3.8 Let β1 , β2 , β3 ∈ OT be linearly independent, and let α1 , α2 , α3 ∈ O satisfy
τ(α i) = β i and Tr(α i) ∈ {0, 1} for each i. The following are equivalent:
(a) The successive minima for OT are attained by β1 , β2 , β3.
(b) The successive minima for O are attained by 1, α1 , α2 , α3, and if Tr(α i) = 0 for some

i = 1, 2, 3, then for all γ ∈ O with N(γ) = N(α i) that are linearly independent from
1, α1 , . . . , α i−1, we have Tr(γ) = 0.

Proof Observe that 1, α1 , α2 , α3 are linearly independent, because applying τ to a
linear dependence would induce a dependence among β1 , β2 , β3. Now assume (a).
For i = 1, 2, 3, let S i denote the set of γ ∈ O satisfying N(γ) < N(α i). For any γ ∈ S i ,
we have

N(τ(γ)) = 4N(γ) − Tr(γ)2 ≤ 4(N(α i) − 1) < 4N(α i) − Tr(α i)2 = N(β i),

and since N(β i) is the ith successive minimum for OT , the span of τ(γ) for all γ ∈ S i
has dimension at most i − 1. Thus the span of S i has dimension at most i, proving by
induction on i that 1, α1 , α2 , α3 attain the successive minima for O. Now for the sake
of contradiction suppose that Tr(α i) = 0, and there exists γ ∈ O linearly independent
from 1, α1 , . . . , α i−1 with N(γ) = N(α i) and Tr(γ) ≠ 0. Then β1 , . . . , β i−1 , τ(γ) are i
independent elements of OT , but

N(τ(γ)) = 4N(γ) − Tr(γ)2 < 4N(α i) = N(β i),
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contradicting the assumption that β i attains the ith successive minimum for OT . Thus
(a) implies (b).

Now assume (b). For i = 1, 2, 3, let S i denote the set of x ∈ OT satisfying
N(x) < N(β i). For any x ∈ S i , there exists γ ∈ O with τ(γ) = x and Tr(γ) ∈ {0, 1}. If
N(x) < N(β i) − 1, then in fact N(x) ≤ N(β i) − 3 because the norm of every element
of OT is either 0 or 3 mod 4 by Eq. (3.4), and so

N(γ) = 1
4
(N(τ(γ)) + Tr(γ)2) ≤ 1

4
(N(β i) − 2) < N(α i).

Since N(α i) is the (i + 1)st successive minimum for O, this implies 1, α1 , . . . , α i−1 , γ
must be linearly dependent. On the other hand, suppose N(x) = N(β i) − 1. Then
N(γ) = N(α i), Tr(γ) = 1, and Tr(α i) = 0, so once again 1, α1 , . . . , α i−1 , γ are linearly
dependent. Either way we can conclude that x = τ(γ) is in the Q-span of β1 , . . . , β i−1.
This shows that the span of S i has dimension less than i, so N(β i) is indeed the ith
successive minimum for OT . ∎

Remark 3.9 It is possible for 1, α1 , α2 , α3 to attain the successive minima of O, but
τ(α1), τ(α2), τ(α3) not attain the successive minima ofOT . A simple example is given
by the Hurwitz quaternions Z = ⟨1, i , j, 1

2 (1 + i + j + k)⟩ with i2 = j2 = −1 and i j = k.
The successive minima of Z are all 1, and the successive minima of ZT are all 3.
The elements 1, i , j, k attain the successive minima of O, but N(τ(i)) = N(τ( j)) =
N(τ(k)) = 4, and so τ(i), τ( j), τ(k) do not realize the successive minima of ZT . And
indeed, condition (b) of Lemma 3.8 does not hold; for any of i = 1, 2, 3, we can take
γ = 1

2 (1 + i + j + k).

Lemma 3.10 Let D1 < 15. Up to isomorphism, there is at most one maximal order
O ⊆ Bp such that the first successive minimum of OT is equal to D1.

Proof If D1 is not 0 or 3 mod 4, then there is no maximal order with first succes-
sive minimum D1 by Proposition 3.7. For all remaining D1, the quadratic order of
discriminant −D1 has class number 1; in this case, there is a unique maximal order
(up to isomorphism) in which this quadratic order embeds [21, Corollary 30.4.23],
and therefore a unique O (up to isomorphism) such that OT has an element of
norm D1. ∎

Remark 3.11 If −D is a fundamental discriminant, an explicit maximal order admit-
ting an optimal embedding of the ring of integers of discriminant −D can be written
down explicitly using [8, Eq. (5)] (see also [8, Theorem 1]).

3.4 Constraints on short Gross lattice vectors

A key idea we will apply is that there are very strict constraints on arrangements of
short elements in the Gross lattice. This idea can be made precise using a construction
due to Kaneko [12], which we present as Proposition 3.12 with minor modifications
for our convenience. Kaneko used this construction to prove a bound on the discrim-
inants of quadratic orders embedding into a quaternion order, a special case of which
is given by Corollary 3.14. In addition to this bound (a constraint on the norms of
independent elements in OT ), we also establish a constraint on the angle between two
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elements of OT , Corollary 3.15.2 Together, these constraints will be sufficient to show
that a quaternion order is uniquely determined up to isomorphism by the numbers of
short vectors in OT .

Proposition 3.12 Let O be an order in Bp, and let β1 , β2 ∈ OT be linearly independent.
Then

N(β1)N(β2) −
1
4

Tr(β1 β̄2)2

is a positive integer multiple of 4p.

The number N(β1)N(β2) − 1
4 Tr(β1 β̄2)2 is the determinant of the Gram matrix of

the lattice ⟨β1 , β2⟩, so this can be interpreted as saying that every parallelogram in OT

has area 2
√

kp for some positive integer k. A version of this is proven by Kaneko in
[12, Section 3]; see also Equation (3.2) of [6]. A similar idea also appears in [10].

Proof The value is positive because it is the determinant of the Gram matrix of the
lattice ⟨β1 , β2⟩, so it suffices to show divisibility by 4p. For i = 1, 2, set D i = N(β i),
and let α i ∈ O be a minimal norm preimage of β i under τ; that is, take δ i ∈ {0, 1}with
δ i ≡ D i (mod 2) and set α i = 1

2 (β i + δ i). Define an order

Λ = ⟨1, α1 , α2 , α1α2⟩ ⊆ O.

Letting s = Tr(α1α2), one can compute the trace matrix of Λ (Eq. (3.2)),

T =
⎛
⎜⎜⎜⎜
⎝

2 δ1 δ2 s
δ1 δ2

1 − 2N(α1) s −δ2N(α1) + δ1s
δ2 s δ2

2 − 2N(α2) −δ1N(α2) + δ2s
s −δ2N(α1) + δ1s −δ1N(α2) + δ2s s2 − 2N(α1)N(α2)

⎞
⎟⎟⎟⎟
⎠

.

Since N(α i) = 1
4 (δ i + D i), we compute

disc Λ = ∣det T∣ = (D1D2 − (2s − δ1δ2)2)2
16

.

Noting that

Tr(β1β2) = Tr((2α1 − δ1)(2α2 − δ2)) = 4 Tr(α1α2) − 2δ1δ2 ,(3.5)

we can replace 2s − δ1δ2 with 1
2 Tr(β1β2) = − 1

2 Tr(β1 β̄2). Since Λ is an order in
Bp , we can use Eq. (3.1) to conclude that 1

4 (D1D2 − 1
4 Tr(β1 β̄2)2) is an integer

multiple of p. ∎
Some immediate consequences of this calculation are as follows.

Corollary 3.13 Let O be an order in Bp of discriminant Δ ∈ Z. Let D1 , D2 , D3 be the
successive minima of OT . Then

2This is the only part of the argument that relies the fact that our quaternion algebra Bp is ramified
at a single prime; if we consider orders in definite quaternion algebras ramified at multiple primes, the
corresponding constraint becomes much less strict.
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D1 ≤ 2Δ1/3 ,

4p
D1
≤ D2 ≤ (

8Δ
D1
)

1/2
.

Proof Since detO = Δ
16 , Eq. (3.3) implies that

detOT = det(Z k OT) = 82 detO = 4Δ.

(Recall that det Λ refers to the determinant of the Gram matrix of Λ, so Λ′ ⊆ Λ implies
det Λ′ = [Λ ∶ Λ′]2 det Λ.) We also have D1D2D3 ≤ 2 detOT (a bound specific to rank 3
lattices) by [20, Lecture XI(25)]. The desired upper bounds follow from D3

1 ≤ D1D2D3
and D1D2

2 ≤ D1D2D3. The lower bound D1D2 ≥ 4p follows from Proposition 3.12. ∎

Corollary 3.14 If a quadratic order R has two embeddings in O with distinct images,
then disc R > p.

Proof This is a special case of [12, Theorem 2’]. Let D ∶= disc R, and β1 , β2 ∈ OT be
the elements corresponding to the two embeddings of R under Proposition 3.7. Then
from Proposition 3.12, we obtain

p ∣ (D + t
2
)(D − t

2
) ,

where t = 1
2 Tr(β1 β̄2) ∈ Z by Eq. (3.5). Each factor is an integer: D + t and D − t

have the same parity, and since their product is a multiple of 4, both must be even.
Thus p divides one of the factors, so p ≤ 1

2 (D + t). Since D2 − t2 > 0, we have t < D,
so p < D. ∎

Recall that (v1 , v2) ↦ 1
2 Tr(v1v2) defines an inner product on Bp . The following

result says that if two elements of OT are sufficiently small, then their norms uniquely
determine the angle between them (up to negating either element). This is one of
the most important conceptual ingredients of the proofs of Theorems 1.3 and 1.4:
while the theta function records lengths of elements but loses all information about
angles between them, this result allows us to recover information about angles from
information about lengths.

Corollary 3.15 Let β1 , β2 be independent elements ofOT . Suppose N(β1) ≤ p, and that
β2 has minimal norm in β2 +Zβ1. Then ∣ 12 Tr(β1 β̄2)∣ equals the smallest positive square
root of N(β1)N(β2)modulo p.

Proof By Proposition 3.12, we have 1
4 Tr(β1 β̄2)2 ≡ N(β1)N(β2) (mod 4p), so that

∣ 12 Tr(β1 β̄2)∣, an integer by Eq. (3.5), is a square root of N(β1)N(β2) modulo p.
Expanding N(β2 ± β1) − N(β2) ≥ 0, we obtain ∓Tr(β1 β̄2) ≤ N(β1); since this is true
for both choices of sign, we have

0 ≤ ∣ 12 Tr(β1 β̄2)∣ ≤
N(β1)

2
≤ p

2
.

There is a unique square root of D1D2 modulo p in this interval. ∎
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4 Theta function determines maximal order

In this section, we prove Theorems 1.3 and 1.4. We begin in Section 4.1 with a
proof of Theorem 1.4, the statement that the successive minima of OT determine the
isomorphism type of O. So to prove Theorem 1.3, all that remains to show is that the
theta function ofOdetermines the successive minima D1 , D2 , D3 ofOT . In Section 4.2,
we introduce a decomposition of the theta function of O. Using this decomposition
and the results of Section 3.4, we show that the theta function of O determines D1 and
D2, and in Section 4.4, we show that the theta function of O determines D3.

4.1 Successive minima of Gross lattice determines the order

Let p be an odd prime, and let O be an order in Bp of discriminant r2 p2. Let β1 , β2 ,
β3 ∈ OT attain the successive minima D1 ≤ D2 ≤ D3 of OT , and assume D1 ≥ 8r2. We
will begin by showing that OT is determined up to isometry by D1 , D2 , D3.

For each pair 1 ≤ i < j ≤ 3, let 0 ≤ Ti j ≤ p
2 be the unique integer satisfying

T2
i j ≡ D i D j (mod p). Using Corollary 3.13, we have

N(β1) ≤ N(β2) ≤
√

8r2 p2

D1
≤ p,

so by Corollary 3.15, we have ∣ 12 Tr(β i β̄ j)∣ = Ti j for each pair i , j.
Since β1 , β2 , β3 attain successive minima for the rank 3 lattice OT , they form a

basis by Lemma 3.5. Let A = ( 1
2 Tr(β i β̄ j))i , j be the corresponding Gram matrix. By

replacing β i with −β i = β̄ i if necessary for some values of i, we can ensure that any
two of the equations

1
2

Tr(β1 β̄2) = T12 , 1
2

Tr(β1 β̄3) = T13 , 1
2

Tr(β2 β̄3) = T23

hold. So if in addition, we have Ti j = 0 for some pair i , j, then we can choose β1 , β2 , β3
so that 1

2 Tr(β i β̄ j) = Ti j for all i , j. Thus, OT is determined up to isometry.
On the other hand, suppose all Ti j are nonzero. Then without loss of generality, we

have either A = A+ or A = A−, where

A± ∶=
⎛
⎜
⎝

N(β1) T12 ±T13
T12 N(β2) T23
±T13 T23 N(β3)

⎞
⎟
⎠

.

Now the orthogonal direct sum Z k OT is a sublattice of O, and so 16 det A must be a
multiple of p2. But we have

16 det(A+) − 16 det(A−) = 4T12T23T13 .

Since the integers Ti j satisfy 0 < Ti j ≤ p
2 , this difference is not a multiple of p, and

therefore only one of 16 det(A+) and 16 det(A−) can be a multiple of p. This determines
A uniquely, and so again, OT is determined up to isometry. If we replace β1 , β2 , β3
with −β1 ,−β2 ,−β3, then we preserve OT (and A) but obtain a basis with opposite
orientation. Thus OT is determined up to orientation-preserving isometry.
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Now, let O1 ,O2 be two orders in Bp , each of index r in some (perhaps different)
maximal order. Suppose that OT

1 and OT
2 have the same successive minima. We

established above that there exists an orientation-preserving isometry φ ∶ OT
1 → OT

2 ,
which extends by linearity to an orientation-preserving isometry φ ∶ B0

p → B0
p on

the trace 0 subspace of Bp . Every such isometry can be written as a conjugation
map φ(x) = γ−1xγ for some γ ∈ B×p [21, Proposition 4.5.10]. Finally, by a result of
Chevyrev and Galbraith [6, Lemma 4], the conjugation map φ ∶ OT

1 → OT
2 extends

to an isomorphism O1 → O2. This proves Theorem 1.4.

4.2 Decomposing the theta series along fibers of τ

Let τ∶Bp → B0
p denote the map τ(x) = 2x − Tr(x). Given any integral lattice L ⊆ Bp

that contains Z, the fibers of τ partition L into cosets of Z, allowing us to decompose
the theta function of L into a sum over these cosets.

Define power series θ0 , θ1 ∈ Z[[q]] by

θ0(q) = ∑
n∈Z

qn2
= 1 + 2q + 2q4 + 2q9 + . . . ,

θ1(q) = ∑
n∈Z

qn2+n = 2 + 2q2 + 2q6 + 2q12 + . . . .

Lemma 4.1 Given an integral lattice L ⊇ Z, we have

θL(q) =
⎛
⎜⎜⎜
⎝

∑
β∈τ(L)

N(β)≡0 mod 4

qN(β)/4
⎞
⎟⎟⎟
⎠

θ0(q) +
⎛
⎜⎜⎜
⎝

∑
β∈τ(L)

N(β)≡3 mod 4

q(1+N(β))/4
⎞
⎟⎟⎟
⎠

θ1(q).

In the case L = Z, we have τ(L) = {0}, and this reduces to the trivial observation
θZ(q) = θ0(q).

Proof We can write

θL(q) = ∑
x∈L

qN(x) = ∑
β∈τ(L)

∑
x∈τ−1(β)

qN(x) .

For all β ∈ τ(L), N(β) is either 0 or 3 mod 4 by Eq. (3.4). We will determine the sum
of qN(x) over x in τ−1(β) in each of these two cases.

If N(β) ≡ 0 (mod 4), then every x ∈ τ−1(β) has even trace (cf. Proposition 3.7),
so τ−1(β) = { 1

2 β + n ∶ n ∈ Z}. Since β is orthogonal to 1, we have

∑
x∈τ−1(β)

qN(x) = ∑
n∈Z

qN(β/2)+n2
= qN(β)/4θ0(q).

If N(β) ≡ 3 (mod 4), then every x ∈ τ−1(β) has odd trace, so that τ−1(β) = { 1
2 β +

n + 1
2 ∶ n ∈ Z}. Then

∑
x∈τ−1(β)

qN(x) = ∑
n∈Z

qN(β/2)+(n+ 1
2 )

2
= q(N(β)+1)/4θ1(q). ∎
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Remark 4.2 By identifying each of the terms in Lemma 4.1 as the even or odd parts
of appropriate theta functions, we can rewrite the equality more elegantly as

θL(q4) = + 1
4(θτ(L)(q) + θτ(L)(−q))(θZ(q) + θZ(−q))

= + 1
4(θτ(L)(q) − θτ(L)(−q))(θZ(q) − θZ(−q))

= + 1
2(θτ(L)(q)θZ(q) + θτ(L)(−q)θZ(−q)).

This can also be obtained by recognizing 2L as the set of elements of even norm
in Z k τ(L) (as in Eq. (3.3)). However, the form given in the lemma statement will
be more convenient, as it displays more clearly the contributions to θL(q) from
individual elements of τ(L).

One consequence of this lemma is that the theta series of an integral lattice
containing Z can be determined from the theta series of its image under τ. The
difficulty is recovering information about τ(L) from the theta series of L: the power
series f (q), g(q) ∈ Z[[q]] such that θL(q) = f (q)θ0(q) + g(q)θ1(q) are far from
being unique.

Example 4.3 Let B3 be the quaternion algebra overQ ramified at 3, defined by i2 = −1
and j2 = k2 = −3 (with k = i j). Consider the two integral lattices

L1 ∶= ⟨1, i , 1 + j
2

, k⟩ , L2 ∶= ⟨1, i , i + j
2

, k⟩ .

These lattices are isometric (via swapping 1 with i) and therefore have the same theta
function. However, their images under τ,

τ(L1) = ⟨2i , j, 2k⟩ , τ(L2) = ⟨2i , i + j, 2k⟩ ,

are not isometric; they have different successive minima (3, 4, 12 and 4, 4, 12, respec-
tively) and different theta functions. This demonstrates that the decomposition of a
theta series as in Lemma 4.1 is not unique, and that we can not in general determine
the lattice structure of τ(L) from the lattice structure of L alone.

From now on, we suppose O is a maximal order. Our goal in the remainder of
the article is to use the geometry of O to obtain constraints on the terms appearing
in Lemma 4.1, and so deduce the successive minima of OT . The strategy is to start
with L = Z and inductively build up a lattice Z ⊆ L ⊆ O with known structure, one
dimension at a time. If cn qn is the smallest nonzero term of θO(q) − θL(q), we can
conclude that there are cn elements of norm n in O/L, and no shorter elements. We
then use general properties of quaternion orders to show that the traces of these
elements can be determined; this allows us to determine the minimal polynomial of an
element α ∈ O of norm n whose image under τ attains the next successive minimum of
OT . Finally, we can use Corollary 3.15 to determine the full lattice structure of L + ⟨α⟩.

4.3 Determining D1 and D2

As above, let O ⊆ Bp be a maximal order, and let D1 , D2 , D3 denote the successive
minima ofOT . If p = 2, 3, 5, 7, then there is a unique maximal order in Bp (for instance,
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by [21, Exercise 30.6]), so the isomorphism type of O (and in particular, the successive
minima of OT ) are uniquely determined. Thus from now on, we can assume p ≥ 11.

Lemma 4.4 Let cn qn denote the first nonzero term of θO(q) − θZ(q). Then one of the
following occurs:
• cn = 2, in which case D1 = 4n and D2 , D3 ≥ 4n + 3.
• cn = 4, in which case D1 = 4n − 1 and D2 , D3 ≥ 4n + 3.
• cn = 6, in which case D1 = 4n − 1, D2 = 4n, and D3 ≥ 4n + 3.

Proof By Lemma 4.1, the term cn qn has contributions from β ∈ OT/{0} with norm
4n or 4n − 1. Since n is minimal these elements are primitive, so by Proposition 3.7 they
correspond to optimal embeddings of quadratic orders of discriminant 4n and 4n − 1,
respectively. We have 4n − 1 ≤ D1 ≤ 2p2/3 by Corollary 3.13, which implies 4n ≤ p since
p ≥ 11. So by Corollary 3.14, there cannot exist α, α′ ∈ O both of norm n but generating
distinct isomorphic subfields of O. Hence, there are only three options: only Z[

√
−n]

optimally embeds in O, only Z[ 1+
√

1−4n
2 ] optimally embeds, or both optimally embed.

These three cases can each be identified by counting the number of norm n elements
in each quadratic order. ∎

If D1 < 15, then the isomorphism type of O is uniquely determined by Lemma 3.10;
in particular, the remaining successive minima D2 and D3 of OT are also determined.
So from now on, we assume D1 ≥ 15. Using Lemma 4.4, we use θO to deduce the
existence of an element α1 ∈ O with norm n and trace either 0 or 1, depending on
the parity of D1; hence we can determine the structure of Z[α1].
Lemma 4.5 Suppose D1 ≥ 15, and let cn qn denote the first nonzero term of
θO(q) − θZ[α1](q). Then one of the following occurs:
• cn = 2, in which case D2 = 4n and D3 ≥ 4n + 3.
• cn = 4, in which case D2 = 4n − 1 and D3 ≥ 4n + 3.
• cn = 6, in which case D2 = 4n − 1 and D3 = 4n.

Proof The term cn qn has contributions from β ∈ OT/τ(Z[α1]) with norm 4n or
4n − 1. We can use the same argument as in Lemma 4.4, except that here, we use the
bound 4n − 1 ≤ D2 ≤ p

√
8/D1 from Corollary 3.13; since D1 ≥ 15 and p ≥ 11 we can

conclude 4n ≤ p as before. ∎
Using our information about D1 and D2, we can determine the structure of a

particular rank 3 sublattice of O. (The exact form of the Gram matrix is not important
to the proof; we only require the fact that it can be determined knowing only D1, D2,
and p.)

Lemma 4.6 Let δ i ∈ {0, 1} satisfy δ i ≡ D i (mod 2) for i = 1, 2, and let T be the unique
integer satisfying 0 ≤ T ≤ p−1

2 and T2 ≡ D1D2 (mod p). There exist α1 , α2 ∈ O such that
τ(α1), τ(α2) attain the first two successive minima for OT , and the Gram matrix for
L ∶= ⟨1, α1 , α2⟩ is

⎛
⎜
⎝

1 1
2 δ1

1
2 δ2

1
2 δ1

1
4 (D1 + δ1) 1

4 (T + δ1δ2)
1
2 δ2

1
4 (T + δ1δ2) 1

4 (D2 + δ2)

⎞
⎟
⎠

.
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Proof Let α1 , α2 be such that

N(τ(α i)) = 4N(α i) − Tr(α i)2 = D i

for i = 1, 2. Adding an integer to α i if necessary, we may assume Tr(α i) = δ i , so
N(α i) = 1

4 (D i + δ i). Replacing α2 with ᾱ2 if necessary, we can further assume that
Tr(τ(α1)τ(α2)) ≥ 0. We have D1 ≤ 2p2/3 ≤ p, so by Corollary 3.15, we have

T = 1
2

Tr(τ(α1)τ(α2)) = 2 Tr(α1 ᾱ2) − δ1δ2 .

We can then solve for Tr(α1 ᾱ2) = 1
2 (T + δ1δ2), and this determines the Gram matrix

for the basis 1, α1 , α2. ∎

4.4 Determining D3 from D1 and D2

As above, we assume D1 ≥ 15 (since Lemma 3.10 applies when D1 < 15). We can
identify the fourth successive minimum of O as the index of the smallest nonzero
term of θO − θL , where L = ⟨1, α1 , α2⟩ as in Lemma 4.6. Recall that in Lemma 4.4
(resp. Lemma 4.5), we showed that if cn qn is the first nonzero term of θO − θZ (resp.
θO − θZ[α1]), then there are at most two elements with norm n in O/Z (resp. in
O/Z[α]) up to negation and conjugation. Using this constraint, we could determine
the traces of these elements, and hence the first (resp. second) successive minimum of
OT .

Unfortunately, n can be much larger than in previous cases, so Corollary 3.14 may
no longer be useful; it is possible for there to exist two elements of O of the same norm
n generating distinct but isomorphic subfields. Thus the first nonzero coefficient may
not be sufficient to determine D3. However, we will show that the first two coefficients
of θO − θL are sufficient.

We begin with two plane geometry lemmas.

Lemma 4.7 Let Λ ⊆ R2 be a rank 2 lattice with positive-definite quadratic form Q,
and v ∈ R2. Let c denote the minimum of Q(v −w) for w ∈ Λ, and λ the minimum of
Q(w) for w ∈ Λ/{0}. Then, there exists a set of four points P ⊆ Λ, forming the vertices
of a translated fundamental parallelogram of Λ, such that for all w ∈ Λ/P, we have
Q(v −w) ≥ c + λ.

We call a set P satisfying the conclusion of Lemma 4.7 a separating set for v, since
we can use it to ensure that no other element of Λ is too close to v. Note that elements
w ∈ P may themselves satisfy Q(v −w) ≥ c + λ, and a separating set for v in Λ is not
necessarily unique.

Proof Let ⋅ denote the bilinear form associated with Q. By standard lattice basis
reduction arguments, there exists a basis u′1 , u′2 for Λ such that the triangle with
vertices 0, u′1 , u′2 is right or acute, in the sense that u′1 ⋅ u′2, (−u′2) ⋅ (u′1 − u′2), and
(−u′1) ⋅ (u′2 − u′1) are all nonnegative. The plane is tiled by congruent copies of this
triangle with vertices lying in Λ; let Δ be one such triangle containing v (allowing v to
lie on the boundary of Δ). Let r1 , r2 , r3 be the vertices of Δ, and s the orthocenter of Δ
(that is, s satisfies (r i − s) ⋅ (r j − rk) = 0 for all permutations i , j, k of 1, 2, 3). Then Δ
can be written as the union of three triangles Δ12, Δ23, and Δ13, where Δ i j is defined
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0 u1

u2 u1 + u2

v

s

Figure 1: If v lies in the highlighted gray triangle, then P = {0, u1 , u2 , u1 + u2} satisfies the
conclusion of Lemma 4.7.

as the triangle with vertices r i , r j , s. Without loss of generality, suppose v ∈ Δ12. After
translation by −r3, and setting u1 ∶= r1 − r3 and u2 ∶= r2 − r3, we can assume that Δ has
vertices 0, u1 , u2 and that v lies in the triangle with vertices s, u1 , u2, as in Figure 1. By
computing the orthogonal projections of u2 , v , u1 onto the span of u1 (and similarly
onto the span of u2), we obtain the relations

0 ≤ u2 ⋅ u1 ≤ v ⋅ u1 ≤ u1 ⋅ u1 ,
0 ≤ u1 ⋅ u2 ≤ v ⋅ u2 ≤ u2 ⋅ u2 .

To simplify notation set

t ∶= u1 ⋅ u2 , s1 ∶= v ⋅ u1 , s2 ∶= v ⋅ u2 ,

so we have 0 ≤ t ≤ s i ≤ Q(u i) for each i = 1, 2.
Now for any lattice element w ∈ Λ, we exhibit w0 ∈ P ∶= {0, u1 , u2 , u1 + u2} such

that (v −w0) ⋅ (w −w0) ≤ 0. Set w = as1 + bs2 for some a, b ∈ Z.

• If a, b ≤ 0, then v ⋅w = as1 + bs2 ≤ 0.
• If a ≥ 1 and b ≤ 0, then (v − u1) ⋅ (w − u1) = (a − 1)(s1 − Q(u1)) + b(s2 − t) ≤ 0.
• If a ≤ 0 and b ≥ 1, then (v − u2) ⋅ (w − u2) = a(s1 − t) + (b − 1)(s2 − Q(u2)) ≤ 0.
• If a, b ≥ 1, then

(v − u1 − u2) ⋅ (w − u1 − u2) = (a − 1)(s1 − Q(u1) − t) + (b − 1)(s2 − Q(u2) − t) ≤ 0.

We therefore have

Q(v −w) ≥ Q(v −w0) + Q(w −w0).

We have Q(v −w0) ≥ c, and Q(w −w0) ≥ λ unless w = w0. ∎
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0 b1

b2

v

Figure 2: The white circles indicate the points w ∈ R2 with w ≠ v and ∣w ⋅ b j ∣ = ∣v ⋅ b j ∣ for j =
1, 2. If b1 and b2 are not orthogonal, then the only such point with the same norm as v is −v.

Lemma 4.8 Let b1 , b2 ∈ R2 be linearly independent vectors, and let v1 , v2 ∈ R2 be
distinct vectors. Let (x , y) ↦ x ⋅ y denote the bilinear form associated with a positive-
definite quadratic form on R2. If b1 ⋅ b2 ≠ 0, v1 ⋅ v1 = v2 ⋅ v2, and ∣v1 ⋅ b j ∣ = ∣v2 ⋅ b j ∣ for
j = 1, 2, then v1 = −v2.

See Figure 2 for an intuitive explanation of this result.

Proof Since b1 , b2 form a basis for R2, it suffices to show that v1 ⋅ b j = −v2 ⋅ b j for
each j = 1, 2. For the sake of contradiction, suppose v1 ⋅ b1 = v2 ⋅ b1 ≠ 0. Since v1 and
v2 are distinct, we must then have v1 ⋅ b2 ≠ v2 ⋅ b2, so v1 ⋅ b2 = −v2 ⋅ b2. Set b∗2 = b2 −
b2 ⋅b1
b1 ⋅b1

b1, so that for i = 1, 2, we can write

v i =
v i ⋅ b1

b1 ⋅ b1
b1 +

v i ⋅ b∗2
b∗2 ⋅ b∗2

b∗2

with b1 , b∗2 orthogonal. Since v1 ⋅ v1 = v2 ⋅ v2 but v1 ≠ v2, we can conclude that v1 ⋅ b∗2 =
−v2 ⋅ b∗2 , or expanding,

v1 ⋅ b2 −
b2 ⋅ b1

b1 ⋅ b1
(v1 ⋅ b1) = −v2 ⋅ b2 +

b2 ⋅ b1

b1 ⋅ b1
(v2 ⋅ b1).

Since v1 ⋅ b2 = −v2 ⋅ b2 and v1 ⋅ b1 = v2 ⋅ b1 ≠ 0, we conclude b2 ⋅ b1 = 0, a contradiction.
Hence v1 ⋅ b1 = −v2 ⋅ b1, and similarly v1 ⋅ b2 = −v2 ⋅ b2, so that v1 = −v2. ∎

We now return to the quaternion setting; we continue to assume D1 ≥ 15 and
p ≥ 11 (though all we will use from now on is D1 > 5 and p odd). Note that from
L = ⟨1, α1 , α2⟩, we obtain a rank 2 lattice

τ(L) = ⟨β1 , β2⟩;

under the isomorphism between Bp ⊗R and R4, we obtain a lattice in R2 to which
we can apply Lemmas 4.7 and 4.8.

Lemma 4.9 There exists a set S ⊆ OT/τ(L) of four elements with the following
properties:

https://doi.org/10.4153/S0008414X24000592 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000592


Elements of prescribed norm in maximal orders 25

(a) For all γ ∈ OT/(τ(L) ∪ S ∪ −S), we have N(γ) ≥ D3 + D1.
(b) At most two elements of S have even norm.
(c) If S contains two elements γ1 , γ2 with N(γ1) = N(γ2) < D3 + D1, then the remain-

ing two elements γ3 , γ4 ∈ S satisfy N(γ3) = N(γ4).

Proof Let β1 , β2 , β3 ∈ OT attain the successive minima D1 , D2 , D3. By Lemma 3.5,
these elements form a basis of OT , so the quotient OT/τ(L) is an infinite cyclic group
generated by β3. Let v be the orthogonal projection of β3 onto Rτ(L), so u ∶= β3 − v
is orthogonal to Rτ(L). Note that if we had N(v −w) < N(v) for some w ∈ τ(L), this
would imply

N(β3 −w) = N(v −w) + N(u) < N(v) + N(u) = N(β3),

contradicting the fact that β3 attains the third successive minimum. Hence N(v) ≤
N(v −w) for all w ∈ τ(L). In particular, N(v) is bounded by the square of the covering
radius of τ(L); since the covering radius is bounded by

√
2

2
√

D2 we have N(v) ≤ 1
2 D2.

Now any γ ∈ OT/τ(L) can be written in the form

γ = aβ3 −w = au + (av −w)

for some a ∈ Z/{0} and w ∈ τ(L). If ∣a∣ ≥ 2, then using N(v) ≤ 1
2 D2 ≤ 1

2 D3 , we have

N(γ) = ∣a∣2N(u) + N(av −w) ≥ 4N(u) = 4(N(β3) − N(v)) ≥ 2D3 ≥ D3 + D1 .

On the other hand, suppose a = 1, so that γ = u + (v −w). Then by Lemma 4.7, there
exists P ⊆ τ(L) forming the vertices of a translated fundamental parallelogram for
τ(L) such that for all w ∈ τ(L)/P, we have

N(γ) = N(u) + N(v −w) ≥ N(u) + N(v) + D1 = D3 + D1 .

In other words, we have N(γ) ≥ D3 + D1 provided γ ∉ β3 − P. Finally, if a = −1
(so γ = −u + (−v −w)), the same argument shows that N(γ) ≥ D3 + D1 unless γ ∈
−β3 + P. So taking S ∶= β3 − P as in Figure 3, (a) follows.

Now for the sake of contradiction, suppose N(γ i) is even for three elements
γ1 , γ2 , γ3 ∈ S. The points w i = β3 − γ i lie on P, so their pairwise differences γ i − γ j =
w j −w i (for i , j ∈ {1, 2, 3}) contain a basis for τ(L). This implies that ⟨γ1 , γ2 , γ3⟩ = OT .
But since Tr(uv) is even for all u, v ∈ OT (Eq. (3.5)), the set of points in OT with even
norm is closed under addition. Hence, every element of OT must have even norm.
This is a contradiction, because O contains an element of odd trace (see Eq. (3.4) and
the discussion after Eq. (3.3)). Thus (b) must hold.

Finally, suppose N(γ1) = N(γ2) < D3 + D1 for some distinct γ1 , γ2 ∈ S. For each
i , j ∈ {1, 2}, we have

D3 ≤ N(γ i ± β j) = N(γ i) + N(β j) ± Tr(γ i β̄ j) < (D3 + D1) + D2 ± Tr(γ i β̄ j),

and, since D1 , D2 < p by Corollary 3.13 (recall we are assuming D1 ≥ 15), we have
∣Tr(γ i β̄ j)∣ < 2p. We also have ∣ 12 Tr(γ i β̄ j)∣2 ≡ N(γ i)N(β j) (mod 4p) by Proposition
3.12. So ∣ 12 Tr(γ i β̄ j)∣ equals the square root modulo 2p of N(γ i)N(β j) in the interval
[0, p), which is unique because (Z/2pZ)× is cyclic.
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0
v

u

P

β3S

−β3
−S

τ(L)

β3 + τ(L)

−β3 + τ(L)

Figure 3: Setup for the proof of Lemma 4.9. Black dots correspond to elements of OT . The sets
P, S, and −S are the vertices of the parallelograms with the corresponding labels.

For i = 1, 2, let v i be the projection of γ i onto Rτ(L), so that γ i = u + v i with u
orthogonal to v i ; note that v1 ≠ v2. Since N(γ1) = N(γ2), we have N(v1) = N(v2),
and for j = 1, 2, we have

∣Tr(v1 β̄ j)∣ = ∣Tr(γ1 β̄ j)∣ = ∣Tr(γ2 β̄ j)∣ = ∣Tr(v2 β̄ j)∣.

Further, we have 0 < N(β1), N(β2) < p by Corollary 3.13, and so Tr(β2 β̄1) ≠ 0 by
Proposition 3.12. So by Lemma 4.8, we can conclude v1 = −v2. Now if γ3 , γ4 ∈ S are
the remaining two elements with γ3 = u + v3 and γ4 = u + v4, then we must have
v3 = −v4 because the four elements of S form the vertices of a parallelogram. Hence
N(γ3) = N(γ4), proving (c). ∎

Lemma 4.10 Suppose D1 ≥ 15, and let

(θO − θL)(q) = cn qn + cn+1qn+1 + . . .

for some n ≥ 0. If cn = 2, or if cn = 4 and cn+1 ≥ 8, then D3 = 4n; otherwise D3 = 4n − 1.

Proof As in Lemma 4.4, the existence of an element of norm n in O/L (and no
smaller norm) guarantees that D3 is equal to either 4n − 1 or 4n. Let S ⊆ OT/τ(L)
be as in Lemma 4.9. Since N(γ) ≥ D3 + 15 > 4n + 4 for all γ ∈ OT/(τ(L) ∪ S ∪ −S),
the series θO(q) − θL(q) is congruent to

⎛
⎜⎜⎜
⎝

∑
β∈S

N(β)≡0 mod 4

2qN(β)/4
⎞
⎟⎟⎟
⎠

θ0(q) +
⎛
⎜⎜⎜
⎝

∑
β∈S

N(β)≡3 mod 4

2q(1+N(β))/4
⎞
⎟⎟⎟
⎠

θ1(q) (mod qn+2).

(4.1)
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We divide into cases based on the number of elements of norm 4n − 1 and 4n in S.
First, we consider the cases that S has no elements of norm 4n − 1, so that D3 = 4n.
Then S contains either one or two elements of norm 4n: S cannot contain more than
two elements of norm 4n by Lemma 4.9(b). Recall that θ0(q) ≡ 1 + 2q (mod q2) and
θ1(q) ≡ 2 (mod q2).
• If S contains one element of norm 4n, this element contributes 2qn θ0(q) to Eq. (4.1)

and every other element of S contributes a multiple of qn+1, so cn = 2.
• If S contains two elements of norm 4n, these elements contribute 4qn θ0(q) to Eq.

(4.1) and every other element of S contributes a multiple of qn+1, so cn = 4 and
cn+1 ≥ 8.

Now consider the cases that S has at least one element of norm 4n − 1, so that
D3 = 4n − 1.
• If S contains at least two elements of norm 4n − 1, these contribute 4qn θ1(q) to Eq.

(4.1), so cn ≥ 8.
• If S contains at least one element of norm 4n − 1 and at least one element of norm

4n, these contribute 2qn θ0(q) + 2qn θ1(q) to Eq. (4.1), so cn ≥ 6.
• Suppose S contains exactly one element of norm 4n − 1, and no elements of norm

4n. The element of norm 4n − 1 contributes 2qn θ1(q) to Eq. (4.1), so cn = 4. Now
by Lemma 4.9(c), S contains at most one element of norm 4n + 3 and at most one
element of norm 4n + 4. Thus the largest possible value of cn+1 is attained by

2qn θ1(q) + 2qn+1θ0(q) + 2qn+1θ1(q),
which has cn+1 = 6. In any case, we will have cn = 4 and cn+1 ≤ 6.

Combining these results, we see that if D3 = 4n, then either we have cn = 2 or we have
cn = 4 and cn+1 ≥ 8. When D3 = 4n − 1, then either we have cn ≥ 6 or we have cn = 4
and cn+1 ≤ 6. ∎

In conclusion, the theta function of O uniquely determines the successive minima
D1 , D2 , D3 of OT . By Theorem 1.4, these values uniquely determine the isomorphism
type of O, establishing Theorem 1.3.
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[4] J. Brzeziński, On orders in quaternion algebras. Comm. Algebra 11(1983), no. 5, 501–522.
https://doi.org/10.1080/00927878308822861

https://doi.org/10.4153/S0008414X24000592 Published online by Cambridge University Press

https://doi.org/10.1007/978-3-030-19478-9_2
https://doi.org/10.1017/S0027763000003391
https://doi.org/10.1112/plms/pdm032
https://doi.org/10.1080/00927878308822861
https://doi.org/10.4153/S0008414X24000592


28 E. Z. Goren and J. R. Love

[5] J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, corrected
reprint of the 1971 edition, Springer, Berlin, 1997.

[6] I. Chevyrev and S. D. Galbraith, Constructing supersingular elliptic curves with a given
endomorphism ring. LMS J. Comput. Math. 17(2014), 71–91.
https://doi.org/10.1112/S1461157014000254

[7] J. H. Conway and N. J. A. Sloane, Four-dimensional lattices with the same theta series. Internat.
Math. Res. Notices 4(1992), 93–96. https://doi.org/10.1155/S1073792892000102

[8] D. Dorman, Global orders in definite quaternion algebras as endomorphism rings for reduced CM
elliptic curves. In: J.-M. De Koninck and C. Levesque (eds.), Théorie des nombres (Quebec, PQ,
1987), de Gruyter, Berlin, 1989, pp. 108–116.

[9] K. Eisenträger, S. Hallgren, K. Lauter, T. Morrison, and C. Petit, Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions. In: J. B. Nielsen and V. Rijmen (eds.), Advances in
cryptology—EUROCRYPT 2018. Part III. Vol. 10822, Lecture Notes in Computer Science,
Springer, Cham, 2018, pp. 329–368. https://doi.org/10.1007/978-3-319-78372-7_11

[10] E. Z. Goren and K. E. Lauter, Class invariants for quartic CM fields. Ann. Inst. Fourier
(Grenoble) 57(2007), no. 2, 457–480.

[11] B. H. Gross, Heights and the special values of L-series. In: H. Kisilevsky and J. Labute (eds.),
Number theory (Montreal, QC, 1985), Vol. 7, CMS Conference Proceedings, American
Mathematical Society, Providence, RI, 1987, pp. 115–187.

[12] M. Kaneko, Supersingular j-invariants as singular moduli mod p. Osaka J. Math. 26(1989), no. 4,
849–855.

[13] Y. Kitaoka, Representations of quadratic forms and their application to Selberg’s zeta functions.
Nagoya Math. J. 63(1976), 153–162.

[14] D. R. Kohel, Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis, University of
California, Berkeley, 1996.

[15] J. Martinet, Perfect lattices in Euclidean spaces, Grundlehren der mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 327, Springer, Berlin, 2003.

https://doi.org/10.1007/978-3-662-05167-2
[16] E. Nilsson, J. Rowlett, and F. Rydell, The isospectral problem for flat tori from three perspectives.

Bull. Amer. Math. Soc. (N.S.) 60(2023), 39–83. https://doi.org/10.1090/bull/1770
[17] N. T. Sardari, Optimal strong approximation for quadratic forms. Duke Math. J. 168(2019), no. 10,

1887–1927. https://doi.org/10.1215/00127094-2019-0007
[18] A. Schiemann, Ternary positive definite quadratic forms are determined by their theta series.

Math. Ann. 308(1997), no. 3, 507–517. https://doi.org/10.1007/s002080050086
[19] K. Shiota, On theta series and the splitting of S2 (Γ0(q)). J. Math. Kyoto Univ. 31(1991),

909–930. https://doi.org/10.1215/kjm/1250519669
[20] C. L. Siegel, Lectures on the geometry of numbers, Notes by B. Friedman, Rewritten by

Komaravolu Chandrasekharan with the assistance of Rudolf Suter, With a preface by
Chandrasekharan, Springer, Berlin, 1989. https://doi.org/10.1007/978-3-662-08287-4

[21] J. Voight, Quaternion algebras, Graduate Texts in Mathematics, 288, Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-56694-4

[22] G. L. Watson, Integral quadratic forms, Cambridge Tracts in Mathematics and Mathematical
Physics, 51, Cambridge University Press, New York, 1960.

Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada
e-mail: eyal.goren@mcgill.ca jon.love@mcgill.ca

https://doi.org/10.4153/S0008414X24000592 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000254
https://doi.org/10.1155/S1073792892000102
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-662-05167-2
https://doi.org/10.1090/bull/1770
https://doi.org/10.1215/00127094-2019-0007
https://doi.org/10.1007/s002080050086
https://doi.org/10.1215/kjm/1250519669
https://doi.org/10.1007/978-3-662-08287-4
https://doi.org/10.1007/978-3-030-56694-4
mailto:eyal.goren@mcgill.ca
mailto:jon.love@mcgill.ca
https://doi.org/10.4153/S0008414X24000592

	1 Introduction
	1.1 Lattice definitions and conventions

	2 Generating sets for maximal orders
	2.1 A local–global principle for being generated by elements of prescribed norms
	2.2 Proof of Theorem 2.2
	2.3 Local generating sets for maximal orders
	2.3.1 ℓ≠p
	2.3.2 ℓ=p≠2
	2.3.3 ℓ=p=2
	2.3.4 Eichler orders


	3 Theta function determines maximal order: background and setup
	3.1 Isospectral lattices
	3.2 Lattice geometry of quaternion orders
	3.3 The Gross lattice
	3.4 Constraints on short Gross lattice vectors

	4 Theta function determines maximal order
	4.1 Successive minima of Gross lattice determines the order
	4.2 Decomposing the theta series along fibers of τ
	4.3 Determining D1 and D2
	4.4 Determining D3 from D1 and D2


