
1 Fundamentals of Thermal Radiation

The terms radiative heat transfer and thermal radiation are commonly used to
describe the science of heat transfer caused by electromagnetic (EM) waves. The
main goal of this chapter is to introduce the nature of thermal radiation, the
fundamental laws of thermal radiation, and the methods for computing radiative
heat exchange between two or more surfaces.

1.1 Basic Characteristics of Thermal Radiation

1.1.1 The Nature of Thermal Radiation
Radiation is one of the fundamental modes of heat transfer, and the research
on the mechanism and nature of radiation is still ongoing. Our current under-
standing of radiation is based on classical EM theory and quantum physics. In
1865, Maxwell published the complete equations of EM waves, believing that
light is a form of EM radiation [1]. Once the energy is radiated, it propa-
gates as an EM wave, regardless of whether there is a vacuum or matter along
its path.

In 1905, Einstein built on the idea of quantization of radiation proposed by
Planck, who believed that light is a stream of energy quanta moving at the speed
of light [2]. This energy quantum is called a photon whose energy is proportional
to its frequency. Radiation is the energy-transfer process by which an object
emits photons to the outside. Later, Einstein further pointed out that photons
have wave–particle duality [3]. From the relationship between the frequency of
photon energy and the EM wavelength, we can simply glimpse the relationship
between wave and particle properties.

In general, the energy properties of radiation are explained by Einstein’s
light-quantum hypothesis, while the propagation properties are explained by
Maxwell’s EM field theory. This book mainly focuses on the conversion and
transfer of radiative energy, so the basic properties of thermal radiation will
be explored under the guidance of EM field theory. The core content of EM
field theory is the famous Maxwell’s equations. These consist of Gauss’s laws
for the electric field and the magnetic field, Faraday’s law of EM effect, and the
Ampere–Maxwell law. No doubt, Maxwell’s equations are as sacred in the field
of electrodynamics as Newton’s second law is in classical physics.
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4 Fundamentals of Thermal Radiation

Figure 1.1 The spectrum of EM waves.

According to the EM field theory, the electric field and the magnetic field
are interrelated and mutually excited to form a unified EM field. The EM field
propagates in vacuum at the speed of light, which is called the EM wave. The
wavelength range of EM waves is very wide, covering cosmic rays with wave-
lengths of less than 10−9 m to radio waves with wavelengths of several hundred
meters. Figure 1.1 shows the wavelength distribution of various EM waves.

The EM wave generated by thermal motion is called thermal radiation, whose
wavelength is in the range of 0.1–100 µm, mainly including the visible region and
most of the infrared region. In vacuum, the wavelength of visible light is 0.38–
0.76 µm and that of infrared light is 0.76–1000 µm. In the range of temperatures
in industry (i.e., below 2000 K), the radiation wavelengths are between 0.8 and
100 µm. The sun is a heat source with a surface temperature of about 5800
K, and the energy of solar radiation is concentrated in the wavelength range
of 0.2–2 µm. As long as the temperature of an object is higher than absolute
zero (0 K), it always emits continuous thermal radiation outward. At the same
time, the object also constantly absorbs the incident thermal radiation on its
surface from the surrounding environment and converts the absorbed radiation
energy into heat energy. When it is in thermal equilibrium with the surrounding
environment, the thermal radiation on its surface is still evolving, but its net
radiative heat transfer is equal to zero.

1.1.2 The Effect of Surfaces on Radiation
When the total radiation energy Q from the outside strikes a surface, part of
the energy is reflected by the surface (Qρ), part is absorbed (Qα), and part is
transmitted (Qτ ) as shown in Fig. 1.2. According to the law of conservation of
energy,

Q=Qρ+Qα+Qτ . (1.1.1)

Dividing both sides of this equation by Q, we can obtain

1=
Qρ
Q

+
Qα
Q

+
Qτ
Q
. (1.1.2)
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1.1 Basic Characteristics of Thermal Radiation 5

Figure 1.2 Reflection, absorption, and transmission of thermal radiation.

The three parts of energy, Qρ/Q, Qα/Q, and Qτ/Q, are called reflectivity, ab-
sorptivity, and transmissivity of the body, denoted by ρ,α, and τ , respectively.
Therefore, Eq. (1.1.2) can be further expressed as

ρ+α+ τ =1. (1.1.3)

When the radiation energy is incident on a solid or liquid surface, its absorp-
tion occurs only at a very thin layer of the surface owing to tightly arranged
molecules. For metal conductors, this thickness is of the order of 1 µm; for most
nonconductive materials, this thickness is usually less than 1 mm. Therefore, it
can be considered that neither solid nor liquid is allowed to penetrate thermal
radiation, that is, τ =0. Thus, Eq. (1.1.3) can be simplified as

α+ρ=1. (1.1.4)

In addition, since thermal radiation cannot penetrate through thick solids and
liquids, the absorption of radiation energy takes place only over a very thin
surface. In the same way, their radiation should occur at the thin layer of the
surface. Therefore, the thermal radiation of solids and liquids is a surface process,
which makes the calculation of radiation heat transfer easier. Like visible light,
the reflection phenomenon of radiation is also divided into specular reflection
and diffuse reflection, which depends on the size of the irregularity of the surface
of the object (i.e., the surface roughness) and the magnitude of the wavelength
of input radiation. When the wavelength of the input radiation is larger than
the irregularity of the object surface, the reflection follows the law of geometric
optics and forms specular reflection, as shown in Fig. 1.3. The reflection angle
is equal to the incident angle. By contrast, when the wavelength of the input
radiation is smaller than the irregularities of the object surface, as shown in Fig.
1.4, diffuse reflection is formed.

Gas has little ability to reflect radiation energy, so the reflectivity can be
considered to be 0 (ρ=0). Therefore, Eq. (1.1.3) can be simplified as
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6 Fundamentals of Thermal Radiation

Figure 1.3 Specular reflection.

Figure 1.4 Diffuse reflection.

α+ τ =1. (1.1.5)

The above discussion shows that the absorption and transmission of thermal
radiation by gas characterize a volumetric process.

1.1.3 Blackbody Model
The radiation properties of real objects are usually very complex. Therefore,
some ideal physical models are abstracted in the study of thermal radiation. An
object with the absorption rate of α=1 is called an absolute blackbody [4], which
means that it can absorb radiation of all wavelengths. As shown in Fig. 1.5, it is a
typical blackbody model that is composed of an opening surface of an isothermal
cavity. After repeated absorption and reflection, the incident radiation entering
the cavity can finally leave the hole with very little radiation energy. Therefore,
the opening surface of the isothermal cavity can be regarded as a surface that
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Figure 1.5 Blackbody model.

completely absorbs thermal radiation, namely, an artificial blackbody. And we
cannot infer the absorptive capacity of an object to the projection of full-band
radiation energy simply by its color. A black object is not necessarily a blackbody.

1.2 Basic Laws of Blackbody Thermal Radiation

Through the introduction of the basic characteristics of thermal radiation, the
qualitative understanding of thermal radiation is concluded: thermal radiation
is directly related to temperature, and it has spectral characteristics. In addi-
tion, the transmission of radiation energy has a certain directivity. Therefore,
this section will continue to study the above characteristics of thermal radia-
tion quantitatively, that is, systematically focus on the basic laws of thermal
radiation, which respectively reveal the amount of energy radiated from a unit
blackbody surface to the outside at a certain temperature from different angles
and its distribution law with space direction and wavelength.

1.2.1 Hemispherical Emissive Power and Spectral Emissive Power
In order to quantitatively describe the laws of thermal radiation, the following
concepts need to be introduced from the aspects of space geometric properties
and energy properties.

Hemispherical Emissive Power
The hemispherical emissive power, E(W ·m−2), is defined as the rate at which
radiation is emitted per unit area at all possible wavelengths and in all possible
directions of the hemispherical space.
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8 Fundamentals of Thermal Radiation

Hemispherical Spectral Emissive Power
The hemispherical spectral emissive power, Eλ(W ·m−2 ·µm−1), is defined as
the rate at which radiation of wavelength λ is emitted per unit surface area with
per unit wavelength interval dλ and in all possible directions of the hemispheric
space.

Obviously, the relationship between the hemispherical emissive power and the
hemispherical spectral emissive power is as follows:

E=

∫ ∞

0

Eλdλ. (1.2.1)

Solid Angle
The solid angle, Ω (sr), is defined by a small conical region between the rays of
a sphere, and it is measured as the ratio of the area dAc on the sphere to the
square of the sphere’s radius. Accordingly,

Ω=
Ac

r2
, dΩ=

dAc

r2
. (1.2.2)

In the spherical coordinate system of Fig. 1.6, φ is called the azimuthal angle,
θ is called the zenith angle [5], and from Fig. 1.6, we can conclude that

dAc= r dθ · r sin θdφ. (1.2.3)

Rearranging Eq. (1.2.3), it follows that

dΩ=sin θdθdφ. (1.2.4)

Directional Radiation Intensity
Directional radiation intensity, I( W ·m−2 · sr−1), is defined as the rate at which
radiation energy is emitted at all wavelengths in a direction per unit area of
the emitting surface normal to this direction and per unit solid angle about this
direction.

Figure 1.6 The solid angle subtended by dAc at a point on dA in the spherical
coordinate system.
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Figure 1.7 The projection of dA normal to the direction of radiation.

And dφ(θ) means the energy emitted from the unit area of the blackbody to
the solid angle of the element around the latitude angle of space, and then the
experiment shows that

dφ(θ)

dA dΩ
= I cosθ. (1.2.5)

That is,

I=
dφ(θ)

dA dΩcos θ
, (1.2.6)

where I is a constant, independent of direction, and dA cosθ is the normal area
in the direction θ (Fig. 1.7).

1.2.2 Planck’s Law
Planck’s law reveals how the blackbody spectral emissive power varies with wave-
length in thermodynamic equilibrium. It is

Ebλ=
c1λ

−5

exp [c2/(λT )]−1
, (1.2.7)

where Ebλ is the blackbody spectral emissive power, W ·m−3; λ is the wave-
length, m; T is the absolute temperature of the blackbody, K; c1 is the first
radiation constant, 3.7419×10−16 W ·m2; and c2 is the second radiation con-
stant, 1.4388× 10−2 m ·K

The blackbody spectral emissive power distribution is plotted in Fig. 1.8, from
which we see that the blackbody has a maximum spectral emissive power and
that the corresponding wavelength λm depends on temperature:

λmT =2.8976×10−3 m ·K≈2.9×10−3 m ·K. (1.2.8)

Equation (1.2.8) is known as Wien’s displacement law, and the blackbody
temperature can be calculated according to the spectrum of the blackbody. It
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Figure 1.8 Spectral blackbody emissive power.

is concluded completely based on the empirical summary of experimental data,
but it can be deduced mathematically from the Planck distribution [6]:

∂Ebλ

∂λ
=

5c1λ
−6

exp [c2/(λT )]−1

{
c2 exp [c2/(λT )]

5λT {exp [c2/(λT )]−1}
−1

}
=0. (1.2.9)

We set x= c2/ (λmT )x= c2/ (λmT ); rearranging Eq. (1.2.9), it follows that

x expx

5(expx−1)
−1=0. (1.2.10)

Equation (1.2.10) is the transcendental equation of the variable x, and the solu-
tion is as follows:

x= c2/(λmT )=4.9651. (1.2.11)

Hence,

λmT = c2/4.9651=2.8976×10−3 m ·K. (1.2.12)

1.2.3 Stefan–Boltzmann Law
The Stefan–Boltzmann law points out that the blackbody emissive power is
proportional to the fourth power of the blackbody’s temperature,

Eb=σT
4, (1.2.13)

where σ is the Stefan–Boltzmann constant, 5.67×10−8 W ·
(
m2 ·K4

)−1. Equa-
tion (1.2.13) can be deduced from Eq. (1.2.7) as follows:
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Eb=

∫ ∞

0

Ebλdλ=

∫ ∞

0

c1λ
−5

exp [c2/(λT )]−1
dλ. (1.2.14)

We set x= c2/(λT ), it follows that

dλ=
−c2
Tx2

dx, (1.2.15)

Eb=
c1
c24

T 4

∫ ∞

0

x3

exp(x)−1
dx, (1.2.16)

where ∫ ∞

0

x3

expx−1
dx=

∫ ∞

0

x3

[ ∞∑
n=1

exp(−nx)

]
dx

=

∞∑
n=1

∫ ∞

0

x3 exp(−nx)dx

=

∞∑
n=1

3!

n4
=
π4

15
.

(1.2.17)

Hence,

Eb=
π4c1
15c24

T 4=σT 4. (1.2.18)

For the blackbody emissive power in a prescribed wavelength interval from 0 to
λ, it can be obtained by integrating as follows:

Eb(0−λ)=

∫ λ

0

Ebλdλ. (1.2.19)

The fraction of the emission in this wavelength range is determined as follows:

Fb(0−λ)=

∫ λ
0
Ebλdλ

σT 4
=

∫ λ

0

c1(λT )
−5

exp [c2/(λT )]−1

1

σ
d(λT )=f(λT ). (1.2.20)

This function is called the blackbody radiation function; its value can be easily
obtained according to the given value of λT . Meanwhile, the fraction of the
radiation between any two wavelengths λ1 and λ2 may also be easily obtained

Eb(λ1−λ2)=Fb(λ1−λ2)Eb=
(
Fb(0−λ2)−Fb(0−λ1)

)
Eb. (1.2.21)

1.2.4 Lambert Law
The Lambert law tells us that the directional radiation intensity of the black-
body is a constant, independent of the direction. This law also shows that the
energy emitted from the unit area of the blackbody varies according to the law
of cosine of the latitude angle of space: it reaches its maximum in the direction
perpendicular to the surface and zero in the direction parallel to the surface.
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12 Fundamentals of Thermal Radiation

The relationship between the Lambert law and the Stefan–Boltzmann law can
be derived as follows. Considering Eq. (1.2.6), the blackbody emissive power can
be written as

Eb=

∫
Ω=2π

dϕ(θ)

dA
dΩ= Ib

∫
Ω=2π

cosθdΩ= Ib

∫ 2π

0

dφ

∫ π/2

0

sin θ cosθdθ= Ibπ.

(1.2.22)

The above equation shows that the blackbody emissive power is π times the
directional radiation intensity of the blackbody.

1.2.5 Kirchhoff’s Law
Concepts Used to Describe Radiation by the Real Surface
(1) Emissivity
We define the emissivity, ε, as the ratio of the radiation emitted by the surface
to the radiation emitted by a blackbody at the same temperature:

εT =
E(T )

Eb(T )
. (1.2.23)

(2) Absorptivity
We define the absorptivity, α, as the fraction of the total radiation absorbed by
a surface:

α=
Gabs

G
, (1.2.24)

where Gabs and G represent the absorbed irradiation and incident irradiation,
respectively. If the incident radiation originates from an ideal blackbody, then
G can be replaced by Eb.

The Relationship between Emissivity and Absorptivity in
Thermal Equilibrium
Kirchhoff’s law reveals the relationship between the emissivity and absorptivity
of a real surface. Consider two parallel plates that are very close to each other
(Fig. 1.9); all of the radiation energy emitted from one plate is incident on the
other. Assume that plate 1 has a blackbody surface, and its emissive power,
absorptivity, and surface temperature are Eb, α, and T1, respectively. Plate 2
is the surface of any object, and its emissive power, absorptivity, and surface
temperature are E,α, and T2, respectively. The energy emitted per unit area
per unit time by plate 2 is absorbed entirely when it is incident on the surface
of plate 1. Meanwhile, the energy emitted from plate 1 is absorbed only when
αE/rmb is incident on plate 2, and the rest of the energy (1−α)Eb is reflected
back to plate 1 and absorbed entirely. The energy difference of plate 2 is the heat
flux of the radiative heat transfer between the two plates:

q=E−αEb. (1.2.25)
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Figure 1.9 Derivation model of Kirchhoff’s law.

When the system is at the thermal equilibrium condition, that is, when q=0,
we obtain

E

α
=Eb. (1.2.26)

Extending this relation to any object, the following equations can be written
E1

α1
=
E2

α2
= · · ·=Eb, (1.2.27)

α=
E

Eb
=ε. (1.2.28)

The meaning of Eq. (1.2.27) can be expressed as follows. At the thermal equilib-
rium condition, the ratio of an object’s radiation to its absorption of radiation
from a blackbody is the same as the emissive power of the blackbody at the same
temperature. Similarly, the meaning of Eq. (1.2.28) can be briefly expressed as:
at thermal equilibrium condition, the absorptivity of any object to the black-
body’s incident radiation is equal to the emissivity of the object at the same
temperature.

The Relationship between the Absorptivity and Emissivity
of the Diffuse Gray Surface
In reality, most of the radiation is not emitted from the blackbody; to broaden
the application scope of Kirchhoff’s law, an assumption called the diffuse gray
body, of which the emissivity does not change with direction and absorptivity
does not change with wavelength, is introduced.

First of all, assume that a diffuse gray body and a blackbody are at a thermal
equilibrium condition, and then the blackbody is removed to allow another non-
blackbody to radiate different temperatures that are incident on its surface,
whereas the diffuse gray body still keeps its temperature unchanged. Since the
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14 Fundamentals of Thermal Radiation

Table 1.1 Three expressions of Kirchhoff’s law.

Level Expression Constraint condition

Spectral, direction ε(λ,φ, θ,T )=α(λ,φ, θ,T ) Unconditional, θ is the lati-
tudinal angle

Spectral, hemispherical ε(λ,T )=α(λ,T ) Diffuse surface
Total, hemispherical ε(T )=α(T ) Should be at a thermal

equilibrium condition with
blackbody radiation or a dif-
fuse gray surface

Figure 1.10 Schematic diagram of the spectral emissive power of the gray body and
the real surface.

emissivity and absorptivity of the diffuse gray body do not change, the energy
emitted by the diffuse gray body at the same temperature should be equal to
the energy absorbed, that is, the absorptivity at the same temperature is equal
to the emissivity. In conclusion, the total hemispherical absorptivity for a diffuse
gray body is equal to its total hemispherical emissivity, regardless of whether the
diffuse gray body is at a thermal equilibrium condition with other substances or
the environment and regardless of whether other substances are blackbodies. This
the conclusion simplifies the calculation of radiative heat transfer and establishes
the relationship between the absorptivity and emissivity of the real surface.

According to Kirchhoff’s law, the larger the emissive power of an object is, the
greater its absorption capacity will be, so a blackbody has the largest emissive
power at the same temperature. In addition, Kirchhoff’s law can be divided into
three levels [7] according to the application conditions, as shown in Table 1.1, and
each level corresponds to different constraint conditions. Figure 1.10 qualitatively
shows the variation of spectral emissive power with the wavelength of a gray
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1.3 Gas Radiation Characteristics and Solar Radiation 15

body and the real surface. (For a diffuse gray body at a specific temperature, its
spectral emissivity ε(λ) is a constant.)

1.3 Gas Radiation Characteristics and Solar Radiation

1.3.1 Gas Radiation Characteristics
Being different from solid and liquid radiation, gas radiation has the following
two characteristics. First, gas radiation is strongly wavelength selective, and gas
is not a gray body. The radiating gas can be composed of molecules, atoms,
ions, and free electrons with various energy levels. The energy associated with
the motion of vibration and the rotation of a molecule has specific quantized
values, and hence gas emits and absorbs radiation in discrete energy intervals
dictated by the allowed states within the molecule. Gas molecules tend to have
radiative and absorptive abilities only within a specific wavelength range. For
example, ozone absorbs almost all UV wavelengths of less than 0.3 µm [8], so
the ozone layer in the atmosphere protects life on the Earth from UV damage.
As a greenhouse gas, carbon dioxide has three main absorption bands: 2.65–2.8,
4.15–4.45, and 13.0–17.0 µm [9]. This makes it difficult for radiation from the
ground to penetrate the atmosphere into the universe. In addition, water vapor
also has three main bands: 2.55–2.84, 5.6–7.6, and 12–30 µm [10]. Figure 1.11
schematically shows the main bands of carbon dioxide and water vapor.

Another property of gas radiation is that the radiation and absorption of
gas occur throughout the volume. In a container filled with gas, radiation and
absorption occur along its path, regardless of the direction along which the radi-
ation propagates. To study the absorption of a certain part of gas in a container,
it is necessary to consider the influence of the whole container, including the
size, shape, and wall characteristics of the container. Besides, emission, absorp-
tion, and scattering occur all the time in the radiation path, which involves the
surrounding gas in the study of radiation. To comprehensively study the gas ra-
diation in a container, a more complicated model is needed to describe it, which
will be introduced in Chapter 2.

1.3.2 Emissivity and Absorptivity of Water Vapor and Carbon Dioxide
Many factors affect gas emissivity and absorptivity. This section will introduce
some of the key influencing factors and a theoretical system describing gas emis-
sivity and absorptivity. In most engineering applications, we only care about the
total radiation ability. Therefore, we can temporarily ignore the spectral prop-
erties and only concentrate on the total gas emissivity at a certain temperature.
In Section 1.3.1, we also pointed out the volumetric properties of gas radiation,
that is, the shape and size of the volume also have a certain influence on gas
radiation.
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16 Fundamentals of Thermal Radiation

Figure 1.11 Schematic diagram of main optical bands of CO2 and H2O.

Mean Beam Length
The radiation ability of gas is related to the shape of the gas volume and the
location of the research object. Parameters describing the radiation path need to
be developed based on the shape of the volume and the location of the search ob-
ject. Assume the radiation from a hemispherical gas volume to a differential area
element located in the center. In this case, all the paths between the hemisphere
and the area have the same length as the radius of the hemisphere, R, as shown
in Fig. 1.12. And the mean beam length is R itself [11]. For gas volumes with
other shapes, the equivalent hemisphere method can be applied to obtain the
mean beam length. The so-called equivalent hemisphere is a hemisphere filled
with the same gas in the same state as in the volume, and the radiation power
on the center of the hemisphere from the equivalent hemisphere is equivalent
to that on the studied area from the gas volume. The radius of such an equiva-
lent hemisphere is the mean beam length of the gas. The equivalent hemisphere
method is only a simple approximation, and there are more accurate formulas for
other typical volume gases [12, 13]. In simple processing, the mean beam length
of gas with any geometry can be calculated as follows, where V is the volume of
gas (m3) and A is the area of cladding (m2):

s=3.6
V

A
. (1.3.1)

Emissivity
The mean beam length takes the volumetric properties of gas radiation into
account, while the emissive power of the gas on the wall or on a specified point
on the wall is also affected by the temperature, composition of the gas, and the
number of absorbent gas molecules along the path. The number of gas molecules
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Figure 1.12 Schematic diagram of gas radiation to the center in hemispheres.

along the path can be expressed by the product of the partial pressure (p) of gas
and the mean beam length (s):

εg=f (Tg, ps) . (1.3.2)

For water vapor, in addition to the synthetic parameter (pH2Os) that affects the
gas emissivity, there is also a separate effect of pH2O. After extrapolating the
single effect of pH2O to the limit case, where pH2O is zero under certain condi-
tions, as the basis for drawing the graph line ε∗H2O

=f (Tg, pH2Os) , p=105 Pa,
the separate effects of the total pressure p ̸=105 Pa, and pH2O is then corrected
by introducing a coefficient CH2O. Thus, the emissivity of water vapor is

εH2O=CH2Oε
∗
H2O. (1.3.3)

Similarly, the emissivity of carbon dioxide is confirmed by Eq. (1.3.4):

εCO2
=CCO2

ε∗CO2
. (1.3.4)

When both water vapor and carbon dioxide exit in the mixture, a correction
quantity needs to be introduced for the overlapping part of the wavebands of
two gases. The gas emissivity is calculated by the following formula [13]:

εg=CH2Oε
∗
H2O+CCO2ε

∗
CO2

−∆ε. (1.3.5)

Absorptivity
When the gas emits radiation energy, it also absorbs radiation from the wall
and/or other gas. Kirchhoff’s law is no longer applicable to obtain gas absorptiv-
ity mainly for two reasons. Gas radiation is strong wavelength selective, so gas
cannot be regarded as a gray body. Besides, gas diffuses in the whole container,
and there is heat transfer between the gas and the wall. Hence, the internal
temperature is not necessarily balanced, that is, the thermal equilibrium state
is not necessarily satisfied. Similar to the emittance calculation, we can write
the absorptivity of a mixture of water vapor and carbon dioxide to the radiation
from the blackbody shell:

αg=CH2Oα
∗
H2O+CCO2

α∗
CO2

−∆α, (1.3.6)
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where CH2O and CCO2 are the same as that in Eqs. (1.3.3) and (1.3.4), respec-
tively, and α∗

H2O
, α∗

CO2
,∆α can be calculated by the following empirical formulas

in which Tw is the wall temperature [13]:

α∗
H2O=

[
ε∗H2O

]
TW,pH2Os

(
TW
Tg

)(
Tg
TW

)0.45 , (1.3.7)

α∗
CO2

=
[
ε∗CO2

]
TW,pCO2s

(
TW
Tg

)(
Tg
TW

)0.65 , (1.3.8)

∆α=[δε]TW
. (1.3.9)

1.3.3 Solar Radiation
The Sun is a nearly spherical body that has a diameter of 1.39×109 m and
is located at a distance of 1.50×1011 m from the Earth. The Sun, where a
thermonuclear reaction occurs continually, radiates to the Earth at a rate of
1.7×1017 W, of which 30% is reflected and 23% is absorbed by the atmosphere,
and the rest reaches the Earth’s surface. Figure 1.13 shows the blackbody ra-
diation spectrum of 5770 K and the solar spectrum at the outer edge of the
atmosphere and that on the ground. The radiation reaching the outer surface of
the Earth’s atmosphere has spectral properties (shown in Fig. 1.13) close to that
of a blackbody at 5770 K. But through the atmosphere, the energy spectrum
reaching the ground would appear to fluctuate because of the strong selective
absorption of the gases. At the average distance between the Sun and the Earth,
the solar radiation energy received by the unit surface area perpendicular to the
solar rays at the outer edge of the atmosphere is (1 370 ±6)Wm−2. This value
is called the solar constant [14], and it is independent of geographical location
or time of day (see Fig. 1.14). In fact, the amount of solar input per unit area
received at the horizontal surface of the outer edge of the atmosphere is

Gs,o=Scf cosθ. (1.3.10)

1.4 View Factor of Radiative Heat Transfer

Radiative heat transfer between surfaces is closely related to geometrical factors,
such as surface geometry and orientations, which are usually considered as the
view factor. The concept of view factor was put forward in the 1920s with the
appearance and development of the radiation heat transfer calculation method
on solid surfaces.

1.4.1 Definition and Calculation of View Factor
To separate geometric relations between surfaces from radiation intensity and
make the view factor only contains the geometric relations, the enclosures are
summed to be opaque, diffuse, and gray [15]. For surfaces that do not meet the
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Figure 1.13 Spectral distribution of solar radiation.

Figure 1.14 Solar radiation at the outer edge of the atmosphere.

first condition, that is, nondiffuse surfaces, the influence of geometric factors on
radiative heat transfer is related to the direction, so the concept of view factor
cannot be generally used, but its calculation method and principle are basically
similar to that of the view factor. For the convenience of discussion, the object
is treated as a blackbody in the study of the view factor, but the conclusions
obtained are suitable for a diffuse gray surface.
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20 Fundamentals of Thermal Radiation

Let there be two surfaces 1 and 2, both of which meet the above conditions,
such as there exist two diffuse surfaces between transparent media. Then, the
view factor of surface 1 to surface 2, X1,2, is the fraction of uniform diffusive
radiation leaving surface 1 that is intercepted by surface 2. The definition of the
view factor can thus be written as

X1,2=
The incident radiation from surface 1 to surface 2

The effective radiation from surface 1 . (1.4.1)

The relative spatial position of two surfaces directly affects the radiative heat
transfer between them and hence affects the view factor. For example, when two
opposite-placed surfaces are infinitely close to each other, the incident radiation
from one to the other is equivalent to the effective radiation, and the view factor
is 1. However, for two surfaces in the same plane, since neither surface can receive
the incident radiation from the other, the radiative heat transfer and view factor
are zero. Besides, the shape of the surface will also affect the value of the view
factor. This section will specifically study the influence of the shape and relative
position of the surfaces on the view factor and how to compute view factors
between surfaces.

1.4.2 Properties of the View Factor
According to the definition of the view factor and the spatial geometric relation-
ship, when the assumptions are satisfied, four basic algebraic properties of view
factors can be obtained. For two surfaces with other special relative positions
and geometric relations, there may be other properties of the view factor. Here
we will only introduce the basic three properties and their derivations.

Reciprocity Rule
For the view factor from a differential area element, dA1, to another element,
dA2, denoted as Xd1, d2, as shown in Fig. 1.15, where the subscripts d1 and d2

represent dA1 and dA2 respectively. According to the definition,

Xd1, d2=
Irradiation from d1 to d2

Effective radiation of d1 =
Ib1 cosθ1 dA1 dΩ1

Eb1 dA1
=

dA2 cosθ1 cosθ2
πr2

.

(1.4.2)

Similarly,

Xd2, d1=
dA1 cosθ1 cosθ2

πr2
. (1.4.3)

So
dA1Xd1, d2=dA2Xd2, d1. (1.4.4)

The relativity of the view factor between two finite surfaces can be obtained by
analyzing the radiative heat transfer between two isothermal blackbody surfaces.
Thus, the relativity expression of the view factor between two finite surfaces is
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Figure 1.15 Reciprocity rule proof of the infinitesimal surface.

A1X1,2=A2X2,1. (1.4.5)

This property is called the reciprocity rule.

Summation Rule
Assuming that the surface Ak forms an enclosure with other surrounding sur-
faces, all the radiation leaving the surface Ak is intercepted by the enclosure
surfaces. Therefore, the effective radiation of Ak is equal to the radiation inter-
cepted by all surfaces of the enclosure, that is,

Qk=

n∑
i=1

Qk,i. (1.4.6)

Wherein, n is the number of closed body surfaces, as shown in Fig. 1.16. Using
the definition of the view factor and Eq. (1.4.6), we can obtain

Qk=

n∑
i=1

QkXk,i. (1.4.7)

Therefore,
n∑
i=1

Xk,i=1. (1.4.8)

This property is called the summation rule.
Consider a set of surfaces s={2,2′,2′′, . . .} shown in Fig. 1.17; any surface

in the set is covered by surface 1. According to the summation rule, we have
X1,j+X1,1=1, for j∈s; thus, it can be obtained that

1−X1,1=X1,2=X1,2′ =X1,2′′ . (1.4.9)
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Figure 1.16 Proof of summation rule.

Figure 1.17 Proof of equivalence rule.

Superposition Rule
Consider the view factor of surface 1 against surface 2 as shown in Fig. 1.18.
Since the total energy falling on surface 2 from surface 1 is equal to the sum of
the radiation energy falling on the parts of surface 2,

A1Eb1X1,2=A1Eb1X1,2A+A1Eb1X1,2B . (1.4.10)

So
X1,2=X1,2A+X1,2B . (1.4.11)

If surface 2 is further divided into several small pieces, then

X1,2=

n∑
i=1

X1,2i. (1.4.12)

When the superposition rule of view factor is used, only the second term in
the subscript symbol is additive, while the first one does not have a relation
similar to eq. (1.4.12), that is, X1,2 ̸=X2A,1+X2B,1. This property is called the
superposition rule.
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Figure 1.18 Proof of superposition rule.

1.4.3 Calculation Methods of the View Factor
There are many methods [16] for calculating the view factor. The most basic
method is the integral method, whereas the most used one in engineering is the
algebraic analysis. The concept of view factor was proposed very early, and many
research findings were achieved in the 1950s and 1960s. For most of the systems
with typical geometries, view factors have been calculated and compiled into
manuals [17, 18].

Method of Direct Integration
The integral expression of the view factor between any two diffusive gray surfaces
can be derived from the view factor of the differential area elements 1 and 2 in
Eq. (1.4.2):

X1,2=
1

A1

∫ (∫
cosθ1 cosθ2 dA2

πr2

)
dA1. (1.4.13)

This integral formula is a quadruple integral and is rather complicated to obtain
an analytical result. For complex cases, the numerical method may be applied to
calculate the view factor. Literature [18] gives some formulas of the view factor
between two-dimensional geometric structures, three typical three-dimensional
geometric structures, and plots for engineering use. To expand the scope of cal-
culation, these lines are often plotted in logarithmic coordinates, and attention
should be paid to the logarithmic coordinates and the surface indicated by the
subscripts 1 and 2.

Method of Algebraic Analysis
For the surface satisfying the condition of the view factor: (1) The surface should
be a diffuse surface and (2) there should be uniform effective radiation on all
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Figure 1.19 Enclosure with three surfaces.

surfaces. Applying the properties of the view factor, the method of obtaining
the view factor by solving algebraic equations is called the method of algebraic
analysis.

Figure 1.19 shows a composed of three convex surfaces extending infinitely
along the direction perpendicular to the paper surface. The radiative energy
spilling from both ends of the system can be ignored, and the system can be
considered a closed system. Assume that the areas of the three surfaces are A1,
A2, and A3 respectively. According to the reciprocity rule and summation rule
of the view factor, we have

X1,2+X1,3=1, A1X1,2=A2X2,1,

X2,1+X2,3=1, A1X1,3=A3X3,1,

X3,1+X3,2=1, A2X1,3=A3X3,2.

By solving the above equation group, the view factors can thus be obtained as
follows:

Xi,j=
Ai+Aj−Ak

2Ai
, for i ̸= j ̸= j∈{1,2,3}. (1.4.14)

The other five view factors are also found. Since the three surfaces are of equal
length in the direction perpendicular to the paper surface, it is simplified as

Xi,j=
li+ lj− lk

2li
, for i ̸= j ̸= j∈{1,2,3}. (1.4.15)

For a system containing nonadjacent surfaces, as shown in Fig. 1.20, the crossline
method can be used to determine the view factor between A1 and A2. The
auxiliary lines ad and bc were added between A1 and A2 to form an enclosure
abcd. It is easy to obtain the view factor from the conclusion in formula (1.4.14)
of the summation rule of the view factor

Xab,cd=
(bc+ad)− (ac+ bd)

2ab
. (1.4.16)

Thus, for a system consisting of multiple surfaces extending infinitely in length
in one direction, the view factor between any two surfaces can be summarized as

X1,2=
Sum of crossed lines − Sum of uncrossed lines
Twice the cross-sectional length of the surface 1 . (1.4.17)
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Figure 1.20 Diagram of the crossline method.

Figure 1.21 Enclosure composed of two black surfaces.

1.5 Calculation of Radiation Exchange in Multisurface Enclosures

1.5.1 Radiation Exchange in Enclosures Composed of Two Surfaces
Radiation Exchange in Enclosures Composed of Black Surfaces
When calculating the radiative heat transfer in an enclosure where all surfaces are
black, no reflections need to be considered. Figure 1.21 shows an enclosure model
[19] formed by two black surfaces. Thus, the net radiation exchange between the
two surfaces is

Φ1,2=A1Eb1X1,2−A2Eb2
X2,1=A1X1,2 (Eb1−Eb2)=A2X2,1 (Eb1−Eb2) .

(1.5.1)

Radiation Exchange in Enclosures Composed of Diffuse
Gray Surfaces
Different from the enclosures composed of two black surfaces, the surface ab-
sorption of a gray body is less than 1, and it can only be absorbed after multiple
reflections. Moreover, the energy emitted by the gray body includes both its own
radiation energy and the reflected radiation energy. Therefore, the radiative heat
transfer in enclosures composed of diffuse gray surfaces is more complicated. The
term q, which is the net radiation leaving the surface, represents the net effect
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of radiative interactions occurring at the surface. It is equal to the difference be-
tween the surface radiosity and irradiation and can be expressed as Eq. (1.5.2).
The outflow energy consists of the sum of the surface’s own radiation εEb and
the energy reflected by the solid surface ρG. It is called radiosity, denoted as J :

q=J −G. (1.5.2)

The net radiation exchange can also be expressed as

q=εEb−ρG. (1.5.3)

The relationship between the radiosity J and the net radiation exchange q is
obtained by establishing the Eqs. (1.5.1) and (1.5.2):

J =Eb−
(
1

ε
−1

)
q. (1.5.4)

Radiation exchange in enclosures consisting of two gray surfaces is analyzed using
the concept of radiosity.

In a two-dimensional enclosure composed of two isothermal opaque gray sur-
faces (areas A1 and A2), the radiative heat transfer between the two surfaces
is

q1,2=A1J1X1,2−A2J2X2,1, (1.5.5)

and q1,2=−q2,1 is obtained in conjunction with Eqs. (1.5.4) and Eq. (1.5.5).

q1,2=
Eb1−Eb2

1−ε1
ε1A1

+ 1
A1X1,2

+ 1−ε2
ε2A2

. (1.5.6)

(1) When surface 1 is a nonconcave surface, X1,2=1, then

q1,2=
A1 (Eb1−Eb2)

1
ε1

+ A1

A2

(
1
ε2

−1
) . (1.5.7)

(2) When A1/A2→1 and surface 1 is a nonconcave surface, such as two parallel
infinite plates, then

q1,2=
A1 (Eb1−Eb2)

1
ε1

+ 1
ε2

−1
. (1.5.8)

(3) When A1/A2→0 and surface 1 is a nonconcave surface, then

q1,2=ε1A1 (Eb1−Eb2) . (1.5.9)

The Two-Surface Enclosure Network
The parameters in Eq. (1.5.6) are similar to the EM parameters in Ohm’s law.
Heat transfer (q) is analogous to the current intensity; Eb1−Eb2 is analogous to
the electric potential difference; the surface radiation thermal resistance

(
1−ε
εA

)
and the space radiation thermal resistance

(
1

A1X1,2

)
are analogous to the electri-

cal resistance. Eb is analogous to the source electromotive force. J is analogous to
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Figure 1.22 Radiation heat transfer equivalent network diagram of the two-surface
enclosure.

the node voltage. The two-surface gray enclosure network is shown in Fig. 1.22.
This method is called the network method of radiation exchange [20, 21].

1.5.2 Radiation Heat Transfer of Multisurface in an Enclosure
In a multisurface enclosure, the net radiation heat transfer of a surface is the
sum of the heat transfer of the other surfaces. The network method can be used
to obtain simultaneous equations for calculating the effective radiation of each
surface. As for a three-surface enclosure: (1) draw the equivalent network diagram
as shown in Fig. 1.23; (2) list the current equation of the nodes according to each
node J in the network graph; (3) get J1, J2, and J3 by solving Eq. (1.5.10) and
then obtain the net radiation heat transfer:

J1 :
Eb1−J1

1−ε1
ε1A1

+
J2−J1

1
A1X1,2

+
J3−J1

1
A1X1,3

=0,

J2 :
Eb2−J2

1−ε2
ε2A2

+
J1−J2

1
A1X1,2

+
J3−J2

1
A1X1,3

=0,

J3 :
Eb3−J3

1−ε3
ε3A3

+
J1−J3

1
A1X1,3

+
J2−J3

1
A2X2,3

=0.

(1.5.10)

1.6 Strengthening and Weakening of Thermal Radiation

The strengthening and weakening of thermal radiation is an important part of
heat transfer. The physical mechanisms of radiation heat transfer, heat conduc-
tion, and convection heat transfer are different, so the control methods are also
different.

1.6.1 Principles of Strengthening and Weakening Thermal Radiation
According to the network method of radiative heat transfer, the method of
strengthening or weakening the radiative heat transfer between two surfaces
changes the surface resistance and the space resistance.
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Figure 1.23 The heat transfer equivalent network diagram of a three-surface enclosure.

1. Changing the surface resistance. According to the definition of surface resis-
tance ( 1−εεA ), changing the surface resistance can be achieved by changing the
surface area or surface emissivity [22–24]. It is worth noting that when using
the method of changing surface reflectivity to control radiation heat transfer,
the surface emissivity that has the greatest impact on radiant heat transfer
should be changed first.

2. Changing the space resistance. According to the definition of space resistance
( 1
AiXi,j

), the area Ai generally depends on the specific heat dissipation or
insulation surface [25–27]. Therefore, the view factor between the surfaces is
generally adjusted to change the space resistance.

1.6.2 Application of Radiation Heat Transfer
In engineering applications, one of the most effective methods to weaken radia-
tion heat transfer is using radiation shields, 1. The principle of radiation shields
When inserting a thin metal plate between two plates, the radiation heat trans-
fer between the two plates will be reduced. The thin metal plate is called a
radiation shield [28–31]. When the radiation shield is not added, the radiation
thermal resistances between two plates compose of two surface resistances and
one space resistance. After adding the radiation shield, two surface resistances,
and one space resistance will be added. Therefore, the total radiation resistance
increases and the radiation heat transfer between two plates decreases. This is
the principle of radiation shields. Take the insertion of a radiation shield between
two parallel large plates as an example to illustrate the influence of the radiation
shield on radiation exchange. Radiation network diagrams with or without the
radiation shield between the parallel large plates are shown in Fig. 1.24.

Since the plate is infinite, the view factor is

X1,3=X3,1=X1,2=1 (1.6.1)
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Figure 1.24 Radiation heat transfer with or without a radiation shield between two
large plates.

because of
A1=A2=A3=A. (1.6.2)

Then the heat transfer without and with the radiation shield would be as follows.
Without the radiation shield,

q1,2=
σ
(
T 4
1 −T 4

2

)
1−ε1
ε1A1

+ 1
A1X1,2

+ 1−ε2
ε2A2

=
σ
(
T 4
1 −T 4

2

)
1
ε1

+ 1
ε2

−1
. (1.6.3)

With a radiation shield,

q1,3,2= q1,3= q3,2=
Eb1−Eb2

1−ε1
ε1A1

+ 1
A1X1,3

+
1−ε3,1
ε3,1A3

+
1−ε3,2
ε3,2A3

+ 1
A3X3,2

+ 1−ε2
ε2A2

=
σ
(
T 4
1 −T 4

2

)
A

1
ε1

+ 1
ε3,1

−1+ 1
ε3,2

+ 1
ε2

−1
.

(1.6.4)

Obviously, q1,3,2<q1,2. If ε1=ε2=ε3,1=ε3,2=ε, we will have q1,3,2= q1,2/2. It
can be proved that the radiation heat transfer when inserting a radiation shield
(thin metal plate) with the same frequency on the surface of the two parallel large
flat walls is 1/(n+1) of the radiation heat transfer without radiation shields.

Finally, it is very convenient to use the network method to analyze the radia-
tion shields. When the emissivity of each surface is different, the network method
can be used to calculate the radiation heat transfer and the temperature of the
radiation shields.

1.7 Summary

This chapter introduces the basic concepts of thermal radiation, and then mainly
discusses the calculation method of the radiative heat transfer between objects,
focusing on the radiation heat transfer between the surfaces of an enclosure.
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Some basic concepts are listed below:
Irradiation: Rate at which radiation is incident on a surface from all direc-

tions per unit area of the surface.
Radiosity: Rate at which radiation leaves a surface due to emission and re-

flection in all directions per unit area of the surface.
Blackbody: The ideal emitter and absorber. Modifier refers to ideal behavior.
Diffuse: Modifier referring to the directional independence of the intensity

associated with an emitter, reflected, or incident radiation.
Gray surface: A surface for which the spectral absorptivity and emissivity

are independent of wavelength over the spectral regions of surface irradiation
and emission.

Planck’s law: Spectral distribution of emission from a blackbody.
Stefan–Boltzmann law: Emissive power of a blackbody.
Wien’s displacement law: Locus of the wavelength corresponding to peak

emission by a blackbody.
Kirchhoff’s law: Relation between emission and absorption properties for

surfaces.
View factor: The percentage of radiation energy emitted by one surface that

falls on another surface
Basic properties of the view factor: Under the assumption of the uniform

surface radiant heat flow and the diffuser, the view factor is a pure geometric
factor and has nothing to do with surface emissivity and temperature. From the
perspective of energy balance, the relativity, completeness, and additivity of the
view factor can be derived.

Effective radiation: The total radiation energy emitted from the unit sur-
face includes self-radiation and emitted radiation. The introduction of effective
radiation simplifies the calculation of radiation heat transfer among gray-body
surfaces and avoids the complexity of analyzing multiple absorption and reflec-
tion.

Surface resistance of radiation heat transfer: Determined by the surface
area and emissivity, 1−ε

Aε .
Space resistance of radiation heat transfer: Determined by the area and

shape of the surface and the relative position of the other surface, 1/(AX1,2).
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