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THE DECOMPOSITION OF PERMUTATION MODULE
FOR INFINITE CHEVALLEY GROUPS, II

JUNBIN DONG

Abstract. Let G be a connected reductive algebraic group over an alge-

braically closed field k and B be a Borel subgroup of G. In this paper,

we completely determine the composition factors of the permutation module

F[G/B] for any field F.

§1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field k and B

be an Borel subgroup ofG. We will identifyG withG(k) andB withB(k). Let F be another

field and all the representations are over F. Now we just regard G/B as a quotient set and

consider the vector space F[G/B], which has a basis of the left cosets of B in G. With left

multiplication of the group G, F[G/B] is an FG-module, which is isomorphic to FG⊗FB tr,

where tr denotes the one-dimensional trivial B-module. The permutation module F[G/B]

was studied in [2] and [3] when k = F̄q, where F̄q is the algebraically closure of finite field

Fq of q elements. In their determination of the composition factors of F[G/B], the proofs

make essential use of the fact that F̄q is a union of finite fields.

The Steinberg module St is the socle of F[G/B], and the irreducibility of St has been

proved by Xi (see [8]) in the case k= F̄q, and char F=0 or char F̄q. Later, Yang removed this

restriction on char F and proved the irreducibility of Steinberg module for any field F in [9]

(also in the case k= F̄q). Recently, Putman and Snowden showed that when k is an infinite

field (not necessary to be algebraically closed), then the Steinberg representation of G is

always irreducible for any field F (see [6]). Their work inspires the idea of the determination

of the composition factors of F[G/B] for general case in this paper. We will construct a

filtration of submodules for F[G/B] whose subquotients are denoted by EJ (indexed by the

subsets of the set I of simple reflections). The main theorem is as follows:

Theorem 1.1. Let F be any field. All FG-modules EJ are irreducible and pairwise

nonisomorphic. Moreover, the FG-module F[G/B] has exactly 2|I| composition factors, each

occurring with multiplicity one.

It is well known that the flag variety G/B plays a very important role in the

representation theory. So the decomposition of F[G/B] may have many applications in

other areas such as algebraic geometry and number theory.

This paper is organized as follows: Section 2 contains some notations and preliminary

results. In particular, we study the properties of the subquotient modules EJ of F[G/B]. In

Section 3, we list some properties of the unipotent radicalU ofB and study the self-enclosed

subgroup of U, which is useful in the later discussion. Section 4 gives the nonvanishing
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2 J. DONG

property of the augmentation. In the last section, we will prove that all the FG-modules

EJ are irreducible for any fields k and F.

§2. Preliminaries

As in the introduction, G is a connected reductive algebraic group over an algebraically

closed field k and B is a Borel subgroup. Let T be a maximal torus contained in B, and

U = Ru(B) be the unipotent radical of B. We identify G with G(k) and do likewise for

various subgroups of G such as B,T,U · · · . We denote by Φ = Φ(G;T) the corresponding

root system, and by Φ+ (resp. Φ−) the set of positive (resp. negative) roots determined by

B. Let W =NG(T)/T be the corresponding Weyl group. We denote by Δ= {αi | i∈ I} the

set of simple roots and by S = {si := sαi | i ∈ I} the corresponding simple reflections in W.

For each α ∈Φ, let Uα be the root subgroup corresponding to α and we fix an isomorphism

εα : k→Uα such that tεα(c)t
−1 = εα(α(t)c) for any t∈T and c∈ k. For any w ∈W , let Uw

(resp. U′
w) be the subgroup of U generated by all Uα with w(α) ∈ Φ− (resp. w(α) ∈ Φ+).

For any J ⊂ I, let WJ be the corresponding standard parabolic subgroup of W and wJ be

the longest element in WJ . For a subgroup H of G and g ∈G, let Hg = g−1Hg.

The permutation module F[G/B] is isomorphic to the induced module M(tr) = FG⊗FB

tr. Now let 1tr be a nonzero element of tr. For convenience, we abbreviate x⊗1tr ∈M(tr)

to x1tr. Each element ϕ ∈ EndFG(M(tr)) is determined by ϕ(1tr). Note that ϕ(1tr)

is a B-stable vector. Thus we have ϕ(1tr) = λ1tr for some λ ∈ F, which implies that

EndFG(M(tr))∼= F. In particular, the FG-module M(tr) is indecomposable.

For any w ∈W , let ẇ be a representative of w. For any t ∈T and n ∈NG(T), we have

nt1tr = n1tr. Thus w1tr = ẇ1tr is well-defined. For any J ⊂ I, we set

ηJ =
∑

w∈WJ

(−1)�(w)w1tr,

where �(w) is the length of w. Let M(tr)J = FGηJ . It was proved in [8, Prop. 2.3] that

M(tr)J = FUWηJ . For w ∈W , we set

R(w) = {i ∈ I | wsi <w}.

For any subset J ⊂ I, we let

XJ = {x ∈W | x has minimal length in xWJ}.

Proposition 2.1. For any J ⊂ I, the FG-module M(tr)J has the form

M(tr)J =
∑

w∈XJ

FUwηJ =
∑

w∈XJ

FUwJw−1wηJ ,

and the set {uwηJ | w ∈XJ ,u ∈UwJw−1} forms a basis of M(tr)J .

Proof. First, it is easy to see that M(tr)J = FUWηJ = FUXJηJ since yηJ = (−1)�(y)ηJ
for any y ∈WJ . Let w∈XJ . For any γ ∈Φ+ such that wJw

−1(γ)∈Φ+, we have x−1w−1(γ)∈
Φ+ for any x ∈WJ . For u ∈Uγ and x ∈WJ , we get

uwx1tr = wx(x−1w−1uwx)1tr = wx1tr,

since x−1w−1uwx∈U. In particular, we get UwηJ =UwJw−1wηJ . Then we obtain the first

part.
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THE DECOMPOSITION OF PERMUTATION MODULE FOR INFINITE CHEVALLEY GROUPS, II 3

In the following, we show that {uwηJ |w ∈XJ ,u∈UwJw−1} forms a basis of M(tr)J . It is

enough to prove that this set is linearly independent. Suppose this set is linearly dependent,

then there exist fu,w ∈ F (not all zero) such that
∑

w∈XJ

∑

u∈UwJw−1

fu,wuwηJ = 0. (2.1)

Let z ∈XJ whose length is maximal such that fu0,z �= 0 for some u0 ∈UwJz−1 . Substitute

ηJ =
∑

x∈WJ

(−1)�(x)x1tr in the equation (2.1). According to the Bruhat decomposition,

the set {uw1tr | w ∈ W,u ∈ Uw−1} is linearly independent in M(tr). Then we have∑

u∈UwJz−1

fu,zuzwJ1tr = 0. So we get fu,z = 0 for all u ∈UwJz−1 , which is a contradiction.

The proposition is proved.

For any i ∈ I, set U∗
αi

= Uαi\{id}, where id is the neutral element of U. For the

convenience of later discussion, we give some details about the expression of the element

ṡiuiwηJ , where ui ∈U∗
αi

and w ∈XJ . For each ui ∈U∗
αi
, we have

ṡiuiṡi = fi(ui)ṡihi(ui)gi(ui),

where fi(ui),gi(ui) ∈U∗
αi
, and hi(ui) ∈T are uniquely determined. Moreover, if we regard

fi as a morphism on U∗
αi
, then fi is a bijection. The following lemma is very useful in the

later discussion. Its proof can be found in the proof of [8, Prop. 2.3] and we omit it.

Lemma 2.2. Let ui ∈U∗
αi
, with the notation above, then we have

(a) If wwJ ≤ siwwJ , then ṡiuiwηJ = siwηJ .

(b) If siw ≤ w, then ṡiuiwηJ = fi(ui)wηJ .

(c) If w ≤ siw but siwwJ ≤ wwJ , then ṡiuiwηJ = (fi(ui)−1)wηJ .

Following [8, 2.6], we define

EJ =M(tr)J/M(tr)′J ,

where M(tr)′J is the sum of all M(tr)K with J �K. We denote by CJ the image of ηJ in

EJ . For each w ∈W , let

hw =
∑

y≤w

(−1)�(w)−�(y)Py,w(1)y ∈ FW,

where Py,w are Kazhdan-Lusztig polynomials (see [5, Th. 1.1]). The set {hw | w ∈W} is a

basis of FW . We set

YJ = {w ∈XJ | R(wwJ) = J}.

Lemma 2.3. Let J ⊂ I. Then each one of the following sets is a basis of FWhwJ
:

(a) {whwJ
| w ∈XJ};

(b) {hwwJ
| w ∈XJ};

(c) {yhwJ
| y ∈ YJ}∪{hxwJ

| x ∈XJ\YJ}.

Proof. (a) By [5, Lem. 2.6(vi)], we see that

hwJ
= (−1)�(wJ )

∑

y∈WJ

(−1)�(y)y ∈ FW.
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4 J. DONG

It is clear that whwJ
= (−1)�(w)hwJ

for any w ∈WJ . So we have FWhwJ
= FXJhwJ

. Now

suppose that there exist aw ∈ F (not all zero) such that
∑

w∈XJ

awwhwJ
=0. Let z ∈XJ whose

length is maximal such that az �=0. Substitute hwJ
and we get azwwJ =0 in FW . So az =0,

which is a contraction. Therefore, {whwJ
| w ∈XJ} is a basis of FWhwJ

.

(b) By [4, Lem. 2.8(c)], for x ∈XJ , we have

hxwJ
= xhwJ

+
∑

w∈XJ ,w<x

bwwhwJ
, bw ∈ F. (2.2)

Using induction on �(x) we see that

xhwJ
= hxwJ

+
∑

w∈XJ ,w<x

b′whwwJ
, b′w ∈ F. (2.3)

Thus (b) is proved by (a).

(c) We claim that for any w ∈ XJ , whwJ
is a linear combination of the elements in

{yhwJ
| y ∈ YJ}∪{hxwJ

| x ∈XJ\YJ}. If �(w) = 0, then the claim is obvious. Now assume

that the claim is true for z ∈ XJ with �(z) < �(w). If w ∈ YJ , then the claim is clear. If

w ∈ XJ\YJ , using formula (2.3) and induction hypothesis, we see that the claim is true.

Now (c) is proved.

Proposition 2.4. For J ⊂ I, we have

EJ =
∑

w∈YJ

FUwJw−1wCJ ,

and the set {uwCJ | w ∈ YJ ,u ∈UwJw−1} forms a basis of EJ .

Proof. For w ∈W , we set h′
w = hw1tr ∈M(tr). Thus, h′

wJ
= (−1)�(wJ )ηJ for any J ⊂ I

by [5, Lem. 2.6(vi)]. According to Lemma 2.3 (c), we get

M(tr)J =
∑

w∈XJ

FUwηJ =
∑

w∈YJ

FUwηJ +
∑

x∈XJ\YJ

FUh′
xwJ

.

We claim that M(tr)′J =
∑

x∈XJ\YJ

FUh′
xwJ

. For x ∈ XJ \YJ , we see that R(xwJ) = K for

some K � J . Thus xwJ = ywK for some y ∈ XK . By Lemma 2.3 (b), we have h′
xwJ

=

h′
ywK

∈ FWηK which implies
∑

x∈XJ\YJ

FUh′
xwJ

⊆ M(tr)′J . On the other hand, we see that

XK ⊆XJ\YJ for any K � J . Therefore we get M(tr)K ⊆
∑

x∈XJ\YJ

FUh′
xwJ

for any K � J .

The claim is proved and we get

EJ =M(tr)J/M(tr)′J =
∑

w∈YJ

FUwCJ .

It is not difficult to see that UwCJ = UwJw−1wCJ for any w ∈ YJ . Thus, we obtain the

first part.

Now we show that the set {uwCJ | w ∈ YJ ,u ∈ UwJw−1} is a basis of EJ . It is enough

to prove that this set is linearly independent. Suppose that this set is linearly dependent.
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Then there exist fu,w ∈ F (not all zero) such that
∑

w∈YJ

∑

u∈UwJw−1

fu,wuwCJ = 0.

Noting that EJ =M(tr)J/M(tr)′J , we have
∑

w∈YJ

∑

u∈UwJw−1

fu,wuwηJ ∈M(tr)′J .

Without loss of generality, we assume that u0 = id for some z ∈ YJ with fu0,z �= 0. Note

that the T-fixed subspace of M(tr)J is
∑

w∈XJ

FwηJ . Since zηJ is a T-stable vector and

M(tr)′J =
∑

x∈XJ\YJ

FUh′
xwJ

, it is not difficult to see that zηJ is a linear combination of the

following set

{wηJ | w ∈ YJ ,w �= z}∪{h′
xwJ

| x ∈XJ\YJ}.

This is a contradiction by Lemma 2.3 (c). The proposition is proved.

Proposition 2.5. [8, Prop. 2.7] If J and K are different subsets of I, then EJ and EK

are not isomorphic.

By the definition of EJ , there exists a filtration of submodules for F[G/B] whose

subquotients are EJ (J ⊂ I). In the following of this paper, we prove the irreducibility

of EJ for any J ⊂ I. Combining Proposition 2.5, we get Theorem 1.1.

§3. Self-enclosed subgroups

This section contains some preliminaries and properties of unipotent groups that are

useful in later discussion. As before, let U be the unipotent radical of the Borel subgroup

B. For any w ∈W , we set

Φ−
w = {α ∈ Φ+ | w(α) ∈ Φ−}, Φ+

w = {α ∈ Φ+ | w(α) ∈ Φ+}.

As before, Uw (resp. U′
w) is the subgroup of U generated by all Uα with α ∈ Φ−

w (resp.

α ∈ Φ+
w). The following properties are well known (see [1]).

(a) For w ∈W and any root α ∈ Φ, we have ẇUαẇ
−1 =Uw(α);

(b) Uw and U′
w are subgroups of U, and we have ẇU′

wẇ
−1 ⊂U;

(c) The multiplication map Uw×U′
w →U is a bijection;

(d) Let Φ+ = {δ1, δ2, . . . , δm}. Then U = Uδ1Uδ2 . . .Uδm and each element u ∈ U is

uniquely expressible in the form u= u1u2 . . .um with ui ∈Uδi ;

(e) (Commutator relations) Given two positive roots α and β, there exist a total ordering

on Φ+ and integers cmn
αβ such that

[εα(a), εβ(b)] := εα(a)εβ(b)εα(a)
−1εβ(b)

−1 =
∏

m,n>0

εmα+nβ(c
mn
αβ ambn),

for all a,b ∈ k, where the product is over all integers m,n > 0 such that mα+nβ ∈ Φ+,

taken according to the chosen ordering.

As before, let Φ+ = {δ1, δ2, . . . , δm} and for an element u ∈ U, we have u = x1x2 . . .xm

with xi ∈ Uδi . If we choose another order of Φ+ and write Φ+ = {δ′1, δ′2, . . . , δ′m}, we get
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6 J. DONG

another expression of u such that u = y1y2 . . .ym with yi ∈Uδ′i
. If δi = δ′j = α is a simple

root, by the commutator relations of root subgroups, we get xi = yj which is called the

Uα-component of u. Noting that the simple roots are Δ= {α1,α2, . . . ,αn} and each γ ∈Φ+

can be written as γ =
n∑

i=1

kiαi, we denote by ht(γ) =
n∑

i=1

ki the height of γ. It is easy to see

that
∏

ht(γ)≥s

Uγ is a subgroup of U for any fixed integer s ∈ N by the commutator relations

of root subgroups.

Given an order “≺” on Φ+, we list all the positive roots δ1, δ2, . . . ,and δm with respect

to this order such that δi ≺ δj when i < j. For any u ∈U, we have a unique expression in

the form u= u1u2 . . .um with ui ∈Uδi . Let X be a subset of U, we denote by

X ∩≺Uδk = {uk ∈Uδk | there exists u ∈X such that u= u1u2 . . .uk . . .um}.

It is easy to see that X ∩Uδk ⊆X ∩≺Uδk . Now let H be a subgroup of U, and we say that

a subgroup H ⊂U is self-enclosed with respect to the order “≺” if

H ∩≺Uδk =H ∩Uδk for any k = 1,2, . . . ,m.

If H is self-enclosed with respect to any order on Φ+, then we say that H is a self-enclosed

subgroup of U.

Let H be a self-enclosed subgroup of U. For each γ ∈Φ+, we set Hγ =H ∩Uγ . Then we

have H =Hδ1Hδ2 . . .Hδm . For w ∈W , set Hw =H ∩Uw. Then it is easy to see that Hw is

also a self-enclosed subgroup, and we have Hw =
∏

γ∈Φ−
w

Hγ .

Example 3.1. Suppose k = F̄q and {δ1, δ2, . . . , δm} are all the positive roots such that

ht(δ1)≤ ht(δ2)≤ ·· · ≤ ht(δm). Assume that U is defined over Fq and let Uqa be the set of

Fqa-points of U. Given a1,a2, . . . ,am ∈N such that ai is divisible by aj for any i < j, we set

H = Uδ1,qa1Uδ2,qa2 . . .Uδm,qam .

Then it is not difficult to check that H is a self-enclosed subgroup of U.

Now let H be a subgroup of U. Let V be a subgroup of U which has the form V =

Uβ1Uβ2 . . .Uβk
. We let

U=
⋃

x∈L

xV and U=
⋃

y∈R

Vy,

where L (resp. R) is a set of the left (resp. right) coset representatives of V in U. Then we

define the following two sets:

HV = {v ∈V | there exists u ∈H such that u= xv for some x ∈ L},

VH = {v ∈V | there exists u ∈H such that u= vy for some y ∈R}.

Proposition 3.2. Let H be a self-enclosed subgroup of U. Let V be a subgroup of U

with the form V =Uβ1Uβ2 . . .Uβk
, where β1,β2, . . . ,βk ∈ Φ+. Then we have

HV = VH =H ∩V.
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Proof. We just prove that HV =H ∩V. It is clear that H ∩V ⊂HV. Noting that V is

a subgroup of U, we denote

U=Uγ1Uγ2 . . .Uγl
Uβ1Uβ2 . . .Uβk

.

Let v ∈HV. Thus, there exists h ∈H such that h= xv for some x ∈ L. We write

h= xγ1xγ2 . . .xγl
vβ1vβ2 . . .vβk

, xγi ∈Uγi ,vβj ∈Uβj .

Since H is self-enclosed, we see that vβj ∈H∩Uβj which implies that v ∈H∩V. Therefore,

we get HV =H ∩V. Similarly, we have VH =H ∩V. The proposition is proved.

Now we consider the special case that k is a field of positive characteristic p. In this case,

it is well known that all the finitely generated subgroups of U are finite p-groups. We have

the following lemma.

Lemma 3.3. Let X be a finite subset of U. There exists a finite p-subgroup H of U such

that H ⊇X and H is self-enclosed.

Proof. Let Φ+ = {δ1, δ2, . . . , δm} such that ht(δ1) ≤ ht(δ2) ≤ ·· · ≤ ht(δm). For each 1 ≤
k ≤ m, we set Xk = X ∩≺ Uδk . Let H1 be the subgroup of Uδ1 , which is generated by

X1. Now we define the subgroup Hk by recursive step. Suppose that H1,H2, . . . ,Hk−1 are

defined, we set

Yk = 〈H1,H2, . . . ,Hk−1〉∩≺Uδk ,

and let Hk be the subgroup of Uδk , which is generated by Xk and Yk. Now we have a series

of subgroups H1,H2, . . . ,Hm and then we set H = 〈H1,H2, . . . ,Hm〉, which is a finitely

generated subgroup of U. Thus H is a finite p-subgroup of U, which contains X by its

construction. Moreover, it is not difficult to check that H is a self-enclosed of U using the

commutator relations of root subgroups.

It is easy to verify that the intersection of two self-enclosed subgroups of U is also

self-enclosed. For a finite subset X of U, there exists a minimal self-enclosed subgroup

V containing X. In this case, we also say that V is the self-enclosed subgroup generated

by X.

§4. Nonvanishing property of the augmentation

In this section, we fix a subset J ⊂ I. By Proposition 2.4, we have

EJ =
⊕

w∈YJ

FUwJw−1wCJ ,

as F-vector space. For each w ∈ YJ , we denote by

Pw : EJ → FUwJw−1wCJ ,

the projection of vector spaces and by

εw : FUwJw−1ẇCJ → F,

the augmentation (restricting on w) which takes the sum of the coefficients with respect

to the natural basis, i.e., for ξ =
∑

x∈UwJw−1

axxwCJ , we set εw(ξ) =
∑

x∈UwJw−1

ax. Now we
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8 J. DONG

denote by

ε=
⊕

w∈YJ

εwPw : EJ → F|YJ |,

the augmentation on EJ .

When considering the irreducibility of Steinberg module, the nonvanishing property of

the augmentation is very crucial (see [9, Lem. 2.5] and [6, Prop. 1.6]). In this section, we

show that the non-vanishing property also holds for the augmentation ε defined above.

Firstly we have the following lemma.

Lemma 4.1. Let ξ ∈EJ be a nonzero element. Then there exists g ∈G such that Pe(gξ)

is nonzero.

Proof. By Proposition 2.4, ξ ∈ EJ has the following expression

ξ =
∑

w∈YJ

∑

x∈UwJw−1

aw,xxwCJ .

Then there exists an element h ∈ W with minimal length such that ah,x �= 0 for some

x ∈UwJh−1 , which implies that Ph(ξ) is nonzero. When h= e, the lemma is proved. Now

suppose that �(h)≥ 1, so there is a simple reflection s such that σ = sh < h. Without loss of

generality, we can assume that ah,id �=0. We claim that either Pσ(ṡξ) is nonzero or Pσ(ṡyξ)

is nonzero for some y ∈Us.

If Pσ(ṡξ) = 0, then according to Lemma 2.2, there exists at least one element v ∈ YJ ,

which satisfies the following condition

(♠) sv /∈ YJ and Pσ(svCJ) �= 0.

The subset of YJ whose elements satisfy this condition is also denoted by ♠. Thus,

Pσ(ṡξ) = 0 tells us that

Pσ(ṡ ·Ph(ξ))+Pσ(ṡ ·
∑

v∈♠
Pv(ξ)) = 0.

In particular, we get Pσ(ṡ ·
∑

v∈♠
Pv(ξ)) �= 0. Since U is infinite, there exists infinitely many

y ∈Us such that the Us-component of yx is nontrivial for any x with ah,x �= 0. For such

an element y, we get Pσ(ṡ ·Ph(yξ)) = 0 by Lemma 2.2 (b).

On the other hand, for v ∈♠ and av,x �= 0, we see that the Us-component of x is trivial,

i.e., x ∈U′
s. Note that UwJσ−1s = (UwJσ−1)

s ·Us and U′
wJσ−1 = (U′

wJσ−1s)
s ·Us. Then we

can write

x= n(x)p(x), where n(x) ∈ (UwJσ−1)
s
and p(x) ∈U′

wJσ−1s.

Since this expression is unique, we can regard p(−) and n(−) as functions on U′
s. We let

yx= ωy(x)y, where ωy(x) ∈U′
s. Using the commutator relations of root subgroups, we can

choose y such that n(ωy(x
′)) �= n(ωy(x)) unless n(x) = n(x′) since there are only finitely

many x′s satisfying av,x �= 0. Therefore, if we write

Pσ(ṡ ·
∑

v∈♠
Pv(ξ)) =

∑
bσ,xn(x)

ṡσCJ �= 0,
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it is not difficult to see that

Pσ(ṡ ·
∑

v∈♠
Pv(yξ)) =

∑
bσ,xn(ωy(x))

ṡσCJ ,

which is also nonzero. Therefore,

Pσ(ṡyξ) =Pσ(ṡ ·
∑

v∈♠
Pv(yξ)) �= 0.

By the argument above, we can do induction on the length of h and thus the lemma is

proved.

The nonvanishing property of the augmentation ε on EJ is as follows:

Proposition 4.2. Let ξ ∈EJ be a nonzero element. Then there exists g ∈G such that

ε(gξ) is nonzero.

Proof. By Lemma 4.1, we can assume that Pe(ξ) is nonzero. For

ξ =
∑

w∈YJ

∑

x∈UwJw−1

aw,xxwCJ ∈ EJ ,

we say that ξ satisfies the condition ♥h if
∑

x∈U′
h

ae,x �= 0 for some h ∈ WJ . We prove the

following claim: if ξ satisfies the condition ♥h for some h ∈ WJ , then there exists g ∈ G

such that εePe(gξ) is nonzero.

We prove this claim by induction on the length of h. If h = e, then it is obvious that

εePe(ξ) =
∑

x∈UwJ

ae,x which is already nonzero. We assume that the claim is valid for any

h ∈WJ with �(h)≤m. Now let h ∈WJ with �(h) =m+1 such that
∑

x∈U′
h

ae,x �= 0. We have

h= τs for some s ∈ R(h). Then Uh =Us
τ ·Us and U′

τ = (U′
h)

s ·Us by definition. Now our

aim is to show that there exists g ∈G such that gξ satisfies the condition ♥τ .

First, we prove that the element ṡ ·Pe(ξ) satisfies the condition ♥τ . SinceUwJ
=U′

hUh =

U′
hU

s
τUs, each element x ∈UwJ

has a unique expression

x= x′
hxτxs, x′

h ∈U′
h,xτ ∈Us

τ ,xs ∈Us.

We just need to consider the coefficients of ae,x with ṡx′
hxτ ṡ

−1 ∈ U′
τ , which implies that

xτ = id. For the case xs �= id, using Lemma 2.2 (c), we have

ṡxCJ = x′′
hṡxsCJ = x′′

h(f(xs)−1)CJ ,

where x′′
h = ṡx′

hṡ
−1 ∈ (U′

h)
s ⊂U′

τ and f(xs) ∈Us. Therefore if we write

ṡ ·Pe(ξ) =
∑

x∈UwJ

be,xxCJ ,

then
∑

x∈U′
τ

be,x =−
∑

x∈U′
h

ae,x �= 0. Thus ṡ ·Pe(ξ) satisfies the condition ♥τ .
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Now we consider ṡξ and if ṡξ satisfies the condition ♥τ , we are done. Otherwise, there

exists at least one element v ∈ YJ which satisfies the following condition

(♣) : sv /∈ YJ and Pe(svCJ) �= 0.

The subset of YJ whose elements satisfy this condition is also denoted by ♣. With this

setting, ṡ ·Pe(ξ)+Pe(ṡ ·
∑

v∈♣
Pv(ξ)) does not satisfy the condition ♥τ , which implies that

Pe(ṡ ·
∑

v∈♣
Pv(ξ)) satisfies the condition ♥τ since we have proved that ṡ ·Pe(ξ) satisfies

the condition ♥τ . Since U is infinite, we can choose an element y ∈Us such that the Us-

component of yx is nontrivial for any x with ae,x �= 0. Then we consider the element ṡyξ.

Using Lemma 2.2 (c), it is easy to see that ṡ ·Pe(yξ) does not satisfy the condition ♥τ .

Now for v ∈ ♣ and x ∈ UwJv−1 with av,x �= 0, noting that the Us-component of x is

trivial, we write

x=m(x)q(x), where m(x) ∈UwJs, q(x) ∈ (U′
wJ

)s.

For y ∈Us, using the commutator relations of root subgroups, we have

ym(x) =my(x)y, where my(x) ∈UwJs,

and

yq(x) = qy(x)y, where qy(x) ∈ (U′
wJ

)s.

Since U′
τ = (U′

h)
sUs, we get m(x)ṡ ∈U′

τ if and only if m(x) ∈ (U′
h)

s. Thus, my(x)
ṡ ∈U′

τ

if and only if m(x)ṡ ∈U′
τ . Therefore, if we write

Pe(ṡ ·
∑

v∈♣
Pv(ξ)) =

∑
bxm(x)ṡCJ ,

it is not difficult to see that

Pe(ṡ ·
∑

v∈♣
Pv(yξ)) =

∑
bxmy(x)

ṡCJ .

Noting that Pe(ṡ ·
∑

v∈♣
Pv(ξ)) satisfies the condition ♥τ , we see that Pe(ṡ ·

∑

v∈♣
Pv(yξ))

satisfies the condition ♥τ . Finally, there exists g ∈ G such that gξ satisfies the condition

♥e, which implies that εePe(gξ) is nonzero. We have proved our claim.

Now we can assume that ae,id �= 0. Thus, the element ξ satisfies the condition ♥wJ
.

According to our claim, there exists g ∈ G such that εePe(gξ) is nonzero. In particular,

ε(gξ) is nonzero and the proposition is proved.

§5. Proof of the main theorem

In this section, we give the proof of Theorem 1.1. First, we deal with the cases: (1)

char k = 0 and (2) char k > 0 and char k �= char F. For J ⊂ I, we show that any nonzero

submodule M of EJ contains CJ , and hence M = EJ . In particular, EJ is irreducible for

any J ⊂ I. Let ξ ∈M be a nonzero element with the following expression

ξ =
∑

w∈YJ

∑

x∈UwJw−1

aw,xxwCJ ∈M.
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By Proposition 4.2, we can assume that ε(ξ) �= 0. In the case (1) by [6, Prop. 5.4] and in

the case (2) by [6, Prop. 6.7], we have
∑

w∈YJ

∑

x∈UwJw−1

aw,xwCJ ∈M.

In particular, we see that

M ∩
∑

w∈YJ

FwCJ �= 0.

Noting that the discussion in the proof of [2, Claim 2] is still valid in our general setting,

we see that EJ is irreducible for any J ⊂ I. The EJ ’s are pairwise nonisomorphic by

Proposition 2.5.

It remains to consider the case char k = char F = p > 0. From now on, we assume that

char F = char k = p. For any finite subset X of G, let X :=
∑

x∈X x ∈ FG. The following

lemma is easy to get and will be very useful in our later discussion.

Lemma 5.1. Let P be a finite abelian p-group such that P =H×K, where H,K are two

subgroups of P. Let H ′ be a subgroup of P such that |H ′|= |H|. Then H ′ K = 0 or P .

For a self-enclosed subgroup H of U, set Hγ = H ∩Uγ as before for each γ ∈ Φ+. Let

Φ+ = {δ1, δ2, . . . , δm}. We have

H =Hδ1 Hδ2 . . . Hδm .

Let Hw = H ∩Uw. Then we have Hw =
∏

γ∈Φ−
w

Hγ and Hw =
∏

γ∈Φ−
w

Hγ . The following two

lemmas are very crucial in the later proof of Theorem 1.1.

Lemma 5.2. Assume that char F= char k= p> 0 and let M be a nonzero FG-submodule

of EJ . Then there exist an element w ∈ YJ and a finite p-subgroup X of UwJw−1 such that

XwCJ ∈M .

Proof. Let ξ be a nonzero element of M which has the form

ξ =
∑

w∈YJ

∑

x∈UwJw−1

aw,xxwCJ ∈ EJ .

By Lemma 3.3, there exists a self-enclosed finite p-subgroup V of U, which contains all

x ∈UwJw−1 with aw,x �= 0. Then we have

FV ξ ⊂
⊕

w∈YJ

FVwJw−1wCJ ,

as FV -modules. Since (FV ξ)V �= 0 by [7, Prop. 26] and noting that

(
⊕

w∈YJ

FVwJw−1wCJ)
V ⊂

⊕

w∈YJ

FVwJw−1wCJ ,

there exists a nonzero element

η =
∑

w∈YJ

awVwJw−1wCJ ∈ FV ξ ⊂M.

Set A(η) = {w ∈ YJ | aw �= 0}. If |A(η)|= 1, the lemma is proved.
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Now we assume that |A(η)| ≥ 2. We set Φ(η) =
⋃

w∈A(η)

Φ−
wJw−1 . Let Φ(η) = {γ1,γ2, . . . ,γd}

such that ht(γ1) ≤ ht(γ2) ≤ ·· · ≤ ht(γd). Let s be the maximal integer such that

γs /∈
⋂

w∈A(η)

Φ−
wJw−1 . Let y ∈ Uγs\Vγs and H be a self-enclosed finite p-subgroup of

UγsUγs+1 . . .Uγd
such that H contains VγsVγs+1 . . .Vγd

and y. Let X be the self-enclosed

subgroup of U which is generated by H and V. Then it is easy to see that X has the

following form

X = Vγ1 . . .Vγs−1Xγs . . .Xγd
,

where Xγk
=X ∩Uγk

for s≤ k ≤ d. Denote by Ωs a set of the left coset representatives of

VγsVγs+1 . . .Vγd
in XγsXγs+1 . . .Xγd

. For the w ∈ YJ such that γs ∈ Φ−
wJw−1 , we have

Ωs VwJw−1wCJ =XwJw−1wCJ .

For the w ∈ YJ such that γs /∈ Φ−
wJw−1 , we have Ωs VwJw−1wCJ = 0 since char F= p. Then

we get

η′ =Ωs η =
∑

w∈YJ

bwXwJw−1wCJ ,

which satisfies that |A(η′)|< |A(η)|, where A(η′) = {w ∈ YJ | bw �=0}. Thus by the induction

on the cardinality of A(η), the lemma is proved.

Lemma 5.3. Assume that char F= char k= p> 0 and let M be a nonzero FG-submodule

of EJ . If there exists a finite p-subgroup X of UwJw−1s such that XswCJ ∈M , where sw∈YJ

and sw >w (which implies that w ∈ YJ), then there exists a finite p-subgroup H of UwJw−1

such that HwCJ ∈M .

Proof. Using Lemma 3.3, we can assume that X is a self-enclosed subgroup of UwJw−1s.

Since UwJw−1s =Us(UwJw−1)s, we can write X =XαV , where V =X ∩ (UwJw−1)s is also

a self-enclosed subgroup of (UwJw−1)s. Thus, we have X =Xα V . In the following, we will

prove that if Y V swCJ ∈M for some finite subset Y of Us and a self-enclosed subgroup

V of (UwJw−1)s, then there exists a finite p-subgroup H of UwJw−1 such that HwCJ ∈M .

Without loss of generality, we can assume that Y contains the neutral element of Us.

For each u ∈Uα\{id}, we have

ṡuṡ= fα(u)hα(u)ṡgα(u),

where fα(u),gα(u) ∈Uα and hα(u) ∈T are uniquely determined. Then

ṡuV swCJ = fα(u)hα(u)ṡgα(u)ṡ
−1V swCJ .

Without loss of generality, we can assume that the group V contains enough elements such

that

gα(u)ṡ
−1V swCJ = ṡ−1V swCJ ,

for any u ∈ Y \{id}. Indeed, we let

Gα(X) = {gα(u) ∈Uα | u ∈ Y \{id}},
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and H be a self-enclosed subgroup which contains Gα(X) and ṡ−1V ṡ. Then HwJw−1 =

H ∩UwJw−1 is also a self-enclosed subgroup which contains ṡ−1V ṡ. Then we can consider

Y ṡHwJw−1 ṡ−1 instead of Y V from the beginning. Noting that hα(u) ∈T, we have

ṡuV swCJ = fα(u)hα(u)V swCJ = fα(u)hα(u)V hα(u)
−1

swCJ ,

which implies that

ṡY V swCJ = ṡV ṡ−1wCJ +
∑

u∈Y \{id}
fα(u)hα(u)V hα(u)

−1
swCJ .

Now we let

Φ−
wJw−1 ∪Φ−

wJw−1s = {β1 = α,β2, . . . ,βm},

such that ht(β1)≤ ht(β2)≤ ·· · ≤ ht(βm). Since sw ∈ YJ and sw > w, we have (UwJw−1)s �=
UwJw−1 by [3, Cor. 2.2]. Now let r be the maximal integer such that βr /∈Φ−

wJw−1 ∩Φ−
wJw−1s

and βj ∈ Φ−
wJw−1 ∩Φ−

wJw−1s for j > r. When βr ∈ Φ−
wJw−1\Φ−

wJw−1s, using Lemma 3.3,

Lemma 5.1 and [3, Lem. 4.5], we can choose certain subgroup Ωk of Uβk
for each r≤ k≤m

such that

Ωr Ωr+1 . . .Ωm fα(u)hα(u)V hα(u)
−1

swCJ = 0,

for any u ∈ Y \{id} and

Ωr Ωr+1 . . .Ωm ṡV ṡ−1wCJ =ΩwCJ ,

for some finite subgroup Ω of UwJw−1 . Then the lemma is proved in this case.

When βr ∈ Φ−
wJw−1s\Φ

−
wJw−1 , also by Lemmas 3.3, 5.1 and [3, Lem. 4.5], we can choose

certain subgroup Γk of Uβk
for each r≤ k≤m such that there exists at least one u∈ Y \{id}

which satisfies

Γr Γr+1 . . .Γm fα(u)hα(u)V hα(u)
−1

swCJ = fα(u)ΓswCJ ,

where Γ is some finite subgroup of (UwJw−1)s. On the other hand, these groups

Γr,Γr+1, . . . ,Γm also make

Γr Γr+1 . . .Γm ṡV ṡ−1wCJ = 0.

Therefore, we get
∑

x∈F

xΓswCJ ∈ M for some set F with |F | < |Y | and some finite

subgroup Γ of (UwJw−1)s. Hence by the same discussion as before, we get another element∑

y∈F ′

yΓ′swCJ ∈M for some set F ′ with |F ′|< |F | and some finite subgroup Γ′ of (UwJw−1)s.

Finally, we get an element KswCJ ∈M for some finite subgroup K of (UwJw−1)s. Thus,

we have K ṡwCJ ∈M and the lemma is proved.

Finally, we prove the irreducibility of EJ in the case char F = char k = p > 0 using

the previous lemmas. Let M be a nonzero FG-submodule of EJ . Combining Lemmas

5.2 and 5.3, there exists a finite p-subgroup H of UwJ
such that HCJ ∈ M . Similar

to the arguments of [9, Lem. 2.5], we see that the sum of all coefficients of ẇJxCJ in

terms the basis {uCJ | u ∈UwJ
} is zero when x is not the neutral element of UwJ

. So if
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we write

ξ = wJHCJ =
∑

x∈UwJ

axxCJ ,

we have
∑

x∈UwJ

ax = (−1)�(wJ ), which is nonzero. We consider the FUwJ
-module generated

by ξ, and then using [6, Prop. 4.1], we see that CJ ∈M . Therefore M =EJ , which implies

the irreducibility of EJ for any J ⊂ I. All the FG-modules EJ are pairwise non-isomorphic

by Proposition 2.5 and thus Theorem 1.1 is proved.
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