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THE DECOMPOSITION OF PERMUTATION MODULE
FOR INFINITE CHEVALLEY GROUPS, II

JUNBIN DONG

Abstract. Let G be a connected reductive algebraic group over an alge-
braically closed field k and B be a Borel subgroup of G. In this paper,
we completely determine the composition factors of the permutation module
F[G/B] for any field F.

81. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field k and B
be an Borel subgroup of G. We will identify G with G(k) and B with B(k). Let IF be another
field and all the representations are over F. Now we just regard G/B as a quotient set and
consider the vector space F[G/B], which has a basis of the left cosets of B in G. With left
multiplication of the group G, F[G/B] is an FG-module, which is isomorphic to FG ®pg tr,
where tr denotes the one-dimensional trivial B-module. The permutation module F[G/B]
was studied in [2] and [3] when k = F,, where F, is the algebraically closure of finite field
F, of ¢ elements. In their determination of the composition factors of F[G/B], the proofs
make essential use of the fact that F, is a union of finite fields.

The Steinberg module St is the socle of F[G/B], and the irreducibility of St has been
proved by Xi (see [8]) in the case k =F,, and char F =0 or char F,. Later, Yang removed this
restriction on char F and proved the irreducibility of Steinberg module for any field F in [9]
(also in the case k =F,). Recently, Putman and Snowden showed that when k is an infinite
field (not necessary to be algebraically closed), then the Steinberg representation of G is
always irreducible for any field F (see [6]). Their work inspires the idea of the determination
of the composition factors of F[G/B] for general case in this paper. We will construct a
filtration of submodules for F[G/B| whose subquotients are denoted by E; (indexed by the
subsets of the set I of simple reflections). The main theorem is as follows:

THEOREM 1.1. Let F be any field. All FG-modules E; are irreducible and pairwise
nonisomorphic. Moreover, the FG-module F|G/B] has exactly 211 composition factors, each
occurring with multiplicity one.

It is well known that the flag variety G/B plays a very important role in the
representation theory. So the decomposition of F[G/B]| may have many applications in
other areas such as algebraic geometry and number theory.

This paper is organized as follows: Section 2 contains some notations and preliminary
results. In particular, we study the properties of the subquotient modules E; of F[G/B]. In
Section 3, we list some properties of the unipotent radical U of B and study the self-enclosed
subgroup of U, which is useful in the later discussion. Section 4 gives the nonvanishing
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2 J. DONG

property of the augmentation. In the last section, we will prove that all the FG-modules
E; are irreducible for any fields k and F.

§2. Preliminaries

As in the introduction, G is a connected reductive algebraic group over an algebraically
closed field k and B is a Borel subgroup. Let T be a maximal torus contained in B, and
U = R,(B) be the unipotent radical of B. We identify G with G(k) and do likewise for
various subgroups of G such as B, T,U ---. We denote by ® = ®(G;T) the corresponding
root system, and by ®* (resp. ®7) the set of positive (resp. negative) roots determined by
B. Let W = Ng(T)/T be the corresponding Weyl group. We denote by A ={«; | i € I'} the
set of simple roots and by S = {s; := sa, | ¢ € I'} the corresponding simple reflections in W.
For each o € ®, let U, be the root subgroup corresponding to o and we fix an isomorphism
o ik — U, such that te,(c)t™1 = e, (a(t)c) for any t € T and c € k. For any w € W, let U,
(resp. U’,) be the subgroup of U generated by all U, with w(a) € &~ (resp. w(a) € ®T).
For any J C I, let W be the corresponding standard parabolic subgroup of W and w; be
the longest element in W. For a subgroup H of G and g € G, let H9 =g~ 'Hg.

The permutation module F[G/B] is isomorphic to the induced module M(tr) = FG ®rp
tr. Now let 14 be a nonzero element of tr. For convenience, we abbreviate z ® 1, € M(tr)
to x1ly,. Each element ¢ € Endpg(M(tr)) is determined by ¢(1;.). Note that ¢(14)
is a B-stable vector. Thus we have ¢(1;.) = A1y for some A € F, which implies that
Endpg (M(tr)) = F. In particular, the FG-module M(tr) is indecomposable.

For any w € W, let w be a representative of w. For any ¢t € T and n € Ng(T), we have
ntly = nly. Thus wly, = wly, is well-defined. For any J C I, we set

nr= > (=) ™wly,

weWy

where ¢(w) is the length of w. Let M(tr); = FGn;. It was proved in [8, Prop. 2.3] that
M(tr); = FUWnR,;. For w € W, we set

H(w)={iel|ws; <w}.
For any subset J C I, we let
Xy ={z € W |z has minimal length in zW;}.

PROPOSITION 2.1. For any J C I, the FG-module M(tr); has the form

M(tr)J: Z FUwny; = Z ]FUwa—lwnJ,
weXy weX s

and the set {uwn; |w € Xj,u € Uy, -1} forms a basis of M(tr) ;.

Proof. First, it is easy to see that M(tr); = FUWn; =FUX 1, since yn; = (_1)e(y)77j
for any y € W. Let w € X 7. For any v € ®* such that w w1 (y) € &+, we have v~ 1w~ (v) €
ot for any x € W;. For u € U, and z € Wy, we get

1 1

wwrly = wr(x” w™ uwwe)ly = wrly,,

since z 7w ™!

part.

uwzx € U. In particular, we get Uwn; = U,, ,,-1wn;. Then we obtain the first
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In the following, we show that {uwn; |w € X ;,u € U, -1} forms a basis of M(tr) ;. It is
enough to prove that this set is linearly independent. Suppose this set is linearly dependent,
then there exist f, ., € F (not all zero) such that

Z Z Juwuwny =0. (2.1)

weX yueU 1

wgwT

Let z € X ; whose length is maximal such that f,, . # 0 for some uy € U,,,,-1. Substitute

ny = Z (—1)“@ g1, in the equation (2.1). According to the Bruhat decomposition,
zeWy
the set {uwly | w € Wyu € Uy-1} is linearly independent in M(tr). Then we have
Z fu,zuzw sl = 0. So we get f, . =0 for all w € U,,,,-1, which is a contradiction.
uweyU 1

wyzT

The proposition is proved. a

For any i € I, set U}, = Uy, \{id}, where id is the neutral element of U. For the
convenience of later discussion, we give some details about the expression of the element
siu;wny, where u; € U, and w € X ;. For each u; € U, ., we have

Siuisi = fi(ui)sihi(ui)gi(uq),

where fi(u;),9:(u;) € U},,, and h;(u;) € T are uniquely determined. Moreover, if we regard
Ji as a morphism on U}, , then f; is a bijection. The following lemma is very useful in the
later discussion. Its proof can be found in the proof of [8, Prop. 2.3] and we omit it.

LEMMA 2.2, Let u; € Uy, with the notation above, then we have
(a) If wwy < s;wwy, then s;u;wny = s;wny.

(b) If siw <w, then S;u;wny = fi(u;)wn;.

(c) If w < s;w but s;wwy < wwy, then S;uwny = (fi(u;) —1wny.

Following [8, 2.6], we define
Ej=M(tr),/M(tr)],

where M(tr)’; is the sum of all M(tr)x with J C K. We denote by C; the image of 7 in
E;. For each w e W, let
hw =Y (~1)/)=W P, ,(1)y € FW,
y<w
where P, ,, are Kazhdan-Lusztig polynomials (see [5, Th. 1.1]). The set {h,, |w e W} is a
basis of FW. We set
Yy={we X, | Z(wwy)=J}.

LEMMA 2.3. Let J CI. Then each one of the following sets is a basis of FWh,,,, :
(a) {whw, |we X;};

() {hww, |we Xs};

(©) {yhw, [y € Yi} Ulhow, [z € X\Y}.

Proof. (a) By [5, Lem. 2.6(vi)], we see that

by = (=1)1) Y (=) Wy € FW.
yeW,
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It is clear that wh,,, = (—1)“®)h,,, for any w € W;. So we have FWh,,, = FX ;h,,,. Now

suppose that there exist a,, € F (not all zero) such that Z Gy Why, , =0. Let z € X ;7 whose

weXy
length is maximal such that a, # 0. Substitute h,,, and we get a,ww;=0in FW. So a, =0,

which is a contraction. Therefore, {wh,,, | w € X;} is a basis of FWh,,,.
(b) By [4, Lem. 2.8(c)], for x € X7, we have

hww.f = xh‘w.] + Z bwwhw_n by € F. (2.2)

weXjw<lx

Using induction on ¢(x) we see that

Thu, =hew, + > Yyhww,, b, €F. (2.3)
weX j,w<x
Thus (b) is proved by (a).

(c) We claim that for any w € X, why,, is a linear combination of the elements in
{yhw, |y € Y} U{hgw, | z € X;\Ys}. If £(w) =0, then the claim is obvious. Now assume
that the claim is true for z € X; with £(z) < ¢(w). If w € Y}, then the claim is clear. If
w € X;\Yy, using formula (2.3) and induction hypothesis, we see that the claim is true.
Now (c) is proved. O

PrRopPOsSITION 2.4. For J C I, we have

E;= > FU,,,-1wCy,

weYy
and the set {uwCy|w € Yy,u € Uy -1} forms a basis of E;.

Proof. For w € W, we set hl,, = hq, 1y € M(tr). Thus, hl, = (—1)“®)y; for any J C I
by [5, Lem. 2.6(vi)]. According to Lemma 2.3 (c), we get

M(tr); = > FUwn;= » FUuwn;+ » FU,, .

weX weYy xGXJ\YJ

We claim that M(tr)’; = Z FUA,,,,. For z € X;\Y;, we see that Z(zw;) = K for

mGXJ\YJ
some K 2 J. Thus zw; = ywg for some y € Xi. By Lemma 2.3 (b), we have hl, =
Peywre € FWng which implies Z FUA,,,, € M(tr)];. On the other hand, we see that
IEXJ\YJ
Xk C X;\Y; for any K D J. Therefore we get M(tr)x C Z FUhy,,, for any K 2 J.

.TGXJ\YJ
The claim is proved and we get

E;=M(tr);/M(tr); = > FUwC;.
weYy
It is not difficult to see that UwC; = U,,,,,-1wC; for any w € Y;. Thus, we obtain the
first part.

Now we show that the set {uvwCjy |w € Y;,ue€ U, -1} is a basis of E;. It is enough
to prove that this set is linearly independent. Suppose that this set is linearly dependent.
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Then there exist f,, ., € F (not all zero) such that

Z Z fuwuvwCy =0.

wGYJ ’U,EUwJ

w—1

Noting that E; = M(tr);/M(tr)’;, we have
Z Z Juwuwny € M(tr).

weYyueU 1

wgw

Without loss of generality, we assume that ug = id for some z € Y; with f,, . # 0. Note

that the T-fixed subspace of M(tr); is Z Fwny. Since zny is a T-stable vector and
weXy

M(tr);, = Z FUAhY,, ,, it is not difficult to see that zn; is a linear combination of the

e X,] \YJ
following set

{wn; |weY,w#z2}U{hl, |reX,\Y}

Tw g
This is a contradiction by Lemma 2.3 (c). The proposition is proved. U

PROPOSITION 2.5. [8, Prop. 2.7] If J and K are different subsets of I, then Ej and Ex
are not isomorphic.

By the definition of E;, there exists a filtration of submodules for F[G/B] whose
subquotients are E; (J C I). In the following of this paper, we prove the irreducibility
of E; for any J C I. Combining Proposition 2.5, we get Theorem 1.1.

83. Self-enclosed subgroups

This section contains some preliminaries and properties of unipotent groups that are
useful in later discussion. As before, let U be the unipotent radical of the Borel subgroup
B. For any w € W, we set

P, ={acd" w()ed }, &} ={aecd" |w(a)ecdT}.

As before, U, (resp. U’)) is the subgroup of U generated by all U, with a € ®,, (resp.
a € ®F). The following properties are well known (see [1]).

(a) For w € W and any root a € ®, we have WUy~ ! = Uy(a);

(b) U, and U/, are subgroups of U, and we have wU’ @w~! C U;

(c¢) The multiplication map U,, x U/, — U is a bijection;

(d) Let ®* = {61,02,...,0n}. Then U = Uy, Us,...Us,  and each element u € U is
uniquely expressible in the form u = ujus ... up, with u; € Us,;

(e) (Commutator relations) Given two positive roots a and 3, there exist a total ordering
on ®* and integers g such that

[ca(a),e5 ()] := cala)es(b)eala) ep(b) ™" = H Ema+np(caga™b™),
m,n>0

for all a,b € k, where the product is over all integers m,n > 0 such that ma+npS € &,
taken according to the chosen ordering.

As before, let &1 = {41,d2,...,0,,} and for an element u € U, we have u = z175... 7,
with z; € Us,. If we choose another order of ®* and write ®* = {67,85,...,0.,}, we get
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another expression of u such that v =y1ys...ym with y; € Us,. If §; = 5} =« is a simple
root, by the commutator relations of root subgroups, we get z; = y; which is called the
U,-component of u. Noting that the simple roots are A = {a1,as,...,a,} and each y € ®T

n n
can be written as v = Z ki, we denote by ht(y) = Zk’ the height of 7. It is easy to see

i=1 i=1
that H U, is a subgroup of U for any fixed integer s € N by the commutator relations
ht(y)>s
of root subgroups.
Given an order “<” on ®7, we list all the positive roots d1,ds,...,and d,, with respect

to this order such that ¢; < ¢; when ¢ < j. For any u € U, we have a unique expression in
the form v =wujus...u, with u; € Us,. Let X be a subset of U, we denote by

X N< Us, = {ug € Us, | there exists u € X such that v =wujus... uk... Uy}

It is easy to see that X NUs, € X N< Us,. Now let H be a subgroup of U, and we say that
a subgroup H C U is self-enclosed with respect to the order “<” if

HnN,Us, =HNUs;, for any k=1,2,...,m.

If H is self-enclosed with respect to any order on ®T, then we say that H is a self-enclosed
subgroup of U.

Let H be a self-enclosed subgroup of U. For each v € ®*, we set H, = HNU,. Then we
have H=H; Hs,...Hs, . For we W, set H, = HNU,. Then it is easy to see that H,, is

also a self-enclosed subgroup, and we have H,, = H H,.

m*°

VEP

EXAMPLE 3.1. Suppose k =F, and {81,0s,...,0,,} are all the positive roots such that
ht(d1) <ht(d2) <--- <ht(6,,). Assume that U is defined over Fy and let Uje be the set of
F4a-points of U. Given ay,as,...,a, € N such that a; is divisible by a; for any 7 < j, we set

H - U(slvqal U527qa2 e U(S'ana"" °
Then it is not difficult to check that H is a self-enclosed subgroup of U.

Now let H be a subgroup of U. Let V be a subgroup of U which has the form V =
Ijgltjgz...ljgk.\Vé let

U=|J2V and U=]Vy,
€L YyER

where L (resp. R) is a set of the left (resp. right) coset representatives of V in U. Then we
define the following two sets:

Hv = {v € V| there exists u € H such that u = xv for some x € L},

vH = {v € V| there exists u € H such that v = vy for some y € R}.

PRrROPOSITION 3.2. Let H be a self-enclosed subgroup of U. Let V be a subgroup of U
with the form V.=Ug Ug, ... Ug,, where B1,B2,...,0; € ®T. Then we have

Hy=vH=HNV
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Proof. We just prove that Hy = HN'V. It is clear that HN'V C Hvy . Noting that V is
a subgroup of U, we denote

Uu=0U0,U0,,...U, Uz Ug,...Ug,.
Let v € Hy . Thus, there exists h € H such that h = xv for some x € L. We write
b=y Ty, Ty VB, VB, - VB, Ty, € U’Yivvﬁj € Uﬂj'

Since H is self-enclosed, we see that vg, € HNUg, which implies that v € HNV. Therefore,
we get Hyv = HNV. Similarly, we have v H = HN'V. The proposition is proved. U

Now we consider the special case that k is a field of positive characteristic p. In this case,
it is well known that all the finitely generated subgroups of U are finite p-groups. We have
the following lemma.

LEMMA 3.3. Let X be a finite subset of U. There exists a finite p-subgroup H of U such
that H O X and H is self-enclosed.

Proof. Let ® ={81,02,...,0,,} such that ht(d;) < ht(d) < --- < ht(d,,). For each 1 <
k <m, we set X =X N<Us,. Let H; be the subgroup of Uy,, which is generated by
X1. Now we define the subgroup Hj by recursive step. Suppose that Hy,Hs,...,H;_1 are
defined, we set

Yk = <H17H2)"'5Hk71>m<U5k7

and let H}, be the subgroup of Uy, , which is generated by X and Y),. Now we have a series
of subgroups Hi,Hs,...,H,, and then we set H = (Hy,Hs,...,H,,), which is a finitely
generated subgroup of U. Thus H is a finite p-subgroup of U, which contains X by its
construction. Moreover, it is not difficult to check that H is a self-enclosed of U using the
commutator relations of root subgroups. [

It is easy to verify that the intersection of two self-enclosed subgroups of U is also
self-enclosed. For a finite subset X of U, there exists a minimal self-enclosed subgroup
V' containing X. In this case, we also say that V is the self-enclosed subgroup generated
by X.

84. Nonvanishing property of the augmentation

In this section, we fix a subset J C I. By Proposition 2.4, we have

E;= P FU,,u-1wCy,

’LUEYJ

as F-vector space. For each w € Y, we denote by
PBu:Ey—=TFU, ,—wCy,
the projection of vector spaces and by
€w : FUy p—1wCy — F,

the augmentation (restricting on w) which takes the sum of the coefficients with respect

to the natural basis, i.e., for £ = Z azzwCy, we set €,(§) = Z az. Now we
zeU 1 zc€U 1

wywT wgwT
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denote by
€= EB ew‘Bw:EJ—HF'YJ"

weYy

the augmentation on E ;.

When considering the irreducibility of Steinberg module, the nonvanishing property of
the augmentation is very crucial (see [9, Lem. 2.5] and [6, Prop. 1.6]). In this section, we
show that the non-vanishing property also holds for the augmentation e defined above.
Firstly we have the following lemma.

LEMMA 4.1. Let & € Ej be a nonzero element. Then there exists g € G such that Pe(g€)
18 NONZero.

Proof. By Proposition 2.4, £ € E; has the following expression

&= Z Z Ao,z 2WC' .

weYy;xeU 1

wygwT

Then there exists an element h € W with minimal length such that aj , # 0 for some
x € Uy, -1, which implies that 9 (§) is nonzero. When h = e, the lemma is proved. Now
suppose that ¢(h) > 1, so there is a simple reflection s such that o = sh < h. Without loss of
generality, we can assume that aj, ;o 7 0. We claim that either B, ($£) is nonzero or P, (5y€)
is nonzero for some y € Uj.

If P, (s€) =0, then according to Lemma 2.2, there exists at least one element v € Y},
which satisfies the following condition

(#) sv ¢ Yy and P, (svCy) #0.

The subset of Y; whose elements satisfy this condition is also denoted by &. Thus,
PBo(8€) =0 tells us that

Bo (3 Ba(€) +Bo (8- Y Bu(€) =0.

vEM

In particular, we get P, (s- Z P, (§)) # 0. Since U is infinite, there exists infinitely many

vEM
y € Uy such that the Us-component of yz is nontrivial for any z with a, , # 0. For such
an element y, we get B, (5-Pr(y€)) =0 by Lemma 2.2 (b).
On the other hand, for v € & and a, , # 0, we see that the Us-component of z is trivial,
ie., x € U,. Note that U, ,,-1, = (U,,,-1)°- U, and U;UJG,I =( ;UJU,ls)S-US. Then we
can write

z=n(z)p(z), where n(z)€ (U,,,-1)" and p(z) €U, .

wyjo— s

Since this expression is unique, we can regard p(—) and n(—) as functions on U’. We let
yx = wy(z)y, where wy(x) € U’. Using the commutator relations of root subgroups, we can
choose y such that n(wy(z")) # n(wy(x)) unless n(x) = n(z’) since there are only finitely
many z's satisfying a,, , # 0. Therefore, if we write

PBo (8D PBu(€) =D boun(z)oCy #0,

vEM
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it is not difficult to see that

f‘pa(‘é : va(yg)) = an,xn(wy(‘r))éach

vEM

which is also nonzero. Therefore,

Bo(3y6) = Ro (8- Y Bul(ys)) #0.

vEM

By the argument above, we can do induction on the length of A and thus the lemma is
proved. U

The nonvanishing property of the augmentation € on Ej is as follows:

PROPOSITION 4.2. Let £ € Ej be a nonzero element. Then there exists g € G such that
€(g€) is nonzero.

Proof. By Lemma 4.1, we can assume that B.(&) is nonzero. For

= Z Z ay 2wCy € By,

weYy xEUwa71
we say that £ satisfies the condition Qp if Z e, 7 0 for some h € W;. We prove the
xzeU),

following claim: if £ satisfies the condition ¢}, for some h € W, then there exists g € G
such that €.B.(g€) is nonzero.

We prove this claim by induction on the length of h. If h = e, then it is obvious that
ePe (&) = Z e, Which is already nonzero. We assume that the claim is valid for any

€Uy
h € Wy with £(h) <m. Now let h € W with £(h) =m+1 such that Y ac . #0. We have
zeUy,

h = 7s for some s € #Z(h). Then Uj, = U% .U, and U’ = (U])*- U, by definition. Now our
aim is to show that there exists g € G such that g€ satisfies the condition Q.

First, we prove that the element -9, (&) satisfies the condition ©. Since U,,, = U} U}, =
U, UsUy, each element = € U,,, has a unique expression

r=xzyx.25, x5, €U}z, €Uz, €U,

We just need to consider the coefficients of a. , with éx’thé_l € U/, which implies that

x; =1id. For the case xs # id, using Lemma 2.2 (c), we have
s52Cy =y 825Cy =xp (f(xs) —1)Cy,
where 2}/ = sz} §7! € (U})* C UL and f(xs) € Us. Therefore if we write

siﬁe(ﬁ): Z be,xICJ)

€U

then Z bey=— Z e 7 0. Thus -, (&) satisfies the condition ©.
zeU/, zeuy,
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Now we consider $€ and if $§ satisfies the condition O, we are done. Otherwise, there
exists at least one element v € Y; which satisfies the following condition

() : sv¢Y;and B(svCy) #0.

The subset of Y; whose elements satisfy this condition is also denoted by &. With this

setting, $-Pe (&) +Pe(s- Z‘Bv (£)) does not satisfy the condition ©,, which implies that
vES

PBe (s Z‘Iiv@)) satisfies the condition O, since we have proved that $-9.(€) satisfies

vEH
the condition ©.. Since U is infinite, we can choose an element y € U, such that the Us-

component of yx is nontrivial for any =z with a. , # 0. Then we consider the element $y¢.
Using Lemma 2.2 (c), it is easy to see that $-B.(y&) does not satisfy the condition ©..

Now for v € & and z € U, ,,—1 with a, , # 0, noting that the Us-component of z is
trivial, we write

z=m(x)q(z), where m(z)e Uy, q(z) € (U,,)°%
For y € Uy, using the commutator relations of root subgroups, we have
ym(x) =my(z)y, where my(z) € Uy,s,
and

yq(x) = qy(x)y, where g, (x) € (U, )"

Since U’ = (U},)*Us, we get m(z)* € UL if and only if m(z) € (U})*. Thus, m,(z)* € UL
if and only if m(x)® € U.. Therefore, if we write

sBe(é' va(g)) = szm(l‘)SCJ,

vES
it is not difficult to see that

PBe(8-D Bu(y)) =D bemy(2)*C.

vE

Noting that PB.(s- Z‘Bv(f)) satisfies the condition ©., we see that P.(s- va(yg))

vEh vEh
satisfies the condition ©.. Finally, there exists g € G such that g satisfies the condition

Qe, which implies that €. (g€) is nonzero. We have proved our claim.

Now we can assume that a.;q # 0. Thus, the element ¢ satisfies the condition ©,,,.
According to our claim, there exists g € G such that €.B.(g¢) is nonzero. In particular,
€(g€) is nonzero and the proposition is proved. O

85. Proof of the main theorem

In this section, we give the proof of Theorem 1.1. First, we deal with the cases: (1)
char k =0 and (2) char k > 0 and char k # char F. For J C I, we show that any nonzero
submodule M of E; contains Cj, and hence M = E;. In particular, E; is irreducible for
any J C I. Let £ € M be a nonzero element with the following expression

&= Z Z A,z xwC g € M.

weYyxeU 1

wgwT
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By Proposition 4.2, we can assume that €¢(£) # 0. In the case (1) by [6, Prop. 5.4] and in
the case (2) by [6, Prop. 6.7], we have

Z Z Qy 2, wCy € M.

weYy;xeU 1

wgw

In particular, we see that

M FwCj #0.

weYy

Noting that the discussion in the proof of [2, Claim 2] is still valid in our general setting,
we see that Ej is irreducible for any J C I. The Ej;’s are pairwise nonisomorphic by
Proposition 2.5.

It remains to consider the case char k = char F = p > 0. From now on, we assume that
char F = char k = p. For any finite subset X of G, let X := 3" _\ 2 € FG. The following
lemma is easy to get and will be very useful in our later discussion.

LEMMA 5.1. Let P be a finite abelian p-group such that P = H x K, where H, K are two
subgroups of P. Let H' be a subgroup of P such that |H'| = |H|. Then H K =0 or P.

For a self-enclosed subgroup H of U, set H, = HNU, as before for each v € ®*. Let
&t ={61,02,...,0,m}. We have

H = Hj, Hy, ... Hy

m*

Let H, = HNU,. Then we have H, = |[ H, and H, = [] H,. The following two

YED Y YEDP W
lemmas are very crucial in the later proof of Theorem 1.1.

LEMMA 5.2. Assume that char F = chark =p >0 and let M be a nonzero FG-submodule

of Ej. Then there exist an element w € Yy and a finite p-subgroup X of Uy, ,,,—1 such that
XwCjye M.

Proof. Let & be a nonzero element of M which has the form

&= Z Z Ay 2wCy € Ej.

weYy a:GUwJ

w—1
By Lemma 3.3, there exists a self-enclosed finite p-subgroup V of U, which contains all
x € Uy -1 With ay » # 0. Then we have
FVEC €D FVy,w-rwCy,
’u)EYJ

as FV-modules. Since (FV¢)Y # 0 by [7, Prop. 26] and noting that

(D FVi,w-1wCy)Y € @ FVy,w1wCy,

weYy weYy
there exists a nonzero element

n= Z A Vi jw—1wCy € FVE C M.
weYy

Set A(n) ={w € Yy|ay,#0}. If |A(n)| =1, the lemma is proved.

https://doi.org/10.1017/nmj.2024.31 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2024.31

12 J. DONG

Now we assume that |A(n)| > 2. We set ®(n) = U P - Let @(n) ={v1,72,-..,7a}

weA(n)
such that ht(v1) < ht(y2) < --- < ht(vg). Let s be the maximal integer such that
Vs & D - Let y € U, \V,, and H be a self-enclosed finite p-subgroup of
weA(n)
U,.U,,,,...U,, such that H contains V, V. ...V,, and y. Let X be the self-enclosed

subgroup of U which is generated by H and V. Then it is easy to see that X has the
following form

X=Vy..Vy Xy .. Xy,

where X, = XNU,, for s <k <d. Denote by €15 a set of the left coset representatives of
ViViyeir o Vauin X X, ... X,,. For the w € Y such that v, € & we have

s+1° s+1 wa_17

& Vwa—IUJCJ = Xwa—leJ.

For the w € Y such that ~, ¢ @;Jw_l, we have Q, V,, ,,—1wCy = 0 since char F = p. Then

we get
77/ = & n= Z wawa—leJv
weYy
which satisfies that |A(n')| < |A(n)|, where A(n’) ={w € Y, | by, # 0}. Thus by the induction
on the cardinality of A(n), the lemma is proved. O

LEMMA 5.3. Assume that char F = chark=p >0 and let M be a nonzero FG-submodule
of Ej. If there exists a finite p-subgroup X of Uy, 15 such that XswCj € M, where sw €Y}
and sw > w (which implies that w € Yy ), then there exists a finite p-subgroup H of U, -1
such that HwCj; € M.

Proof. Using Lemma 3.3, we can assume that X is a self-enclosed subgroup of Uy, ,,~15.
Since Uy, ,y-15 = Ug(Uy,,p-1)°, we can write X = X, V, where V=X N (U, ,-1)° is also
a self-enclosed subgroup of (U,,,,,-1)°. Thus, we have X = X, V. In the following, we will
prove that if Y V swC ;€ M for some finite subset Y of U, and a self-enclosed subgroup
V of (U, w-1)*%, then there exists a finite p-subgroup H of U,, -1 such that HwC; € M.
Without loss of generality, we can assume that Y contains the neutral element of Us.

For each u € U, \{id}, we have

5us = fo (u)ha (u)éga (u)a

where f,(u),g4(u) € U, and hy(u) € T are uniquely determined. Then

5uV swCy = fo(u)ha(u)sga(u)s VswC].

Without loss of generality, we can assume that the group V contains enough elements such
that

Ja(w)§  VswCy = 5 VswCy,
for any u € Y'\{id}. Indeed, we let
Go(X) ={ga(u) € Ua |u e Y\{id}},
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and H be a self-enclosed subgroup which contains G,(X) and $'V3$. Then H, -1 =
HNU,,,- is also a self-enclosed subgroup which contains 7'V 5. Then we can consider
Y $H, ,,-15"" instead of Y V from the beginning. Noting that h,(u) € T, we have

$uV swCy = fo(u)he(W)VswCy = fo(u)ha(w)Vhe(u)  swCy,

which implies that

3Y VswCy=sVs twCy+ Z fa(u)ha(u)Vha(u)_lswCJ.
weY\{id}

Now we let

Q;J’LU71 U(p;‘]wfls = {/Bl = 017/82, LR 7ﬁ7n}7

such that ht(81) <ht(82) <--- <ht(5,,). Since sw € Y; and sw > w, we have (U, ,,-1)° #
U, ,w-1 by [3, Cor. 2.2]. Now let 7 be the maximal integer such that 3, ¢ NPy

wywls
and 3; € D1 NP for j > r. When S, € @;Jw,l\q);]w,ls, using Lemma 3.3,
Lemma 5.1 and [3, Lem. 4.5], we can choose certain subgroup €, of Ug, for each r <k <m
such that

Qr i1 Qo fa(w)ha (W) Vho(u) swCy =0,

for any u € Y'\{id} and
Q Qi Q 8V TwCy = Qu0y,

for some finite subgroup €2 of Uy, ,,,—1. Then the lemma is proved in this case.
When 6, € &

wgw

certain subgroup I'y, of Up, for each r < k <m such that there exists at least one u € Y\ {id}

2 \® ., also by Lemmas 3.3, 5.1 and [3, Lem. 4.5], we can choose
s wyw

which satisfies

& Pr—l—l .. fa (u)ha (U)Vha (u)_lsch = fa (U)ESU}CJ,

where I' is some finite subgroup of (U,,,-1)°. On the other hand, these groups
'y, I'vyq,..., Iy, also make

Ly Doyq...Dy 8V w0y =0.

Therefore, we get ZxEswC g € M for some set F with |F| < |Y| and some finite

zEF
subgroup I' of (U,,,,-1)®. Hence by the same discussion as before, we get another element

Z yI'swCy € M for some set F’ with |F’| < |F| and some finite subgroup I of (U, ,,-1)*.

yEF’
Finally, we get an element KswC; € M for some finite subgroup K of (U, ,-1)°. Thus,

we have K*wC; € M and the lemma is proved. U

Finally, we prove the irreducibility of E; in the case char F = char k = p > 0 using
the previous lemmas. Let M be a nonzero FG-submodule of E;. Combining Lemmas
5.2 and 5.3, there exists a finite p-subgroup H of U,, such that HC; € M. Similar
to the arguments of [9, Lem. 2.5], we see that the sum of all coefficients of w;xC; in
terms the basis {uCy | u € Uy, } is zero when z is not the neutral element of U,,,. So if
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we write

{ = ’U)JECJ = Z CLJ.’ECJ,

z€U

we have Z Qg = (—1)3(“’" ), which is nonzero. We consider the F U, ,-module generated
€U

by &, and then using [6, Prop. 4.1], we see that C; € M. Therefore M = E;, which implies

the irreducibility of E; for any J C I. All the FG-modules E; are pairwise non-isomorphic

by Proposition 2.5 and thus Theorem 1.1 is proved.
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