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Volcanic fissure eruptions typically start with the opening of a linear fissure that erupts
along its entire length, following which, activity localises to one or more isolated
vents within a few hours or days. Localisation is important because it influences the
spatiotemporal evolution of the hazard posed by the eruption. Previous work has proposed
that localisation can arise through a thermoviscous fingering instability driven by the
strongly temperature dependent viscosity of the rising magma. Here, we explore how
thermoviscous localisation is influenced by the irregular geometry of natural volcanic
fissures. We model the pressure-driven flow of a viscous fluid with temperature-dependent
viscosity through a narrow fissure with either sinusoidal or randomised deviations from
a uniform width. We identify steady states, determine their stability and quantify the
degree of flow enhancement associated with localised flow. We find that, even for relatively
modest variations of the fissure width (<10 %), the non-planar geometry supports strongly
localised steady states, in which the wider parts of the fissure host faster, hotter flow,
and the narrower parts of the fissure host slower, cooler flow. This geometrically driven
localisation differs from the spontaneous thermoviscous fingering observed in planar
geometries and can strongly impact the localisation process. We delineate the regions
of parameter space under which geometrically driven localisation is significant, showing
that it is a viable mechanism for the observed localisation under conditions typical of
basaltic eruptions, and that it has the potential to dominate the effects of spontaneous
thermoviscous fingering in these cases.

Key words: magma and lava flow, nonlinear instability, pattern formation

1. Introduction
Basaltic fissure eruptions are the most common type of volcanic eruption on Earth
(Sigurdsson 2000). Recent examples include the eruption of Kilauea’s Lower East Rift
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Zone (USA) in 2018 (Neal et al. 2019) and the ongoing sequence of eruptions on the
Reykjanes Peninsular (Iceland) that began in 2021 (Troll et al. 2024). A fissure eruption
occurs when a dyke – a magma-filled crack – intersects the Earth’s surface, creating
an elongated eruptive vent. The eruption typically onsets as a near-continuous curtain
of lava fountaining, which localises over hours to days into discrete vents that produce
isolated lava fountains and feed lava flows (e.g. Richter et al. 1970; Thorarinsson et al.
1973; Delaney & Pollard 1982; Eibl et al. 2017). The hazard posed by a fissure eruption
evolves as the fissure localises; in particular, the path taken by fissure-fed lava flows is
strongly influenced by the vent location (Rongo et al. 2016). Understanding the spatio-
temporal evolution of a localising fissure eruption is, therefore, an important practical
goal for the management of eruption hazards, as well as a problem of fundamental fluid
dynamic interest.

Localisation is thought to arise from a thermoviscous instability, analogous to classical
Saffmann–Taylor viscous fingering, by which hot, low-viscosity magma displaces cooled,
higher viscosity fluid. The system becomes unstable to the formation of fingers of lower
viscosity fluid (Pearson, Shah & Vieira 1973; Whitehead & Helfrich 1991; Helfrich 1995;
Wylie & Lister 1995; Morris 1996; Wylie et al. 1999) which become preferred transport
pathways that feed localised flow. Bruce & Huppert (1989) suggested that the localisation
process could be driven by a feedback between solidification at the walls and the resulting
effect on heat advection through the fissure due to the evolving fissure geometry. However,
Wylie et al. (1999) argued that the localisation that occurs via this feedback evolves on
a longer time scale than the localisation caused by thermoviscous fingering, making the
latter the dominant effect. Other work has explored the potential role of other processes in
localisation, including dynamic wall rock deformation (Ida 1992), drain-back of erupted
lava (Jones et al. 2017), formation of plumes of decoupled bubbles of magmatic gas (Pioli
et al. 2017; Houghton et al. 2021) and convective exchange flow within the dyke (Jones &
Llewellin 2021).

Previous work on thermoviscous localisation has made the simplifying assumption
that magmatic dykes have walls that are initially planar and parallel. However, dyke
emplacement involves pulsatory, stochastic failure of heterogeneous country rock (Allgood
et al. 2024), resulting in dykes that vary substantially in thickness along their length
(Daniels et al. 2012; Parcheta et al. 2015). In this study, we explore the role that the non-
planar geometry of dyke walls plays in localisation. We consider the flow of a viscous
fluid with temperature-dependent viscosity through a dyke with variations in thickness
along its length (i.e. the gap thickness varies perpendicular to the main flow direction;
see figure 1). The full equations are reduced, taking advantage of the small aspect ratio
of fissure width to length, as well as a number of additional physical assumptions, given
in § 2. Furthermore, we employ a heat balance approach, detailed in § 2.1, to account for
the temperature and viscosity field when averaging across the fissure width. A similar
averaging approach has been used in a number of studies concerning cooling lava flows
(Balmforth, Craster & Sassi 2004; Bernabeu, Saramito & Smutek 2016; Thorey & Michaut
2016; Hyman, Dietterich & Patrick 2022; Moyers-Gonzalez et al. 2023), as it maintains
the key structure of the across-flow temperature profile in the model, while providing the
numerical efficiency of averaging over the thin dimension of the flow. We first quantify
behaviour in a dyke with sinusoidally varying width, constraining the role of amplitude
and wavelength of the variation, and of the pressure difference driving the flow. We find
that, under volcanologically relevant conditions, the thermoviscous fingering instability
can be overprinted by the effect of geometry, which focusses hotter, faster flow into
the wider portions of the dyke, and cooler, slower flow into the narrower portions.
We then demonstrate the importance of this localisation mechanism in a more realistic
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Figure 1. (a,b) Schematic of fissure geometry, coordinate system and boundary conditions. In the side view,
panel (a), the bottom and top boundaries are the inflow and outflow, respectively, the dashed lines indicate
no flux (symmetry) boundaries, and the double-headed arrows indicate the vertical and along-fissure length
scales. In the top view, panel (b), the bottom and top boundaries are the side walls of the fissure, the dashed
lines indicate no flux (symmetry) boundaries, and the dotted line indicates the assumed plane of symmetry
down the centreline of the fissure. (c) Diagram indicating the effect that thermoviscosity has on the streamlines
of volume flux in such a geometry. For an isoviscous fluid and the topography aligned with the flow direction,
the streamlines are parallel. When the viscosity depends on temperature, the streamlines are diverted and flux
is concentrated more strongly in the wider region of the fissure.

dyke geometry, consistent with field observations (Parcheta et al. 2015) and country-rock
fracture patterns (Brodsky, Kirkpatrick & Candela 2016).

2. Problem definition
We consider a viscous fluid flowing through a narrow fissure. Figure 1(a,b) shows a
diagram of the fissure geometry. We define a coordinate system such that z measures
distance up the fissure in the (vertical) primary flow direction, y measures distance across
the narrow dimension of the fissure and x measures distance along the fissure. The fissure
height is L and its half-width varies via a prescribed dependence, h(x, z), with a typical
value of h0 � L . We will consider the width to be independent of z and, in particular,
predominantly impose a sinusoidal variation of the half-width,

h(x) = h0

(
1 + A cos

(
2πx

λL

))
, (2.1)

where λ is the wavelength of the variation, non-dimensionalised by L . The independence
of h on z is not a requirement of the model and, in practice, there is likely to be some
variation in this direction; however, we anticipate that variations in the x-direction will
couple most strongly with the advection of heat and, therefore, be most significant in
driving flow localisation. For the sinusoidally varying geometry, the horizontal section
considered in the model is of length Lx = λL/2, such that a single half-wavelength
fits inside the domain. The assumption of symmetry boundary conditions then restricts
to symmetrical solutions that are periodic with the same wavelength as the geometry.
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Figure 1(c) shows the effect of thermoviscosity for the flow through such a geometry,
with topography aligned with the (vertical) pressure gradient. For an isoviscous fluid, the
streamlines would remain aligned in the vertical direction, with a flux that varies with the
cube of the local width, as per Darcy flow. For a temperature-dependent viscosity, however,
the viscosity gradients arising from differential cooling drive the streamlines away from
the thinner region and towards the wider region of the fissure. This provides the essential
mechanism by which localisation is enhanced.

Neglecting viscous heating and thermal expansion, and making the lubrication
approximation, the governing equations for the temperature, T , pressure (modified to
include the hydrostatic contribution), p, and velocity, u = (u, v, w), are given to leading
order by (cf. Wylie & Lister 1995)

ρcp

(
∂T

∂t
+ u · ∇T

)
= k∇2T, (2.2)

∂p

∂y
= 0, ∇2 p= ∂

∂y

(
μ(T )

∂u2

∂y

)
, (2.3)

∇ · u = 0, (2.4)

where ρ is the fluid density, cp is the specific heat capacity, k ≡ ρcpκ is the thermal
conductivity, μ(T ) is the temperature-dependent viscosity, specified later, and u2 =
(u, 0, w) and ∇2 = (∂x , 0, ∂z) are the velocity and gradient in the plane of the
fissure. These equations represent conservation of heat, conservation of momentum and
incompressibility, respectively.

Figure 1 shows the prescribed boundary conditions on the temperature, T , pressure,
p, and velocity, u. The fluid is assumed to enter at a hot source temperature, Th ,
and with a prescribed pressure, �p> 0, at z = 0. At x = 0 and x = Lx , we assume
symmetry conditions, u = ∂p/∂x = ∂T/∂x = 0. At the outflow, z = L , the pressure is
atmospheric, p= 0. We assume no-slip, u = 0, and a fixed cold temperature, T = Tc, on
the fissure walls, y = ±h. While this fixed temperature boundary condition is a significant
simplification of the full thermodynamic conditions at the fissure walls, it is chosen for
simplicity and consistency with previous work on the problem (Helfrich 1995; Wylie &
Lister 1995; Morris 1996; Wylie et al. 1999). Similarly, for comparison to previous work,
we assume an exponential dependence of viscosity on temperature

μ = μ0 exp (−β (T − T0)), (2.5)

where T0 and μ0 are a reference temperature and viscosity, and β is a parameter that
measures the strength of the dependence. This model, which has been used in previous
fluid dynamical modelling of thermoviscous localisation, has also been proposed to
capture the viscosity of molten basalt as a function of temperature in a number of other
studies (Shaw 1969; Spera, Yuen & Kirschvink 1982; Dragoni 1989). More commonly, this
dependence is parametrised by an Arrhenius viscosity law (McBirney & Murase 1984),
μ = μ∞ exp(B/T ), sufficiently far from the glass transition, or via the Vogel–Fulcher–
Tammann (VFT) equation (Giordano, Russell & Dingwell 2008), μ = μ∞ exp(B/(T −
Tg)), when nearer the glass transition (at T = Tg). In any case, the exponential viscosity
dependence (2.5) can be viewed as a linearisation of the argument of the exponential
in a general dependence of the form μ = exp( f (T )), by writing T = T0 + (T − T0) and
assuming T − T0 small (compared with T0 in the case of the Arrhenius law or compared
with T0 − Tg in the case of the VFT equation).

1015 A18-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10367


Journal of Fluid Mechanics

Dimensionless parameter Symbol and definition

Pressure drop Π = �ph4
0/(κμh L2)

Viscosity parameter γ = log(μc/μh)

Amplitude of width variation A
Wavelength of width variation λ
Lateral extent of domain Lx
Dimensionless quantity Symbol and definition

Vertical flux qz(x, z) = 2
∫ h

0 w dy
Cross channel average temperature T (x, z) = 1/h

∫ h
0 T dy

Flux per unit length Q = 1/Lx
∫ Lx

0 qz dx
Surface flux ratio Qr = maxx {qz(x, z = 1)}/ minx {qz(x, z = 1)}
Scaled surface flux ratio Q̃r = (1 − A)3Qr/(1 + A)3

Table 1. Definition of dimensionless parameters and evaluated quantities.

Following Wylie & Lister (1995), we introduce dimensionless variables via

t̂ ≡ κ

h2
0
t, ŷ ≡ y

h0
, (x̂, ẑ) ≡ 1

L
(x, z), (û, ŵ) ≡ h2

0
κL

(u, w), v̂ ≡ h0

κ
v, p̂≡ p

�p
,

(2.6)

T̂ ≡ T − Tc
Th − Tc

, μ̂(T̂ ) ≡ μ(T )

μh
= exp(γ (1 − T̂ )), ĥ ≡ h

h0
, (2.7)

where μh = μ(Th) (similarly, we define μc = μ(Tc)) and γ = (Th − Tc)β. For the sinu-
soidal geometry, the dimensionless half-width is given by ĥ = 1 + A cos(2π x̂/λ). After
non-dimensionalising, the lateral extent of the domain is L̂ x = Lx/L . The one difference
here from the scalings adopted by Wylie & Lister (1995) is that we have scaled the pressure
by �p, rather than κμh L2/h4

0. The result is that a dimensionless pressure drop,

Π = �ph4
0

κμh L2 , (2.8)

appears in our governing equations, rather than in the boundary condition for p̂. We make
the same assumptions of large Péclet number, Pe≡ �ph3

0/κμh L � 1, and large Prandtl
number, Pr ≡ μh/ρκ � 1. In using the lubrication approximation (2.3), we have assumed
a small aspect ratio, ε ≡ h0/L � 1, and negligible inertia, which requires that the modified
Reynolds number is small, εRe≡ ερ�ph3

0/μ
2
h L � 1. A further assumption required in

our non-uniform geometry is that λ� ε, which ensures the length scale of variations in the
x-direction remains significantly larger than the cross-channel length scale. At leading
order, after dropping hats on all dimensionless variables, the dimensionless governing
equations are

∂T

∂t
+ u2 · ∇2T + v

∂T

∂y
= ∂2T

∂y2 ,
∂

∂y

(
μ(T )

∂u2

∂y

)
= Π∇2 p, ∇2 · u2 + ∂v

∂y
= 0,

(2.9)

where p= p(x, z). Table 1 lists the key dimensionless parameters of the model and the
dimensionless quantities we later report for our solutions.
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For parameter values appropriate for a typical Hawaiian fissure eruption, we take:
thermal diffusivity κ ≈ 5 × 10−7 m2 s–1 (Kilburn 2000); cross-channel length scale of
h0 ≈ 0.25 m (Walker 1986); fissure height of L ≈ 1 km (e.g. Anderson et al. 2024); and
initial viscosity, μh ≈ 300 Pa s (Soldati, Houghton & Dingwell 2021). The pressure drop,
�p, arises primarily from the difference between the lithostatic pressure of the country
rock and the hydrostatic pressure of the magma at the depth of the source. Taking the
density of the country rock to be 2500 kg m–3 (Moore 2001) and the (vesicular) basaltic
magma to have a density of 1500 kg m–3, this gives �p≈ 107 Pa for a source depth of
1 km, which is a feasible depth for the shallow crustal reservoirs that are thought to feed
many fissure eruptions (e.g. Anderson et al. 2024). At this pressure drop, and the physical
quantities assumed previously, we have ε = 2.5 × 10−4 � 1, εRe= 4 × 10−4 � 1,
Pe= 1 × 106 � 1 and Pr = 6 × 105 � 1, all satisfying the assumptions in the reduction
of the governing equations. A typical value of the dimensionless pressure drop is around
Π = 260, though this is likely to vary throughout an eruption, in particular reducing from
a large value at the beginning of an eruption to a smaller value as the eruption wanes.
An alternative scaling argument instead relies on observations of typical eruptive fluxes
and an inference of the corresponding driving pressure drop (e.g. see Delaney & Pollard
1982). Tilling et al. (1987) report estimates of erupted lava volumes over given time
periods during the 1972–1974 Mauna Ulu eruption of Kilauea volcano. These estimates
only provide a rough estimate of instantaneous eruptive rates and are likely lower bounds
since they are based on lava volume remaining on the surface, excluding material that
drained back into the fissures before the eruption ended. Nonetheless, from these figures,
we can obtain a typical flux of between 0.001 and 0.05 m3 s–1 per metre length of fissure.
This becomes non-dimensionalised by the scale κL/h0 ≈ 0.002 m2 s–1 to obtain values
of the dimensionless flux per unit length, Q, between 0.5 and 25. Later, we will show
that this typical range of Q is indeed spanned by the results of the study and corresponds
to dimensionless pressure drops roughly in the range 150 < Π < 350. Rescaling for the
dimensional pressure drop, �p= κμh L2Π/h4

0, this gives 6 × 106 Pa ��p� 1.3 × 107

Pa, which is consistent with the above mentioned pressure scale estimate.

2.1. Cross-fissure averaging
As evidenced by (2.9), the evolution of the temperature profile across the fissure remains
important to the dynamics, in particular, modifying the velocity profile across the channel.
This feature is treated in different ways by Helfrich (1995) and by Wylie & Lister (1995)
and Morris (1996). Wylie & Lister (1995) and Morris (1996) solved for the temperature
and velocity fields across the fissure explicitly, maintaining the full effect of the cross-
channel structure. They were able to do this efficiently in the uniform channel geometry
because the problem becomes independent of x , and thus reduces to a two-dimensional
problem in the y−z plane. Wylie & Lister (1995) further showed that three-dimensional
steady states arising from the fingering instability, or due to a channel of non-uniform
width, can be obtained from the two-dimensional steady state in a uniform channel. This
is possible since along streamlines of the average flow field, the evolution of the cross-
channel steady-state temperature profile can be mapped onto the down-channel evolution
of the two-dimensional problem. This provides a method of finding non-uniform steady
states without approximation; however, the time derivative in the temperature equation
cannot be treated in the same manner and so this approach is unable to accurately calculate
time-dependent states. For the purposes of searching for non-uniform steady states by
time-stepping, Wylie & Lister (1995) introduced a pseudo-time, but were unable to find
any such steady solutions near the onset of the instability, instead observing that these
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unstable solutions appeared to continue to evolve back onto the uniform steady solution
branch, at a higher flux.

In contrast, Helfrich (1995) averaged the viscosity, velocity and temperature across the
gap, assuming a parabolic ‘Darcy’ flow profile for the velocity at a viscosity set by the
average temperature and approximating the across-channel temperature profile by a single
sine mode in determining the heat flux to the walls. While the qualitative results were the
same (regarding multiplicity of steady states and the onset of the fingering instability),
there was significant quantitative discrepancy due to the averaging. In particular, there
is a region of the flow field in which the true temperature profile takes the form of a
core region at the source temperature, T = 1, and a boundary layer at the wall in which
the temperature decreases to the wall temperature, T = 0. This results in a larger heat
flux to the walls than predicted by the averaged model of Helfrich (1995), and also a
region of significantly enhanced viscosity at the walls, which alters the velocity profile
substantially. Nonetheless, this averaging allowed for efficient calculation in the two
dimensions in the plane of the fissure, providing the nonlinear evolution of the unstable
non-planar perturbations associated with the fingering instability. Helfrich (1995) also
encountered numerical difficulties in integrating towards non-uniform steady states after
the onset of the fingering instability, but unlike Wylie & Lister (1995), their solutions
seemed to be approaching such states before the onset of numerical instability, leading
them to conclude that the finite-amplitude fingered states are stable. In § 3.1, we revisit the
uniform geometry, showing that both behaviours suggested by Wylie & Lister (1995) and
Helfrich (1995) (namely continued evolution onto the high-flux uniform solution branch,
or establishment of stable, steady, non-planar solutions) can occur.

For treating the cross-temperature profile, we take an approach between the above
mentioned two, making an assumption for the functional form of the cross-channel
temperature profile, and then integrating over y to obtain a consistent averaging of the
momentum and heat equations. This approach follows the ‘skin-theory’ of Balmforth
et al. (2004) for a cooling shallow viscoplastic dome (in our case, in the absence of
the yield stress). Similar approaches are also used by Bernabeu et al. (2016), Thorey &
Michaut (2016), Hyman et al. (2022) and Moyers-Gonzalez et al. (2023) in the modelling
of cooling lava flows. This has the computational advantages of reducing the problem
to two dimensions, while treating the time evolution consistently (unlike the averaging
of Wylie & Lister 1995) and capturing the effect of cross-channel viscosity variations
more accurately than the averaging of Helfrich (1995). A comparison to these alternative
averaging methods is made in Appendix B.

Specifically, we approximate the cross-channel temperature profile as consisting of
a thermal boundary layer of width, δ(x, z), at the wall, over which the temperature
varies quadratically from the value at the centreline, T (x, 0, z) ≡ Θ(x, z), to the wall
temperature, T = 0. The variables δ and Θ are not independent, since the hot core remains
at source temperature until the thermal boundary layers extends over the width of the
channel and so Θ = 1 if δ < h, and δ = h if Θ < 1. The cross-channel temperature profile
is therefore approximated by

T (x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

Θ for 0 � y < h − δ,

Θ

(
1 −

(
1 − h − y

δ

)2
)

for h − δ � y � h,
(2.10)

and T defined in −h � y � 0 by symmetry. The suitability of this approximation is
supported by a comparison to temperature profiles arising in the unaveraged model of
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Morris (1996), shown in figure 13(b). Since δ and Θ are not independent, we can introduce
a single variable capturing the temperature field (cf. Balmforth et al. 2004),

E ≡
∫ h

0
(1 − T )dy = δ

(
1 − 2

3
Θ

)
=

⎧⎪⎪⎨
⎪⎪⎩

1
3
δ for δ < h, Θ = 1,

h

(
1 − 2

3
Θ

)
for δ = h, Θ < 1.

(2.11)

Thus, the variable E measures (half) the loss of dimensionless heat energy per unit area at
a given point (x, z), compared with at the inlet, z = 0, and takes the value 0 when the fluid
is at the hot, source temperature across the width of the channel, and the value h when the
fluid is at the cooled, wall temperature across the width of the channel. We can invert the
relationship (2.11) to relate δ and Θ to E via

δ = min(3E, h), Θ = min
(

3 (h − E)

2h
, 1
)

. (2.12)

Another natural variable to define for interpretation is the cross-channel average
temperature, T , which relates to the other variables via

T ≡ 1
h

∫ h

0
T dy = 1 − E

h
=

⎧⎪⎨
⎪⎩

1 − 1
3h

δ for δ < h, Θ = 1,

2
3
Θ for δ = h, Θ < 1.

(2.13)

Integrating (2.9b) twice, we obtain

u2 = −Π

(∫ h

y

ŷ

μ(T )
dŷ
)

∇2 p, (2.14)

taking the divergence, substituting for the temperature dependent viscosity (2.5) and the
temperature ansatz (2.10), and integrating over −h � y � h gives

∇ · q ≡ 2Π∇ · (L∇p) = 0, (2.15)

where we have defined the flux, q ≡ 2ΠL∇p, and we have now dropped the subscript 2
from the in-plane gradient since we will consider all gradients to be in the plane of the
fissure from now on. The flux factor,

L(x, z) ≡ −
∫ h

0

∫ h

y

ŷ

μ(T )
dŷ dy (2.16)

= −δ3 exp(−γ (1 − Θ))

((
h

δ
− 1

)2

I0 + 2
(
h

δ
− 1

)
I1 + I2 + 1

3

(
h

δ
− 1

)3
)

,

(2.17)

where the Ik terms are given by integrals,

Ik ≡
∫ 1

0
ηk exp(−γΘη2) dη, (2.18)

which in turn can be evaluated analytically or in the form of error functions (cf. Balmforth
et al. 2004). When δ → 0 and Θ = 1, this reduces to L→ −h3/3, which corresponds to
q being given by Darcy’s law at the inlet viscosity μ(1) = 1, and when δ = h and Θ = 0,
we find L= − exp(−γ )h3/3, corresponding to Darcy flux at the final viscosity, μ(0) =
exp(γ ). Thus, the flux captures the expected results for the isothermal cases.
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Following Balmforth et al. (2004), we now integrate the heat equation over the thermal
boundary layer h − δ � y � h, obtaining a nonlinear conservation equation for E ,

∂E
∂t

+ Π∇ · (S∇p) = C. (2.19)

The right-hand side of (2.19), C ≡ 2Θ/δ, is a source term arising from cooling at the walls,
while the flux of E , ΠS∇p, involves the nonlinear factor, S ≡ UE − G, which contains a
term due to advection, UE , and a term arising from the vertical structure of the temperature
field, −G. The functions U and G are given by

U = −δ2 exp(−γ (1 − Θ))

((
h

δ
− 1

)
I1 + I2

)
, (2.20)

G = −1
3
δ3Θ exp(−γ (1 − Θ))

((
h

δ
− 1

)
I1 + I2 −

(
h

δ
− 1

)
I3 − I4

)
. (2.21)

Since we view δ and Θ as functions of E (via (2.12)), all of the terms L, C, U and G (and
hence S) are functions of E (and the imposed h(x)). To summarise, we have the following
system of equations for the unknown fields, E and p:

∂E
∂t

+ Π∇ · (S(E)∇ p) = C(E), ∇ · (L(E)∇ p) = 0, (2.22)

C(E) = 2Θ(E)

δ(E)
, δ(E) = min(3E, h), Θ(E) = min

(
3 (h − E)

2h
, 1
)

, (2.23)

L(E) = −δ3 exp(−γ (1 − Θ))

((
h

δ
− 1

)2

I0 + 2
(
h

δ
− 1

)
I1 + I2 + 1

3

(
h

δ
− 1

)3
)

,

(2.24)

S(E) = U(E)E − G(E), U(E) = −δ2 exp(−γ (1 − Θ))

((
h

δ
− 1

)
I1 + I2

)
, (2.25)

G(E) = −1
3
δ3Θ exp(−γ (1 − Θ))

((
h

δ
− 1

)
I1 + I2 −

(
h

δ
− 1

)
I3 − I4

)
, (2.26)

Ik ≡
∫ 1

0
ηk exp(−γΘη2) dη, (2.27)

with boundary conditions⎧⎪⎪⎨
⎪⎪⎩
E = 0 and p= 1 at z = 0,

p= 0 at z = 1,

∂p/∂x = ∂E/∂x = 0 at x = 0, Lx .

(2.28)

Thus, (2.22) constitutes a nonlinear hyperbolic equation for E with an elliptic constraint on
p. The remaining, algebraic, equations simply relate the nonlinear terms to the temperature
field via E . We discretise the spatial dependence of this system via a finite volume scheme,
with upwinded fluxes in the z-direction, and we time step using a fourth-order, five-stage
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Rosenbrock method (Roche 1987). Further details of the numerical method are given in
Appendix A. Steady-state solutions are obtained either by natural continuation in Π or
by pseudo-arclength continuation. In the former, we start from a large value of Π (say
Π = 400), where a temperature distribution close to the inlet temperature, E ≈ 0, is a good
initial guess. Having obtained an initial solution, we then decrease Π in steps, using the
previous solution as an initial guess for solving the nonlinear steady-state problem directly
(i.e. by Newton iteration). If the direct solve fails, we time step to a steady state. With
pseudo-arclength continuation (e.g. see Allgower & Georg 2003), we do not impose the
step in Π , but solve for a new steady state with an additional constraint that the new
solution is a prescribed small distance along the solution curve from the previous one.
This approach can capture fold bifurcations and unstable solution branches.

The systems studied by Helfrich (1995) and Wylie & Lister (1995) can be couched
in the same manner as ours. For the Darcy averaging of Helfrich (1995), we can let E
be instead defined by the difference between the average temperature across the fissure
and the unit initial temperature, and we can set L= Uh = −h3/[3μ(1 − E)], G = 0 and
C = π2(1 − E)/4h2. For the system of Wylie & Lister (1995), we let E represent the time-
like variable they denote τ , C = 1/h, G = 0 and L= U = −h3/μ̄(τ ), where μ̄(τ ) is an
average viscosity defined by Wylie & Lister (1995) and which is determined from the
along-channel evolution of the full, across-channel temperature profile, requiring prior
numerical evaluation. We will refer to this latter approach as the ‘unaveraged’ system,
since Wylie & Lister (1995) showed that it captures non-uniform steady states without
approximation. Nonetheless, this system does involve an averaging over the channel and
so is two-dimensional in space. As discussed by Wylie & Lister (1995), the equivalence
between three-dimensional and two-dimensional steady states does not carry across to
time-dependent states.

As shown in table 1, excluding the domain size, Lx , there are essentially four
parameters: the dimensionless pressure drop, Π ; the sensitivity of viscosity to temperature
changes, γ ; and the amplitude, A, and wavelength, λ, of the variations in the fissure width.
As discussed by Wylie & Lister (1995), Π can be interpreted in a number of ways: as
a dimensionless pressure drop; as a ratio of the thermal entry length to the length of
the channel; or as the ratio of the characteristic rate at which heat is advected along the
channel and the rate at which it is lost to the walls. Given our focus on the role of non-
uniform fissure width, we largely take γ fixed, and consider Π , A and λ as our primary
parameters. We first consider the uniform geometry (A= 0), in § 3.1, and identify the
critical values of γ at which changes occur in the behaviour of steady-state solutions, as
discussed by Helfrich (1995), Wylie & Lister (1995) and Morris (1996). The choice of
γ = 5.5 is found to be sufficiently large that the system exhibits thermoviscous fingering
and multiplicity of steady states, but not so large as to make the numerics intractable,
since the numerical problem is found to become increasingly unstable with increasing γ .
This value of γ corresponds to a viscosity ratio, μc/μh = exp(5.5), on the order of several
hundred between the source temperature and the wall temperature, which is within the
range of plausible values for the volcanic application. For example, Shaw (1969) suggests
a value of β = 0.1 K−1 and Spera et al. (1982) also suggest a value between 0.02 K−1

and 0.1 K−1. Taking these two values for β, we obtain a value of γ = 5.5 for temperature
differences, Th − Tc, of 275 ◦C and 55 ◦C, respectively.

To explore the impact of non-uniform geometry, we then vary λ between 0.2 and 20,
and A between 0.01 and 0.1, solving for steady states of (2.22) over a wide range of
pressure drops, Π , using the numerical method detailed in Appendix A. Table 2 gives the
particular values (or ranges) of the parameters used to produce each figure. We evaluate the
vertical flux through the fissure, qz(x, z) = 2ΠL∂p/∂z, which provides the total flux per
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Figure Π γ A λ Lx

2 75–300 4.2–5.5 0 — 1
3(a,b) 230–285 5.5 0 — 10
3(c, d) 264 5.5 0 — 10

4 125–325 5.5 0.02–0.1 0.4–2 λ/2
5 200–300 5.5 0.01–0.1 0.2–20 λ/2
6 240 5.5 0.05 2, 1, 0.4 λ/2

7(a–c) 200–325 5.5 0.02 20 λ/2
7(d) 200–300 5.5 0–0.05 20 λ/2
8–9 200–235 5.5 0.02 2 λ/2
10 150–400 5.5 0.05 (random) — 1
11 245 5.5 0.05 (random) — 1
13 0–400 5.5 0 — —
14 150–300 5.5 0.05 0.2–20 λ/2

Table 2. Values of dimensionless parameters used in each figure.

unit length of the fissure, Q = (
∫ Lx

0 qz dx)/Lx , which is independent of z by conservation
of mass. We also define the ratio of the maximum and minimum vertical fluxes at the
surface,

Qr ≡ Q+
Q−

≡
max
x

qz(x, z = 1)

min
x
qz(x, z = 1)

, (2.29)

which is a measure of degree of flow focussing. For comparison between sinusoidal
geometries of different amplitudes, we scale this flux ratio by the value for the isothermal
case (namely (1 + A)3/(1 − A)3), defining

Q̃r ≡ (1 − A)3

(1 + A)3

max
x

qz(x, z = 1)

min
x
qz(x, z = 1)

. (2.30)

We further evaluate the linear stability of the steady states to small perturbations. First, we
revisit the uniform geometry, A= 0, and reproduce the main results of Helfrich (1995),
Wylie & Lister (1995) and Morris (1996).

3. Results and analysis

3.1. Uniform geometry
Figure 2 shows the dimensionless flux per unit length, Q, as a function of the
dimensionless pressure drop, Π , for planar (i.e. independent of x) steady-state solutions
in the uniform geometry, h = 1, calculated using pseudo-arclength continuation. Here, we
vary the value of the parameter governing the viscosity contrast, γ = log(μc/μh). In the
following discussion, we report the quantitative results of the current model system, while
a direct comparison to the corresponding values obtained from the models of Wylie &
Lister (1995), Helfrich (1995) and Morris (1996) is given in Appendix B. The qualitative
behaviour of the system is identical to that of the models in these previous studies.
Namely, at low values of the viscosity contrast, the solution curve is single-valued and
the planar steady states are stable. Above a first critical value, γc = 4.8, the curve becomes
multivalued, resulting in three branches of the solution curve: a ‘hot’, fast branch at high
pressure drops; a ‘cold’, slow branch at low pressure drops; and an intermediate branch
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100 150 200

Π
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γ = 4.2 5.55.375.14.8
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4

2

Q

0

Figure 2. Dimensionless flux per unit length, Q, against dimensionless pressure drop, Π ≡ �ph4
0/κμh L2, for

planar steady states in the uniform geometry, h = 1. Results are shown for several values of γ = log(μc/μh).
The dimensional flux per metre is given by κLQ/h0. Solid lines show stable regions of the solution curve,
and dashed and dotted lines show regions that are most unstable to planar and non-planar perturbations,
respectively. See table 2 for other parameters used in these solutions.

on which the flux increases with decreasing pressure drop. As in previous studies, the
intermediate branch is found to be unstable to a planar instability (i.e. to perturbations
with vanishing wavenumber in the x-direction), which acts to drive solutions off the
intermediate branch and towards the fast or slow branches of the solution curve. Above
a second, higher, viscosity ratio, γ3d ≈ 5.2, there exist solutions which are most unstable
to perturbations with non-vanishing wavenumber in the x-direction (see the dotted region
of the solution curves for γ = 5.37 and γ = 5.5 in figure 2). This thus marks the onset of a
fingering instability, analogous to classical Saffmann–Taylor viscous fingering, by which
the uniform steady states go unstable to the formation of alternating regions of hot, low-
viscosity fluid, and cold, high-viscosity fluid. At γ just above γ3d , the region of the solution
curve which is most unstable to the fingering instability is limited to a small region near the
fold bifurcation that joins the slow and intermediate solution branches. As γ is increased
further, this region extends down the slow solution branch and the entire slow branch
becomes unstable to the fingering instability at a third critical value of the viscosity ratio,
γ∞ ≈ 5.4. Thus, by γ = 5.5, the entire slow branch is unstable to the fingering instability
and, as we will discuss later, we are able to find stable non-planar steady states reached
after the onset of fingering. We report approximate values of γ3d and γ∞ here, because
these results were calculated using our numerical method, with a finite domain (Lx = 1
in the cases shown in figure 2) and symmetry boundary conditions. This does not affect
the calculation of Q for the planar steady states, nor the stability of the solutions to the
planar instability; however, it does impact the stability to non-planar perturbations, since
the finite domain restricts perturbations to those fitting inside the domain (with a half-
integer number of wavelengths). Thus, for an infinite domain, γ3d is likely slightly smaller
than reported here. Similarly, the finite resolution of the grid sets a lower bound on the
wavelengths that can be accurately captured. Since the wavelength of the most unstable
mode decreases with decreasing Π (see later and Wylie & Lister 1995; Morris 1996),
determining γ∞ (where the fingering instability first extends to arbitrarily small values of
Π ) is difficult with our numerical method. Ultimately, our aim is to study the impact of
a spatially varying channel width at a fixed value of γ and moderate values of Π (in the
neighbourhood of the fold bifurcation), and not to accurately capture these critical values
of γ for an infinite uniform geometry.

We now provide some more detail of the steady-state solutions for the uniform geometry,
h = 1, and at γ = 5.5, fixed (now on a larger domain, Lx = 10). Figure 3(a) again shows
the total flux per unit length of the fissure, Q, as a function of Π at steady state.
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Figure 3. (a) Dimensionless flux per unit length of the fissure, Q, as a function of dimensionless pressure drop,
Π , for stable steady states with h = 1 and γ = 5.5 (as in figure 2). The colour indicates the surface flux ratio, Qr
defined by (2.29), and the planar steady-state solution curve is shown by the black dashed and dotted line. Point
A shows the fold bifurcation at which the solutions go unstable to planar perturbations, and point B indicates
the location at which the solutions become most unstable to non-planar perturbations. (b) Wavenumber of the
most unstable mode, k, as a function of Q (black). The red dashed line shows a curve proportional to 1/Q.
Points A and B as in panel (a). (c) Dimensionless cross-fissure average temperature, T defined in (2.13), for
the last stable steady state near the slow branch at Π = 264. The domain has been reduced to show a single
wavelength of the fingering pattern (of wavelength 0.909). The contours are plotted from T = 0.1 near the top
and increase in increments of 0.1. (d) Contour plot of vertical flux, qz = 2ΠL∂p/∂z, for the solution shown
in panel (c). The central (closed) contour is for qz = 2.4, and values decrease in increments of 0.2 moving out
from here. Note that the results in x < 0 have been produced by reflecting in x = 0 and have not been explicitly
calculated. See table 2 for other parameters used in these solutions.

The black (solid, dashed and dotted) line shows the solution branch for the planar solutions
(independent of x), as in figure 2. Point A indicates the fold bifurcation, below which the
planar steady states are unstable. The wavenumber, k, of the most unstable mode for the
unique planar steady state with flux, Q, is shown in figure 3(b). In panels (a) and (b), point
B indicates the location at which the most unstable mode becomes non-planar (k 	= 0).
Assuming the eruption starts at a high pressure drop and wanes with time, the structure
of the bifurcation diagram gives the potential for the system to pass through the fold
bifurcation and exhibit a sudden reduction in flux before localising due to the fingering
instability. As reported by Wylie & Lister (1995) and Morris (1996), the wavenumber
of the most unstable mode increases as Π decreases, and scales with 1/Q (see the red
dashed curve in figure 3b) since the length scale is set by the thermal entry length. For
our results, the wavenumber curve in figure 3(b) is stepped, which is simply the signature
of the finite domain (in this case, Lx = 10) and symmetry boundary conditions, meaning
that the wavenumers can only take half-integer multiples of 1/Lx – however, by taking the
domain size to infinity, we could retrieve a perfectly continuous spectrum of wavenumbers.

Figure 3(a) also shows coloured points representing stable steady states. As noted
previously, the fast branch of the planar solutions is stable. The stable solutions near the
slow branch were obtained by natural continuation, starting at Π = 200 and increasing Π

in steps of 0.5. At each step, the new steady state is either stable, in which case, it is kept;
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or else, it is unstable, in which case, it is perturbed by its most unstable perturbation and
evolved forwards in time until a new steady state is reached. The colour is set by the surface
flux ratio, Qr , defined by (2.29). Thus, Qr = 1 on the fast, planar branch, and Qr > 1 near
the slow branch where there are flow-focussed regions. We found that at values of Π close
to the onset of the non-planar instability (point B in figure 3), the perturbed solutions
evolve onto the fast branch of the solution curve, resulting in no non-planar steady states,
as was observed by Wylie & Lister (1995) when trying to find non-planar steady states.
However, at lower Π , we find that the non-planar solutions evolve towards stable steady
states with localised finger regions, as suggested by the solutions of Helfrich (1995).
This result was also reproduced for the unaveraged system of Wylie & Lister (1995), but
at a higher viscosity ratio, γ = 6 > γ∞, such that the entire slow branch is unstable to
the fingering instability. The total flux of these flow-focussed states is slightly increased
compared with the unstable steady state, and is distributed into higher and lower flux
regions along the fissure. Among these solutions, the surface flux ratio and the wavelength
of the finite amplitude fingering pattern both increase with Π , reaching a maximum
surface flux ratio of Qr ≈ 1.8 at the last pressure drop before the non-planar solutions
become unstable and instead evolve onto the fast branch (in this case, Π = 264). We
again note that on this steady flow-focussed branch, the finite domain size and symmetry
boundary conditions are relevant, since only a half-integer number of wavelengths can fit
in the domain. Thus, the increase of the wavelength with increasing Π does not occur
continuously, but in discrete jumps marked by a sequence of bifurcations. Indeed, since
the solutions are calculated by natural continuation, figure 3(a) does not capture all stable
steady-state branches; rather, there is a separate solution branch corresponding to each
half-integer number of fingers within the domain, and the regions over which each branch
is stable are overlapping. Thus, in figure 3(a), we follow a branch up to the Π at which
it goes unstable, and then land on the next stable branch which is again captured up until
the Π at which it goes unstable, and so on. The bifurcation which results in the onset of
instability on one branch, and the transition to the next, is a subcritical pitchfork bifurcation
(e.g. see Strogatz 2015a), involving the symmetry-breaking selection of which end of the
domain switches from a hot to a cold finger (or vice versa). In contrast, for an infinite
domain, Lx = ∞, we would anticipate that the flow-focussed steady-state branch would
be a single continuous curve with a continually varying wavelength.

Figure 3(c,d) shows contour plots of the cross-channel average temperature, T , and
vertical flux, qz , for the final stable steady solution on the non-planar steady-state curve at
Π = 264, evidencing a finger structure with a wavenumber of k = 1.1 (i.e. 11 wavelengths
in the domain of width Lx = 10), which is close to the most unstable wavenumber, k =
1.2, predicted for the uniform steady state at the same pressure drop. This figure also
demonstrates why the ratio of fluxes at the surfaces, Qr = 1.8, is not particularly large
(compared with values obtained for the non-uniform geometry discussed later, see § 3.2),
since the localisation occurs most significantly at depth before becoming more uniform
nearer the surface where the magma is close to the wall temperature, T = 0. Under the
model of a waning eruptive pressure drop (and assuming that the pressure drop varies
sufficiently gradually that the system progresses through steady states), the system would
drop off the fast branch at the fold bifurcaton around Π = 240 and first attain a non-planar
solution at this value. In this case, the surface flux ratio would be smaller, resulting in
a 14 % difference in flux between the hot and cold regions of the outflow. It should be
noted that at γ = 5.5, we are not particularly far above the onset of the fingering instability
(at γ3d ≈ 5.2), and one would anticipate that at larger viscosity ratios, the steady-state
fingered solutions would exhibit a greater degree of flow-focussing. This will also be true
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of the geometrically flow-focussed states, discussed in the following sections, and which
we will show are associated with the fold instability arising first at γc = 4.8.

In this section, we have revisited the uniform geometry case, and shown that our results
provide close qualitative agreement with the previous findings of Helfrich (1995), Wylie
& Lister (1995) and Morris (1996), evidencing multiple steady states and the onset of the
thermoviscous fingering instability at low pressure drops. Crucially, these results provide
the baseline case against which to interpret the results in the non-uniform geometry, which
we consider next. A quantitative comparison to the alternative averaging approaches of
Helfrich (1995), Wylie & Lister (1995) and Morris (1996) is made in Appendix B, showing
that the heat balance averaging of § 2.1 improves on the averaging of Helfrich (1995),
but that there are nonetheless quantitative discrepancies with the unaveraged system.
We note that there are multiple other approximations that are likely to have equally
significant effects on the quantitative predictions of all models, in particular, the simple
treatment of the thermodynamics at the fissure walls and the particular choice of the
viscosity function, (2.5). For example, results of Wylie & Lister (1995, p. 248) employing
a step-function model for the viscosity find a critical viscosity ratio, μc/μh , an order of
magnitude smaller than when employing the exponential viscosity model (12 compared
with 190), and Morris (1996, p. 126) finds a critical viscosity ratio of just 7.3 when the
temperature of the fissure walls vary linearly with flow direction. In using the heat balance
averaging detailed in § 2.1, we thus accept an additional source of approximation and
associated quantitative discrepancy with the unaveraged system, in exchange for a number
of advantages. As noted before, in employing the heat balance averaging, we consistently
average the time derivative in the heat equation, meaning that time-dependent states (for
example, those discussed in §§ 3.4 and 4) can be meaningfully considered alongside the
steady states of the system – with both arising from the same assumed structure of the
temperature profile and resulting average of the heat equation. Second, from a purely
practical standpoint, in the unaveraged approach, evaluation of the functions L and S , and
their derivatives, relies on interpolation and numerical differentiation of a precomputed
table of values, μ̄(τ ). Furthermore, the derivative dL/dτ diverges at τ = 0. These features
make the numerical solution of the resulting equations harder than when employing the
analytical expressions for L and S arising from the heat balance averaging.

3.2. Non-uniform geometry
We now introduce a sinusoidal perturbation to the fissure width, at different amplitudes
and wavelengths. Figure 4 shows the corresponding Q(Π) steady-state solution curves
for λ= 0.4, 1 and 2, and A= 0.02, 0.05 and 0.1. The solution curve corresponding to
the planar solutions of the uniform geometry (A= 0) is shown as a dashed line and the
colours now indicate the scaled surface flux ratio, Q̃r defined by (2.30). We also now
use a logarithmic scale for the colour bar. We see that the effect of the non-uniform
geometry is generally to replace the unstable intermediate branch of the planar solutions
with a stable solution branch, exhibiting significant flux focussing. This stable, ‘focussed’,
branch is either part of a continuous single-valued solution curve, or is connected to the
original fast and/or slow branches by one or two pairs of fold bifurcations (for example, for
A= 0.05 and λ= 2, there are two pairs of fold bifurcations, one at either end of the stable
central branch). The deviation from the uniform geometry solution increases with both
amplitude and wavelength. Further results for the scaled surface flux ratio, Q̃r , are shown
for a wider range of wavelengths and amplitudes in figure 5. For this plot, the solutions
were found by natural continuation in the pressure drop, Π , starting on the fast branch with
Π = 400 and integrating forwards in time to obtain stable steady states as Π is decreased
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Figure 4. Steady-state solution curves for different amplitudes and wavelengths of the dimensionless fissure
half-width, h = 1 + A cos(2πx/λ). Each panel shows average flux per unit length, Q, as a function of the
dimensionless pressure drop, Π , as in figure 2, with points coloured by the scaled surface flux ratio, Q̃r ,
defined by (2.30) (note the logarithmic colour scale). The wavelength, λ, is shown in the title and the three
coloured curves correspond to amplitudes of A= 0.02, 0.05 and 0.1 (increasing in the direction shown). The
solution curve for the planar steady states in the uniform geometry (A= 0) is shown as the black dotted curve
in all panels. See table 2 for other parameters used in these solutions.
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Figure 5. Colour plot of scaled surface flux ratio, Q̃r (2.30), as a function of dimensionless pressure drop, Π ,
and the wavelength of the variations in width, λ, at different values of the amplitude, A. Contours (black) are
plotted at flux ratios of Q̃r = 4 and 8 in all panels, and at the additional level Q̃r = 16, in panel (d). The axis
ticks indicate the location of solutions used to construct the contour plot, and red dots indicate that an average
over the period of a periodic solution was used as opposed to a steady-state solution. Note the extended Π-axis
in the final panel. See table 2 for other parameters used in these solutions.
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Figure 6. (a) Cross-channel average temperature, T , defined in (2.13), for steady-state solutions at Π = 240
with A= 0.05 and λ= 2, 1, 0.4 (from left to right). The colour bar is shared between panels, and the
contours are plotted from T = 0.1 near the top left/right and increase in increments of 0.1. (b) Vertical flux,
qz ≡ 2L∂p/∂z, for the same solutions. Contours are plotted from qz = 2 at the left and right, and increase
inwards in increments of 2. Note that the results in x < 0 have been produced by reflecting in x = 0, and have
not been explicitly calculated. See table 2 for other parameters used in these solutions.

in discrete steps. This clearly evidences the existence of the highly localised solutions
at intermediate pressure drops, and the dependence on the wavelength and amplitude of
the fissure geometry. There are a small number of parameter values, primarily lying on
the slow solution branch, at which no steady state was found (indicated by red dots in
figure 5), and the solutions were instead found to be periodic. Oscillatory dynamics have
previously been observed by Pailha et al. (2012) in experiments on isothermal fingers of
air displacing viscous fluids, where geometrical constraints were found to play a key role
(see also Thompson, Juel & Hazel 2014; Franco-Gómez et al. 2016; Lawless, Hazel & Juel
2024). The structure of the periodic solutions observed in these cases is rather different
from those observed here. We explore the periodic solutions in more detail in § 3.4, but
note that since these have a period-averaged surface flux ratio in line with neighbouring
steady solutions (see figure 5), the implication for the degree of fissure localisation is
minimal. The temperature and flux distributions are shown in figure 6 for steady-state
solutions at Π = 240 on the focussed branch for A= 0.05 and λ= 2, 1 and 0.5. These
can be compared with figure 3(d,e) for the focussed solutions arising from thermoviscous
fingering in a uniform geometry at Π = 264, showing that the temperature variations
penetrate further up the fissure and that the vertical flux variations are several times larger.

The physical origin of the stable, highly localised branch can be readily understood
as the wider region of the fissure remaining in the hot, fast flowing state, while the
thinner region transitions to the cold, slow state as the pressure drop decreases. The
flow in the wider region is cognate with the fast branch of the planar solution, and
the flow in the narrower region is cognate with the slow branch of the planar solution.
Thus, the occurrence of geometrical focussing is more closely associated with the fold
bifurcation and planar instability exhibited by the uniform-width system than it is with
the thermoviscous fingering instability. The dependence on amplitude and wavelength can
also be easily explained. Naturally, a larger amplitude results in a greater difference in
flow rate and hence heat advection through the different regions of the fissure. However,
if the wavelength is small, then the hot and cold regions can exchange heat more easily,
resulting in a more uniform temperature and a reduction in the geometric effect. Note that
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this exchange of heat does not occur diffusively, since the reduced heat equation includes
no diffusion in the plane of the fissure (see (2.9)); rather, it occurs through advection
due to along-fissure pressure gradients. These pressure gradients are stronger when the
length scale between the regions of the fissure are smaller, and thus the solutions become
more uniform for smaller λ (e.g. compare solutions for λ= 2 and λ= 0.4 in figure 6).
Another way to understand the suppression of geometrical localisation at short geometrical
wavelength is by reference to the fingering instability in the uniform geometry. Here, Wylie
& Lister (1995) and Morris (1996) showed that the preferred wavelength of the fingering
instability is comparable to, or larger than, the thermal entry length, which scales with
Q. The geometrical localisation occurs via the above mentioned mechanism at values of
Π near the location of the fold bifurcations associated with multiplicity of steady states
in the planar problem (see figure 4), and hence at solutions which have fluxes of the
order 1 � Q � 10. Therefore, by analogy with the result for the uniform geometry, for
geometrical wavelengths significantly smaller than these O(1) thermal entry lengths, the
localisation into features on the length scale of the topography is suppressed.

3.3. Long-wavelength regime
In the regime of long wavelength, λ� 1, the different regions of the fissure are unable
to ‘communicate’ with one another and a leading order analysis can be undertaken in
which x-derivatives vanish, and every vertical slice of the fissure can be considered as
a planar problem of a different thickness. This regime is an interesting end member and
could represent the variation of fissure width on the length scale set by the full length of
the fissure – typically fissures are widest at their centres and get increasingly thin towards
their ends. When the wavelength of the perturbation to the width is long, we can rescale the
x-coordinate by λ and consider the variables to be asymptotic series in 1/λ� 1. Taking
only the leading order of the governing equations, we obtain

∂E
∂t

+ Π
∂

∂z

(
S(E)

∂p

∂z

)
= 2Θ

δ
,

∂

∂z

(
L(E)

∂p

∂z

)
= 0. (3.1)

Namely, the equations for the planar problem, with x entering only as a parameter via the
width, h(x). These equations and the resulting steady-state flux, Q, can then be rescaled
to the case with h = 1, by writing

E = hẼ, δ = hδ̃, S = h3S̃, L= h3L̃, Π = Π̃/h4, t = h2 t̃, and Q = Q̃/h. (3.2)

Thus, given the uniform steady-state solution curve (Π0, Q0), we can find a steady-
state solution curve for the position x in the non-uniform fissure, as (Π0/h4, Q0/h).
In particular, at the widest region, we have h = 1 + A and at the thinnest region, we
have h = 1 − A. Figure 7(a) shows the result of this rescaling for A= 0.02: the wider
geometry (dashed) exhibits a higher flux and consequently transitions from the fast branch
to the slow branch via a pair of fold bifurcations at a lower pressure drop; conversely, the
narrower geometry (dotted) exhibits a lower flux and transitions between the branches at a
higher pressure drop. If we then consider the average of the fluxes at each pressure drop, we
obtain a new curve shown by the solid curve. The curve in figure 7(b) shows the prediction
for the ratio of fluxes, Qr ≡ Q+/Q−, in the wider and thinner regions of the fissure, from
this long-wavelength analysis. From these two panels, we observe that the solution curve
exhibits the key features of the non-uniform geometries at larger wavelengths, namely a
stable middle branch with significant flux localisation (large Qr ), connected to the fast and
slow branches by two pairs of fold bifurcations. Also shown as points in each panel are the
results of numerical solutions for A= 0.02 and λ= 20. These were obtained by natural
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Figure 7. (a) Steady-state solution curve (as in figure 3) for the uniform geometry, h = 1, re-scaled to the
width of the widest, h = 1 + A (black dashed), and thinnest, h = 1 − A (black dotted), regions of the non-
uniform geometry with A= 0.02 and λ→ ∞ according to (3.2). These represent the maximum, Q+, and
minimum, Q−, surface fluxes in the non-uniform geometry. The black solid curve shows the average of the
fluxes, (Q+ + Q−)/2. Points are shown from numerical solutions with A= 0.02 and λ= 20, obtained by
natural parameter continuation in decreasing Π (Q+, squares; Q−, crosses; average, circles). (b) Ratio of
maximum and minimum flux, Qr = Q+/Q−, as a function of Π . The line is obtained from taking the ratio
of the fluxes represented by the dashed and dotted lines in panel (a), and the circles are obtained from the
numerical simulations, as in panel (a). (c) Average flux per unit length, Q, as a function of Π . The lines are
obtained by the long wavelength approximation (3.4). The different curves correspond to continuation in Π

in either the decreasing (solid) or increasing (dashed) directions. Also shown as circles are the numerical
results as in panels (a) and (b). (d) Colour plot of scaled surface flux ratio, Q̃r (defined by (2.29)), as a
function of Π and A for numerical solutions with λ= 20. The solid red lines show the boundaries predicted by
the long-wavelength analysis (Π = 241/(1 + A)4 and Π = 241/(1 − A)4), and the red dotted line shows the
predicted lower boundary offset by a pressure drop of 5. Note the logarithmic colour scale. See table 2 for other
parameters used in these solutions.

continuation in decreasing Π , so the whole solution curve is not obtained; however, the
branches that are obtained match the predictions well, closely capturing the maximum and
minimum fluxes, Q+ and Q−, and their ratio, Qr , and showing roughly the same critical
pressure drops where the solutions change from one branch to another.

We note that the use of the average of the largest and smallest fluxes, (Q+ + Q−)/2,
in figure 7(a) is not the same as the average flux per unit length, Q, used previously, but
was chosen here for illustrative purposes. To obtain the prediction for Q, we must account

1015 A18-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10367


J.J. Taylor-West and E.W. Llewellin

for the continuous variation of the width, h. Suppose we have the flux as a function of the
pressure drop, Q0(Π0), from the uniform geometry results (the choices made in defining
such a function are discussed later). To obtain a long wavelength prediction for the average
flux per unit length of the non-uniform geometry, we can then calculate

Q(Π) ≈ 1
Lx

∫ Lx

0

Q0(h(x)4Π)

h(x)
dx, (3.3)

which, for the sinusoidal width, h = 1 + A cos(2πx/λ), is independent of wavelength

Q(Π) ≈ 2
λ

∫ λ/2

0

Q0(h4Π)

h
dx = 1

π

∫ 1+A

1−A

Q0(h4Π)

h
√
A2 − (1 − h)2

dh. (3.4)

We note that the solution curve (Π0, Q0) does not immediately provide a well-defined
function Q0(Π0), due to the multiplicity of steady states. There is, however, a natural
choice by which to define two such functions, corresponding to natural parameter
continuation in either decreasing or increasing Π . For the former, wherever Q0(Π0) is
multivalued, we choose to take Q0 from the fast, hot branch, while in the latter, we instead
evaluate the flux from the slow, cold branch. The resulting predictions for the average flux,
Q, for the sinusoidal geometry with A= 0.02 are shown in figure 7(c). Here, the solid
line is for the natural continuation in decreasing Π and is compared against the fluxes
obtained from the numerical solutions with λ= 20 (circles, also obtained by continuation
in decreasing Π ). These show good agreement. The dashed line, for comparison, shows
the prediction for natural continuation in increasing Π , giving a lower flux where the two
differ.

For the current parameters and the uniform geometry, h = 1, the fold bifurcation on
the fast branch occurs at Π ≈ 241 at which the flux drops from Q ≈ 6.6 to Q ≈ 1 (when
continuing naturally in decreasing Π ). Thus, for the long-wavelength approximation, we
anticipate the first fold bifurcation to occur at Π = 241/(1 − A)4. At this bifurcation,
the thinner region exhibits a reduction in flux by a factor of 6.6/(1 − A), while the
wider region maintains the same flux. Thus, the surface flux ratio increases by a factor
of 6.6/(1 − A) when the solution drops onto the focussed branch at this point. The
second fold bifurcation is predicted to occur at Π = 241/(1 + A)4, where the surface flux
ratio decreases by a factor of 6.6/(1 + A). Thus, as the amplitude, A, decreases towards
zero, the stable focussed branch shortens but persists, ultimately shrinking to the point
Π = 241, with Q+ = 6.6 and Q− = 1, as A→ 0. The prediction for the critical values
of Π which bound the focussed branch is compared with numerical solutions for λ= 20
in figure 7(c) showing good agreement for the upper boundary, Π = 241/(1 − A)4, but
weaker agreement for the lower boundary where the long-wavelength analysis under-
predicts the critical pressure drops observed in the numerical solutions by roughly 5 at
all amplitudes (this is also noticeable in the other panels of figure 7 for the specific choice
of A= 0.02). It is unclear what causes this discrepancy. However, since the thinner region
lies on the slow branch of the solution curve, it becomes unstable to the thermoviscous
fingering instability, resulting in finger structures within the cool, slow region of the
fissure. The wavelength of these fingers decreases with decreasing pressure drop, Π , and
so it is possible that the assumption of large length scale in the x-direction becomes
invalid at the boundary between the hot and cold regions as the critical pressure drop
is approached. In general, if gradients are greater in the x-direction than implied by the
rough scaling, 1/λ� 1, this will promote heat fluxes between the regions, resulting in a
transition to the uniformly slow branch at larger Π . Nonetheless, the predictions of the
long-wavelength analysis give a decent agreement to the numerical solutions, particularly

1015 A18-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10367


Journal of Fluid Mechanics

205 210 215

Π

231 232 233 234229 230

Π

205 210 215

Π

231 232 233 234229 230

Π

1.2

1.0

300

P
er

io
d

200

200

P
er

io
d

0

Q̃r
1.5

1.0

Q̃r

(a) (b)

(c) (d)

Figure 8. (a,b) Scaled surface flux ratios, Q̃r , as a function of the dimensionless pressure drop, Π , for steady
and periodic solutions with A= 0.02 and λ= 2 over two ranges of Π corresponding to the absence of stable
steady states in figure 5(b). For periodic solutions, the maximum and minimum values of Q̃r are plotted as
solid lines, and the average over the period is plotted as a dotted line. Markers indicate the bifurcations at
which the steady branches lose stability, with triangles corresponding to infinite period bifurcations and the
dot indicating a supercritical Hopf bifurcation. (c,d) Period of the solutions as a function of Π , with the two
panels corresponding to the branches shown in panel (a,b). Red dashed lines indicate the ends of the stable
steady-state solution branches at either side. See table 2 for other parameters used in these solutions.

for the critical pressure drop resulting in the onset of localisation, which is perhaps of
greatest concern for the volcanological application.

3.4. Periodic solutions
Here, we detail the origin and the bifurcation structure of the periodic solutions evidenced
by the absence of steady states at points marked in red in figure 5(b). We take two examples
of branches of periodic solutions along the solution curve for A= 0.02 and λ= 2, tracking
the solutions as Π is varied. For these solutions, we took Lx = 1, i.e. the smallest domain
that captures the λ= 2 wavelength, given the symmetry boundary conditions at either end.
The scaled surface flux ratio, Q̃r , and the period are plotted as functions of Π in figure 8,
showing that one periodic solution branch persists over the range 202.6 �Π � 216 and
two different periodic branches occur over the range 229.4 �Π � 233.8. At Π ≈ 233.8,
on the steady solution branch, a pair of complex eigenvalues of the stability problem cross
the imaginary axis, indicating a Hopf bifurcation. The amplitude of the stable periodic
solutions obtained near Π = 233.8 grows from zero, and their period starts at that of the
unstable periodic mode at the bifurcation, 2π/Im(σ ) ≈ 38. Thus, the bifurcation to the
periodic solution is a supercritical Hopf bifurcation (e.g. see Strogatz 2015b). The periodic
solution branch arising at the Hopf bifurcation is short-lived, becoming unstable to a fold
bifurcation at Π ≈ 233.45, resulting in the system transitioning to a new stable periodic
solution branch, with a longer period and larger amplitude. At the other end of this periodic
solution branch, the periodic solution is destroyed in an infinite period bifurcation at Π ≈
229.4, where a saddle-node point appears on the periodic orbit and the system follows the
new stable steady-state solution branch at lower Π . The period-averaged scaled surface
flux ratio, Q̃r , is naturally continuous at this bifurcation, since the periodic solution spends
an increasing proportion of its (diverging) period close to the state that becomes the stable
steady solution after the bifurcation. For the second periodic solution branch, shown in
figure 8(a,c), the bifurcation structure is slightly different, with the transition between the

1015 A18-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10367


J.J. Taylor-West and E.W. Llewellin

steady-state and periodic solution branch resulting from an infinite period bifurcation at
both ends.

Figure 9 shows the dimensionless average temperature, T (x, z) (see (2.13)), for a
selection of solutions along the same solution branch (i.e. for the sinusoidal geometry
with A= 0.02 and λ= 2). Panels (a)–(c) show steady solutions at Π = 200, 220 and 234,
representing solutions on the three steady-state branches separated by the periodic solution
branches in figure 8. These indicate how the spatial structure of the fingered states changes
after passing through the periodic solution branches. The other panels show three states
obtained at particular times (with t = 0 chosen arbitrarily) during the periodic solutions
at Π = 210 (panels d–f ) and Π = 232 (panels g–i), indicating that these solutions exhibit
oscillations between states that are similar in structure to stable steady solutions at larger
and smaller values of Π . While the exact details of two fingered solutions might vary
subtly, there are two main factors that govern the broad configuration of a solution. The
first is the number of fingers in the domain or, equivalently, the average wavelength of the
fingers. The second is the location of these fingers, which (given the symmetry boundary
conditions) largely corresponds to a binary choice of whether x = 0 corresponds to a
(relatively) hot or cold region of the fissure. As for the uniform case (see figure 3b), the
preferred wavelength of fingers scales with the thermal entry length and, thus, the average
wavelength increases as Π increases. For example, at Π = 200 (figure 9a), the solution
exhibits five hot fingers per wavelength of the fissure geometry (half of this wavelength,
λ= 2, is shown in each panel), while at Π = 220 and Π = 234 (figure 9b,c), there are four.
In the non-uniform geometry, the preferred wavelength also depends on the local width of
the channel, with longer wavelengths preferred in wider regions (since the thermal entry
length also increases with channel width). This effect is visible in figure 9, where the
wavelength of the fingering pattern generally gets shorter between the widest region of
the channel, at x = 0, and the narrowest, at x = 1. The dependence on Π of the choice
between a hot or cold region at x = 0 is less clear. Naively, one might anticipate that the
most stable configuration would be one in which the widest point of the channel is hot
and/or the narrowest point is cold. However, given the continuous variation of fissure
width, the situation turns out to be more subtle than this. For example, at Π = 200,
both choices result in stable steady states. Similarly, both configurations arise during the
periodic solution at Π = 210 (see figure 9e,f ). In figure 9(a), we show the state with a cold
region at x = 0, which is the solution reached when continuing in Π from the periodic
solution branch at 202.6 �Π � 216 (i.e. it is a state similar to that shown in figure 9(f ),
and not panel (e), that becomes the saddle-node point in the infinite period bifurcation at
Π ≈ 202.6). This is also the configuration which is the more stable of the two at Π = 200
(in the sense that the growth rate of its least stable mode is more negative). In general,
the preferred configuration depends on Π . For example, both the solutions at Π = 220
and Π = 234 in figure 9(b,c) have an average wavelength of 0.5, but the solutions have
opposite configurations. There are thus several (potentially) competing influences on the
configuration of fingers in a flow-focussed state: the preferred wavelength of fingers in
an average sense; the preferred wavelength of fingers locally, due to the local channel
width; and the relative stability of the two choices of finger location. The periodic solution
branches then arise where these influences are in conflict and no choice of configuration
is stable, with the solution instead oscillating between multiple, weakly unstable states.
During a periodic orbit, the evolution between these states happens in two main ways: a
propagation of the fingers down the length of the fissure (e.g. panels e,f and g,i in figure 9);
or the removal or addition of a finger at one or both ends of the domain (e.g. the evolution
to and from panels d and h). As demonstrated in figure 8, the periodic solution branches
can evidence a range of different behaviours, and we do not claim to have provided
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Figure 9. Colour plots and contours of average temperature, T , for several solutions in the sinusoidal geometry
with A= 0.02 and λ= 2. (a–c) Steady solutions at (a) Π = 200, (b) Π = 220 and (c) Π = 234. Panels (d)–(f )
and (g)–(i) show snapshots at several times in the periodic solutions at Π = 210 (period ≈ 182) and Π = 232
(period ≈ 115), as indicated in the titles, and t = 0 chosen without loss of generality. Contours are plotted
from T = 0.1 nearest the top of each panel, increasing in increments of T = 0.1. The axes are the same in all
panels, and are omitted from all but panel (a) to avoid crowding. See table 2 for other parameters used in these
solutions.

an exhaustive exploration of these states. We also note that no periodic solutions were
observed for the uniform geometry. Two of the factors previously discussed (the spatially
varying preferred wavelength, and the choice for the location of the hot and cold fingers)
are absent without the presence of wider and narrower regions of the fissure, and so it is
perhaps unsurprising that the uniform geometry does not exhibit oscillatory dynamics.

4. Discussion and implications
The results in § 3 indicate that geometric localisation in a dyke with sinusoidally varying
width tends to overprint localisation via the thermoviscous fingering instability observed
in planar dykes. It also leads to a greater degree of localisation under similar conditions:
the magnitude of the surface flux ratio on the focussed branch takes substantially larger
values (in the range 2−16 for the results shown in figure 4) than those obtained for
the steady state that arises through viscous fingering (see figure 3). Furthermore, the
localisation occurs at higher pressure drops, before the entire system lies on the cold, slow
branch. A 5 % non-uniformity, A= 0.05, is fairly modest compared with the variations
seen in volcanic fissures (Parcheta et al. 2015), and figures 4 and 5 indicate that above
this amplitude, there are large regions of the parameter space where there is significant
localisation through geometric effects, particularly at large wavelengths. While many of
the irregularities observed in natural systems have relatively short wavelengths (Parcheta
et al. 2015), at the very least, fissures are typically wider at their centre and taper towards
their ends (Daniels et al. 2012). The model we present does not extend to a fissure which is
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completely closed at its ends, but the full length of the fissure does set a large wavelength
variation in fissure width. It therefore seems very plausible that the localisation of these
natural systems is dominated by the non-uniformity of the geometry, rather than the
spontaneous localisation driven by viscous fingering.

In practice, fissure geometries are not strictly sinusoidal, and natural variability is
likely better represented by a random superposition of a range of wavelengths and
amplitudes. While the nonlinearity of the system means that solutions cannot be formed
simply by superposition of the solutions for the sinusoidal geometries, we nonetheless
anticipate that the qualitative results regarding the occurrence of geometry-dominated
flow focussing will carry across to such geometries. Rather than explore a wide range
of different randomised geometries, here we give one example of the implications of the
above mentioned conclusions for such a geometry. Fault and fracture geometries are often
modelled by a power-law roughness, P(λ) ∝ λα , where P(λ) is the power spectral density
of the mode with wavelength λ and α is a constant typically between 2 and 3 (Méheust
& Schmittbuhl 2000; Auradou et al. 2005; Candela et al. 2012; Brodsky et al. 2016). The
geometry we consider has been generated with Lx = 1 and α = 2.2 (the value reported by
Brodsky et al. (2016) for the geometry of fault surfaces), and we cut off the power-spectrum
below a wavelength of λ= 0.01, which would be poorly resolved at the resolution of the
discrete grid. We further scale the values of h such that 0.95 � h � 1.05, corresponding to
A= 0.05 in the case of the sinusoidal non-uniformity. The resulting randomised geometry
is shown in the inset of figure 10(a). We then calculate steady and unsteady states of the
system at different dimensionless pressure drops, Π , using the same numerical method as
for the sinusoidal cases.

Figure 10(a) shows the surface flux, qz(x, z = 1), scaled by the total flux per unit
length of the fissure, Q. As anticipated from the results for the sinusoidal case, when
the pressure drop is sufficiently large or sufficiently small, the variation in the surface
flux is fairly minor and is dictated primarily by the h(x)3 factor for an isothermal fluid.
In contrast, when the pressure drop takes intermediate values, 200 �Π � 300, the system
localises strongly at the positions of maximal width, due to the interaction between the
geometry and the thermoviscosity. The region of Π and the magnitude of the flux ratio
is consistent with the results for A= 0.05 in the sinusoidal case (see figures 4 and 5c).
Figure 10(b) shows the steady-state solution branch, with colours indicating the degree
of flux localisation. Whereas the sinusoidal fissure geometries exhibit a single focussed
branch, the solution curve for the randomised geometry suggests two successive stages of
localisation. On decreasing the pressure drop, the system first transitions to a focussed state
in which the left side of the fissure reduces in flux significantly, but three wider sections
of the fissure remain at high flux states (see Π = 245 in figure 10a). A second transition
occurs before Π = 235, where the thinner of these three sections enters the slow regime,
leaving the fissure localised in the central region (see Π = 235 in figure 10a). Finally,
the system transitions to the slow branch at Π ≈ 225, although the fissure remains fairly
localised at the single widest point, where the flux gradually weakens as the pressure drop
is decreased. The flux is largely uniform again by Π = 150. These transitions are further
shown in figure 10(c), which plots the surface flux, qz , scaled by both the total flux per unit
length of fissure, Q, and the isothermal factor, h3. The localised branches are evidenced
by regions of varying colour along slices of constant Π .

It is informative to consider the dimensional quantities for plausible volcanological
parameters. As an illustrative example, we consider parameter values appropriate for a
typical Hawaiian fissure eruption, as given in § 2. In this case, the flux scale is κL/h0 ≈
0.002 m3 s–1 per metre length of the fissure. Thus, for the ranges of dimensionless flux
per unit length, Q, reported here, a kilometre of fissure would have a volume flux between
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Figure 10. (a) Scaled vertical flux at the surface, qz(x, z = 1)/Q, as a function of position, x , for the
randomised geometry, h(x), shown in the inset. The different coloured lines correspond to different
dimensionless pressure drops, Π (see legend). The black dashed line shows the isothermal factor, h3. (b)
Steady-state solution curve for the randomised fissure geometry. Coloured points are stable solutions coloured
according to the scaled surface flux ratio, Q̃r ((2.30) with A = 0.05), and black circles indicate the solutions
shown in panel (a), excluding Π = 400 which is off the scale. (c) Colour plot of surface flux, qz(x, z = 1),
scaled by h3Q, as a function of position, x , and pressure drop, Π . See table 2 for other parameters used in
these solutions.

2 and 40 m3 s–1, with the localisation occuring when the flux drops below approximately
20 m3 s–1. This range of fluxes is consistent with estimates from fissure eruptions in
Hawaii (Tilling et al. 1987). It is also of interest to obtain some measure of the time
scale on which the system evolves. Figure 11 shows one example of a time-dependent
solution for the randomised fissure geometry shown in the inset of figure 10(a). In this
case, the system was initiated with Π = 245 and with a temperature distribution close to
the inlet temperature, T = 1, throughout the fissure (specifically, E/h = 0.01=⇒ T = 0.99
everywhere). The system then evolves towards the steady state, which lies on one of the
flow-focussed branches of the solution curve. As shown in figure 11, this relaxation to
the new steady state occurs of the order of 2 dimensionless time units (becoming very
close for t � 4). This is also in line with the time scale implied by the decay rate of the
least stable perturbation to the steady state, given by −1/ max(Re(σ )) = 1.3. With the
dimensional parameters for a typical Hawaiian fissure eruption given in § 2, the time scale,
h2

0/κ , is of the order of a day or two, and thus the adjustment shown in figure 11 would
occur over the course of a few days. This is comparable to, although perhaps on the longer
end of, the time scales for localisation observed in fissure eruptions (Richter et al. 1970;
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Figure 11. Evolution of surface flux, qz(x, z = 1), for the randomised fissure geometry when initiated at t = 0
from a uniformly hot state, E/h = 0.01, with Π = 245. The steady-state solution for Π = 245 is indicated by
the dashed black line, while the dotted line corresponds to the time scale implied by the slowest decay rate of
linear perturbations to the steady state, t = −1/ max(Re(σ )) ≈ 1.3. See table 2 for other parameters used in
these solutions.

Thorarinsson et al. 1973; Eibl et al. 2017). Additional physical effects, not incorporated
into this model and discussed later, are likely to enhance localisation and thus shorten
the time scale on which it occurs. Finally, we note that the typical dimensionless pressure
drop, Π = 260, estimated for a dimensional pressure drop of 107 Pa, is within the range
where the geometrically flow-focussed solutions are typically found (200 �Π � 300, see
figures 4 and 10), and so it is plausible that this is a significant factor in the localisation of
fissure eruptions.

This work predominantly employed a width-averaged model, while retaining the
essential structure of the cross-channel temperature profile, to efficiently capture the
key qualitative behaviours of the non-uniform model. This averaging does introduce
a quantitative departure from the true cross-channel temperature field, as discussed in
Appendix B, and so comparisons to full three-dimensional numerical solutions, and
analogue experiments, would be valuable. In addition to the full three-dimensional
temperature field, there are a number of physical processes neglected in this model.
A more complete treatment would include the thermodynamics at the fissure walls
(including solidification), viscous heating and dissolution of volatiles from the magma in
response to the vertically decreasing pressure. In particular, the latter would both introduce
buoyant forcing (Pioli et al. 2017) and also couple to the rheology of the fluid (Mader,
Llewellin & Mueller 2013), which could further enhance localisation. Solidification is
likely to eventually transition the localised channel flow into a circular conduit flow,
although the impact of solidification on the onset of localisation is believed to be minor
due to the relatively slow time scale on which it occurs (Wylie et al. 1999). Finally, here
we considered only width variations that are aligned with the imposed pressure gradient.
Such variations were considered most likely to support geometrically localised flow states;
however, fissure geometries are typically more complex than this, and width variations in
the flow direction are also common. It would therefore be valuable to explore the process
of thermoviscous flow localisation in more general geometries.

5. Conclusion
We have studied the impact of a non-uniform fissure geometry on the localisation of a
pressure-driven flow of fluid of a temperature-dependent viscosity, demonstrating that
for topography aligned with the pressure gradient, relatively modest width variations and
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sufficiently long wavelengths, the most dramatic localisation occurs in response to the
interaction between the thermoviscosity and the fissure geometry, rather than through
spontaneous localisation through viscous fingering. This geometry-dominated localisation
occurs due to the wider region of the fissure remaining on the hot, fast branch of the planar
solution curve, while the thinner region transitions to the cold, slow branch. The resulting
system is stable over a range of pressure drops and exhibits flux localisation roughly an
order of magnitude larger than that of the steady flow-focussed states obtained through the
viscous fingering instability in planar geometries. Furthermore, the geometry-dominated
localisation typically occurs at larger pressure drops, since the fingering instability only
occurs once the system lies on the slow branch of the solution curve. We have demonstrated
that geometric localisation is effective for conditions appropriate to a typical Hawaiian
fissure eruption and operates over time scales that are consistent with observations. It
seems very plausible, therefore, that the localisation of volcanic fissure eruptions is
controlled in large part by the pre-existing geometry of the fissure. This highlights the
value in methods to accurately measure fissure geometry, both post-eruption (for example,
using robotics, see Parcheta et al. 2016, or from measurements of eroded feeder dykes, see
Daniels et al. 2012) and ideally also syneruptively, to help constrain the future localisation
of the eruption and inform hazard prediction and mitigation.
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National Fellowship in Fluid Dynamics scheme [EP/X028011/1].
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Appendix A. Numerical method
The governing equations in (2.22) are hyperbolic for E and elliptic for p. To avoid
numerical instability of the nonlinear advection equation for E , we discretise the system
of equations via a first-order finite volume method, using upwinded fluxes in the z-
direction. We define a grid with cell centres {xi, j = (xi , z j ) : 1 � i � N , 1 � j � M}, and
cell size �xi and �z j in the x- and z-directions respectively (see figure 12a). The cell-
averaged values of E and p are written Ei, j and Pi, j , respectively. Here, x1 = �x1/2,

1

0

0

z

(a) (b)

x
Lx

fz+

fz
–

fx
+fx

–

i, j + 1

i – 1, j i + 1, j i, j 

i, j – 1 

�xi

�zj

Figure 12. Diagrams of the finite volume grid used for the numerical solutions. (a) Diagram showing layout
of cells. (b) Close up of a single stencil, showing direction of fluxes into and out of a given cell.
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xN = Lx − �xN/2, z1 = 0 and zM = 1. In general, the size in the x-direction is taken
uniform,

�xi = Lx
Nx

, (A1)

whereas the grid is concentrated near the inflow, z = 0, in the z-direction to improve the
resolution of the rapidly varying temperature here. In particular, we choose

�z j = 2 j
M2 − 1

, (A2)

resulting in a quadratic spacing of the grid in this direction. We checked that solutions
converge with N and M and chose a grid-size of N = 500 and M = 200 for the results
reported here. For further verification of the numerical method, we employed our code
with the averaging approach suggested by Wylie & Lister (1995) in a uniform geometry
(A= 0) and confirmed that the resulting solution curve agreed closely with the results
reported by Wylie & Lister (1995) and Morris (1996) for several values of the parameter γ .

We then discretise the equations in conservative form, writing the divergence terms as
(for example)

∇ · (L(E)∇p) = 1
�xi�z j

(
f +
x + f +

z − f −
x − f −

z

)
, (A3)

where the fluxes are upwinded in the z-direction, giving

f ±
x ≈ �z j

(
L∂p

∂x

)∣∣∣∣
i+1/2, j

≈ ±�z j
�xi±1L(Ei, j ) + �xiL(Ei±1, j )

�xi + �xi±1

(
Pi±1, j − Pi, j

(�xi + �xi±1)/2

)
,

(A4)

f +
z ≈ �xiL(Ei, j )

∂p

∂z

∣∣∣∣
i, j+1/2

≈ �xiL(Ei, j )

(
Pi, j+1 − Pi, j

(�z j+1 + �z j )/2

)
, (A5)

f −
z ≈ �xiL(Ei, j−1)

∂p

∂z

∣∣∣∣
i, j−1/2

≈ �xiL(Ei, j−1)

(
Pi, j − Pi, j−1

(�z j + �z j−1)/2

)
. (A6)

The same discretisation is used for the flux, S(E)∇ p, in the heat equation, simply
replacing L with S . We then flatten the grid via {x I = xi, j : where 1 � I ≡ N ( j − 1) +
i � NM} and obtain matrix equations for the vectors E = (EN+1, EN+2, . . . , EN (M−1))

and P = (PN+1, PN+2, . . . , PN (M−1)), where EI = E(x I ) and PI defined similarly. Note
that E1 = E2 = . . . = EN = 0 and P1 = P2 = . . . = PN = 1 by the boundary conditions
at z = 0 and PN (M−1)+1 = PN (M−1)+2 = . . . = PNM = 0 by the boundary condition at
z = 1. There is no equivalent boundary condition for E at z = 1, as appropriate given the
hyperbolic nature of the equation, and so EN (M−1)+1, EN (M−1)+2, . . . , ENM are never
determined and do not enter the discretised equations due to the flux being up-winded in
the z-direction (see A5). The discrete equations take the form

1
Π
Ė I = AI J KS(EJ )PK + aI JS(EJ ) + 1

Π
C(EI ) ≡ FI (E, P), (A7)

0 = AI J KL(EJ )PK + aI JL(EJ ) + bI J PJ ≡GI (E, P), (A8)

where AI J K is a sparse third-order tensor arising from the flux terms, and aI J and bI J
are sparse matrices arising from the boundary conditions at z = 1 and z = 0, respectively.
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The no-flux conditions at x = 0, Lx are imposed by setting the fluxes, f ±
x , to zero, and

thus these boundary conditions do not contribute additional terms to the equations.
Since the nonlinear functions of E are known analytically, the Jacobian of the system

can be written down explicitly, given in block form by

J (E, P) =
(

∂FI /∂EJ ∂FI /∂PJ

∂GI /∂EJ ∂GI /∂PJ

)
(A9)

=
(

AI J KS ′(EJ )PK + aI JS ′(EJ ) + δ̂I JC′(EJ )/Π AI K JS(EK )

AI J KL′(EJ )PK + aI JL′(EJ ) AI K JL(EK ) + bI J

)
.

(A10)
Here, K is summed over, but I and J are not, and δ̂I J represents the Kronecker-delta
function. This Jacobian is used throughout the numerical procedures: for Newton iterations
when solving directly for the steady state, FI (E, P) =GI (E, P) = 0; for time-stepping
of the advection equation (A7) using a fourth-order, five-stage Rosenbrock method (Roche
1987); and in determining the linear stability of steady solutions to perturbations of the
form (E, P) = (E0, P0) + (E′, P ′)eσ t , for which the modes and corresponding growth-
rates are found from the generalised eigenvalue problem:

σ

(I 0
0 0

)(
E′

P ′
)

= Π J(E0, P0)

(
E′

P ′
)

. (A11)

All of these procedures are carried out in MATLAB (The MathWorks Inc. 2023a,b),
employing algorithms for large sparse arrays.

Appendix B. Comparison of averaging approaches
In this appendix, we make a quantitative comparison between the results of our heat-
balance averaging and the approaches of Helfrich (1995), Wylie & Lister (1995) and
Morris (1996). We first compare the critical values of γ in the uniform geometry, we
denote γc, γ3d and γ∞, as discussed in § 3.1. Not all of these are reported for the
exponential viscosity function in all studies. Helfrich (1995) reports a value of γc = 3.03
for their averaging, while the unaveraged system first exhibits multiplicity of steady states
at a larger value (γc = 5.19 reported by Morris 1996 and γc = 5.25 reported by Wylie &
Lister 1995). Thus, the value of γc = 4.8, found using our heat balance averaging, agrees
better with the value for the unaveraged case than when employing the Darcy averaging,
but still underestimates the critical viscosity ratio. For the unaveraged model with the
exponential viscosity model, γ3d ≈ 5.5 (see Morris 1996, figures 5 and 6) and γ∞ = 5.78
(Morris 1996), compared with the values γ3d ≈ 5.2 and γ∞ ≈ 5.4 for our system. Thus,
as well as reproducing the behaviour qualitatively, the heat balance averaging does not
significantly underestimate the critical values of the viscosity ratio at which the system
changes behaviour (compared with say the Darcy averaging of Helfrich 1995).

Nonetheless, the approximation of the temperature field by (2.10) does introduce
quantitative differences from the unaveraged system. This is demonstrated in figure 13(a),
which shows the steady-state solution curve for γ = 5.5, calculated with the Darcy
averaging of Helfrich (1995), the unaveraged approach of Wylie & Lister (1995) and
Morris (1996), and the heat balance method detailed in § 2.1. All three approaches agree
at low Π and Q, where the majority of the fissure has a uniform cold temperature across
its width, but differ elsewhere. The origin of the discrepancies can be understood by
considering the approximations to the temperature profile. Figure 13(b) shows example
across-channel temperature profiles for the three models at the same average temperature.
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Figure 13. (a) Steady-state dimensionless flux per unit length, Q, against dimensionless pressure drop, Π ,
for the uniform geometry, h = 1, and γ = 5.5 (as in figure 2). Solution curves are shown for the unaveraged
approach of Morris (1996) (solid), the Darcy averaging employed by Helfrich (1995) (dotted) and the heat
balance averaging detailed in § 2.1 (dashed). (b) Example across-channel temperature profiles, T (y). The solid
curves show two temperature profiles that occur at different points along the channel in the unaveraged model
of Morris (1996). These profiles were calculated using the numerical method detailed in Appendix B of Morris
(1996), and are taken at the locations s = 0.1 (top) and s = 0.6 (bottom) in the notation of their appendix.
Dashed lines show corresponding temperature profiles from the approximation (2.10), giving the same average
temperature across the gap. The dotted lines show the sinusoidal profile giving the same average, as used by
Helfrich (1995) in modelling the heat flux at the wall (but not the variation of viscosity across the channel).

When the fluid is hot and the temperature profile is significantly non-uniform across
the channel, the averaging of Helfrich (1995) tends to underestimate the temperature
gradient at the wall (since it does not account for thin thermal boundary layers). As
a result, the material cools less quickly and the dimensionless pressure drop at which
the slow branch joins the intermediate branch is underestimated by this averaging. More
dramatically, the flux on the fast branch is significantly overestimated. By contrast, the
parabolic approximation to the temperature profile, (2.10), tends to overestimate the heat
flux to the walls, and so the fold bifurcations happen at larger Π than in the unaveraged
system. The flux on the fast branch (large Π and Q) agrees with the unaveraged model
much more closely than when employing the averaging of Helfrich (1995), since the
variation of the viscosity across the channel is included in the model, and the assumed
temperature profile is able to more closely represent the true profile when the fluid is
at the eruption temperature across most of the channel, with thermal boundary layers at
the walls. As discussed in § 3.3, the strength of geometrically driven flow focussing is
largely controlled by the relative magnitude of fluxes on the fast and slow branches, and
so capturing this is particularly important in the current study.

In figure 14, we include some results for a non-uniform geometry and the ‘unaveraged’
model of Wylie & Lister (1995) for comparison with the results of the heat balance
averaging. Panels (a)–(c) show the steady-state curves for the sinusoidal geometries with
A= 0.05 and λ= 2, 1 and 0.4, and γ = 5.5, to be compared with the middle column of
figure 4, while panel (d) corresponds to figure 5(c). The qualitative behaviour is very
similar, with the unstable middle branch of the solution curve being replaced with a
stable, flow-focussed branch. The range of Π that is spanned by this branch is shorter
and is shifted to lower values of Π , as anticipated from a comparison of the locations
of the fold bifurcations for the uniform geometry (see figure 13a). The degree of flux
focussing, indicated by the scaled surface flux ratio, Q̃r , is also not as large as for the heat
balance averaging, but is still significantly stronger than that obtained from steady fingered
solutions, typically exceeding a factor of 4. We note that, since 5.5 < γ∞ = 5.78 for the
unaveraged system (Morris 1996), at this value of γ , the region of the solution branch
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Figure 14. Example steady-state results for the ‘unaveraged’ model of Wylie & Lister (1995) with γ = 5.5 and
the sinusoidal geometry with A= 0.05. (a) Steady-state solution curves, Q as a function of Π , as in figure 4,
with colour corresponding to the scaled surface flux ratio, Q̃r , as shown in the logarithmic colour bar on the
right. The three coloured curves are for geometrical wavelengths, λ= 0.4, 1 and 2 (increasing in the direction
shown) and the black dotted curve shows the steady-state solution curve for the uniform geometry, A= 0. The
corresponding results for the heat balance averaging can be found in the middle curve of each panel in figure 4.
(b) Contour plot of scaled surface flux ratio, Q̃r , as a function of dimensionless pressure drop and wavelength,
as in figure 5(c). The black contours are plotted at Q̃r = 4 and 8. See table 2 for other parameters used in these
solutions.

which becomes unstable to the fingering instability is rather limited. We were unable to
find any steady flow-focussed states for the uniform geometry at this parameter value, with
the unstable solutions instead continuing to evolve onto the fast branch, as observed by
Wylie & Lister (1995). Thus, in this case, the non-uniform geometry provides a mechanism
for the existence of steady flow-focussed solutions which are otherwise absent in the case
of the uniform geometry. We further note that, in this case, there are no periodic solutions,
which also relates to the absence of steady fingered states in the uniform geometry at this
viscosity ratio, since the periodic orbits arise from oscillations between different fingered
states (see § 3.4).
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