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A Note on the Exactness of
Operator Spaces

Z. Dong

Abstract. In this paper, we give two characterizations of the exactness of operator spaces.

1 Introduction

Operator space theory, a natural non-commutative quantization of Banach space the-

ory, is an emerging area in modern analysis. Recently, there have been important

developments in the local theory of operator spaces [6, 7, 11]. We will be concerned

mainly with the “geometry” of finite dimensional operator spaces. In the Banach

space category it is well known that every separable space embeds isometrically into

l∞. Moreover, if E is a finite dimensional normed space, then for each ǫ > 0, there

is an integer n and a subspace F ⊆ ln∞ that is (1 + ǫ)-isomorphic to E, i.e., there is

an isomorphism u : E → F such that ‖u‖ · ‖u−1‖ ≤ 1 + ǫ. Quite interestingly it

turns out that this fact is not valid in the category of operator spaces: although every

operator space embeds completely isometrically into B(H) (the non-commutative

analogue of l∞), it is not true that a finite dimensional operator space must be close

to a subspace of Mn (the non-commutative analogue of ln∞) for some n. The main

object of this phenomenon is called the exactness of operator spaces. The exactness

of C∗-algebras was first introduced by Kirchberg [9] and this concept was extended

to the “purely” operator space setting by Pisier [11].

To state our main results, we first recall some basic notations and terminologies in

operator spaces; the details can be found in [5, 12]. Given a Hilbert space H, we let

B(H) denote the space of all bounded linear operators on H. For each natural num-

ber n ∈ N, there is a canonical norm ‖ · ‖n on the n×n matrix space Mn(B(H)) given

by identifying Mn(B(H)) with B(Hn). We call this family of norms {‖ · ‖n} an op-

erator space matrix norm on B(H). An operator space V is a norm closed subspace

of some B(H) equipped with the distinguished operator space matrix norm inher-

ited from B(H). An abstract matrix norm characterization of operator spaces was

given in [13]. The morphisms in the category of operator spaces are the completely

bounded linear maps. Given operator spaces V and W , a linear map ϕ : V → W

is completely bounded if the corresponding linear mappings ϕn : Mn(V ) → Mn(W )

defined by ϕn([xi j]) = [ϕ(xi j)] are uniformly bounded, i.e.,

‖ϕ‖cb = sup{‖ϕn‖ : n ∈ N} < ∞.
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A map ϕ is completely contractive (respectively, completely isometric, completely

quotient) if ‖ϕ‖cb ≤ 1 (respectively, for each n ∈ N, ϕn is an isometry, a quotient

map). We denote by CB(V,W ) the space of all completely bounded maps from V into

W . It is known that CB(V,W ) is an operator space with the operator space matrix

norm given by identifying Mn(CB(V,W )) = CB(V, Mn(W )). In particular, if V is an

operator space, then its dual space V ∗ is an operator space with operator space matrix

norm given by the identification Mn(V ∗) = CB(V, Mn). Given operator spaces V

and W and a completely bounded mapping ϕ : V → W , the corresponding adjoint

mapping ϕ∗ : W ∗ → V ∗ is completely bounded with ‖ϕ∗‖cb = ‖ϕ‖cb. Furthermore,

ϕ : V → W is a completely isometric injection if and only if ϕ∗ is a completely

quotient mapping. On the other hand, if ϕ : V → W is a surjection, then ϕ is a

completely quotient mapping if and only if ϕ∗ is a completely isometric injection.

We use the notations V ⊗̌W and V ⊗̂W for the injective, projective operator space

tensor products (see [1, 2]). The operator space tensor products share many of the

properties of the Banach space analogues. For example, we have the natural complete

isometries

(V ⊗̂W )∗ = CB(V,W ∗), (V ⊗̂W )∗ = CB(W,V ∗),

and the completely isometric injection V ∗⊗̌W →֒ CB(V,W ). The tensor product ⊗̌
is injective in the sense that if ϕ : W → Y is a completely isometric injection, then so

is idV ⊗ϕ : V ⊗̌W → V ⊗̌Y . On the other hand, the tensor product ⊗̂ is projective in

the sense that if ϕ : W → Y is a completely quotient mapping, then so is

idV ⊗ϕ : V ⊗̂W → V ⊗̂Y.

In the following, we give some definitions of local properties for an operator

space V .

Exactness. If for any finite dimensional subspace L of V and every ǫ > 0, there exist

an integer n and a subspace S ⊆ Mn such that dcb(L, S) < 1 + ǫ.

Local reflexivity. If for any finite dimensional operator space L, every complete con-

traction ϕ : L → V ∗∗ is the point-weak∗ limit of a net of complete contractions

ϕα : L → V .

Nuclearity. If there exists a diagram of complete contractions

Mn(α)

sα

!!DD
DD

DD
DD

V

rα

==zzzzzzzz
idV // V

that approximately commute in the point-norm topology, we say V is nuclear.

We say that a diagram of operator spaces and complete contractions

0 → X
ϕ
→֒ Y

ψ
→ Z → 0

is 1-exact if ϕ is a complete isometry, ψ is a completely quotient mapping, and

ker ψ = Im ϕ.
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Effros and Ruan [5, Theorem 14.4.1] gave a characterization of exactness: an op-

erator space V is exact if for any C∗-algebra A and closed ideal J ⊆ A,

0 → J⊗̌V → A⊗̌V → A/J⊗̌V → 0

is 1-exact. In this paper, we will use complete M-ideals to give a similar characteri-

zation of exactness. The notion of complete M-ideals was introduced in [4]. For an

operator space V , if a linear map P : V → V satisfies P2
= P and

‖v‖ = max{‖Pn(v)‖, ‖(I − P)n(v)‖}

for all v ∈ Mn(V ), then P is called a complete M-projection. We say that a closed

subspace W ⊆ V is a complete M-summand if W = PV for some complete M-

projection, and that it is a complete M-ideal in V if the weak∗ closure W− is a com-

plete M-summand in V ∗∗. It is clear that complete M-summands are M-summands,

and similarly that complete M-ideals are M-ideals.

The second main result of this paper is that given a finite dimensional operator

space L, then L is exact if and only if for any operator space W and any complete

contraction ϕ : L∗ → W ∗∗ is the point-weak∗ limit of a net of linear mappings

ϕα : L∗ → W with ‖ϕα‖ ≤ 1. By virtue of this result, we can prove that an op-

erator space V is exact if and only if I(V,W ∗) = (V ⊗̌W )∗ for any separable operator

space W .

2 Characterization of Exactness

Lemma 2.1 Suppose that X,Y, Z are operator spaces, X ⊆ Y and π : Y → Y /X is the

canonical completely quotient mapping. If for any finite dimensional operator subspace

F of Z, the mapping π ⊗ idF : Y ⊗̌F → Y /X⊗̌F is a completely quotient mapping, then

ker(π ⊗ idZ : Y ⊗̌Z → Y /X⊗̌Z) = X⊗̌Z.

Proof Suppose that u ∈ Y ⊗̌Z satisfies (π⊗̌ idZ)(u) = 0. Then given ǫ > 0, we may

choose an element

u0 =

n∑

i=1

hi ⊗ vi ∈ Y ⊗∨ Z

such that ‖u − u0‖ < ǫ. It follows that u0 ∈ Y ⊗̌F, where F is the finite dimensional

subspace of Z spanned by v1, . . . , vn. Since the obvious mapping Y /X⊗̌F → Y /X⊗̌Z

is isometric, we have

‖(π ⊗ idF)(u0)‖ = ‖(π ⊗ idZ)(u0)‖

≤ ‖(π ⊗ idZ)(u0) − (π ⊗ idZ)(u)‖ + ‖(π ⊗ idZ)(u)‖

= ‖(π ⊗ idZ)(u0 − u)‖ + 0

≤ ‖u0 − u‖ < ǫ.
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From the hypothesis, π ⊗ idF : Y ⊗̌F → Y /X⊗̌F is a quotient mapping, and thus

there is an element u1 ∈ Y ⊗̌F with ‖u1‖ < ǫ and (π ⊗ idF)(u1) = (π ⊗ idF)(u0). We

have

‖u − (u0 − u1)‖ ≤ ‖u − u0‖ + ‖u1‖ < 2ǫ,

where u0 − u1 ∈ ker π ⊗ idF = X⊗̌F ⊆ X⊗̌Z and thus dist(u, X⊗̌Z) < 2ǫ. Since

ǫ > 0 is arbitrary, it follows that u ∈ X⊗̌Z. The converse inclusion is obvious.

Theorem 2.2 Suppose that V is an operator space; then the following are equivalent.

(i) V is exact;

(ii) for each finite dimensional subspace L ⊆ V and for every operator space W with

complete M-ideal J ⊆ W , the natural mapping W ⊗̌L → (W/ J)⊗̌L is a com-

pletely quotient mapping;

(iii) for any operator space W with complete M-ideal J ⊆ W ,

0 → J⊗̌V
ι⊗idV−→ W ⊗̌V

π⊗idV−→ W/ J⊗̌V → 0

is 1-exact.

Proof (i) ⇒ (ii). Since V is exact, so every finite dimensional operator subspace L of

V is also exact. It follows from the condition C ′ for L (see [5, Theorem 14.4.1]) that

(W ⊗̌L)∗∗ = W ∗∗⊗̌L and (W/ J⊗̌L)∗∗ = (W/ J)∗∗⊗̌L.

Thus we have the following commutative diagram

W ⊗̌L
π⊗idL //

²²

W/ J⊗̌L

²²

W ∗∗⊗̌L
π∗∗⊗idL// (W/ J)∗∗⊗̌L

(W ⊗̌L)∗∗
(π⊗idL)∗∗

// (W/ J⊗̌L)∗∗

Since J is a complete M-ideal in W , J− is a complete M-summand in W ∗∗, and we

may assume that J− = PW ∗∗, where P is the complete M-projection determined by

J−. This gives the following complete isometries:

(W/ J)∗∗ = ( J⊥)∗ = W ∗∗/ J⊥⊥
= W ∗∗/ J− = (I − P)W ∗∗.

So the completely quotient mapping π∗∗ : W ∗∗ → (W/ J)∗∗ has a completely con-

tractive lifting given by the canonical inclusion (I − P)W ∗∗ →֒ W ∗∗. It follows

from [5, Proposition 8.1.5] that π∗∗ ⊗ idL : W ∗∗⊗̌L → (W/ J)∗∗⊗̌L is a completely

quotient mapping. From the above commutative diagram, the bottom mapping
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(π ⊗ idL)∗∗ is a completely quotient mapping. Since it is the second adjoint of the

first row, the first row π ⊗ idL is also a complete quotient mapping.

(ii) ⇒ (iii). From [5, Proposition 8.1.5], ι⊗ idV is a complete isometry. It follows

from Lemma 2.1 and the hypothesis (ii) that

ker(π ⊗ idV : W ⊗̌V → W/ J⊗̌V ) = J⊗̌V.

In the following, we first show that π ⊗ idV is a quotient mapping. It is enough

to prove that π ⊗ idV maps (W ⊗∨ V )‖ · ‖<1 onto a dense subset of (W/ J⊗̌V )‖ · ‖<1.

Given an element ũ in the latter set, there exists a finite dimensional subspace L ⊆ V

with ũ ∈ W/ J ⊗∨ L = W/ J⊗̌L. From (ii) there exists an element u ∈ W ⊗̌L with

‖u‖ < 1 and (π ⊗ idL)(u) = ũ, and we may regard u as an element of W ⊗̌V . We

have the desired result.

If J is a complete M-ideal of W , certainly Mn( J) is a complete M-ideal of Mn(W ).

We have the commutative diagram

Mn(W ⊗̌V ) // Mn(W/ J⊗̌V )

Mn(W )⊗̌V // Mn(W )/Mn( J)⊗̌V.

Since the bottom row is a quotient mapping by the above proof, so is the top row.

This shows that π ⊗ idV is a completely quotient mapping.

(iii) ⇒ (i). It is well known that the M-ideals in a C∗-algebra are just the norm-

closed two-sided algebraic ideals. Thus the M-ideals in C∗-algebras are automatically

complete M-ideals. Therefore (iii) implies [5, Theorem 14.4.1(3)] and the exactness

of V .

Corollary 2.3 Suppose that V is an operator space. Then the following are equivalent.

(i) V is exact;

(ii) for each finite dimensional subspace L ⊆ V and for every unital operator algebra B

(self-adjoint or non-self-adjoint) with closed two-sided ideals J having a contrac-

tive approximate identity, the natural mapping B⊗̌L → B/J⊗̌L is a completely

quotient mapping;

(iii) for any unital operator algebra B with closed two-sided ideals J having a contrac-

tive approximate identity 0 → J⊗̌V → B⊗̌V → B/J⊗̌V → 0 is 1-exact.

Proof M-ideals in unital operator algebras coincide with the closed two-sided ideals

having a contractive approximate identity (see [3]). Thus M-ideals in unital oper-

ator algebras are automatically complete M-ideals. So from Theorem 2.2, we have

(i) ⇒ (ii). The arguments of (ii) ⇒ (iii) and (iii) ⇒ (i) are similar to those in Theo-

rem 2.2.

The following characterization of nuclearity was discussed in Pisier [11], who at-

tributed the result to Kirchberg and Valliant: an operator space V is nuclear if and
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only if it has the following property. For any operator space W and operator subspace

X ⊆ W , 0 → X⊗̌V → W ⊗̌V → (W/X)⊗̌V → 0 is 1-exact.

Comparing Theorem 2.2 and the above result, we can see some difference and

relation between exactness and nuclearity. The following result gives another charac-

terization of exactness which is similar to the definition of local reflexivity.

Theorem 2.4 Suppose that L is a finite dimensional operator space. Then L is exact if

and only if, for any operator space W , every complete contraction ϕ : L∗ → W ∗∗ is the

point-weak∗ limit of a net of linear mapping ϕα : L∗ → W with ‖ϕα‖cb ≤ 1.

Proof It follows from [5, Theorem 14.4.1, Corollary 14.2.3] that L is exact if and

only if for any operator space W , we have completely isometric isomorphisms

(L⊗̌W )∗ = I(L,W ∗) = N(L,W ∗) = L∗⊗̂W ∗.

Since Tn(L∗⊗̂W ∗) = L∗⊗̂Mn(W )∗ and Tn((L⊗̌W )∗) = (L⊗̌Mn(W ))∗,

L is exact ⇔ for any operator space W, (L⊗̌W )∗ = L∗⊗̂W ∗ (isometric)

⇔ for any operator space W, (L⊗̌W )∗∗ = L⊗̌W ∗∗ (isometric),

where the second equivalence follows from (L∗⊗̂W ∗)∗ = L⊗̌W ∗∗. This correspon-

dence is explicitly given by the norm-increasing linear isomorphism

τ : L⊗̌W ∗∗ → (L⊗̌W )∗∗.

Thus the relation is isometric if and only if

ϕ ∈ (L⊗̌W ∗∗)‖·‖≤1 = CB(L∗,W ∗∗)‖·‖cb≤1

implies that

ϕ ∈ (L⊗̌W )∗∗‖·‖≤1.

From the bipolar theorem, the latter is the case if and only if ϕ is a weak∗ limit of

elements in

(L⊗̌W )‖·‖≤1 = CB(L∗,W )‖·‖cb≤1.

It follows from [10, Lemma 7.2] that τ : CB(L∗,W ∗∗) → (L⊗̌W )∗∗ is a homeomor-

phism in the point-weak∗ and weak∗ topologies.

From the above result and the definition of local reflexivity and exactness, it fol-

lows that all operator spaces are exact if and only if all operator spaces are locally

reflexive. In other words, there exists a non-locally reflexive operator space if and

only if there exists a non-exact operator space.

Lemma 2.5 A finite dimensional operator space L is exact if and only if for any opera-

tor space W and any finite dimensional operator subspace F ⊆ W ∗ and ǫ > 0, we have

that for every complete contraction ϕ : L∗ → W ∗∗ there exists a mapping ψ : L∗ → W

such that ‖ψ‖cb < 1 + ǫ and 〈ψ(x), f 〉 = 〈ϕ(x), f 〉 for all x ∈ L∗ and f ∈ F.
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Proof Since L is exact, we have (L⊗̌W )∗ = L∗⊗̂W ∗ and (L⊗̌W )∗∗ = L⊗̌W ∗∗. Thus

ϕ is a contractive element of CB(L∗,W ∗∗) = L⊗̌W ∗∗
= (L⊗̌W )∗∗, and E = L∗ ⊗ F

as a finite dimensional subspace of L∗⊗̂W ∗
= (L⊗̌W )∗. From Helly’s Lemma, we

can choose an element ψ ∈ L⊗̌W = CB(L∗,W ) such that ‖ψ‖cb < 1 + ǫ and

〈ψ(x), f 〉 = 〈ψ, x ⊗ f 〉 = 〈ϕ, x ⊗ f 〉 = 〈ϕ(x), f 〉

for all x ∈ L∗ and f ∈ F.

To prove the converse, it is enough to consider a net of complete contraction of

the form ψ(F,ǫ) =
ψ

1+ǫ , with ψ chosen as above. Then Theorem 2.4 implies that L is

exact.

Theorem 2.6 Given a finite dimensional operator space L, the following are equiva-

lent.

(i) L is exact;

(ii) for any separable operator space W , (L⊗̌W )∗ = L∗⊗̂W ∗;

(iii) for any separable operator space W , (L⊗̌W )∗∗ = L⊗̌W ∗∗.

Proof Clearly, (i) ⇒ (ii) and (ii) ⇔ (iii).

(ii) ⇒ (i). Owing to Lemma 2.5, it suffices to show that for any operator space W ,

if ϕ : L∗ → W ∗∗ is a complete contraction and F ⊆ W ∗ is finite dimensional, then

for each ǫ > 0 there exists a mapping ψǫ : L∗ → W such that ‖ψǫ‖cb < 1 + ǫ and

〈ψǫ(x), f 〉 = 〈ϕ(x), f 〉 for all x ∈ L∗ and f ∈ F.

From [5, Lemma 14.3.4] (a result of Ge and Hadwin), we may find a mapping

ψ(n) : L∗ → W such that ‖(ψ(n))n‖ < 1 + 1/n and 〈ψ(n)(x), f 〉 = 〈ϕ(x), f 〉 for all

x ∈ L∗ and f ∈ F. The norm closed linear span W0 of the union of the subspaces

ψ(n)(L∗) with n ∈ N is separable in the norm topology, and we can regard ψ(n) as

a sequence in B(L∗,W ∗∗
0 ). Since the closed ball of radius 2 is compact in the point-

weak∗ topology on B(L∗,W ∗∗
0 ), we may choose a limit point ψ : L∗ → W ∗∗

0 of the

sequence ψ(n). If r ≤ n, then ‖(ψ(n))r‖ ≤ ‖(ψ(n))n‖ ≤ 1 + 1/n, and thus ‖ψr‖ ≤ 1.

It follows that ‖ψ‖cb ≤ 1. Furthermore, 〈ψ(x), f 〉 = 〈ϕ(x), f 〉 for all x ∈ L∗ and

f ∈ F.

By assumption and a similar argument to that of Lemma 2.5, for given ǫ > 0 we

may find a mapping ψǫ : L∗ → W0(⊆ W ) such that ‖ψǫ‖cb < 1 + ǫ such that

〈ψǫ(x), f 〉 = 〈ψ(x), f 〉 = 〈ϕ(x), f 〉

for any x ∈ L∗ and f ∈ F. Thus Lemma 2.5 implies that L is exact.

It is well known that for any finite dimensional operator space W ,

I(V,W ∗) = (V ⊗̌W )∗.

In the following result, we will consider the case when W is any separable operator

space. The analogue on local reflexivity of the following result is that given an oper-

ator space V , V is locally reflexive if and only if every separable operator subspace of

V is locally reflexive.
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Corollary 2.7 Given an operator space V , the following are equivalent.

(i) V is exact;

(ii) for any separable operator space W , I(V,W ∗) = (V ⊗̌W )∗;

(iii) for any separable operator space W , V ⊗̌ : W ∗∗
= V ⊗̌W ∗∗.

Proof Clearly (i) ⇒ (ii), (ii) ⇒ (iii): It follows from [5, Theorem 14.2.2]. (iii) ⇒ (i):

For any separable operator space W and any finite dimensional subspace L ⊆ V , we

have the following commutative diagram

L ⊗∨ W ∗∗ //

²²

(L⊗̌W )∗∗

²²

V ⊗∨ W ∗∗ // (V ⊗̌W )∗∗.

Since the columns are automatically completely isometric and the bottom row is

completely isometric by assumption, the top row is also completely isometric. Theo-

rem 2.6 shows that L is exact and so is V .
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[12] , Introduction to Operator Space Theory. London Mathematical Society Lecture Notes Series

294. Cambridge University Press, Cambridge, 2003.
[13] Z.-J.Ruan, Subspaces of C∗-algebras. J. Funct. Anal. 76(1988), no. 1, 217–230.

Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China
e-mail: dongzhe@zju.edu.cn

https://doi.org/10.4153/CMB-2010-013-4 Published online by Cambridge University Press

http://dx.doi.org/10.1016/0022-1236(91)90042-4
http://dx.doi.org/10.2307/2047737
http://dx.doi.org/10.1112/plms/s3-69.1.171
http://dx.doi.org/10.2307/121112
http://dx.doi.org/10.1215/S0012-7094-01-11032-6
https://doi.org/10.4153/CMB-2010-013-4

