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A Note on the Exactness of
Operator Spaces

Z.Dong

Abstract. In this paper, we give two characterizations of the exactness of operator spaces.

1 Introduction

Operator space theory, a natural non-commutative quantization of Banach space the-
ory, is an emerging area in modern analysis. Recently, there have been important
developments in the local theory of operator spaces [6,7,11]. We will be concerned
mainly with the “geometry” of finite dimensional operator spaces. In the Banach
space category it is well known that every separable space embeds isometrically into
lo. Moreover, if E is a finite dimensional normed space, then for each ¢ > 0, there
is an integer # and a subspace F C [7_ that is (1 + €)-isomorphic to E, i.e., there is
an isomorphism u: E — F such that ||ul| - |Ju~!|| < 1 + e. Quite interestingly it
turns out that this fact is not valid in the category of operator spaces: although every
operator space embeds completely isometrically into B(H) (the non-commutative
analogue of I, ), it is not true that a finite dimensional operator space must be close
to a subspace of M, (the non-commutative analogue of I”_) for some n. The main
object of this phenomenon is called the exactness of operator spaces. The exactness
of C*-algebras was first introduced by Kirchberg [9] and this concept was extended
to the “purely” operator space setting by Pisier [11].

To state our main results, we first recall some basic notations and terminologies in
operator spaces; the details can be found in [5, 12]. Given a Hilbert space I, we let
B(IH) denote the space of all bounded linear operators on J{. For each natural num-
ber n € N, there is a canonical norm || - ||, on the n X n matrix space M,,(B(H)) given
by identifying M,,(B(J()) with B(FH"). We call this family of norms {|| - ||,} an op-
erator space matrix norm on B(J). An operator space V is a norm closed subspace
of some B(H) equipped with the distinguished operator space matrix norm inher-
ited from B(J). An abstract matrix norm characterization of operator spaces was
given in [13]. The morphisms in the category of operator spaces are the completely
bounded linear maps. Given operator spaces V and W, a linear map ¢: V — W
is completely bounded if the corresponding linear mappings ¢,,: M, (V) — M,(W)
defined by v, ([xi;]) = [¢(x;;)] are uniformly bounded, i.e.,

el = sup{[lonl| : n € N} < o0.
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A map ¢ is completely contractive (respectively, completely isometric, completely
quotient) if |||l < 1 (respectively, for each n € N, ¢, is an isometry, a quotient
map). We denote by CB(V, W) the space of all completely bounded maps from V into
W. It is known that CB(V, W) is an operator space with the operator space matrix
norm given by identifying M, (CB(V, W)) = CB(V, M,,(W)). In particular, if V is an
operator space, then its dual space V* is an operator space with operator space matrix
norm given by the identification M, (V*) = CB(V,M,). Given operator spaces V
and W and a completely bounded mapping ¢: V. — W, the corresponding adjoint
mapping ¢*: W* — V* is completely bounded with ||¢*||s = ||©]|cb- Furthermore,
p: V. — W is a completely isometric injection if and only if ¢* is a completely
quotient mapping. On the other hand, if ¢: V' — W is a surjection, then ¢ is a
completely quotient mapping if and only if ¢* is a completely isometric injection.
We use the notations V®@W and V@W for the injective, projective operator space
tensor products (see [1,2]). The operator space tensor products share many of the
properties of the Banach space analogues. For example, we have the natural complete
isometries
(VOW)* = CB(V,W*), (VOW)* = CB(W, V™),

and the completely isometric injection V*®@W < CB(V, W). The tensor product &
is injective in the sense that if ¢: W — Y is a completely isometric injection, then so
isidy ®p: VOW — V&Y. On the other hand, the tensor product & is projective in
the sense that if o: W — Y is a completely quotient mapping, then so is

idy ®@p: VOW — V&Y.

In the following, we give some definitions of local properties for an operator
space V.

Exactness. If for any finite dimensional subspace L of V and every € > 0, there exist
an integer n and a subspace S C M,, such that d,(L,S) < 1 + €.

Local reflexivity. If for any finite dimensional operator space L, every complete con-
traction ¢: L — V** is the point-weak™ limit of a net of complete contractions
Ya:L—V.

Nuclearity. If there exists a diagram of complete contractions

Mn(a)

idy
Vv \4

that approximately commute in the point-norm topology, we say V' is nuclear.

We say that a diagram of operator spaces and complete contractions

0-XSy Lz 50

is 1-exact if ¢ is a complete isometry, ¢ is a completely quotient mapping, and
kery) = Im .
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Effros and Ruan [5, Theorem 14.4.1] gave a characterization of exactness: an op-
erator space V is exact if for any C*-algebra A and closed ideal J C A,

0— JOV — AQV — A/JQV — 0

is 1-exact. In this paper, we will use complete M-ideals to give a similar characteri-
zation of exactness. The notion of complete M-ideals was introduced in [4]. For an
operator space V, if a linear map P: V — V satisfies P> = P and

[v]| = max{(|P, ()|, [[(I = P),(W)[|}

for all v € M, (V), then P is called a complete M-projection. We say that a closed
subspace W C V is a complete M-summand if W = PV for some complete M-
projection, and that it is a complete M-ideal in V' if the weak* closure W™ is a com-
plete M-summand in V**. It is clear that complete M-summands are M-summands,
and similarly that complete M-ideals are M-ideals.

The second main result of this paper is that given a finite dimensional operator
space L, then L is exact if and only if for any operator space W and any complete
contraction ¢: L* — W™* is the point-weak® limit of a net of linear mappings
Yo L* — W with ||ps]| < 1. By virtue of this result, we can prove that an op-
erator space V is exact if and only if J(V, W*) = (V®W)* for any separable operator
space W.

2 Characterization of Exactness

Lemma 2.1 Supposethat X,Y, Z are operator spaces, X C Y andmw: Y — Y /X is the
canonical completely quotient mapping. If for any finite dimensional operator subspace
F of Z, the mapping 7 ® idp: YQF — Y /XQF is a completely quotient mapping, then

ker(m ® idz: YOZ — Y /XRZ) = XRZ.

Proof Suppose that u € Y®Z satisfies (7®1idz)(u) = 0. Then given € > 0, we may
choose an element

n
uOZZhi®Vi€Y®\/Z

i=1

such that ||u — up|| < €. It follows that uy € Y&F, where F is the finite dimensional
subspace of Z spanned by vy, . . . , . Since the obvious mapping Y /X®F — Y /X®Z
is isometric, we have

[|(m @ idE) (uo) || = ||(m @ idz)(uo)||
< |l @ idz)(ug) — (7 @ idz)(w)|| + || (r @ idz) (u)||
= ||[(r ® idz)(ug — u)|| + 0

< lwo — uf| <.
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From the hypothesis, 7 ® idp: Y®F — Y /X®F is a quotient mapping, and thus
there is an element u; € Y®F with |u;]| < e and (7 ® idp)(u;) = (7 ® idg)(ug). We
have

[ = (o — w)|| < [lu— uol| + [ < 2e,

where 1y — u; € kerm ® idp = X®F C X®Z and thus dist(u, X®Z) < 2e. Since
€ > 0 is arbitrary, it follows that u € X®Z. The converse inclusion is obvious. [ ]

Theorem 2.2 Suppose that V is an operator space; then the following are equivalent.

(1) Visexact

(ii) for each finite dimensional subspace L C V and for every operator space W with
complete M-ideal ] C W, the natural mapping WRL — (W /])®L is a com-
pletely quotient mapping;

(iii) for any operator space W with complete M-ideal ] C W,

0— Jov 2 wev Y wjev — o

is 1-exact.

Proof (i) = (ii). Since V is exact, so every finite dimensional operator subspace L of
V is also exact. It follows from the condition C’ for L (see [5, Theorem 14.4.1]) that

(WRL)*™ =W*®L and (W/JRL)** = (W/])*®L.
Thus we have the following commutative diagram

v T®idy, v
WL ———— W/JQL

| |

y T ®id .
WHGL ———= (W/])*&L

. (r®idi)** .
(WRL)** ——— (W/JL)**

Since ] is a complete M-ideal in W, ]~ is a complete M-summand in W**, and we
may assume that ]~ = PW™*, where P is the complete M-projection determined by
J~. This gives the following complete isometries:

So the completely quotient mapping 7**: W** — (W /])** has a completely con-
tractive lifting given by the canonical inclusion (I — P)W** — W**_ It follows
from [5, Proposition 8.1.5] that 7** @ id;: W**®L — (W /])**®L is a completely
quotient mapping. From the above commutative diagram, the bottom mapping
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(m ® id)** is a completely quotient mapping. Since it is the second adjoint of the
first row, the first row 7 ® id; is also a complete quotient mapping.

(i) = (iii). From [5, Proposition 8.1.5], ¢ ® idy is a complete isometry. It follows
from Lemma[2.Tland the hypothesis (ii) that

ker(m @ idy: WQV — W/JRV) = JQV.

In the following, we first show that 7 ® idy is a quotient mapping. It is enough
to prove that 7 ® idy maps (W ®y V) . <1 onto a dense subset of(W/I®V)H Cl<t-
Given an element i in the latter set, there exists a finite dimensional subspace L C V
withai e W/J®@y L =W/ J®L. From (ii) there exists an element u € W&L with
llul| < 1and (7 ® id;)(u) = i, and we may regard u as an element of W®QV. We
have the desired result.

If ] is a complete M-ideal of W, certainly M, (]) is a complete M-ideal of M,,(W).
We have the commutative diagram

M,(W)QV ——= M,(W)/M,())&V.

Since the bottom row is a quotient mapping by the above proof, so is the top row.
This shows that 7 ® idy is a completely quotient mapping.

(iii) = (i). It is well known that the M-ideals in a C*-algebra are just the norm-
closed two-sided algebraic ideals. Thus the M-ideals in C*-algebras are automatically
complete M-ideals. Therefore (iii) implies [5, Theorem 14.4.1(3)] and the exactness
of V. [ ]

Corollary 2.3 Suppose thatV is an operator space. Then the following are equivalent.

(1) Visexact

(ii)  for each finite dimensional subspace L C V and for every unital operator algebra B
(self-adjoint or non-self-adjoint) with closed two-sided ideals J having a contrac-
tive approximate identity, the natural mapping BOL — B/JRL is a completely
quotient mapping;

(iii) for any unital operator algebra B with closed two-sided ideals J having a contrac-
tive approximate identity 0 — JQV — BRIV — B/JQV — 0 is 1-exact.

Proof M-ideals in unital operator algebras coincide with the closed two-sided ideals
having a contractive approximate identity (see [3]). Thus M-ideals in unital oper-
ator algebras are automatically complete M-ideals. So from Theorem [2.2] we have
(i) = (ii). The arguments of (ii) = (iii) and (iii) = (i) are similar to those in Theo-
rem[2.2] ]

The following characterization of nuclearity was discussed in Pisier [11], who at-
tributed the result to Kirchberg and Valliant: an operator space V is nuclear if and
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only if it has the following property. For any operator space W and operator subspace
XCW,0— X®V - WV — (W/X)®V — 0is 1-exact.

Comparing Theorem [2.2] and the above result, we can see some difference and
relation between exactness and nuclearity. The following result gives another charac-
terization of exactness which is similar to the definition of local reflexivity.

Theorem 2.4 Suppose that L is a finite dimensional operator space. Then L is exact if
and only if, for any operator space W, every complete contraction w: L* — W** is the
point-weak™ limit of a net of linear mapping @o: L* — W with ||oa s < 1.

Proof It follows from [5, Theorem 14.4.1, Corollary 14.2.3] that L is exact if and
only if for any operator space W, we have completely isometric isomorphisms
(LOW)* = J(L,W*) = N(L,W*) = L*QW*.
Since T, (L*®W*) = L*®M,,(W)* and T,(LOW)*) = (LM, (W))*,
L is exact < for any operator space W, (L@W)* = L*®@W™*  (isometric)
& for any operator space W, (LQW )™ = LW ™" (isometric),

where the second equivalence follows from (L*@W*)* = LW **. This correspon-
dence is explicitly given by the norm-increasing linear isomorphism

70 LQW** — (LOW)**.
Thus the relation is isometric if and only if
p € LOW™)) <1 = CBIL", W™ ju<1

implies that

From the bipolar theorem, the latter is the case if and only if ¢ is a weak* limit of
elements in
(LEW)| <1 = CBIL, W)y <1-

It follows from [10, Lemma 7.2] that 7: CB(L*, W**) — (L&W)** is a homeomor-
phism in the point-weak* and weak* topologies. ]

From the above result and the definition of local reflexivity and exactness, it fol-
lows that all operator spaces are exact if and only if all operator spaces are locally
reflexive. In other words, there exists a non-locally reflexive operator space if and
only if there exists a non-exact operator space.

Lemma 2.5 A finite dimensional operator space L is exact if and only if for any opera-
tor space W and any finite dimensional operator subspace F C W* and € > 0, we have
that for every complete contraction w: L* — W** there exists a mapping: L* — W
such that ||¢]|a < 1+ €and (Y(x), f) = (px), f) forallx € L* and f € F.
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Proof Since L is exact, we have (LW )* = L*@W* and (LW )** = LW **. Thus
¢ is a contractive element of CB(L*, W**) = LoW** = (L@oW)**,and E=L* ® F
as a finite dimensional subspace of L*@W* = (L@W)*. From Helly’s Lemma, we
can choose an element ¢ € LOW = CB(L*, W) such that [|¢|l¢, < 1+ € and

W), f) = ¥, x® f) = (p,x @ f) = {¢px), f)

forallx € L* and f € F.
To prove the converse, it is enough to consider a net of complete contraction of
the form ¢ = 7=, with ¢ chosen as above. Then Theorem 2.4 implies that L is

+e”
exact. |

Theorem 2.6 Given a finite dimensional operator space L, the following are equiva-
lent.

(1) L isexact;
(i) for any separable operator space W, (LW )* = L*QW*;
(iii) for any separable operator space W, (LOW)** = LW **.

Proof Clearly, (i) = (ii) and (ii) < (iii).

(ii) = (i). Owing to Lemmal[Z.5] it suffices to show that for any operator space W,
if p: L* — W** is a complete contraction and F C W* is finite dimensional, then
for each € > 0 there exists a mapping ¢.: L* — W such that ||¢c||cs < 1 + € and
(e(x), f) = (p(x), f) forallx € L* and f € F.

From [5, Lemma 14.3.4] (a result of Ge and Hadwin), we may find a mapping
™ L* — W such that [|[(™),|| < 1+ 1/nand (" (x), f) = (¢(x), f) for all
x € L* and f € F. The norm closed linear span W, of the union of the subspaces
Y™ (L*) with n € N is separable in the norm topology, and we can regard (" as
a sequence in B(L*, W;*). Since the closed ball of radius 2 is compact in the point-
weak* topology on B(L*, W;*), we may choose a limit point ¢: L* — W{™* of the
sequence Y. If r < n, then ||(xx™),|| < ||('),|| < 1+ 1/n, and thus ||¢),|| < 1.
It follows that ||¥||e < 1. Furthermore, (¢(x), f) = (p(x), f) for all x € L* and
f eF.

By assumption and a similar argument to that of Lemma[2.5] for given € > 0 we
may find a mapping ¢.: L* — W,(C W) such that ||¢||a < 1+ € such that

(Ye(x), f) = (P, f) = (p(x), f)

forany x € L* and f € F. Thus Lemma[2.5limplies that L is exact. ]

It is well known that for any finite dimensional operator space W,
IV, W*) = (VEW)*.

In the following result, we will consider the case when W is any separable operator
space. The analogue on local reflexivity of the following result is that given an oper-
ator space V, V is locally reflexive if and only if every separable operator subspace of
V is locally reflexive.
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Corollary 2.7 Given an operator space V, the following are equivalent.
(1) Visexact

(i) for any separable operator space W, J(V, W*) = (VRW)*;

(iii) for any separable operator space W, V@ : W** = VQW**,

Proof Clearly (i) = (ii), (ii) = (iii): It follows from [5, Theorem 14.2.2]. (iii) = (i):
For any separable operator space W and any finite dimensional subspace L C V, we
have the following commutative diagram

| |

V @y W —— (VOW)**.

Since the columns are automatically completely isometric and the bottom row is
completely isometric by assumption, the top row is also completely isometric. Theo-
rem[2.6]shows that L is exact and so is V. [ |

Acknowledgment The author wishes to thank the referee for valuable comments.

References

[1]  D. Blecher, Tensor products of operator spaces. II. Canad. J. Math. 44(1992), 75-90.

[2]  D.Blecher and V. Paulsen, Tensor products of operator spaces. J. Funct. Anal. 99(1991), no. 2,
262-292. |doi:10.1016/0022-1236(91)90042-4

[3] E.G. Effros and Z.-].Ruan, On non-selfadjoint operator algebras. Proc. Amer. Math. Soc. 110(1990),
no. 4, 915-922. doi:10.2307/2047737

[4] , Mapping spaces and liftings for operator spaces. Proc. London Math. Soc. 69(1994), no. 1,
171-197. doi:10.1112/plms/s3-69.1.171
[5] , Operator Spaces. London Mathematical Society Monographs 23. The Clarendon Press,

Oxford University Press, New York, 2000.

[6] E.G.Effros, M. Junge, and Z.-].Ruan, Integral mapping and the principle of local reflexivity for
non-commutative L1 spaces. Ann. of Math. 151(2000), no. 1, 59-92. [doi:10.2307/121112

[7]  E.G. Effros, N.Ozawa and Z.-J.Ruan, On injectivity and nuclearity for operator spaces. Duke
Math. J. 110(2001), no. 3, 489-521. |doi:10.1215/S0012-7094-01-11032-6

[8]  R.V.Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. I. Elementary
Theory. Graduate Studies in Mathematics 15. American Mathematical Society, Providence, RI,
1997.

[9]  E.Kirchberg, The Fubini theorem for exact C*-algebras. J. Operator Theory 10(1983), no. 1, 3-8.

[10] V. Paulsen, Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced
Mathematics 78. Cambridge University Press, Cambridge, 2002.

[11] G.Pisier, Exact operator spaces. Recent advances in operator algebras. Astérisque 232(1995), 159-186.

[12] , Introduction to Operator Space Theory. London Mathematical Society Lecture Notes Series
294. Cambridge University Press, Cambridge, 2003.

[13] Z.-J.Ruan, Subspaces of C*-algebras. J. Funct. Anal. 76(1988), no. 1, 217-230.

Department of Mathematics, Zhejiang University, Hangzhou 310027, PR. China
e-mail: dongzhe@zju.edu.cn

https://doi.org/10.4153/CMB-2010-013-4 Published online by Cambridge University Press


http://dx.doi.org/10.1016/0022-1236(91)90042-4
http://dx.doi.org/10.2307/2047737
http://dx.doi.org/10.1112/plms/s3-69.1.171
http://dx.doi.org/10.2307/121112
http://dx.doi.org/10.1215/S0012-7094-01-11032-6
https://doi.org/10.4153/CMB-2010-013-4

