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Polynomiality of factorizations
in reflection groups
Elzbieta Polak and Dustin Ross
Abstract. We study the number of ways of factoring elements in the complex reflection groups
G(r, s, n) as products of reflections. We prove a result that compares factorization numbers in
G(r, s, n) to those in the symmetric group Sn , and we use this comparison, along with the Ekedahl,
Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations
in G(r, s, n).

1 Introduction

Given a set of generators R of a multiplicative group G, we ask the natural enumerative
question: How many ways can an element ω ∈ G be factored as a product of m elements
from R? Given G and R, we denote these integer counts by f ω

m ∈ Z≥0. We seek to
understand the structural properties of these numbers, especially in the setting of
reflection groups.

A special case of this setup is the classical problem of counting factorizations of a
given permutation ω ∈ Sn as a product of transpositions. It is well known that such
factorizations in Sn are equivalent to degree-n holomorphic maps from a complex
curve to the projective line with ramification specified by ω over one point and
simple ramification at m additional points [2]. These counts are of long-standing
interest in combinatorics, functional analysis, algebraic geometry, integrable systems,
and physics, dating back at least to the pioneering work of Hurwitz in the late
19th century [8].

Hurwitz’s foundational work suggested the importance of studying transitive fac-
torizations in Sn—that is, factorizations ρm⋯ρ1 = ω where the subgroup generated
by the transpositions ρ1 , . . . , ρm acts transitively on {1, . . . , n}. In terms of maps
of complex curves, transitivity is equivalent to the condition that the domain is
topologically connected. Let f̃ ω

m be the number of length-m transitive factorizations
of ω ∈ Sn . One of the most remarkable results about these numbers is the celebrated
ESLV formula, proved by Ekedahl, Lando, Shapiro, and Vainshtein, which relates
the counts of transitive factorizations to intersection numbers on moduli spaces of
curves.
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ELSV Formula [6] If ω ∈ Sn has cycle type (n1 , . . . , n�) and g = 1
2 (m − n − � + 2),

then

f̃ ω
m = m!

�

∏
i=1

nn i+1
i
n i !

Pg ,�(n1 , . . . , n�),

where Pg ,� is the symmetric polynomial

Pg ,�(x1 , . . . , x�) = ∫
Mg ,�

1 − λ1 + λ2 −⋯+ (−1)g λg

(1 − x1ψ1)⋯(1 − x�ψ�)
∈ Q[x1 , . . . , x�].

The polynomial structure implied by the ELSV formula is truly striking and
imposes a great deal of structure on the factorization numbers. Not only is each Pg ,�
a symmetric polynomial, but also the degrees of the nonzero terms lie in the interval
[2g − 3 + �, 3g − 3 + �]. In other words, there is an effective bound on the number of
nonzero coefficients in each Pg ,�, and those finitely-many coefficients then determine
the infinitely-many values of f̃ ω

m obtained by fixing g and l while varying m and
(n1 , . . . , n�). Although this polynomial structure was proved by the ELSV formula,
it had been discovered earlier by Goulden et al. [7].

It is often the case that results about symmetric groups are special cases of
phenomena that hold more generally for reflection groups, and polynomiality is not
an exception to this rule. In this paper, we generalize all aspects of the polynomial
structure implied by the ELSV formula to the infinite family of complex reflection
groups G(r, s, n).

To state the main result, we give a brief overview of notation (see Section 2 for
precise definitions). We are interested in the complex reflection groups G(r, s, n)
where r, s, and n are positive integers with s ∣ r. Each of these groups is generated
by a set of reflections R ⊆ G(r, s, n), and for any ω ∈ G(r, s, n), we let f̃ ω

m denote the
number of connected factorizations of ω into m reflections. There is a natural group
homomorphism π ∶ G(r, s, n) → Sn and a function δ ∶ G(r, s, n) → {0, 1}; the main
result is stated in terms of these functions.

Main Result (Theorem 3.4) Fix r, s ∈ Z>0 such that s ∣ r. For any g , � ∈ Z≥0, there exist
two symmetric polynomials

P0
g ,� , P1

g ,� ∈ Q[x1 , . . . , x�],

depending on r and s such that, if π(ω) has cycle type (n1 , . . . , n�) and g = 1
2 (m − n −

� + 2), then

f̃ ω
m = m!

rn−1

�

∏
i=1

nn i+1
i
n i !

Pδ(ω)
g ,� (n1 , . . . , n�).

In addition, the nonzero terms in the polynomials P i
g ,� all have degrees in the interval

[2g − 3 + �, 3g − 3 + �].

Remarks
(1) The “connected” condition for factorizations in G(r, s, n) is a natural gener-

alization of the “transitive” condition in Sn . It is shown in Proposition 2.12
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that connected factorization numbers in G(r, s, n) determine all factorization
numbers.

(2) The proof of the main result expresses each P i
g ,� as an explicit linear combination

of the polynomials Pg′ ,� with g′ ≤ g, where the latter polynomials are those that
appear in the ELSV formula. Thus, in cases where we have explicit formulas for
Pg′ ,� for g′ ≤ g, we also obtain explicit formulas for P i

g ,�.
(3) By the classification of Shephard and Todd [12], the infinite family G(r, s, n)

comprises all but 34 irreducible complex reflection groups. It is currently unclear
whether one should expect a uniform polynomial structure that extends to the
exceptional groups. The authors leave the investigation of such a generalization
to future work.

(4) Given the bounds on the degree of the polynomials P i
g ,�, one might hope that

there is an interpretation of these polynomials in terms of intersection numbers
on appropriate generalizations of the moduli spaces Mg ,�. Finding such an
interpretation would be very interesting, especially if it could be extended to
the exceptional groups, and the authors also leave these investigations to future
work.

1.1 Relation to previous work

Many recent results in the literature have begun to uncover the structure inherent
to factorizations in complex reflection groups [1, 3–5, 10, 11]. In much of the existing
literature, the authors fix an element of a complex reflection group and compute an
explicit formula for the generating series of all factorizations of that element. The
formulas that have been found are quite compelling, especially the uniform formula
discovered by Chapuy and Stump for factoring Coxeter elements in well-generated
complex reflection groups [3], generalizing a result of Jackson that computes all
factorizations of a long cycle in a symmetric group [9].

The polynomial structure presented in this paper is somewhat orthogonal to the
previous results. In particular, the previous results in the work cited above studied
formulas for a fixed ω and varying m, which is equivalent to fixing � while varying
g. The polynomial structure, on the other hand, only arises when we fix g and
� and we vary ω, not just in a single group, but throughout all G(r, s, n) with
n ≥ �.

Another distinction between this work and the previous papers is that most of
the previous results use Burnside’s character formula to study factorization numbers.
Since our focus is on connected factorizations, these techniques are less immediately
applicable.

While the polynomials in this paper are not given by explicit formulas, they
provide a very general structural understanding of factorization numbers for complex
reflection groups. Most of the previous results with explicit formulas study factor-
ization numbers of Coxeter elements in well-generated complex reflection groups
(Douvropoulos also extended these formulas to regular elements [5]). In the family
G(r, s, n), the only well-generated groups are those for which s = 1 or s = r, and
the Coxeter elements are very special, generalizing the long cycle in the case of Sn .
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Polynomiality, on the other hand, reveals a structure inherent to the collection of all
factorization numbers for all groups G(r, s, n).

However, if one requires explicit formulas for factoring specific elements in
G(r, s, n), then the methods of this paper are also useful. In particular, Corollary 3.5
provides an explicit comparison between the factorization series of ω ∈ G(r, s, n)
and that of π(ω) ∈ Sn . As an example application, we use the known formula for
calculating factorizations of long cycles in Sn to write a generating series for factoring
long cycles in G(r, s, n) (Corollary 3.6).

1.2 Plan of the paper

Section 2 collects information about complex reflection groups and various types of
factorizations. We begin in 2.1 with a review of complex reflection groups, describing
in detail the groups G(r, s, n) that are of primary interest in this work. In 2.2, we define
the particular factorization numbers f ω

m that we study, along with a refinement f ω
m1 ,m2

that will be important. In Section 2.3, we introduce a useful graph-theoretic inter-
pretation of these factorizations. We close Section 2 with a discussion of connected
factorization numbers f̃ ω

m and f̃ ω
m1 ,m2

, and we describe how to recover all factorizations
from the connected ones.

Section 3 contains the main results of this paper. These results all follow from
Theorem 3.1, which compares factorization numbers for ω ∈ G(r, s, n) with those of
π(ω) ∈ Sn . More specifically, Theorem 3.1 expresses f̃ ω

m as a linear combination of
the numbers f̃ π(ω)

m′ with m′ ≤ m. From this comparison result and the polynomiality
implied by the ELSV formula, it then follows that the factorization numbers f̃ ω

m are
determined by polynomials. The bounds on the degree work out so nicely was a
pleasant surprise, and is a result of the specific structure of the comparison in Theo-
rem 3.1. We close Section 3 by providing an explicit comparison between factorization
series of ω ∈ G(r, s, n) and π(ω) ∈ Sn , and we use this to compute a formula for the
factorization series of long cycles in G(r, s, n).

2 Factorizations in complex reflection groups

In this section, we collect definitions and examples of complex reflection groups
with a special emphasis on the groups G(r, s, n). We then describe the different
types of factorizations that we are interested in, and we introduce a graph-theoretic
interpretation of those factorizations.

2.1 Complex reflections groups

Let V be a finite-dimensional complex vector space. A linear transformation ρ ∈
GL(V) is said to be a reflection of V if it has finite order and if the fixed-point set

{v ∈ V ∣ ρ(v) = v}

is a complex hyperplane in V. A complex reflection group is a finite subgroup G ⊂
GL(V) that is generated by reflections.
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The data of a complex reflection group is more than just an abstract group; the
complex vector space V and an embedding in GL(V) must also be specified. As
opposed to reflections of real vector spaces, reflections of complex vector spaces do
not necessarily have order two. A simple example of a complex reflection with order
greater than two is multiplication by a primitive rth root of unity, with r > 0, viewed
as an element of GL(C).

The next example provides a general description of all of the reflections that will be
considered in this paper and establishes notation that will be used throughout.

Example 2.1 Let V = Cn and let ζr = e2πi/r be a primitive rth root of unity.

(1) For each 1 ≤ i < j ≤ n and k/r ∈ Q ∩ [0, 1), define the linear transformation σ k/r
i j ∈

GL(V) to be the function that transposes the ith and jth coordinates then
multiplies them by ζ−k

r and ζ k
r , respectively:1

σ k/r
i j (a1 , . . . , a i , . . . , a j , . . . , an) = (a1 , . . . , ζ−k

r a j , . . . , ζ k
r a i , . . . , an).

The transformation σ k/r
i j is a reflection of V because it has finite order 2 and the

fixed-point set is the hyperplane defined by the linear equation x j = ζ k
r x i . When

k/r = 0, we often omit it from the notation and write σi j = σ 0
i j .

(2) For each 1 ≤ i ≤ n and each k/r ∈ Q ∩ (0, 1), define the linear transformation
τk/r

i ∈ GL(V) to be the function that multiplies the ith coordinate by ζ k
r :

τk/r
i (a1 , . . . , a i , . . . , an) = (a1 , . . . , ζ k

r a i , . . . , an).

The transformation τk/r
i is a reflection of V because it has finite order equal to the

smallest positive integer d such that r ∣ dk and the fixed-point set is the hyperplane
defined by x i = 0.

The previous example provides us with a wealth of complex reflections. The next
two examples describe the complex reflection groups that can be generated by sets of
these reflections. We begin with the most classical example: the symmetric group.

Example 2.2 Let V = Cn . The complex reflection group in GL(V) generated by

{σi j ∣ 1 ≤ i < j ≤ n}
is isomorphic to the symmetric group Sn , which is embedded in GL(V) as the set
of linear transformations that permute the coordinates of V. Concretely, Sn can be
described as the set of permutation matrices—the n × n matrices with a single 1 in
each row and column and zeros elsewhere. These matrices act on V = Cn by matrix
multiplication on the left.

The class of complex reflection groups that are of primary interest in this work are
a natural generalization of the symmetric group. They are described in the following
example.

1Note that ζ±k
r is independent of the representative we choose for the rational number k/r.
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Example 2.3 Let V = Cn and let r and s be positive integers such that s ∣ r. The
complex reflection group G(r, s, n) ⊂ GL(V) is the group generated by

{σ k/r
i j ∣ 1 ≤ i < j ≤ n

0 ≤ k < r
} ∪ {τsk/r

i ∣ 1 ≤ i ≤ n
0 < k < r/s

} .(2.1)

Concretely, the elements of G(r, s, n) are the n × n matrices (acting on V by matrix
multiplication on the left) that satisfy the following three conditions:

(1) each row and column has a single nonzero entry,
(2) each nonzero entry is an rth root of unity, and
(3) the product of the nonzero entries is an (r/s)th root of unity.

It can be checked that the generating set in (2.1) is a complete list of reflections in
G(r, s, n). We let R denote this set and write

R = R1 ⊔ R2 ,

where R1 = {σ k/r
i j } and R2 = {τsk/r

i }. Notice that R2 = ∅ unless s < r.
As familiar special cases of G(r, s, n), observe that G(1, 1, n) is the symmetric

group Sn , while G(r, s, 1) = μr/s is the group of (r/s)th roots of unity. It can also be
shown that the dihedral groups are isomorphic to G(r, r, 2) for r > 2. For example, the
symmetries of the square are isomorphic to G(4, 4, 2).

Irreducible complex reflection groups were classified by Shephard and Todd in [12].
In addition to the infinite family G(r, s, n) described in Example 2.3, Shephard and
Todd described a list of 34 exceptional groups, and they showed that every complex
reflection group can be decomposed uniquely as a product, each factor of which
is either G(r, s, n) for some (r, s, n) or one of the exceptional groups. As the only
infinite family in the classification, the groups of the form G(r, s, n) play an especially
important role in the theory of complex reflection groups.

There are two natural group homomorphisms between complex reflection groups
that are important. The first is the homomorphism

π ∶ G(r, s, n) → Sn

that replaces every nonzero entry in a matrix ω ∈ G(r, s, n) with 1. The second is the
homomorphism

ϕ ∶ G(r, s, n) → μr/s

that computes the product of all of the nonzero entries in a matrix ω ∈ G(r, s, n). The
function δ appearing in the statement of polynomiality is related to the homomor-
phism ϕ; it is defined by

δ ∶ G(r, s, n) → {0, 1},

ω ↦
⎧⎪⎪⎨⎪⎪⎩

1, if ϕ(ω) = 1,
0, if ϕ(ω) ≠ 1.
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2.2 Factorizations

Given an element ω ∈ G(r, s, n), our goal is to study the number of ways it can be
factored into reflections. More precisely, define the factorization set Fω

m ⊆ Rm to be
the set of ways to write ω as a product of m reflections:

Fω
m ∶= {(ρ1 , . . . , ρm) ∈ Rm ∣ ρm⋯ρ1 = ω} .

We are interested in the size of this factorization set:

f ω
m ∶= ∣Fω

m ∣.

Notice that the notation (r, s, n) has been omitted from these definitions because it
is encoded by the element ω, which is always understood to be an element of some
G(r, s, n).

Given a factorization

ρm⋯ρ1 = ω ∈ G(r, s, n),

we obtain an identity in Sn by applying the homomorphism π:

π(ρm)⋯π(ρ1) = π(ω) ∈ Sn .

However, (π(ρ1), . . . , π(ρm)) is not necessarily an element of Fπ(ω)
m , because π(ρ j)

will be the identity whenever ρ j ∈ R2. Thus, if we want to compare factorizations in
G(r, s, n) with factorizations in Sn , it makes sense to refine the factorizations by the
number of factors that belong to R1 and R2.

For an element ω ∈ G(r, s, n) and nonnegative integers m1 and m2 such that m =
m1 + m2, define the refined factorization set as

Fω
m1 ,m2

∶= {(ρ1 , . . . , ρm) ∈ Rm ∣ ρm⋯ρ1 = ω
∣{i ∣ ρ i ∈ R j}∣ = m j

} ⊆ Fω
m ,

and define

f ω
m1 ,m2

∶= ∣Fω
m1 ,m2

∣.

Notice that

f ω
m = ∑

m1+m2=m
f ω
m1 ,m2

.

Applying the homomorphism π to each factor then defines a function from the
factorization set Fω

m1 ,m2
to the factorization set Fπ(ω)

m1 , which, by a slight abuse of
notation, we also denote by π:

π ∶ Fω
m1 ,m2

→ Fπ(ω)
m1

.(2.2)

In order to compare the number of factorizations of ω ∈ G(r, s, n) to the number of
factorizations of π(ω) ∈ Sn , it suffices to understand the preimages of the function
in (2.2).
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2.3 Factorization graphs

To assist in our study of the factorization sets introduced in the previous subsection,
we introduce a combinatorial interpretation of those sets in terms of decorated graphs,
and we prove several results concerning these graphs that will be useful in Section 3.

For our purposes, a graph on the vertex set V = [n] = {1, . . . , n} consists of an
ordered set of edges E = (e1 , . . . , em) where each edge e ∈ E is a multiset of order two:
e = {i , j} with i , j ∈ [n]. For clarity, it’s worth noting that

• the set of edges is ordered and
• self-edges and multiple edges are allowed.

We often require subsets of edges to preserve the ordering, and we write E′ ⪯ E
to denote a subset of edges with the induced ordering. The ordered set of edges
containing two distinct vertices is denoted E1 ⪯ E and the ordered set of self-edges
is denoted E2 ⪯ E.

The graphs that encode factorizations in G(r, s, n)have an additional edge labeling.
In particular, we decorate each edge e ∈ E by an integer k(e) that satisfies the following
constraints:

⎧⎪⎪⎨⎪⎪⎩

0 ≤ k(e) < r, if e ∈ E1 ,
0 < k(e) < r/s, if e ∈ E2 .

We define Γm(r, s, n) to be the set of graphs with m ordered edges on the vertex
set [n] along with an edge labeling as above. If r = s, then E2 = ∅, because self-edges
are impossible to label under the above constraints. Let Γm1 ,m2(r, s, n) ⊆ Γm(r, s, n)
denote the subset of graphs such that ∣E1∣ = m1 and ∣E2∣ = m2.

Example 2.4 The following is a depiction of a graph in Γ5,2(6, 2, 4). Each edge is the
multiset containing the two vertices it attaches; for example, e5 = {3, 4} and e7 = {1, 1}.
To keep the graph uncluttered, the edge labels are listed to the right instead of along
the edges.

1 2

34

e4

e2

e5

e6

e7

e3 e1 k(e1) = 5

k(e2) = 0

k(e3) = 2

k(e4) = 1

k(e5) = 3

k(e6) = 4

k(e7) = 1
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The reason we have introduced decorated graphs is because each graph in
Γm(r, s, n) corresponds to an m-tuple of reflections (ρ1 , . . . , ρm) ∈ Rm ⊆ G(r, s, n)m

in a natural way. Specifically, for each edge e ∈ E, we associate a reflection ρ ∈ R via
the rule

ρ =
⎧⎪⎪⎨⎪⎪⎩

σ k(e)/r ,
i j if e = {i , j} ∈ E1 with i < j,

τsk(e)/r ,
i if e = {i , i} ∈ E2 .

(2.3)

Conversely, given an m-tuple of reflections (ρ1 , . . . , ρm) ∈ Rm ⊆ G(r, s, n)m , we asso-
ciate a decorated graph in Γm(r, s, n) with edges and edge labels specified by

(e , k(e)) =
⎧⎪⎪⎨⎪⎪⎩

({i , j}, k) if ρ = σ k/r
i j ∈ R1 ,

({i , i}, k) if ρ = τsk/r
i ∈ R2 .

(2.4)

The identifications in (2.3) and (2.4) are inverse to each other, and we henceforth use
them to identify the set of graphs in Γm(r, s, n) with the set of m-tuples of reflections
in G(r, s, n):

Γm(r, s, n) = Rm ⊆ G(r, s, n)m .(2.5)

The subset Γm1 ,m2(r, s, n) ⊆ Γm(r, s, n) = Rm corresponds to those m-tuples of reflec-
tions where m1 of the reflections belong to R1 and m2 of the reflections belong to R2.

Example 2.5 The decorated graph in Γ5,2(6, 2, 4) depicted in Example 2.4 is associ-
ated to the following seven-tuple of reflections in G(6, 2, 4):

(σ 5
34 , σ 0

23 , τ4
4 , σ 1

12 , σ 3
34 , σ 4

13 , τ2
1 ) .

Given a graph γ ∈ Γm(r, s, n), let ω be the product of the corresponding m-
tuple of reflections: ω = ρm⋯ρ1. Then, by definition, (ρ1 , . . . , ρm) ∈ Fω

m . For each
ω ∈ G(r, s, n), let Γω

m ⊆ Γm(r, s, n) and Γω
m1 ,m2

⊆ Γm1 ,m2(r, s, n) denote the subsets of
graphs whose corresponding reflections multiply to ω. By definition, the identification
(2.5) induces an identification of these subsets with the appropriate factorization sets:

Γm(r, s, n) = Rm

⊆ ⊆

Γω
m = Fω

m

⊆ ⊆

Γω
m1 ,m2

= Fω
m1 ,m2

.

Our next goal is to better understand the subsets Γω
m ⊆ Γm(r, s, n). In particular,

given a graph in Γm(r, s, n), we know that it belongs to Γω
m for some ω, and we would

like to be able to describe ω in terms of the graph. For this, we turn to a discussion of
ordered edge walks.

Let γ ∈ Γm(r, s, n) be a graph with edge set E = (e1 , . . . , em). A directed edge e⃗ =
(i0 , i1) consists of an edge e = {i0 , i1} ∈ E along with a choice of ordering of the two
vertices. Notice that every edge in E1 has two possible directions, while edges in E2
have only one possible direction. Given a directed edge e⃗ = (i0 , i1), we denote the
head and tail by h(e⃗) = i1 and t(e⃗) = i0, respectively. A walk in γ is a set of directed
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edges w = (s⃗1 , . . . , s⃗�) such that h(s⃗ j) = t(s⃗ j+1) for j = 1, . . . , � − 1. A step of the walk
refers to a single directed edge s⃗ j . The start and end of the walk refer to t(s⃗1) and h(s⃗�),
respectively. We use the following notation to denote walks:

w = (i0
s1$→ i1

s2$→⋯ s�$→ i�),

where h(s⃗ j) = i j and t(s⃗ j) = i j−1 for all j = 1, . . . , �. We say that a walk is ordered if the
order of the steps is consistent with the ordering of edges: (s1 , . . . , s�) ⪯ E.

Given a graph γ ∈ Γm(r, s, n) and a vertex i ∈ [n], there is a natural ordered walk
w i = w i(γ) that starts at vertex i and sequentially walks along the edges e1 , e2 , . . . , em .
More specifically, starting at vertex i = i0, let s1 = {i0 , i1} be the first edge in E that
contains i0, and define s⃗1 = (i0 , i1). Next, let s2 = {i1 , i2} be the first edge in E that
occurs after s1 and contains i1, and define s⃗1 = (i1 , i2). Continue in this way until, for
some i�, there does not exist an edge in E that occurs after s� and contains i�. When
this happens, stop the recursion, and define

w i(γ) = (i0
s1$→ i1

s2$→⋯ s�$→ i�).

If i is not contained in any edges, then w i is the trivial walk that starts and ends at i
and does not have any steps.

Example 2.6 Consider the graph in Example 2.4. By starting at each vertex and
following the edges sequentially, the four ordered edge walks we obtain are:

w1 = (1 e4$→ 2);

w2 = (2 e2$→ 3 e5$→ 4);

w3 = (3 e1$→ 4 e3$→ 4 e5$→ 3 e6$→ 1 e7$→ 1);

w4 = (4 e1$→ 3 e2$→ 2 e4$→ 1 e6$→ 3).

The next result is a useful observation about these ordered edge walks. It can be
checked explicitly in Example 2.6.

Proposition 2.7 Let γ ∈ Γm(r, s, n). If e⃗ is a directed edge in γ, then there is a unique i
such that e⃗ is a step on the walk w i(γ). Consequently,
(1) every e ∈ E1 occurs as a step on exactly two walks w i(γ) and w j(γ) with i ≠ j and
(2) every e ∈ E2 occurs as a step on exactly one walk w i(γ).

Proof Given a graph γ ∈ Γm(r, s, n) and a directed edge e⃗, let’s walk backwards to
find an i such that e⃗ is a step on w i . More specifically, let s-1 = {i-1 , i0} be the last edge’
before e that contains i0 = t(e⃗), and define s⃗-1 = (i-1 , i0). Then let s-2 = {i-2 , i-1} be the
last edge before s-1 that contains i-1, and define s⃗2 = (i-2 , i-1). Continue in this way
until, for some i-�, there does not exist an edge before s-� that contains i-�, and define
i = i-�. By construction, the walk w i is equal to

w i = (i-�
s-�$→⋯ s-1$→ t(e⃗) e$→ h(e⃗) s1$→⋯ s�′$→ i�′)

for some directed edges s⃗1 , . . . , s⃗�′ . Thus, e⃗ is a step on the walk w i .
To see that e⃗ cannot be a step on more than one walk w i , it is enough to notice

that, given a step on a walk w i , both the preceding and the following step are uniquely
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determined. Thus, if two walks w i and w j share one step, then they must share all of
their steps. ∎

So far, the ordered walks w i only take into account the ordering of the edges, but
not the labels. We now take into consideration the edge labels. We define the weight
of a directed edge by

k(e⃗) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k(e), if h(e⃗) > t(e⃗),
sk(e), if h(e⃗) = t(e⃗),
−k(e), if h(e⃗) < t(e⃗),

where the three cases are referred to as up-steps, loops, and down-steps, respectively.
The weight of a walk w = (s⃗1 , . . . , s⃗�) is defined by

k(w) =
�

∑
j=1

k(s⃗ j).

Example 2.8 Consider the decorated graph in Example 2.4 with walks described in
Example 2.6. We compute the weights of these walks:

k(w1) = 1;
k(w2) = 0 + 3 = 3;
k(w3) = 5 + 2 ⋅ 2 − 3 − 4 + 2 ⋅ 1 = 4;
k(w4) = −5 − 0 − 1 + 4 = −2.

Given the above definitions, we are now ready to characterize those graphs in
Γm(r, s, n) that correspond to factorizations of ω ∈ G(r, s, n). This is the content of
the next result.

Proposition 2.9 Let ω be an element of G(r, s, n) and let γ ∈ Γm(r, s, n) be a decorated
graph. Then γ ∈ Γω

m if and only if

ω(vi) = ζk(w i)
r vh(w i) for all i = 1, . . . , n,

where v1 , . . . , vn are the standard basis vectors of Cn .

Before proving the proposition, we return one last time to our running example.

Example 2.10 Using the values of h(w i) and k(w i) computed in Examples 2.6
and 2.8, we see that the decorated graph in Γ5,2(6, 2, 4) depicted in Example 2.4
corresponds to a length-7 factorization of

⎛
⎜⎜⎜
⎝

0 0 ζ4
6 0

ζ6 0 0 0
0 0 0 ζ4

6
0 ζ3

6 0 0

⎞
⎟⎟⎟
⎠
∈ G(6, 2, 4).

This can be checked explicitly by multiplying the seven elements listed in Example 2.5.

Proof of Proposition 2.9 Let γ ∈ Γm(r, s, n) be a decorated graph and consider the
associated reflections (ρ1 , . . . , ρm) defined in (2.3). By definition, γ ∈ Γω

m if and only if
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ρm⋯ρ1 = ω, and this equality can be verified by checking that both sides act the same
way on the standard basis vectors. Thus, we must prove that

ρm⋯ρ1(vi) = ζk(w i)
r vh(w i) for all i = 1, . . . , n.

Fix i0 ∈ [n]. In order to compute ρm⋯ρ1(vi0), we begin by looking for the first
reflection r1 ∈ (ρ1 , . . . , ρ l) of the form r1 = σ k/r

i0 i1
, r1 = τsk/r

i0
, or r1 = σ k/r

i1 i0
. All other

reflections fix vi0 , so they can be ignored for the purposes of this calculation. Notice
that the edge s1 in γ corresponding to the reflection r1 is the first step in the walk
w i0 = (s⃗1 , . . . , s⃗�), and the three possibilities for r1 characterize whether s⃗1 is an up-
step, a loop, or a down-step. In each case, we compute

r1(vi0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ζ k
r vi1 if r1 = σ k/r

i0 i1

ζ sk
r vi0 if r1 = τsk/r

i0

ζ−k
r vi1 if r1 = σ k/r

i1 i0

= ζk(s⃗1)
r vh(s⃗1) .

Next, look for the first reflection r2 ∈ (ρ1 , . . . , ρ�) occurring after r1 of the form r2 =
σ k/r

h(s⃗1)i2
, r2 = τsk/r

h(s⃗1)
, or r2 = σ k/r

i2 h(s⃗1)
. By the same argument as above,

r2(r1(vi0)) = r2(ζk(s⃗1)
r vh(s⃗1))

= ζk(s⃗1)+k(s⃗2)
r vh(s⃗2) .

Continuing in this way, we construct a list of elements (r1 , . . . , r l) ⪯ (ρ1 , . . . , ρm) such
that

ρm⋯ρ1(vi0) = r�⋯r1(vi0)
= ζk(s⃗1)+⋯+k(s⃗�)

r vh(s⃗�)

= ζk(w i0 )
r vh(w i0 )

. ∎

2.4 Connected factorizations

Our main results in Section 3 are stated in terms of connected factorizations. In this
subsection, we introduce connected factorizations and describe how they generalize
the transitive factorizations in Sn . We also prove that every factorization number can
be computed from the connected factorization numbers.

Let ω ∈ G(r, s, n). We say that a factorization

(ρ1 , . . . , ρm) ∈ Fω
m

is connected if the corresponding graph γ ∈ Γω
m is connected, in the sense that there

exists at least one walk between any two vertices. The following proposition shows
how the notion of connected factorizations in G(r, s, n) generalizes that of transitive
factorization in Sn .2

2In [10], Lewis and Morales studied a notion of transitive factorizations for G(r, s, n) that also
generalizes the notion of transitive factorizations in Sn . Their notion of transitive factorizations is more
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Proposition 2.11 Let ω ∈ G(r, s, n). A factorization (ρ1 , . . . , ρm) ∈ Fω
m is connected if

and only if the subgroup generated by π(ρ1), . . . , π(ρm) ∈ Sn acts transitively on the
standard basis vectors v1 , . . . , vn .

Proof Let (ρ1 , . . . , ρm) ∈ Fω
m be a factorization with associated graph γ ∈ Γω

m .
Suppose that γ is connected. To prove that the subgroup generated by

{π(ρ1), . . . , π(ρm)} acts transitively on {v1 , . . . , vn}, let i , j ∈ [n] and, by connect-
edness, choose a walk between i and j:

w = (i = i0
s1$→ i1

s2$→⋯ s�$→ i� = j).(2.6)

Let γ′ ∈ Γ�(r, s, n) be the graph with ordered edge set (s1 , . . . , s�) and notice that
w i(γ′) = w, the walk described in (2.6). Let {r1 , . . . , r�} ⊆ {ρ1 , . . . , ρm} be the subset
of reflections corresponding to the edges {s1 , . . . , s�}, and set ω′ = r�⋯r1. By Proposi-
tion 2.9,

ω′(vi) = ζ k
r v j

for some k, implying that

(π(r�)⋯π(r1)) (vi) = π(ω′(vi)) = v j .

Thus, the subgroup generated by π(ρ1), . . . , π(ρm) acts transitively on {v1 , . . . , vn}.
Conversely, assume that the subgroup generated by {π(ρ1), . . . , π(ρm)} ⊆ Sn

acts transitively on {v1 , . . . , vn}. Given i , j ∈ [n], there is a subset {r1 , . . . , r�} ⊆
{ρ1 , . . . , ρm} such that

(π(r�)⋯π(r1)) (vi) = v j .(2.7)

Set ω′ = r�⋯r1 and let γ′ ∈ Γω′
� be the graph associated to (r1 , . . . , r�) ∈ Fω′

� . In order
for (2.7) to be true, it must be the case that ω′(vi) = ζ k

r v j for some k. Therefore, by
Proposition 2.9, the ordered walk w i(γ′) starts at vertex i and ends at vertex j. By
definition, the edges of γ′ are a subset of the edges in γ, so the ordered walk w i(γ′)
corresponds to a (not-necessarily ordered) walk from i to j in the graph γ. Since i and
j were arbitrary, this proves that γ is a connected graph. ∎

We denote the sets of connected graphs by Γ̃m1 ,m2 ⊆ Γ̃ω
m ⊆ Γω

m , and we define the
connected factorization numbers by

f̃ ω
m ∶= ∣Γ̃ω

m ∣ and f̃ ω
m1 ,m2

∶= ∣Γ̃ω
m1 ,m2

∣.
Since every graph decomposes uniquely as a disjoint union of connected graphs,

every factorization number can be computed in terms of connected factorization
numbers. To make this precise, we require a little more notation. Given a subset
I ⊆ [n], let G(r, s, I) be the subset of G(r, s, n) that fixes all standard basis vectors
aside from those indexed by the elements of I. Given an element ω ∈ G(r, s, n), a
partition of ω consists of a set partition [n] = I1 ⊔⋯⊔ I� along with elements w1 ∈
G(r, s, I1), . . . , w� ∈ G(r, s, I�) such that ω1⋯ω� = ω. If r = 1, then a partition of the

restrictive than the notion of connected factorizations studied here. On the other hand, the notion of
connected factorizations studied here seems to agree with the notion of near admissible in work of Bini,
Goulden, and Jackson on factorizations in hyperoctahedral groups [1].
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permutation ω simply consists of all ways to group together its disjoint cycles. Let
P(ω) denote the set of partitions of ω. The next result describes how to compute
general factorization numbers from connected factorization numbers.

Proposition 2.12 If ω ∈ G(r, s, n) and m ∈ Z≥0, then

f ω
m = ∑

(ω1 , . . . ,ω�)∈P(ω)
m1+⋯+m�=m

( m
m1 , . . . , m�

) f̃ ω1
m1
⋯ f̃ ω�

m�
.

Proof Notice that every graph γ ∈ Γω
m can be decomposed uniquely as a disjoint

union of connected graphs γ1 , . . . , γ�. If γ i has vertices I i ⊆ [n] and has m i edges, then
γ i ∈ Γ̃ω i

m i
for some ω i ∈ G(r, s, I i). In addition, the vertex sets {I i} form a set partition

of [n] and the integers {m i} add up to m. Thus, there is a function

Γω
m → ⊔

(ω1 , . . . ,ω�)∈P(ω)
m1+⋯+m�=m

Γ̃ω1
m1
×⋯× Γ̃ω�

m�
.

This function is surjective, but not injective. The number of graphs in the preimage
of (γ1 , . . . , γ�) corresponds to the number of ways of choosing an ordering of all of
the m edges that is consistent with the ordering of the m i edges in each connected
component γ i . The number of ways of choosing such an ordering is counted by the
multinomial

( m
m1 , . . . , m�

),

proving the formula in the proposition. ∎

Remark 2.13 While Proposition 2.12 shows that connected factorizations determine
all factorizations in principle, it is quite difficult to implement this reconstruction in
practice due to the complexity of computing the set P(ω).

3 Comparison formula and polynomiality

In this section, we prove the main comparison formula between connected factor-
izations in G(r, s, n) and connected factorizations in Sn (Theorem 3.1). We then
use the comparison formula to prove polynomiality of factorizations in G(r, s, n)
(Theorem 3.4). We close this section by reinterpreting the comparison formula in
terms of exponential generating series (Corollary 3.5), then using this to compute the
factorization series of all long cycles.

3.1 Comparison formula

The next result, which is the technical heart of this paper, utilizes the homomorphisms
π ∶ G(r, s, n) → Sn and ϕ ∶ G(r, s, n) → μr/s and the function δ ∶ G(r, s, n) → {0, 1} to
describe an explicit comparison between the connected factorization numbers f̃ ω

m1 ,m2

associated to ω ∈ G(r, s, n) and the connected factorization numbers f̃ π(ω)
m1 associated

to π(ω) ∈ Sn .
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Theorem 3.1 For any ω ∈ G(r, s, n),

f̃ ω
m1 ,m2

= (rm1−n+1nm2(m1 + m2

m1
) f ϕ(ω)

m2 ) f̃ π(ω)
m1

,(3.1)

where

f ϕ(ω)
m2 = 1

r/s
((r/s − 1)m2 − (−1)m2) + δ(ω)(−1)m2 .(3.2)

Notice that the term f ϕ(ω)
m2 = ∣Fϕ(ω)

m2 ∣ is nothing more than the number of ways to
write ϕ(ω) ∈ μr/s = G(r, s, 1) as a product of nontrivial elements in the cyclic group.
Since every factorization in the cyclic group is connected, we omit the tilde from the
notation.

3.2 Proof of Theorem 3.1

We begin by proving equation (3.1). When this is complete, we then turn to a proof of
Equation (3.2), which follows from the computation of cyclic factorization numbers
in Proposition 3.3.

To prove equation (3.1), let ω ∈ G(r, s, n) and consider the function

π ∶ Γ̃ω
m1 ,m2

→ Γ̃π(ω)
m1

,

which forgets all self-edges and edge labels. Since

f̃ ω
m1 ,m2

= ∣Γ̃ω
m1 ,m2

∣ and f̃ π(ω)
m1

= ∣Γ̃π(ω)
m1

∣,

it suffices to prove that, for any γ ∈ Γ̃π(ω)
m1 , the size of its preimage under π is given by

the following formula:

∣π−1(γ)∣ = rm1−n+1nm2(m1 + m2

m1
) f ϕ(ω)

m2 .(3.3)

Let γ ∈ Γ̃π(ω)
m1 ; we begin by describing the graphs γ ∈ π−1(γ). Such a graph γ has

m1 + m2 ordered edges E. If we forget the self-edges, then we obtain m1 edges that we
denote (e1 , . . . , em1) = E1 ⪯ E corresponding to the m1 ordered edges of γ. In addition,
each edge e i has a label that we denote k i . If we forget the edges e1 , . . . , em1 , then we
obtain m2 ordered self-edges that we denote (e′1 , . . . , e′m2

) = E2 ⪯ E, and each self-
edge e′i has a label that we denote k′i . By Proposition 2.9, the edge labels must satisfy
the condition

ω(vi) = ζk(w i)
r vh(w i)(3.4)

for all i = 1, . . . , n, where w i = w i(γ) is the ordered edge walk starting at vertex i.
Our task is to count the number of ways to choose such edges and labels subject to
the constraint (3.4). Before working out the counting arguments carefully, we first
summarize the three main points that will be proved.
• The number of ways to choose the edges in E2 along with the ordering E2 ⪯ E is

nm2(m1 + m2

m1
).
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• The number of ways to choose labels on the edges in E2 is f ϕ(ω)
m2 .

• The number of ways to choose labels on the edges in E1 is rm1−n+1.

We now justify each of these counts. In particular, this will prove equation (3.3), and
Equation (3.1) then follows.

Let’s begin by counting the ways to choose E2. Each self-edge in E2 can by attached
to any one of the n nodes, which results in nm2 possibilities. In addition, we need to
choose an inclusion E2 ⪯ E, which can be thought of as choosing m2 places in a line-
up of m1 + m2 possibilities; this choice is counted by the binomial coefficient (m1+m2

m1
).

Together, the contribution of these choices to (3.3) is a factor of

nm2(m1 + m2

m1
).

Now we count the number of ways to label all of the edges. Since ϕ(ω) is the
product of all of the nonzero entries in ω, equation (3.4) implies that the edge labels
must satisfy

ζk(w1)+⋯+k(wn)
r = ϕ(ω).(3.5)

Since each edge e i ∈ E1 occurs on exactly two of the n ordered walks, once as an up-
step and once as a down-step, it contributes k i − k i = 0 to the exponent in (3.5). On the
other hand, each self-edge e′i ∈ E2 occurs as a loop on exactly one walk and contributes
sk′i to the exponent. Thus, the condition (3.5) is equivalent to

ζ k′1
r/s⋯ζ

k′m2
r/s = ϕ(ω).(3.6)

In other words, the labels k′i on the self-edges must be chosen subject to the condition
(3.6), and the number of ways to do this is precisely counted by f ϕ(ω)

m2 .
We have now chosen everything except for the labels k1 , . . . , km1 on the edges in E1,

and it remains to prove that, given the above choices, there are exactly rm1−n+1 ways
to choose these labels. To accomplish this, we use the following lemma.

Lemma 3.2 If γ ∈ Γ̃m(r, s, n) is a connected graph, then there exists a set of edges
{ f1 , . . . , fn−1} ⊆ E1 and a labeling of the vertices [n] = {v0 , . . . , vn−1} such that, for every
� = 1, . . . , n − 1,

(1) f� is an edge on the walk wv� and
(2) there exists j < � such that f� is also an edge on the walk wv j .

Before proving Lemma 3.2, let’s use it to count the number of ways to choose the
remaining labels k1 , . . . , km1 . Choose a specific subset of edges { f1 , . . . , fn−1} ⊆ E and
a labeling of vertices [n] = {v0 , . . . , vn−1} satisfying the conditions of Lemma 3.2, and
then consider any choice of edge labeling of the edges in {e1 , . . . , em1}/{ f1 , . . . , fn−1};
notice that there are rm1−n+1 such choices. Given any such choice, we now prove that
there exists a unique way to label the remaining edges f1 , . . . , fn−1 such that (3.4) holds
for all i = 1, . . . , n.

First, notice that fn−1 is the only unlabeled edge on wvn−1 . Therefore, the constraint
(3.4) for i = vn−1 uniquely determines the label on fn−1. After fixing the label on fn−1,
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the only possible unlabeled edge on wvn−2 is fn−2, so (3.4) with i = vn−2 uniquely
determines this label. Continuing this way in decreasing order, we see that the label
on f� is uniquely determined by (3.4) with i = v� for all � = n − 1, . . . , 1.

The choices we made in the previous paragraph for the labels on f1 , . . . , fn−1 ensure
that the constraint (3.4) holds for i ∈ {v1 , . . . , vn−1}, but it would be natural to worry
about whether the constraint also holds for i = v0. Not to fret—we know that

ω(vv0) = ζ k
r vh(wv0 )

for some k, and using the validity of (3.4) for i ∈ {v1 , . . . , vn−1} along with condition
(3.5), we compute that

ζ k+k(wv1 )+⋯+k(wvn−1 )
r = ϕ(ω) = ζk(wv0 )+k(wv1 )+⋯+k(wvn−1 )

r ,

from which it follows that ζ k
r = ζk(wv0 )

r , proving that (3.4) holds for i = v0. Thus, every
one of the rm1−n+1 choices for the labels in E1/{ f1 , . . . , fn−1} can be extended uniquely
to a labeling of the edges E1 that satisfies (3.4), proving that the total number of ways
to label the edges in E1 is rm1−n+1.

This concludes our counting arguments, and the only task that remains is to prove
the lemma.

Proof of Lemma 3.2 Let γ ∈ Γ̃m(r, s, n) be a connected graph and choose a single
vertex v0 ∈ [n]. We recursively define vertices v1 , . . . , vn−1 and edges f1 , . . . , fn−1 that
satisfy the two conditions in the lemma. Suppose we are given v0 , . . . , v� and f1 , . . . , f�
satisfying the conditions of the lemma (if � = 0, then the conditions of the lemma
are vacuous). If � = n − 1, then we are done. If not, we claim (proved below) that
there exists an edge f�+1 ∈ E1/{ f1 , . . . , f�} such that f�+1 is a step in exactly one of
the walks wv0 , . . . , wv� . Then Proposition 2.7 implies that there must be some other
vertex v�+1 ∈ [n]/{v0 , . . . , v�} such that f�+1 is also a step in v�+1. We then conclude the
recursive step by noticing that v0 , . . . , v�+1 and f1 , . . . , f�+1 satisfy the two conditions
in the lemma.

To prove the claim in the previous paragraph, suppose towards a contradiction that
every edge in E1 that occurs as a step on one of the walks wv0 , . . . , wv� actually occurs
as a step on two of them. Since � < n − 1, we know that [n]/{v0 , . . . , v�} ≠ ∅, and for
any i ∈ [n]/{v0 , . . . , v�}, we know from Proposition 2.7 that the walk w i cannot share
any edges in common with wv0 , . . . , wv� . Since γ is connected, each walk has at least
one edge, and it follows that there must be at least one edge in γ that is not a step in any
of the walks wv0 , . . . , wv� . Using again that γ is connected, it follows that there must
be such an edge in E1 that shares a vertex with at least one of the walks wv0 , . . . , wv� .
Choose a vertex i ∈ [n] such that i is a vertex in at least one of the walk wv0 , . . . , wv�
and such that there exists an edge e = {i , j} ∈ E1 containing i that is not a step in any
of these walks.

Let E(i) ⪯ E1 be the ordered set of edges that contain i and let E(i)′ ⪯ E(i) be those
edges that are steps in one (and thus, by assumption, two) of the walks wv0 , . . . , wv� ,
with complement E(i)′′ = E(i)/E(i)′. By the choice of i in the previous paragraph,
both E(i)′ and E(i)′′ are nonempty. If all of the vertices in E(i)′ come before the
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vertices in E(i)′′, then the unique walk in wv0 , . . . , wv� that approaches i along the
last edge in E(i)′ must eventually depart from i along the first edge in E(i)′′, a
contradiction of the definition of E(i)′′ (notice that, before departing i for another
vertex, the walk might loop along any number of edges in E2). Similarly, if all of
the edges in E(i)′ come after the vertices in E(i)′′, then the unique walk that does
not belong to wv0 , . . . , wv� and that approaches i along the last edge of E(i)′′ must
eventually depart along the first edge of E(i)′, which already belongs to two distinct
walks, contradicting Proposition 2.7. Finally, in the remaining cases, we can always
find f1 , f2 ∈ E(i)′ such that the set of edges in E(i)′′ between f1 and f2 is nonempty.
In this case, the unique walk in wv0 , . . . , wv� that approaches i along f1 must depart
along the first edge in E(i)′′ that appears after f1, a contradiction of the definition
of E(i)′′.

Since every case leads to a contradiction, we conclude that we can always choose
f�+1 as in the first paragraph of the proof, and the proof of the lemma is complete. ∎

We have now proved equation (3.1) to finish the proof of Theorem 3.1, it therefore
remains to prove equation (3.2). In the next proposition, we accomplish this by com-
puting the cyclic factorization numbers f κm for any κ ∈ μr . This result was essentially
proved by Chapuy and Stump in [3], although they only considered the case where κ
is a generator. The proof presented here is a modification of theirs.

Proposition 3.3 For any integer r ≥ 2 and element κ ∈ μr ,

f κm =
⎧⎪⎪⎨⎪⎪⎩

1
r ((r − 1)m − (−1)m) , if κ ≠ 1,
1
r ((r − 1)m − (−1)m) + (−1)m , if κ = 1.

Proof Choose m − 1 nontrivial elements ζ k1
r , . . . , ζ km−1

r ∈ μr and notice that their
product ζ km−1

r ⋯ζ k1
r can be extended to a factorization of κ into m nontrivial elements

ζ km
r ζ km−1

r ⋯ζ k1
r = κ

if and only if ζ km−1
r ⋯ζ k1

r ≠ κ. In other words, the number of factorizations into m
nontrivial elements is the total number of products of m − 1 nontrivial elements minus
those that multiply to κ. Thus, we obtain the following recursion:

f κm = (r − 1)m−1 − f κm−1 .(3.7)

It is straightforward to check that both of the formulas in the statement of the
proposition satisfy the recursion in (3.7). The necessity for the two different formulas
arises from the different initial values:

f κ0 =
⎧⎪⎪⎨⎪⎪⎩

0, if κ ≠ 1,
1, if κ = 1.

The validity of both of these initial values can also be checked directly from the
formulas appearing in the statement of the proposition. ∎
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3.3 Polynomiality

The polynomial structure of all factorization numbers of G(r, s, n) is now a direct
application of Theorem 3.1.

Theorem 3.4 Fix r, s ∈ Z>0 such that s ∣ r. For any g , � ∈ Z≥0, there exist two symmetric
polynomials

P0
g ,� , P1

g ,� ∈ Q[x1 , . . . , x�],

depending on r and s such that, if π(ω) has cycle type (n1 , . . . , n�) and g = 1
2 (m − n −

� + 2), then

f̃ ω
m = m!

rn−1

�

∏
i=1

nn i+1
i
n i !

Pδ(ω)
g ,� (n1 , . . . , n�).

In addition, the nonzero terms in the polynomials P i
g ,� all have degrees in the interval

[2g − 3 + �, 3g − 3 + �].

Proof Applying Theorem 3.1, we have

f̃ ω
m =

m
∑

m1=0
(rm1−n+1nm−m1(m

m1
) f ϕ(ω)

m−m1) f̃ π(ω)
m1

.

If π(ω) has cycle type (n1 , . . . , n�), the ELSV formula then implies that

f̃ ω
m =

m
∑

m1=0
(rm1−n+1nm−m1(m

m1
) f ϕ(ω)

m−m1)m1!
�

∏
i=1

nn i+1
i
n i !

Pg(m1),�(n1 , . . . , n�),

where

g(m1) =
1
2
(m1 − n − � + 2),

and the nonzero terms in Pg(m1),� have degrees in the interval

[2g(m1) − 3 + �, 3g(m1) − 3 + �].

Reorganizing terms, we see that

f̃ ω
m = m!

rn−1

�

∏
i=1

nn i+1
i
n i !

m
∑

m1=0

⎛
⎝

rm1
f ϕ(ω)
m−m1

(m − m1)!
⎞
⎠

nm−m1 Pg(m1),�(n1 , . . . , n�),

and we define

Pδ(ω)
g ,� (x1 , . . . , x�) =

m
∑

m1=0

⎛
⎝

rm1
f ϕ(ω)
m−m1

(m − m1)!
⎞
⎠
(x1 +⋯+ x�)m−m1 Pg(m1),�(x1 , . . . , x�).

Observe that the degree of the nonzero terms in the m i th summand are at least

m − m i + 2g(m1) − 3 + � = 2g − 3 + �,
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and at most

m − m i + 3g(m1) − 3 + � = m − m1 +
3
2
(m1 − n − l + 2) − 3 + �

≤ 3
2
(m − n − l + 2) − 3 + �

= 3g − 3 + �,

where the inequality in the second line uses the fact that m1 ≤ m. ∎

3.4 Generating series

For any element ω ∈ G(r, s, n), define the generating series of factorizations and of
connected factorizations, respectively, by

f ω(x) = ∑
m≥0

f ω
m

xm

m!
and f̃ ω(x) = ∑

m≥0
f̃ ω
m

xm

m!
,

where x is a formal variable. The next result shows how Theorem 3.1 can be interpreted
in terms of these generating series.

Corollary 3.5 For any ω ∈ G(r, s, n),

f̃ ω(x) = 1
rn−1 f ϕ(ω)(nx) f̃ π(ω)(rx),

where

f ϕ(ω)(x) = 1
r/s

(e(r/s−1)x − e−x) + δ(ω)e−x .

Proof Applying Theorem 3.1, we compute

f̃ ω(x) = ∑
m≥0

f̃ ω
m

xm

m!

= ∑
m1 ,m2≥0

f̃ ω
m1 ,m2

xm1+m2

(m1 + m2)!

= ∑
m1 ,m2≥0

(rm1−n+1nm2(m1 + m2

m1
) f ϕ(ω)

m2 ) f̃ π(ω)
m1

xm1+m2

(m1 + m2)!

= 1
rn−1 ∑

m1 ,m2≥0
( f ϕ(ω)

m2

(nx)m2

m2!
)( f̃ π(ω)

m1

(rx)m1

m1!
)

= 1
rn−1 f ϕ(ω)(nx) f̃ π(ω)(rx),

proving the first equation in the theorem. The second equation follows from Proposi-
tion 3.3 along with the Taylor series expression for the exponential function

ex = ∑
m≥0

xm

m!
. ∎
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If ω ∈ Sn is a long cycle, then Jackson computed an explicit formula for the
factorization series of ω in [9]:

f ω(x) = 1
n!

(ex n
2 − e−x n

2 )n−1
.

We have omitted the tilde because all factorizations of the long cycle are connected.
Using this, we obtain the following generalization to long cycles in G(r, s, n).
Corollary 3.6 If ω ∈ G(r, s, n) such that π(ω) is a long cycle, then

f ω(x) = 1
n!rn−1 f ϕ(ω)(nx) (ex rn

2 − e−x rn
2 )n−1

,

where

f ϕ(ω)(x) = 1
r/s

(e(r/s−1)x − e−x) + δ(ω)e−x .

As a special case, Corollary 3.6 recovers the main result of Chapuy and Stump
[3] for the group G(r, 1, n). More generally, Corollary 3.5 should be thought of as a
reduction from G(r, s, n) to Sn—it computes an explicit formula for f̃ ω(x) whenever
we happen to know an explicit formula for f̃ π(ω)(x).
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