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Abstract

The Kodaira–Thurston manifold is a quotient of a nilpotent Lie group by a
cocompact lattice. We compute the family Gromov–Witten invariants which count
pseudoholomorphic tori in the Kodaira–Thurston manifold. For a fixed symplectic form
the Gromov–Witten invariant is trivial so we consider the twistor family of left-invariant
symplectic forms which are orthogonal for some fixed metric on the Lie algebra. This
family defines a loop in the space of symplectic forms. This is the first example of a
genus one family Gromov–Witten computation for a non-Kähler manifold.

1. Introduction

The enumerative geometry of complex curves in complex manifolds is an old and venerable
pursuit [Kle76] which gained momentum in the last fifteen years of the twentieth century
for two main reasons. The first of these was Gromov’s paper [Gro85] which explained
how to count persistent pseudoholomorphic curves in symplectic manifolds and gave many
applications of the existence of pseudoholomorphic curves to symplectic topology. The second
was Witten’s recasting [Wit88] of Gromov’s theory in the language of topological sigma models
(Gromov–Witten theory, see [RT95, RT97] for a mathematical approach) and the subsequent
observation [CdlOGP91] of Candelas–de la Ossa–Green–Parks that string dualities give concrete
predictions in enumerative geometry for rational (genus zero) curves in Calabi–Yau three-folds.
In the case of higher genus curves, predictions were made by Bershadksy et al. [BCOV93]. In
many places these predictions have been confirmed by computations: see for example [Zin09] in
the genus one case.

The enumerative invariants which emerge have beautiful structural properties, for instance,
Bryan and Leung [BL00] computed the Gromov–Witten invariants for the hyper-Kähler sphere of
K3 surfaces (a family Gromov–Witten invariant, see § 2.3 below) and showed that the generating
function for these numbers (the genus g Gromov–Witten potential) is(

q
d

dq
G2(q)

)g/
∆(q)

where G2(q) = − 1
24 +

∑
n>1 σ1(n)qn, σ1(n) =

∑
d|n d is the sum of divisors of n and ∆(q) =

q
∏
n>1(1−qn)24. These are the weight 2 Eisenstein series quasimodular form and the discriminant

modular form respectively.
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Pseudoholomorphic tori in Kodaira–Thurston

The physical predictions make use of the special geometry of Calabi–Yau manifolds, but
Gromov’s philosophy1 is that integrability of an almost complex structure is not necessary to have
an intricate enumerative theory of holomorphic curves. One might ask what physical predictions
hold in the world of non-Kähler symplectic manifolds and whether similarly beautiful formulae can
be found for their Gromov–Witten potentials. One large and well-understood class of symplectic
manifolds containing non-Kähler examples is the class of symplectic nilmanifolds: compact left-
quotients of a nilpotent Lie group equipped with a left-invariant symplectic form. Apart from the
higher-dimensional tori these are all non-Kähler [BG88]; the best known is the four-dimensional
Kodaira–Thurston manifold [Thu76] which will be the focus of this paper.

At the time of writing, mirror symmetry is not known for the Kodaira–Thurston manifold.
In particular, it is not clear to the authors what the genus one partition function of the mirror
B-model might be. It would be interesting to compute this and compare it with the Gromov–
Witten invariants we calculate here, as a first step towards understanding the conjectures
of [BCOV93] in a non-Kähler setting.

The Gromov–Witten invariants of a single symplectic nilmanifold are not very interesting.
In many cases (like the Kodaira–Thurston manifold) one can connect a left-invariant symplectic
form ω to −ω along a path of left-invariant symplectic forms. Since Gromov–Witten invariants are
invariant under deformations of the symplectic form, if there is a non-zero homology class A with
a non-zero Gromov–Witten invariant then there is a J+-holomorphic curve representing A (where
J+ is ω-compatible) and a J−-holomorphic curve representing A (where J− is −ω-compatible).
Since non-constant J-holomorphic curves have positive ω-area, it follows that

∫
A ω is both positive

and negative, a contradiction.
However, if we allow families of symplectic manifolds and of almost complex structures,

and if we count holomorphic curves which are holomorphic for some J in the family, then we
can still obtain non-zero invariants. These family Gromov–Witten invariants have been defined
and computed in various places in the literature, for instance, the Bryan–Leung computation
mentioned above; we recall the definition in § 2.3. Moreover, there are certain natural families
of left-invariant symplectic forms on nilmanifolds (the twistor families). This paper provides
techniques for computing the genus one family Gromov–Witten invariants for the twistor families
of symplectic nilmanifolds. We do the complete computation for the Kodaira–Thurston manifold.

Definition 1.1 (Kodaira–Thurston manifold). Let Γ be the group of affine transformations of
R4 (with coordinates x, y, z, t) generated by three translations (in the y, z and t directions) and
the map

x 7→ x+ 1 y 7→ y z 7→ z + y t 7→ t.

The quotient Γ\R4 is the Kodaira–Thurston manifold, K. It is also a left-quotient of a simply-
connected nilpotent Lie group N by a cocompact lattice Γ ⊂ N ; see § 4.

The twistor family for K is the circle of symplectic forms

ωθ = dt ∧ aθ + (dz − xdy) ∧ bθ
where aθ = cos θ dx+sin θ dy and bθ =−sin θ dx+cos θ dy. The second integral homologyH2(K;Z)
is of rank 4 and is generated by the homology classes represented by the tori

Eij = [{(x1, x2, x3, x4) ∈ K | xi = xj = 0}]
1 ‘What fascinated me even more was the familiar web of algebraic curves in a surface emerging in its full beauty
in the softish environment of general (nonintegrable!) almost complex structures. (Integrability had always made
me feel claustrophobic.)’ [Gro97].
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where i ∈ {1, 2} and j ∈ {3, 4}. We also define Ei34 ∈ H3(K;Z), i ∈ {1, 2} by

Ei34 = [{(x1, x2, x3, x4) ∈ K | xi = 0}].

See § 4.3 for a complete description of the homology and cohomology. We will write

[A13, A23, A14, A24]

for the homology class A =
∑
AijEij . By Lemma 4.13 we know that if A ∈ H2(K;Z) is a

homology class represented by a torus then A13A24 = A14A23. It is helpful to remember that K
is a T 2-bundle over T 2 in two ways:

(a) there is a projection (x, y, z, t) 7→ (x, y) whose fibres are Lagrangian with respect to ωθ for
all θ;

(b) there is a projection (x, y, z, t) 7→ (x, t) whose fibres are symplectic for ω0.

Theorem 1.2. Let K denote the Kodaira–Thurston manifold and W the twistor family of
left-invariant symplectic structures on K. If A = [A13, A23, A14, A24] ∈ H2(K;Z) is a non-zero
homology class and m = gcd(A13, A23), n = gcd(A14, A24) then

GW1,1(W,A) =
(m2 + n2)σ2(gcd(m,n))

gcd(m,n)3
(A13E134 +A23E234) ∈ H3(K;Z)

where σ2(x) =
∑

d|x d
2.

Note that, according to our definition (2.11), family Gromov–Witten invariants should really
live in H∗(K×W ;Z). In our situation they all have the form C⊗ [?] where [?] ∈ H0(W,Z) is the
homology class of a point. This is because each connected component of the moduli space of tori
which are Jθ-holomorphic for some θ ∈W consists of tori which are Jθ-holomorphic for a fixed θ.

We would like to stress that the moduli spaces of pseudoholomorphic tori we consider are,
unusually, odd-dimensional. This can be understood as follows. The index of the Fredholm
problem for counting (unmarked) tori in a four-manifold with c1 = 0 is zero. In each space
of ωθ-compatible almost complex structures there is a codimension one ‘wall’ of almost complex
structures where the kernel of the Fredholm problem is one-dimensional and there is a one-
dimensional cokernel. For all the moduli spaces which contribute to the Gromov–Witten invariant,
our one-dimensional family Jθ is transverse to that wall, and so the (one-dimensional) moduli
space is regular from the point of view of family Gromov–Witten theory.

Let us spell out the geometric content of this theorem for the specific family Jθ. Since the
Gromov–Witten class is in H3(K;Z), it detects holomorphic curves intersecting a loop in K.
Let L be a loop in K and let A ∈ H2(K;Z) be as in the statement of the theorem. There is a
unique almost complex structure Jθ ∈ W (see Lemma 5.7) for which there are Jθ-holomorphic
tori representing A. For this Jθ, the pseudoholomorphic tori intersect L at

m2 + n2

gcd(m,n)3
σ2(gcd(m,n))(A13E134 +A23E234) ∩ [L]

points (counted with multiplicity and signs). The complex structure on the domain torus is
allowed to vary but when m 6= 0 it is actually constant over each component of the moduli space
(Lemma 5.7 again).

Two obvious classes containing holomorphic tori are E13 and E14.
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Example 1.3. The class E14 is represented by the fibres of the projection

(x, y, z, t) 7→ (x, t).

These are J0-holomorphic tori and all J0-holomorphic tori have this form. In this case, m = 0

and the j-invariant of these fibres varies in a loop. In fact, these tori are all irregular and do not
contribute to the Gromov–Witten invariant, see Lemma 7.6.

Example 1.4. The class E13 is represented by sections of the projection

(x, y, z, t) 7→ (x, t).

There is an S1-family of Jπ/2-holomorphic sections which intersect a loop L in [L]∩ [E134] points
(with multiplicity). In fact, we will not deal with these sections explicitly because they do not
correspond to reduced Lie algebra homomorphisms (see Definition 4.16). Instead we will apply a
diffeomorphism of K to move to the homology class E13 + E23 without affecting the Gromov–
Witten computation, using Lemma 4.14 and (4.6). The Jπ/2-holomorphic tori representing E13

become Jπ/4-holomorphic tori representing E13 + E23.

Outline of proof of Theorem 1.2
Theorem 1.2 is proved by reducing the problem to the enumeration of certain homomorphisms
Z2

→ π1(K). Let u : T 2
→K be a J-holomorphic torus where J is a left-invariant almost complex

compatible with ω. We perform the following steps.
Take a lift of u to the universal covers ũ : R2

→ N and compare it with the unique Lie group
homomorphism H : R2

→ N extending the induced map π1(u) : Z2
→ π1(K) on fundamental

groups.
The map (p, q) 7→ H(p, q)−1ũ(p, q) is then bounded (Corollary 3.13) and we are interested in

its logarithm C : R2
→ n where n is the Lie algebra of N .

The Cauchy–Riemann equations for C imply that C satisfies a second order elliptic system
of equations. In Proposition 4.1 we show that this system separates into equations for which the
Hopf maximum principle holds [GT01, Theorem 3.1]. We apply this to prove that C is constant.
Hence, for all left-invariant J which are compatible with a left-invariant symplectic form, all
J-holomorphic tori are of the form veC , where v comes from a Lie algebra homomorphism and
C is a constant.

Another maximum principle allows us to study the linearised problem. We prove that all
moduli spaces are cut out cleanly by the Cauchy–Riemann operator (Theorem 7.1). In § 7.3 we
determine which tori are regular and, for non-regular tori, we write down an explicit section of
the obstruction bundle, proving that these do not contribute to the Gromov–Witten invariant.
In § 7.4, we determine orientations on the moduli spaces.

It remains to count the tori. By applying an automorphism of Γ we reduce ourselves to
considering only non-zero homology classes

[A13, A23, A14, A24]

where A13 = A23 and A14 = A24 (Lemma 4.14), for which we can further assume that the
homomorphism H has a particularly simple form (Lemma 4.17). This enables us to enumerate
the tori and to understand the homology classes represented by the evaluation maps (§ 8).
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Generalisations
We carry out the full calculation only for the Kodaira–Thurston manifold K but we formulate
the problem for two-step symplectic nilmanifolds in general. The universal cover of K is the only
nonabelian symplectic two-step nilpotent Lie group in dimension four. For examples in higher
dimensions the main difference is that the Cauchy–Riemann equations are a more complicated
elliptic system (with more serious nonlinearities and coupling) and it becomes harder to apply
the maximum principle. Our methods can be extended to a limited range of homology classes in
certain higher-dimensional examples; the ones constructed in [CFdL85]. For k-step nilmanifolds
with k > 3 the equations are even harder to deal with.

Outline of the paper
In § 2 we explain the classical computations of genus one Gromov–Witten invariants for two-tori
and for higher-dimensional tori. We also define the family Gromov–Witten invariants.

In § 3 we introduce two-step nilpotent Lie groups and their twistor families W of symplectic
structures. We also write down the Cauchy–Riemann equations for the logarithm of a
J-holomorphic torus (J compatible with some ω ∈W ).

In § 4 we review the Kodaira–Thurston manifold and its basic properties. In particular we show
that all tori are descended from right-translates of Lie algebra homomorphisms (Proposition 4.1).

In § 5 we describe the moduli spaces of holomorphic tori.
In § 6 we compute the automorphism groups of the unmarked holomorphic tori in the Kodaira–

Thurston manifold.
In § 7 we study the linearised problem, including checking regularity and computing

obstruction bundles and orientations.
In § 8 we complete the proof of Theorem 1.2.

Notation
For brevity in our coordinate expressions we will sometimes use the following convention to denote
antisymmetrisation of indices:

A[ij] = Aij −Aji.
For example,

∂[pXi∂q]Yj = ∂pXi∂qXj − ∂qXi∂pXj .

2. Background

We begin by giving an overview of genus one Gromov–Witten theory for the (twistor families of)
complex tori, which are precisely the nilmanifolds arising from an abelian Lie group. In doing so
we build up in embryonic form many of the ideas we need for the nonabelian case.

2.1 The 2-torus
The space whose genus one Gromov–Witten invariants are easiest to calculate is the two-torus,
T 2. Let Λτ ∼= Z2 denote the Z-lattice in C spanned by the vectors 1 and τ = τ1 + iτ2, τ2 > 0.
Let Στ = Λτ\C denote the corresponding complex torus.

Lemma 2.1. Any non-constant holomorphic map f : Στ ′ → Στ is a covering map (unbranched).

This is clear because branching increases genus by the Riemann–Hurwitz formula. Therefore,
counting holomorphic maps Στ ′ → Στ of degree ` > 1 amounts to counting holomorphic covering
spaces of Στ or, equivalently, sublattices Λτ ′ ⊂ Λτ of index ` modulo the action of SL(2,Z) which
reparametrises the domain.
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Lemma 2.2. There are σ1(`) =
∑

d|` d sublattices of Λτ of index ` > 1, modulo the action of
SL(2,Z).

Proof. This is standard and we reproduce the argument only for comparison later. A sublattice of
index ` is specified by a homomorphism Z2

→ Z2 whose image has index `, that is, a two-by-two
integer matrix (

a b

c d

)
with determinant `. The SL(2,Z)-action is just right multiplication. Using this right action one
can perform the Euclidean algorithm on c and d to ensure that c vanishes. Similarly, one can
ensure that 0 6 b < a. Now for each d | ` there are d possible matrices up to the action of SL(2,Z):(

d b

0 `/d

)
, b = 0, . . . , d− 1. 2

We define the moduli space
M1,1(Στ , `[Στ ])

to consist of equivalence classes of pairs (u, z) where u : Στ ′ → Στ is a holomorphic map of degree
` > 1 and z ∈ Στ ′ is a point. The equivalence relation equates (u, z) with (u ◦ ϕ−1, ϕ(z)) for any
holomorphic automorphism ϕ : Στ ′ → Στ ′ for which u ◦ ϕ−1 = u. This has an evaluation map

ev :M1,1(Στ , `[Στ ]) → Στ , [u, z] 7→ u(z).

Lemma 2.3. The map ev has degree σ1(`).

Proof. We have seen that there are σ1(`) tori in the moduli space and that all of these are `-fold
covering spaces of Στ . Fix one such covering map. If x ∈ Στ then the preimages of this point under
this covering map are all equivalent by the action of the deck group, which acts by holomorphic
automorphisms preserving the covering. Hence they represent the same element in the moduli
spaceM1,1(Στ , `[Στ ]), so the degree of the evaluation map is just the number of covering spaces,
σ1(`). 2

These curves are all regular in the sense of Gromov–Witten theory; the cokernel of the
linearisation is just the quotient of the Dolbeault cohomology group H0,1(Στ ′ ;u

∗TΣτ ) by the
image of H0,1(Στ ′ ;TΣτ ′) under pushforward du : TΣτ ′ → TΣτ (this quotient corresponds to
allowing τ ′ to vary):

H0,1(Στ ′ ;u
∗TΣτ )/H0,1(Στ ′ ;TΣτ ′) ∼= H0,1(Στ ′ ;TΣτ ′)/H

0,1(Στ ′ ;TΣτ ′) = 0.

The one-point Gromov–Witten class of degree ` > 1, genus one curves through a point of T 2 is
the pushforward under ev of the fundamental class of the moduli space and is therefore given by

GW1,1(T 2, `[T 2]) = σ1(`)[T 2].

2.2 The 2n-torus
The situation for the 2n-torus is similar but some of the features it presents are new and will
be developed in a more general context later in the paper. For a start, a generic abelian variety
contains no closed holomorphic curves, so we know that the Gromov–Witten invariants vanish.
However, holomorphic curves persist if we take a family of complex structures and look for
curves which are holomorphic with respect to one of the complex structures. This phenomenon,
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made precise in § 2.3, is familiar from the case of K3 surfaces [BL00], where an elliptically-fibred
K3 contains elliptic curves through every point which disappear if one perturbs the complex
structure, but which persist in families which are deformations of the hyper-Kähler two-sphere of
complex structures. The Gromov–Witten invariants which count curves representing some second
homology class A 6= 0 which are J-holomorphic for some J in a fixed finite-dimensional, compact,
oriented family are called family Gromov–Witten invariants. Note that these J must all be tamed
by symplectic forms in order to achieve Gromov compactness, but that the taming form (and
even its cohomology class) might depend on J .

The following definition is a natural generalisation of this hyper-Kähler sphere to examples
which are not hyper-Kähler.

Definition 2.4 (Twistor family). Let g be an inner product on the vector space R2n and let o
be an orientation. The twistor family of complex structures is the space of o-positive orthogonal
complex structures

W = {ψ ∈ GL+(R2n) | ψ2 = −Id, g(ψX,ψY ) = g(X,Y )∀X,Y ∈ R2n}.

Note that W ∼= SO(2n)/U(n) since SO(2n) acts transitively on W with stabiliser U(n). Each
ψ ∈W gives rise to a two-form

ωψ(X,Y ) := −g(X,ψY )

and to a bi-invariant Kähler structure (Ωψ, Jψ) on the torus Z2n\R2n.

The genus one family Gromov–Witten invariants of the twistor family of 2n-tori are easy to
compute. Let us write GW1,k(W,A) ∈H∗((T 2n)k×W ;Z) for the homology class of the evaluation
pseudocycle for genus one curves representing the homology class A 6= 0 which are Jψ-holomorphic
for some ψ ∈ W (see § 2.3 for definitions).

Note first that if ϕ ∈ SL(2n,Z) is a matrix then ϕ∗W is the twistor family of ϕ∗g. Since
g and ϕ∗g can be connected by a path of inner products we see that ϕ∗W and W are isotopic
as families of complex structures. More importantly, the families {ωψ}ψ∈W and {ωϕ∗ψ}ψ∈W of
taming symplectic forms are isotopic. The family Gromov–Witten invariants are equivariant under
diffeomorphisms ϕ, so that

ϕ∗GW1,k(W,A) = GW((ϕ−1)∗(W ), ϕ∗A),

and also unchanged by deformations through tamed families; hence we see that

GW1,k(W,ϕ∗A) = ϕ∗GW1,k(W,A).

Homology classes represented by two-tori are specified by homomorphisms ρ : Z2
→ Z2n on

the level of fundamental groups; we write [ρ] for the corresponding homology class. Two such
homomorphisms ρ and ρ′ define the same homology class if and only if Λ2ρ = Λ2ρ′, that is, if
all two-by-two minors of ρ and ρ′ agree. Acting on the left by an element of SL(2n,Z), one can
assume that

ρ =


ρ11 ρ12

ρ21 ρ22

0 0
...

...
0 0

 .
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The counting of such homomorphisms up to the reparametrisation action of SL(2,Z) is again
performed by the function σ1(`) where ` is the only nonvanishing two-by-two minor, so ` = `([ρ])
is the divisibility of the homology class (the only invariant of the SL(2n,Z)-action).

Each homomorphism ρ : Z2
→ Z2n actually defines a 2-plane Π(ρ) ⊂ R2n which is

Jψ-holomorphic for ψ in a subvariety W (ρ) ⊂ W . This subvariety is diffeomorphic to
SO(2n−2)/U(n − 1). Each such 2-plane descends to a Jψ-holomorphic genus one curve
v : T 2

→ T 2n in T 2n.

Lemma 2.5. All Jψ-holomorphic curves in the homology class [ρ] are affine translates of v.

Proof. This is Liouville’s theorem. Let (a, b) be conformal coordinates on T 2 and let ũ : R2
→ R2n

denote the lift of an arbitrary Jψ-holomorphic curve u in the homology class [ρ] to the universal
cover. The Cauchy–Riemann equations are linear and the complex structure is constant:

∂bũ = ψ∂aũ;

hence in each coordinate of R2n the Laplacian ∆ũi = ∂2
aũi + ∂2

b ũi = 0. We also have ∆h = 0
where h is the inclusion of Π ⊂ R2n.

It is easy to see that u and v are homotopic and hence ũ − h is bounded and harmonic. By
the maximum principle it is constant which proves that the two curves are affine translates of
one another. 2

This implies that there is precisely one Jψ-holomorphic curve in the class [ρ] 6= 0 through
each point for any ψ ∈W (ρ). Therefore, the family Gromov–Witten invariant is

GW1,1(W, [ρ]) = σ1(`([ρ]))[T 2n]⊗ [W (ρ)] ∈ H∗(T 2n ×W ;Z).

2.3 Family Gromov–Witten invariants
Family Gromov–Witten invariants have been defined, calculated and used in many places in the
literature including [Bus05, Kęd04, KMPS10, LO08, Lee04, Lee06, LL05, LP05, Lu98, MP07,
Sei99]. Below, we explain the special cases we require. For more details see [MS04, RT97].

2.3.1 Setting. We first set up some notation and assumptions for the rest of this section.

Assumption 2.6. Let X be a compact, connected, smooth, oriented manifold. Let Ω denote the
space of symplectic forms on X. Let B be a compact, smooth, oriented manifold and ω be a
family of symplectic structures on X, that is, a map ω : B → Ω. We will assume that (X,ω(b))
is a symplectically aspherical symplectic manifold with c1 = 0. We will denote by A ∈ H2(X;Z)
a non-zero homology class.

Remark 2.7. Note that the Kodaira–Thurston manifold, which is our main example, is a quotient
of a nilpotent Lie group N by a cocompact discrete subgroup equipped with a left-invariant
symplectic form. All such examples are aspherical and satisfy c1 = 0. We will specify the family
ω in Definition 3.4.

Let J denote the space of almost complex structures on X.

Definition 2.8. A family of ω-compatible almost complex structures J is a map

J : B → J

such that J(b) is ω(b)-compatible for all b ∈ B. We will write J (B) for the space of families of
ω-compatible almost complex structures.
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2.3.2 Complex structures on the torus. Let (p, q) be coordinates on R2 and

jτ =

−
τ1

τ2
−
(
τ2

1

τ2
+ τ2

)
1

τ2

τ1

τ2


be a complex structure, where τ = τ1 + iτ2 is an element of the upper half-plane H ⊂ C. This
descends to the quotient Z2\R2 and gives a complex torus Στ . Equivalently, we can consider
coordinates (a, b) on R2 with the complex structure

ji =

(
0 −1

1 0

)
and divide by the lattice Λτ = 〈1, τ〉, i.e.

Στ = (Z2\R2, jτ )
Φτ∼= (Λτ\R2, ji)

where the diffeomorphism is

Φτ

(
p

q

)
=

(
1 τ1

0 τ2

)(
p

q

)
=

(
a

b

)
or

Φ−1
τ

(
a

b

)
=

1 −τ1

τ2

0
1

τ2

(a
b

)
=

(
p

q

)
.

2.3.3 Moduli space of pseudoholomorphic maps.

Definition 2.9. Given a non-zero homology class A ∈ H2(X;Z) and a family of compatible
almost complex structures J ∈ J (B), define the space

M1,1(A, J)

consisting of equivalence classes of quadruples (u, τ, z, b) where τ ∈ H, b ∈ B, z ∈ Z2\R2 is a
marked point and u is a (jτ , J(b))-holomorphic map

u : Z2\R2
→ X, dzu(jτv) = J(b)dzu(v)

such that u∗([Z2\R2]) = A. We say that two quadruples are equivalent (u, τ, z, b) ∼ (u′, τ ′, z′, b′)

if there exists a diffeomorphism ϕ : Z2\R2
→ Z2\R2 such that

b = b′, u′ = u ◦ ϕ−1, z′ = ϕ(z), jτ ′ = ϕ∗jτ .

Note that, since g = 1, c1 = 0 and there is one marked point, the expected dimension of this
moduli space is dim(B) + 2. There is also a well-defined evaluation map

ev :M1,1(A, J) → X ×B, ev(u, z, τ, b) = (u(z), b).
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Remark 2.10 (Compactness). To compactify the moduli space of genus one curves with one
marked point we consider the moduli space M1,1(A, J) of genus one stable maps to X with one
marked point. If X is symplectically aspherical then the domain of a stable map in M1,1(A, J)
is necessarily an irreducible smooth genus one curve, so the moduli spaceM1,1(A, J) is already
compact. To see this, note that if the domain is nodal then there is a sphere component with
precisely two special points (that is, points which are either marked or nodal). By stability,
this sphere component must be non-constant, but since we are assuming X to be symplectically
aspherical a stable map can have no non-constant sphere components.

If J is regular (see Definition 2.13 below) then M1,1(A, J) is a smooth, compact, oriented,
(dimB + 2)-dimensional manifold and we can define the Gromov–Witten invariant to be the
homology class

GW1,1(ω,A) = ev∗([M1,1(A, J)]) ∈ H∗(X ×B;Z) (2.11)

which is equivariant under diffeomorphisms ϕ of X:

ϕ∗GW1,k(ω,A) = GW1,k((ϕ
−1)∗ω, ϕ∗A). (2.12)

To define genus one Gromov–Witten invariants properly [RT97] one must study moduli spaces of
solutions to the perturbed Cauchy–Riemann equations for a suitable perturbation ν depending
on z ∈ Σ and jτ . We omit further discussion of the general definition because in all our examples,
pseudoholomorphic curves are either regular or can be made regular by a perturbation of J ∈
J (B).

2.3.4 Regularity and obstructions. Let B denote the W 1,p-completion of the space of smooth
maps u : Z2\R2

→ X. There is a Banach bundle E over B ×H×B whose fibre at (b, τ, u) is the
Lp-completion

LpΩ0,1
jτ ,J(b)(Σ, u

∗TX).

There is a section ∂ : B ×H× B→ E given by

∂(b, τ, u) = J(b)du− du ◦ jτ .

If (b, τ, u) ∈ ∂−1
(0) then u is a (jτ , J(b))-holomorphic curve and the section has a natural vertical

linearisation

D(b,τ,u)∂ : TbB × TτH×W 1,p(Σ, u∗TX) → LpΩ0,1
jτ ,J(b)(Σ, u

∗TX)

called the linearised Cauchy–Riemann operator.

Definition 2.13 (Regularity). We say that a family J of ω-compatible almost complex structures
is regular if for every (b, τ, u) ∈ ∂−1

(0) (with u simple or multiply covered) the linearised Cauchy–
Riemann operator D(b,τ,u)∂ is surjective. Equivalently, the section ∂ vanishes transversely.

If J is regular then we can define Gromov–Witten invariants by (2.11). More generally, we
can compute Gromov–Witten invariants using a J which is not regular but for which ∂ vanishes
cleanly.

Definition 2.14 (Cleanliness). We say that a family J of ω-compatible almost complex
structures is clean if at every point (b, τ, u) ∈ ∂−1

(0) (with u simple or multiply covered) the
moduli space ∂−1

(0) is a smooth manifold with tangent space ker(D(b,τ,u)∂). Equivalently, ∂
vanishes cleanly. In this case the cokernels coker(D∂) form a vector bundle over ∂−1

(0) which we
call the obstruction bundle and denote by O.
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The following theorem can be proved by a simple modification of the proof of [MS04,
Proposition 7.2.3]. The key point is that, since X is symplectically aspherical, there are no nodal
genus one stable maps with one marked point, soM1,1(A, J) is compact (see Remark 2.10).

Theorem 2.15. Let (X,ω) be as in Assumption 2.6. If J is a clean family of ω-compatible almost
complex structures then the one-point Gromov–Witten invariant is given by

GW1,1(ω,A) = ev∗ PD(e(O))

where PD denotes Poincaré duality and e denotes the Euler class.

2.3.5 Orientations. To really make sense of the fundamental class of the moduli space or of
the Euler class of the obstruction bundle one needs orientations. We therefore briefly recall how
to orient our moduli spaces when they are clean. Recall that D∂|W 1,p(Σ,u∗TX) splits as a sum of
its (Fredholm) complex linear and (compact) complex antilinear parts. We abuse terminology by
calling

1
2(D∂(α, η, ξ)− ψD∂(α, η, ψξ))

the complex linear part of D∂ (it is only complex linear in ξ).
The linearised Cauchy–Riemann operator is homotopic through Fredholm operators to its

complex linear part. There is a determinant bundle over the space of Fredholm operators whose
fibre at D is the determinant line Λdim ker(D) ker(D) ⊗ Λdim coker(D) coker(D). When the moduli
space is regular (so that its tangent space at u is the kernel of D∂), an orientation of the
determinant line is precisely an orientation of the moduli space. Having chosen an orientation on
B, the determinant line of a complex linear Cauchy–Riemann operator is canonically oriented and
one can transport this orientation along a linear homotopy of operators from D∂ to its complex
linear part.

When the moduli space is clean rather than regular, an orientation of the determinant line
is still all that is needed to define the Euler class of the obstruction bundle.

3. Two-step nilpotent Lie groups

3.1 Generalities
A Lie group N is said to be k-step nilpotent if its lower central series

N ⊃ [N,N ] ⊃ [N, [N,N ]] ⊃ · · ·
reaches the trivial group in k steps. In particular, all iterated Lie brackets of k + 1 or more
elements vanish. We are interested in two-step nilpotent groups. The main advantage of this
class is the simplicity of the Baker–Campbell–Hausdorff formula

exp(X) exp(Y ) = exp(X + Y + 1
2 [X,Y ])

for the logarithm of a product.
Henceforth, N will denote a connected, simply connected, two-step nilpotent Lie group of

even dimension with Lie algebra n. For computational convenience we will implicitly embed N
into a real linear group GL(V ) and n into gl(V ) so that we can write a+ b ∈ GL(V ) for a, b ∈ N
and XY ∈ gl(V ) for X,Y ∈ n. Note that such an embedding exists by Engel’s theorem and that
the exponential map exp : n → N , which thanks to the embedding in GL(V ) we can now write

exp(X) = 1 +X + 1
2X

2 + · · · ,
is a diffeomorphism. We denote its inverse by log.
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Since n is a linear space there is a canonical isomorphism Tn ∼= n × n, so we will write
(X,Y ) ∈ n × n and Y ∈ TXn to mean the same thing. There is a canonical map πN : TN → n
defined by

πN (X) = L(s−1)∗X for X ∈ TsN. (3.1)

Here L(s) : N → N is the left-multiplication by s ∈ N . Precomposing with d exp : Tn → TN we
get a map πn : n× n → n, explicitly,

πn(X,Y ) = L(exp(−X))∗(dX exp)(Y ). (3.2)

Lemma 3.3. We have
πn(X,Y ) = Y − 1

2 [X,Y ].

Proof. The Baker–Campbell–Hausdorff formula implies that

exp(−X) exp(X + tY ) = exp(t(Y − 1
2 [X,Y ]))

so

lim
t→0

exp(X + tY )− exp(X)

t
= lim
t→0

1

t
exp(X)

(
exp

(
t

(
Y − 1

2
[X,Y ]

))
− 1

)
= exp(X)

(
Y − 1

2
[X,Y ]

)
.

In GL(V ) we know that L(s)∗v = sv so the formula follows. 2

3.2 The twistor family of almost Kähler structures
Fix a two-step nilpotent Lie group N as before and endow it with:

(a) an orientation o; and
(b) a left-invariant metric g (coming from an inner product, also called g, on n).

Moreover, let Γ be a cocompact lattice in N ; these always exist if the algebra is defined over Q.

Definition 3.4. The twistor family, denoted by W , is the space of pairs (ωψ, ψ) where:

(a) ψ is a g-orthogonal o-positive complex structure on n; and
(b) ωψ is the two-form on n associated to g and ψ by g(v, w) = ωψ(v, ψw);

and such that
ωψ([X,Y ], Z) + ωψ([Y, Z], X) + ωψ([Z,X], Y ) = 0.

Any pair (ωψ, ψ) ∈W yields a left-invariant almost Kähler structure (Ωψ, Jψ) on N . In particular,
if s ∈ N , v ∈ TsN and L(s)∗ denote the differential of left-multiplication by s then

Jψv = L(s)∗ψL(s−1)∗v. (3.5)

By left-invariance these all descend to give almost Kähler structures on Γ\N . We will often
abusively write ψ ∈W or ωψ ∈W or even Jψ ∈W or Ωψ ∈W .

This subsumes Definition 2.4 in the case where N is abelian. Notice that W is a subvariety
of SO(2n)/U(n), the space of positive orthogonal complex structures on n, but may not be a
smooth subvariety and it may be empty (we will of course restrict attention to examples where
it is nonempty!). If it is not smooth we will restrict attention to some auspicious irreducible
component of W which is smooth.
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Lemma 3.6. Let z denote the centre of n. For ψ ∈W ,

ψ[n, n] ⊂ z⊥.

If, moreover, z = [n, n]⊕ t for a one-dimensional subalgebra t then

ψz = z⊥.

Proof. The first assertion follows from the equation

g([X,Y ], ψZ) + g([Y,Z], ψX) + g([Z,X], ψY ) = 0.

When we take ψ[X,Y ] ∈ ψ[n, n] and Z ∈ z, the equation reduces to

g(ψ[X,Y ], Z) = 0,

proving the first claim.
If t is one-dimensional then certainly ψt ⊂ t⊥. Moreover, the first claim implies ψt ⊂ [n, n]⊥.

Hence ψz = z⊥. 2

3.3 Pseudoholomorphic tori
We have set up conventions for coordinates (p, q) and complex structures jτ on the torus Z2\R2

in § 2.3.2. We will write ∆ for the Laplacian ∂2
a +∂2

b . Notice that if f : R2
→ R is a differentiable

function then

∂af = ∂pf, ∂bf =
∂qf − τ1∂pf

τ2
. (3.7)

The Cauchy–Riemann equations. Fix a linear complex structure jτ on R2 and let (a, b) be linear
conformal coordinates (so jτ∂a = ∂b). Consider ψ ∈ W and the associated left-invariant almost
complex structure Jψ on N .

Definition 3.8. A (jτ , Jψ)-holomorphic torus in a nilmanifold Γ\N is a map u : Z2\R2
→ Γ\N

such that
Jψ ◦ du = du ◦ jτ .

We will denote by π1(u) : Z2
→ Γ the induced map on fundamental groups.

Note that a (jτ , Jψ)-holomorphic torus in Γ\N lifts to a (jτ , Jψ)-holomorphic map between
the universal covers

ũ : R2
→ N

in one of Γ/π1(u)(Z2) possible ways. We will fix one such lift.

Lemma 3.9. If w = log ◦ũ : R2
→ n then

ψ(∂aw − 1
2 [w, ∂aw]) = ∂bw − 1

2 [w, ∂bw] (3.10)

which implies
∆w − 1

2 [w,∆w] = ψ[∂aw, ∂bw] (3.11)

where ∆ = ∂2
a + ∂2

b .
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Proof. The (jτ , Jψ)-holomorphic map equation

Jψ(ũ(a, b))dũ(∂a) = dũ(jτ∂b)

is equivalent to
L(ũ(a, b))∗ψL(ũ−1(a, b))∗dũ(∂a) = dũ(∂b)

because of (3.5). This implies that

ψ ◦ πN ◦ dũ(∂a) = πN ◦ dũ(∂b)

(see (3.1) and (3.2) for the definition of πN and πn). Splitting

πN = πN ◦ d exp ◦ d log

and using the fact that πN ◦ d exp = πn, we get a sequence of equations

ψ ◦ πN ◦ d exp ◦ d log ◦ dũ(∂a) = πN ◦ d exp ◦ d log ◦ dũ(∂b)

ψ ◦ πn ◦ dw(∂a) = πn ◦ dw(∂b)

ψ ◦ πn(w, ∂aw) = πn(w, ∂bw)

and this yields (3.10) thanks to Lemma 3.3. The second order equation follows by cross-
differentiating and manipulating (3.10). 2

3.4 Homomorphisms
Let u : Z2\R2

→ Γ\N be a map. The induced map π1(u) : Z2
→ Γ on fundamental groups extends

uniquely to a homomorphism H : R2
→ N . To see this, take the images of two generators in Z2:

these commute and hence their logarithms commute in the Lie algebra. This means that they
span a two-dimensional abelian subalgebra R2. The map H is just the exponential map restricted
to this subalgebra. Since H sends Z2 into Γ, it descends to a map v : Z2\R2

→ Γ\N .

Lemma 3.12. The maps u and v are freely homotopic.

Proof. Let ? be a basepoint of Z2\R2. Freely homotoping u using a path γ joining u(?) to v(?)
allows us to assume that u and v are maps based at the same point u(?) = v(?). The maps
π1(u) and π1(v) on fundamental groups are conjugate by construction and this conjugation can
be effected by a further free homotopy of u where the base point traces out a loop based at u(?).
That is, after a free homotopy one can assume π1(u) = π1(v). By a based homotopy one can
ensure that the maps u and v agree on the 1-skeleton of Z2\R2 (a wedge of loops). Since Γ\N
is aspherical (in particular, π2(Γ\N) = 0), the homotopy can be extended to the 2-skeleton of
Z2\R2. 2

Corollary 3.13. Any lift ũ : R2
→ N of u differs from H by a bounded amount, i.e. the

function H−1ũ : R2
→ N given by

(p, q) 7→ H(p, q)−1ũ(p, q)

is bounded.

Proof. After perturbation of the projection u to a map u′ based at ? and based-homotopic
to v, the map H−1ũ′ descends to a nullhomotopic map Z2\R2

→ Γ\N and hence factors as
R2

→ Z2\R2
→ N . Boundedness of the map upstairs follows from compactness of Z2\R2. The

maps ũ and ũ′ differ by a bounded perturbation (an equivariant lift of a compact perturbation
in Γ\N). 2
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4. The Kodaira–Thurston manifold, K

4.1 Definition
Consider the two-step nilpotent group

N =




1 x z 0

0 1 y 0

0 0 1 0

0 0 0 t

 : x, y, z, t ∈ R, t > 0


and the lattice Γ consisting of matrices with integer entries. The compact quotient K = Γ\N is
called the Kodaira–Thurston manifold. The Lie algebra n consists of matrices of the form

0 x z 0

0 0 y 0

0 0 0 0

0 0 0 t


and the exponential map is

exp


0 x z 0

0 0 y 0

0 0 0 0

0 0 0 t

 =


1 x z +

xy

2
0

0 1 y 0

0 0 1 0

0 0 0 et

 .

The commutator subalgebra [n, n] consists of matrices with x = y = t = 0. The centre splits as
z = t⊕ [n, n] where t = {x = y = z = 0}. We pick a basis for n:

n1 = ∂y, n2 = ∂x

n3 = ∂t, n4 = ∂z.

Let us denote byW the twistor family. If ψ ∈W then by Lemma 3.6 we know that ψ(z) ⊂ z⊥.
The complex structure ψ is therefore specified by an isometry Ψ : z → z⊥ which we will think of
as a two-by-two special orthogonal matrix (written with respect to the bases n3,n4 and n1,n2).
It is not hard to check that any matrix Ψ ∈ SO(2) gives an element ψ ∈W . We will write ψθ for
the almost complex structure corresponding to the matrix

Ψθ =

(
cos θ −sin θ

sin θ cos θ

)
.

The tangent space TψθW consists of matrices of the form

α = r

(
−sin θ −cos θ

cos θ −sin θ

)
.

4.2 Pseudoholomorphic tori and homomorphisms
Given ψ ∈ W , suppose that u : Z2\R2

→ K is a (j, Jψ)-holomorphic curve for some linear
complex structure j on R2. Take (a, b) to be linear j-complex coordinates on R2. Let π1(u) be
the induced map on the fundamental group, let H be a homomorphism R2

→ N extending π1(u)
and let ũ : R2

→ N be a lift of u. Denote the logarithms by w = log ◦ ũ and h = log ◦H. We want
to compare ũ and H so consider C = log ◦ (H−1ũ). By the Baker–Campbell–Hausdorff formula,

C = w − h− 1
2 [h,w].
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Moreover, since h is a homomorphism, its logarithm is linear (a homomorphism of Lie algebras)
and hence ∆h = 0.

Proposition 4.1. The logarithm C is constant and hence ũ = H exp(C) is a right-translate in
N of a homomorphism R2

→ N . In particular,

ũ = exp(h+ C + 1
2 [h,C]).

Proof. We decompose the Lie algebra n as b ⊕ [n, n] ⊕ ψ[n, n]. Note that both p = [n, n] and
q = ψ[n, n] are one-dimensional. We denote the corresponding components of w by wb, wp, wq.
We have

Cb = wb − hb
Cq = wq − hq
Cp = wp − hp − 1

2 [h,w].

Equation (3.11) breaks up into component equations

∆wb = 0 (4.2)
∆wq = ψ[∂aw, ∂bw] (4.3)
∆wp = 1

2 [w,∆w]. (4.4)

Equation (4.2) implies ∆Cb = ∆wb−∆hb = 0 and because Cb is bounded the maximum principle
tells us that Cb is constant. Hence ∂wb = ∂hb is constant (where ∂ stands for either ∂a or ∂b).

Equation (4.3) implies

∆Cq = ∆wq −∆hq

= ψ[∂aw, ∂bw].

We can expand w = wb + wp + wq in the bracket and ignore the p-components since n is two-
step nilpotent. Furthermore, the term [∂awq, ∂bwq] vanishes because q is one-dimensional and
hence abelian. The term [∂awb, ∂bwb] = [∂ahb, ∂bhb] is constant. The remaining terms are [∂awq,
∂bhb] + [∂ahb, ∂bwq], which are linear first order differential operators with constant coefficients
acting on the function wq = Cq + hq. Therefore,

∆Cq = ψ([∂a(Cq + hq), ∂bhb] + [∂ahb, ∂b(Cq + hq)] + [∂ahb, ∂bhb])

is a linear elliptic equation with constant coefficients for Cq. Boundedness of Cq and the Hopf
maximum principle [GT01, Theorem 3.1] imply that Cq is constant. The crucial observation is
that there are no nonlinearities or couplings in (4.3) because q is one-dimensional.

We now know that Cb⊕q = wb⊕q − hb⊕q is constant and, since h is linear, ∆wb⊕q = 0.
Equation (4.4) implies that

∆wp = 1
2 [w,∆w]

= 1
2 [wb⊕q,∆wb⊕q] = 0,

and therefore

∆Cp = ∆wp −∆hp − 1
2∆[h,w]

=−1
2∆[hb⊕q, wb⊕q]

=−1
2∆[hb⊕q, hb⊕q + Cb⊕q] = 0

because h is linear and [hb⊕q, hb⊕q] = 0. Again, the maximum principle implies that Cp is constant.
We have now seen that all components of C are constant. 2
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4.3 Cohomology and its automorphisms
Consider the left-invariant one-forms

dy, dx, dt, γ = dz − x dy.
The first three one-forms are closed and we denote their cohomology classes by e1, e2, e3

respectively. They span H1(K;Z) ⊂ H1(K;R). The following classes span H2(K;Z):

e13 = [dy ∧ dt], e23 = [dx ∧ dt]
e14 = [dy ∧ γ], e24 = [dx ∧ γ].

Finally, the following classes span H3(K;Z):

e134 = [dy ∧ dt ∧ γ], e234 = [dx ∧ dt ∧ γ], e124 = [dy ∧ dx ∧ γ].

We define the dual bases Ei ∈ H1(K;Z), Eij ∈ H2(K;Z) and Eijk ∈ H3(K;Z) for homology, so,
for example, ∫

Eijk

e`mn = δi`δjmδkn

and we write A =
∑
AijEij , or frequently

[A13, A23, A14, A24],

for the components of a homology class A.

Remark 4.5. The symplectic form ωθ corresponding to a rotation matrix Ψθ is

ωθ = dt ∧ (cos θ dx+ sin θ dy) + γ ∧ (−sin θ dx+ cos θ dy),

so the ωθ-symplectic area of A is

−(cos θ(A23 +A14) + sin θ(A24 −A13)).

Let ϕ : Γ → Γ be a lattice automorphism. Then by rigidity for nilpotent Lie groups [VGS00,
Theorem 2.7] we know that ϕ extends uniquely to an automorphism of N . As we observed in the
case of the 2n-torus, the left-invariant metrics ϕ∗g and g are isotopic through left-invariant metrics
and hence the corresponding twistor families of symplectic forms are deformation equivalent.
Deformation invariance of Gromov–Witten invariants applied to (2.12) implies

GW1,k(W,ϕ∗A) = ϕ∗GW1,k(W,A) (4.6)

for any ϕ ∈ Aut(Γ).

Lemma 4.7. There is a homomorphism SL(2,Z) → Aut(Γ) which projects to the standard action
of SL(2,Z) on Γ/Z(Γ) ∼= Z2.

Proof. The homomorphism is defined on generators by

σ1 :=

(
0 −1

1 0

)
7→ ϕ1, σ2 :=

(
1 1

0 1

)
7→ ϕ2

where

ϕ1


x

y

z

t

 =


−y
x

z − xy
t


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and

ϕ2


x

y

z

t

 =


x+ y

y

z +
y(y + 1)

2
t

 .

Since the projection Γ → Γ/Z(Γ) is given by (x, y, z, t) 7→ (x, y) we see that the maps induced
on the quotient are precisely σ1 and σ2. 2

The action of ϕi on the second homology is

(ϕi)∗[A13, A23, A14, A24] = [σi(A12, A23), σi(A14, A24)]. (4.8)

4.4 The homology classes of tori
Let h : R2

→ n be a Lie algebra homomorphism and write

h(p, q) =

4∑
i=1

hi(p, q)ni

where hi(p, q) are its linear coordinate functions. Its exponential is

H = exp(h) =


1 h2 h4 + 1

2h1h2 0

0 1 h1 0

0 0 1 0

0 0 0 eh3

 . (4.9)

Since R2 is an abelian Lie algebra,

[∂ph, ∂qh] = ∂[ph2∂q]h1 = 0. (4.10)

The map H : R2
→ N will descend to a closed torus in K if

exp(h(1, 0)), exp(h(0, 1)) ∈ Γ.

Equivalently, the derivatives ∂phi, ∂qhi for i = 1, 2, 3, ∂ph4 + 1
2∂ph1∂ph2 and ∂qh4 + 1

2∂qh1∂qh2

must be integers.

Definition 4.11. If H = exp(h) descends to a closed torus with homology class A then we say
h represents the homology class A and we write [h] = A. Equivalently, if h = log ◦H where
H : R2

→ N is the unique homomorphic extension of a lattice homomorphism ρ : Z2
→ Γ then

we can write [ρ] := [h].

Lemma 4.12. Let h : R2
→ n be a Lie algebra homomorphism such that H = exp ◦h descends

to a closed genus one curve in K. Then [h] = A where

Aij = ∂[phi∂q]hj .

Proof. By considering closed invariant two-forms on N we get an isomorphism [VGS00,
Corollary 4.7]

H2(K;R) ∼= H2
Lie(n).
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Similarly, we have an isomorphism H2(T 2;R) ∼= H2
Lie(R

2) ∼= R. In terms of these isomorphisms,
the pullback map H2(K;R) →H2(T 2;R) is just the pullback in Lie algebra cohomology induced
by the homomorphism h. This pullback is induced by the map

Λ2h∨ : Λ2n∨ → Λ2R2

which simply takes the two-by-two minors of the matrix representing h, whose rows are (∂phi,

∂qhi).
The subspace of Λ2n∨ spanned by eij consists of Lie cochains and projects isomorphically to

H2
Lie(n). The coefficients Aij of A are precisely the pullbacks of these forms to H2

Lie(R) ∼= R and
these are just the minors of the transpose of the matrix whose columns are ∂ph and ∂qh:

Aij = h∗[eij ] = ∂[phi∂q]hj . 2

Note that it is not immediately obvious why ∂[ph1∂q]h4 is an integer (though it follows from
the lemma).

Lemma 4.13. If A = [h] for some homomorphism h : R2
→ n then

A13A24 = A14A23.

Proof. There is a commutative diagram of Plücker maps.

R2 ×R2

h×h
��

∧ // Λ2R2 ∼= R

Λ2h
��

n× n ∧
// Λ2n

The image of (∂p, ∂q) ∈ R2 ×R2 in Λ2n is the sextuple of two-by-two minors Dij = ∂[phi∂q]hj of
the matrix of h. This sits inside the Plücker quadric

D12D34 −D13D24 +D14D23 = 0.

However, D12 = 0 because R2 is abelian, and Lemma 4.12 implies that Dij = Aij for i = 1, 2,
j = 3, 4. 2

Lemma 4.14. If h : R2
→ n is a homomorphism with [h] = A then there is an automorphism ϕ

of Γ such that ϕ∗A = [m,m, n, n] where

m = gcd(A13, A23), n = gcd(A14, A24).

Defining a = A13/m, b = A23/m, we see from Lemma 4.13 that

a = A14/n, b = A24/n, gcd(a, b) = 1.

Proof. By the action of SL(2,Z) ⊂ Aut(Γ) on H2(K;Z) described in (4.8) we can move the
pair (A13, A23) by some ϕ ∈ Aut(Γ) until it coincides with (gcd(A13, A23), gcd(A13, A23)). Since
A13A24 = A14A23, the same ϕ will take (A14, A24) to (gcd(A14, A24), gcd(A14, A24)). 2
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We now consider linear reparametrisations of the torus, that is, SL(2,Z) acting on the
(p, q)-plane. We have this freedom when counting pseudoholomorphic tori because we specified
the complex structure jτ by giving a point τ ∈ H in the upper-half plane; we are therefore
over-counting each torus infinitely often, once for each point in H giving a diffeomorphic
complex structure. The SL(2,Z)-reparametrisation precisely removes this ambiguity. The effect
of Φ ∈ SL(2,Z) on

∑2
i=1 ∂phini and

∑2
i=1 ∂qhini is to act on the right:(
∂ph1 ∂qh1

∂ph2 ∂qh2

)
Φ.

Definition 4.15. We write [h]SL for the SL(2,Z)-equivalence class of Lie algebra homomorphisms
containing h. Note that the homology class [h] depends only on h. The notion of SL(2,Z)-
equivalence also makes sense for lattice homomorphisms ρ : Z2

→ Γ by extending them to Lie
group homomorphisms and taking the logarithm, and we write [ρ]SL for the equivalence class.

Definition 4.16. We say a homomorphism h : R2
→ n is reduced if ∂ph1 = ∂ph2 = 0.

Equivalently, the matrix of derivatives of h is
0 ∂qh1

0 ∂qh2

∂ph3 ∂qh3

∂ph4 ∂qh4

 .

We say that h is fully reduced if, moreover,

0 6 ∂qh3 < ∂ph3.

The notion of reduced homomorphism also makes sense for lattice homomorphisms ρ : Z2
→ Γ

by extending them to Lie group homomorphisms and taking the logarithm.

Lemma 4.17. For a homology class A 6= 0 with m = A13 = A23, n = A14 = A24, any Lie algebra
homomorphism h : R2

→ n with [h] = A is SL(2,Z)-equivalent to a reduced homomorphism with
∂qh1 = ∂qh2 6= 0. If, moreover, m 6= 0, then h is SL(2,Z)-equivalent to a unique fully reduced
homomorphism.

Proof. Since R2 is an abelian Lie algebra we have

0 = [∂ph, ∂qh] = ∂[ph2∂q]h1n1.

If h1 6≡ 0 this implies that the top two rows(
∂ph1 ∂qh1

∂ph2 ∂qh2

)
of the homomorphism h are linearly dependent. Using the right SL(2,Z)-action we can ensure
that ∂ph1 = ∂ph2 = 0. Now we have

m = −∂qh1∂ph3 = −∂qh2∂ph3

n = −∂qh1∂ph4 = −∂qh2∂ph4

and since one of these two quantities is non-zero we know that ∂qh1 = ∂qh2 6= 0.
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We have a residual right SL(2,Z)-action by matrices of the form(
±1 ?

0 ±1

)
,

since these preserve the condition ∂ph1 = ∂ph2 = 0. We know that ∂ph3 6= 0 because m is
assumed to be non-zero. Using the action of these matrices and this fact we can obtain ∂ph3 > 0
and implement the Euclidean algorithm on ∂qh3 to ensure that 0 6 ∂qh3 < ∂ph3. 2

Note that for a reduced homomorphism, ∂qh1 = ∂qh2 divides the greatest common divisor
gcd(m,n). It is easy to check that the most general reduced homomorphism giving the numbers
m and n is

∂qh1 = ∂qh2 = −sgn (m)d

∂ph3 =
|m|
d

∂ph4 = − n

sgn(m)d

for a positive divisor d of gcd(m,n), where sgn(m) denotes the sign of m. In matrix form this
looks like 

0 −sgn (m)d

0 −sgn (m)d

|m|
d

∂qh3

− n

sgn(m)d
∂qh4

 . (4.18)

5. Pseudoholomorphic tori in K

We have seen (Proposition 4.1) that if ψ ∈W then all (j, Jψ)-holomorphic tori in K are quotients
of maps R2

→ N of the form
exp(h+ C + 1

2 [h,C]) (5.1)

where h : R2
→ n is a Lie algebra homomorphism and C ∈ n is a constant. We know that if h

descends to a closed genus one curve then the derivatives

∂phi, ∂qhi for i = 1, 2, 3, ∂ph4 + 1
2∂ph1∂ph2, ∂qh4 + 1

2∂qh1∂qh2

are integers. The problem is now to enumerate these tori modulo the reparametrisation action of
SL(2,Z) on R2.

In light of Lemma 4.14 we will restrict attention to non-zero homology classes with A13 = A23

and A14 = A24 without loss of generality, and by reparametrising as in Lemma 4.17 we can assume
∂ph1 = ∂ph2 = 0 (i.e. h is reduced). Using the usual decomposition n = a ⊕ z of the Lie algebra
into the centre z and its orthogonal complement, we can write this assumption as

∂pha = 0.

By (3.7), this is equivalent to
∂aha = 0.
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The expected dimension of genus g curves in K which are Jψ-holomorphic for some ψ ∈ W
is

4 · (1− g) + 6g − 6 + dimW

since c1(K) = 0. For tori (g = 1) the expected dimension is dimW = 1. When a marked point is
added we get

virdimM1,1(W,A) = 3.

Our task in this section is to write down the moduli space and compute its dimension.

5.1 Defining moduli spaces
Let A = [m,m, n, n] ∈ H2(K,Z) be a non-zero homology class and define the space of maps

M(W,A) =

(u, τ, ψ)

∣∣∣∣∣∣
τ ∈ H, ψ ∈W,
u : T 2

→ K is (jτ , Jψ)-holomorphic,
u∗[T

2] = A.


Let ρ : Z2

→ Γ be a homomorphism with [ρ] = A and let H : R2
→ N be its unique homomorphic

extension. Define
Mρ(W ) = {(HeC , τ, ψ) ∈M(W,A) for some C ∈ n}

and note that
M(W,A) =

∐
[ρ]=A

Mρ(W ).

We also define

Mred(W,A) =
∐

[ρ]=A,ρ reduced

Mρ(W )

Mful(W,A) =
∐

[ρ]=A,ρ fully reduced

Mρ(W ).

The one-point moduli space is given by

M1,1(W,A) =M(W,A)×Aff(T 2) T
2

where Aff(T 2) = SL(2,Z)nT 2 is the group of affine reparametrisations of T 2. Here, ϕ ∈ Aff(T 2)
acts by

ϕ(u, τ, ψ, z) = (u ◦ ϕ−1, ϕ(τ), ψ, ϕ(z))

where the action of SL(2,Z) on H is the standard one. We will also write

M1,1(W, [ρ]SL) :=Mρ(W )×T 2 T 2.

Lemma 5.2. The action of Aff(T 2) onM(W,A)× T 2 is free.

Proof. Suppose (u, τ, ψ, z) is fixed by ϕ. Let v denote the simple curve underlying u and let
π : Στ → Στ ′ denote the holomorphic covering space such that u = v ◦ π. The curve v has an
open set V ⊂ Στ ′ of injective points. Let x ∈ V . An automorphism ϕ of u satisfies u(ϕx′) = u(x′)
for any x′ ∈ π−1(x). This implies that π ◦ϕ = π on π−1(V ) and hence everywhere, so ϕ is a deck
transformation (a translation). However, ϕ(z) = z, so ϕ = Id. 2
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We first divide out by translations. The spaceM(W,A)×T 2T 2 has a residual SL(2,Z)-action.
The following lemma is immediate from Lemma 4.17.

Lemma 5.3. Every SL(2,Z)-orbit ofM(W,A)×T 2 T 2 contains a point of

Mred(W,A)×T 2 T 2.

If m 6= 0 then every orbit contains a unique point of

Mful(W,A)×T 2 T 2. 2

5.2 DescribingMρ(W,A)
Lemma 5.4. Suppose that h is a reduced Lie algebra homomorphism and C ∈ n is a constant.
The Cauchy–Riemann equations for

exp(h+ C + 1
2 [h,C])

become

∂bha = ψ∂ahz (5.5)
∂bhz = [Ca, ∂bha]. (5.6)

Proof. By Lemma 3.6, ψ(a) = z. If w = h+ C + 1
2 [h, c] then we have

wa = ha + Ca

wz = hz + Cz + 1
2 [ha, Ca].

Taking the a-part of the Cauchy–Riemann equation (3.10) and using the fact that ∂pha = ∂aha = 0
(h is reduced) gives (5.5). Taking the z-part of (3.10) gives

0 = ∂bhz + 1
2 [∂bha, Ca]− 1

2 [ha + Ca, ∂bha]

= ∂bhz + [∂bha, Ca].

This last step uses the fact that [ha, ∂bha] = 0, which follows because ha = a∂aha + b∂bha =
b∂bha. 2

Lemma 5.7. Fix a Lie algebra homomorphism h : R2
→ n with h =

∑4
i=1 hini such that ∂pha = 0

and exp(h(Z2)) ⊂ Γ. We list all possibilities for C, τ and ψ such that

h+ C + 1
2 [h,C]

is the logarithm of a Jψ-holomorphic torus:

(a) the constant Cz is arbitrary;
(b) the number τ2 satisfies

τ2 =
‖∂qha‖
‖∂phz‖

;

(c) the complex structure ψ is specified by the unique matrix Ψ ∈ SO(2) which rotates(
∂ph3

∂ph4

)
to

1

τ2

(
∂qh1

∂qh2

)
; (5.8)
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(d) the components of Ca satisfy

C2∂qh1 − C1∂qh2 = ∂qh4 − τ1∂ph4. (5.9)

Moreover:

(a) if ∂ph3 6= 0 we have τ1 = ∂qh3/∂ph3;

(b) if ∂ph3 = 0 then necessarily ∂qh3 = 0 and τ1 is arbitrary.

Proof. The constant Cz is arbitrary because it does not enter into (5.5) and (5.6). Taking the
norm of (5.5) gives

‖∂bha‖ = ‖∂ahz‖
because ψ is orthogonal. Using (3.7) we have

‖∂bha‖ =

∥∥∥∥∂qha − τ1∂pha
τ2

∥∥∥∥ =
‖∂qha‖
τ2

since ∂pha = ∂aha = 0. This gives the formula for τ2. Having fixed τ2, (5.5) becomes precisely the
desired condition on ψ.

The equation for C1 and C2 is simply the n4-component of (5.6). Finally, the n3 component
is

∂bh3 = 0

since n3 is orthogonal to the commutator subalgebra. Using the fact (3.7) that

∂bh3 =
∂qh3 − τ1∂ph3

τ2

we obtain the required dichotomy for τ1 when ∂ph3 is either zero or non-zero. 2

Note that, unlike Ca, the quantity C2∂qh1 − C1∂qh2 is invariant under translations of the
(p, q)-plane.

Corollary 5.10. Let ρ : Z2
→ Γ be a homomorphism, H be its homomorphic extension to

R2
→ N and h = logH. When ∂ph3 6= 0, the moduli space Mρ(W ) consists of maps u of the

form
HeC0+D

where
C0 =

∂qh4 − τ1∂ph4

∂qh1
n2 (5.11)

and D is any element n satisfying [D,h] = 0.

Proof. By (5.9) we know that if HeC is in the moduli spaceMρ(W ) then C must solve

C2∂qh1 − C1∂qh2 = ∂qh4 − τ1∂ph4.

The vector C0 ∈ n given in (5.11) is a particular solution of this inhomogeneous equation.
Therefore, D = C − C0 satisfies the corresponding homogeneous equation,

D2∂qh1 −D1∂qh2 = 0,

which is equivalent to [D,h] = 0. Note that ψ and τ are determined by the homomorphism ρ. 2
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Lemma 5.12. Suppose that ρ : Z2
→ Γ is reduced and that (HeC0+D, τ, ψ) ∈ Mρ(W ) as in

Corollary 5.10. By reparametrising (p, q) 7→ (p+ δp, q + δq) we can assume that

D · ∂qha = D · ∂phz = 0.

In particular, we can ensure that Dz ⊥ ∂phz and Da = 0.

Proof. The logarithm of HeC0+D is h + C0 + D + 1
2 [h,C0] since [h,D] = 0. We can absorb the

reparametrisation of h by (p, q) 7→ (p+ δp, q + δq) into the constant D, which becomes

D + δp(∂ph+ 1
2 [∂ph,C0]) + δq(∂qh+ 1

2 [∂qh,C0]).

First, pick δq to solve the equation

δq(∂qh+ 1
2 [∂qh,C0]) · ∂qha +D · ∂qha = 0.

This is possible since (∂qh + 1
2 [∂qh,C0]) · ∂qha = ‖∂qha‖2 6= 0 and it ensures that D′ · ∂qha = 0,

where D′ is the new constant after the reparametrisation by (0, δq). Next, remember that since
ρ is reduced, ∂pha = 0. Let δp be the solution of

δq(∂ph+ 1
2 [∂ph,C0]) · ∂phz +D′ · ∂phz = 0;

this is possible since (∂ph+ 1
2 [∂ph,C0]) · ∂phz = ‖∂zhz‖2 6= 0. Reparametrising D′ by (δp, 0) gives

D′′ satisfying D′′ · ∂phz = 0. Note that D′′ · ∂qha is still zero because ∂pha = 0, so this condition
is not affected by the second reparametrisation.

Now assume that we have reparametrised and relabelled so that D satisfies the equations

D · ∂qha = D · ∂phz = 0.

To see that this gives Da = 0, note that [D,h] = [Da, ha] = [Da, q∂qha] = 0 (because h is reduced).
This is a linear equation for a vector Da ∈ a and dim(a) = 2, so Da is a multiple of ∂qha. But we
have just seen that Da ⊥ ∂qha. The second equation implies Dz ⊥ ∂phz. 2

5.3 DescribingM1,1(W,A): fully reduced case
We know by definition thatM1,1(W,A) =M(W,A)×Aff(T 2)T

2 andM(W,A) =
∐

[ρ]=AMρ(W ).
By Lemma 5.3, we know that if m = A13 6= 0 then there is a unique, fully reduced ρ in the
SL(2,Z)-orbit of homomorphisms representing the class [A], and hence

M1,1(W,A) =Mful(W,A)×T 2 T 2

=
∐

ρ reduced

Mρ(W )×T 2 T 2.

By Lemma 5.12, we know that a local slice of the moduli spaceMρ(W )×T 2 T 2 (when ρ is fully
reduced) is given by

(HeC0+D(λ), τ, ψ, z)

where z ∈ T 2 is arbitrary and

D(λ) = λ


0

0

∂ph4

−∂ph3

 (5.13)
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for λ ∈ R. In fact, this descends to a global description of the moduli space when we observe
that D(λ) is central, and hence

HeC0+D(λ) = eD(λ)HeC0 ,

which gives the same pseudoholomorphic torus if and only if eD(λ) ∈ Γ. This occurs precisely
when λ is a multiple of 1/gcd(∂ph3, ∂ph4).

Corollary 5.14. If A =
∑
AijEij ∈ H2(K;Z) is a homology class with A13 6= 0 then the

moduli space M1,1(W,A) is smooth. It is a union of components labelled by fully reduced
homomorphisms ρ : Z2

→ Γ, each component consisting of equivalence classes

[(HeC0+D(λ), z)], λ ∈
[
0,

1

gcd(∂ph3, ∂ph4)

]
, z ∈ T 2

where:

(a) H : R2
→ N is the unique homomorphic extension of ρ and h is its logarithm;

(b) D(λ) is defined by (5.13);
(c) C0 is defined by (5.11);
(d) the equivalence relation equates (u, z) with (u ◦ ϕ−1, ϕ(z)) for a translation ϕ : T 2

→ T 2 of
the domain such that u ◦ ϕ−1 = u.

In particular, the tangent space at (u, τ, ψ, z) comprises the vectors

(D(λ), V ) ∈ z⊕ TzΣτ , λ ∈ R.

The moduli space has dimension three (the expected dimension).

Arguing as in the proof of Lemma 5.2, we see that if u is a torus and v is the underlying simple
torus, so that u = v ◦ π for some holomorphic covering map π, then the size of the equivalence
class [(u, z)] is the order of the deck transformation group of this cover.

5.4 DescribingM1,1(W,A): the general case
Suppose now that m = A13 = 0. Since A 6= 0 we know that n 6= 0.

By Lemma 5.3 we know that any ρ with [ρ] = A can be conjugated via the action of
SL(2,Z) to a reduced homomorphism. For a reduced ρ, the subgroup Stab(ρ) ⊂ Aff(T 2) of
affine reparametrisations of R2 fixing ρ is generated by the subgroup T 2 of translations and the
group isomorphic to Z× (Z/2Z) ⊂ SL(2,Z) consisting of matrices of the form(

±1 ?

0 ±1

)
.

Lemma 5.3 can be rephrased as

M1,1(W,A) =Mred(W,A)×Stab(ρ) T
2.

Each component is diffeomorphic to

Mρ(W,A)×T 2 T 2

for some reduced ρ.
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Lemma 5.15. In the case m = 0, n 6= 0, the moduli space is a smooth manifold of dimension four
and the tangent space at (u = HeC , τ, ψ, z) comprises triples (D3n3, η1, V ) ∈ z⊕Re(TτH)⊕TzΣτ .

Proof. Once again we let C0 = (∂qh4 − τ1∂ph4)/∂qh1, but remember that in this moduli space τ1

is allowed to vary, so C0 is arbitrary. As in the proof of Lemma 5.12, we may still reparametrise
so that Da = 0 and Dz · ∂phz = 0. Since m = 0, ∂ph3 = 0 and hence D = D3n3. Therefore, τ1,
D3, p and q are local coordinates on the moduli space. 2

6. Automorphisms

We observed in Lemma 5.2 that a holomorphic map u from a torus with one marked point
z has no nontrivial holomorphic automorphisms. If we consider only unmarked curves then
the automorphism group, Aut(u), of a multiply-covered curve u = v ◦ π is precisely the deck
transformation group of the holomorphic covering π. For the one-point moduli space, the size of
this automorphism group becomes the size of the equivalence classes in Corollary 5.14. Therefore
we must now compute |Aut(u)|.
Lemma 6.1. If A = [m,m, n, n] ∈ H2(K;Z) is a non-zero homology class and u = eheC0+D is a
holomorphic torus as in Corollary 5.10, where h : R2

→ n is a Lie algebra homomorphism of the
form given in (4.18), then

|Aut(u)| = gcd(gcd(m,n), (mk + n`)/d)

where k = ∂qh4 + ∂qh1∂qh2/(2 gcd(∂qh1, ∂qh2)) and ` = ∂qh3.

Proof. Suppose that π1(u) : Z2
→ Γ is the (reduced) homomorphism on fundamental groups. We

write π : Γ → Γ/Z(Γ) ∼= Z2 for the projection and

π1(u)(1, 0) =

1 b1 d1

0 1 a1

0 0 1

⊕ c1, π1(u)(0, 1) =

1 b2 d2

0 1 a2

0 0 1

⊕ c2.

Since π1(u) is reduced, a1 = b1 = 0 and a2 6= 0, which implies that π ◦ π1(u) lands in the cyclic
subgroup ι : Z ↪→ Z2 generated by (b̄2, ā2), where

ā2 =
a2

gcd(a2, b2)
and b̄2 =

b2
gcd(a2, b2)

.

If v is the simple torus underlying u then π ◦ π1(v) also lands in this subgroup and hence the
image of π1(v) is contained in the preimage π−1ι(Z). We have

π−1(ι(Z)) =


1 qb̄2 Z

0 1 qā2

0 0 1

⊕ Z

∣∣∣∣∣∣ q ∈ Z

 ∼= Z3.

The isomorphism with Z3 is

(q, r, s) 7→

1 qb̄2 s+
q(q − 1)ā2b̄2

2
0 1 qā2

0 0 1

⊕ r.
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Since π1(u) : Z2
→ π−1(ι(Z)) ∼= Z3 is given by the matrix

0 gcd(a2, b2)

c1 c2

d1 d2 −
gcd(a2, b2)(gcd(a2, b2)− 1)

2
ā2b̄2

 ,

the maximal sublattice Λ of Z3 (and hence of Γ) containing ι(Z2) as a finite-index sublattice has

[Λ : ι(Z2)] = gcd(M1,M2,M3)

where M1,M2,M3 are the two-by-two minors of this matrix. One can see this by putting the
matrix into Smith normal form.

In terms of the integer derivatives of the underlying Lie algebra homomorphism,

c1 = ∂ph3, d1 = ∂ph4

a2 = ∂qh1, b2 = ∂qh2

c2 = ∂qh3, d2 = ∂qh4 + 1
2∂qh1∂qh2,

so |Aut(u)| is equal to the greatest common divisor of

gcd(∂ph3, ∂ph4) gcd(∂qh1, ∂qh2)

and

∂ph3

(
∂qh4 +

∂qh1∂qh2

2 gcd(∂qh1, ∂qh2)

)
− ∂ph4∂qh3.

When h has the form given in (4.18), this expression reduces to

gcd

(
gcd

(
m

d
,
m

d

)
d,
|m|
d
k +

n

sgn(m)d
`

)
= gcd(gcd(m,n), (mk + n`)/d)

where k = ∂qh4 + ∂qh1∂qh2/(2 gcd(∂qh1, ∂qh2)) and ` = ∂qh3. 2

7. The linearised Cauchy–Riemann operator

The aim of this section is to prove the following theorem.

Theorem 7.1. If A ∈ H2(K;Z) is a non-zero homology class with A13 = A23, A14 = A24 then
M1,1(W,A) is clean (see Definition 2.14). Moreover, if h : R2

→ n is a reduced homomorphism
(i.e. ∂pha = 0) with [h] = A and ∂ph3 = 0 (which happens if and only if A13 = 0) then there is a
nonvanishing section of the obstruction bundle over the moduli spaceM1,1(W, [h]SL) and hence
these holomorphic tori do not contribute to the Gromov–Witten invariant in the class A.

By Lemma 4.17, we may always assume that h is reduced.
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7.1 The setup for Fredholm theory
Fix a homomorphism ρ : Z2

→ Γ. LetW 1,`
ρ (R2, n) be theW 1,`-completion of the space of smooth

maps w : R2
→ n which are ρ-equivariant in the sense that

exp(w(γ + z)) = ρ(γ) exp(w(z)) for all γ ∈ Z2.

Then B := W ×H ×W 1,`
ρ (R2, n) is a Banach manifold whose tangent space at (ψ, τ, w) is the

vector space
TψW ⊕ TτH⊕W 1,`

ρ (R2, w∗Tn)

where the subscript ρ denotes equivariant sections. Define the Banach bundle E over B whose
fibre over (ψ, τ, w) is the L`-completion of

Ω0,1
ψ,τ,ρ(R

2, w∗Tn)

where Ω
(0,1)
ψ,τ,ρ(R

2, w∗Tn) denotes the space of smooth ρ-equivariant one-forms on R2 with values
in w∗Tn which are anticomplex with respect to the almost complex structures (jτ , w

∗ψ). The
∂-operator

∂(ψ, τ, w) = ψ(∂aw − 1
2 [w, ∂aw])− ∂bw + 1

2 [w, ∂bw]

gives a section of this bundle whose zero-set comprises the logarithms of tori Z2\R2
→ K in the

given homotopy class which are (jτ , Jψ)-holomorphic for some ψ ∈W and some τ ∈ H.
The first aim is to understand the kernel of the linearised ∂-operator.

Proposition 7.2. The linearised ∂-operator at a pseudoholomorphic torus (ψ, τ, w) is an
operator

D(ψ,τ,w)∂ : TψW ⊕ TτH⊕W 1,`
ρ (R2, w∗Tn) → L`Ω

(0,1)
ψ,τ,ρ(R

2, w∗Tn).

If we define D(α, η, ξ) := D(ψ,τ,w)∂(α, η, ξ)(∂a) (which determines the whole operator D∂ since
this takes values in (0, 1)-forms) then D is given by

D(α, η, ξ) = ψ∂aξ − ∂bξ + α

(
∂aw −

1

2
[w, ∂aw]

)
+

1

τ2
(η1∂aw + η2∂bw)

− 1

2
ψ([ξ, ∂aw] + [w, ∂aξ]) +

1

2
([ξ, ∂bw] + [w, ∂bξ]). (7.3)

Proof. The equation to be linearised is

∂(ψ, τ, w) = ψ(∂aw − 1
2 [w, ∂aw])− ∂bw + 1

2 [w, ∂bw].

The only nonobvious part of the computation is the effect of an infinitesimal variation η of τ :

D(0, η, 0) =
1

τ2
(η1∂aw + η2∂bw).

To see this, recall that in the coordinates (a, b) the complex structure is simply ji = Φτ jτΦ−1
τ . If

η is an infinitesimal variation of τ then the infinitesimal variation of ji is computed with respect
to the same coordinates (a, b) by

δηji = ΦτδηjτΦ−1
τ

since Φτ is just a change of coordinate matrix and hence is not affected by the variation. We
compute

δηji = ΦτδηjτΦ−1
τ =

1

τ2

(
−η1 −η2

−η2 η1

)
. 2
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7.2 Equivariance
We now examine more carefully the equivariance condition

exp(w(γ + z)) = ρ(γ) exp(w(z)) for all γ ∈ Z2

and its linearisation. By the Baker–Campbell–Hausdorff formula we have

w(γ + z) = log ρ(γ) + w(z) + 1
2 [log ρ(γ), w(z)].

If ξ is an infinitesimal deformation of w as an equivariant map then

ξ(γ + z) = ξ(z) + 1
2 [log ρ(γ), ξ(z)].

In particular we see that ξa is Z2-invariant and hence bounded. The combination ξz − 1
2 [w, ξa] is

also Z2-invariant:

ξz(γ + z)− 1
2 [w(γ + z), ξa(γ + z)] = ξz(z) + 1

2 [log ρ(γ), ξa(z)]− 1
2 [log ρ(γ) + w(z), ξa(z)]

= ξz(z)− 1
2 [w(z), ξa(z)].

7.3 Regularity and obstructions
Remember that w = h+C+ 1

2 [h,C] where h is a Lie algebra homomorphism and C is a constant
(in particular, second derivatives of w vanish). Cross-differentiating

D(α, η, ξ) = 0

using (7.3) we get

0 = ψ∂2
aξ − ∂a∂bξ − 1

2ψ[wa, ∂
2
aξa] + 1

2([∂[aξa, ∂b]wa] + [wa, ∂a∂bξa])

0 = ψ∂a∂bξ − ∂2
b ξ + 1

2ψ([∂[aξa, ∂b]wa]− [wa, ∂a∂bξa]) + 1
2 [wa, ∂

2
b ξa] + 1

2α([∂aw, ∂bw]).

Since h is a homomorphism from an abelian Lie algebra,

[∂aw, ∂bw] = [∂ah, ∂bh] = 0.

The equations then give
∆ξ − 1

2 [wa,∆ξa]− ψ[∂[aξa, ∂b]wa] = 0.

The a- and z-parts of this equation are

∆ξa = ψ[∂aξa, ∂bwa]

∆ξz = 1
2 [wa,∆ξa].

Proposition 7.4. Suppose that ψ ∈ W and that w = h + C + 1
2 [h,C] is the logarithm of a

(jτ , Jψ)-holomorphic curve in K with linearised Cauchy–Riemann operator D. Then, if
D(α, η, ξ) = 0 then ξa and ξz − 1

2 [w, ξa] are constant.

Proof. Split the Lie algebra n as in the proof of Proposition 4.1 into b ⊕ [n, n] ⊕ ψ[n, n]. We see
that

∆ξb = 0

and ξb, being periodic, is constant. Next,

∆ξq = ψ[∂aξq, ∂bwb],

which is a linear elliptic equation with constant coefficients for the single bounded quantity ξq,
which is therefore constant. Finally,

∆ξp = 1
2 [wb,∆ξq] = 0

and so ξp − 1
2 [w, ξa] is harmonic and bounded. 2
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To prove Theorem 7.1 we compute the kernel of D and then compare with the computation
of the tangent spaces of the moduli space in Corollary 5.14. By Lemma 4.17, we assume without
loss of generality that ∂pha = 0. Taking the a-part of the linearised equation and using the facts
that

α(z) ⊂ a α(a) ⊂ z

∂aξa = 0 ∂bξa = 0

∂aξz = 1
2([∂awa, ξa] + [wa, ∂aξa]) ∂bξz = 1

2([∂bwa, ξa] + [wa, ∂bξa])

= 0 = 1
2 [∂bha, ξa]

we get
0 = α(∂ahz) +

η2

τ2
∂bha

and for the z-part we get

0 =−∂bξz +
1

2
[ξa, ∂bha] +

1

τ2
(η1∂ahz + η2(∂bw)z)

= [ξa, ∂bha] +
1

τ2
(η1∂ahz + η2(∂bw)z).

Lemma 7.5. We describe the kernel ofD. IfD(α, η, ξ) = 0 then the vector ξz− 1
2 [w, ξa] is arbitrary,

η2 = 0 and α = 0. Moreover:

(a) if ∂ph3 6= 0 then η1 = 0 and ξ ∈ ker[∂bha, ·];
(b) if ∂ph3 = 0 then η1 is arbitrary and ξa satisfies

[ξa, ∂qha] + η1∂ahz = 0.

Proof. To see η2 = 0, recall from (5.5) that ψ∂ahz = ∂bha, so if

α = r

(
−sin θ −cos θ

cos θ −sin θ

)
∈ TW

then

r

(
−sin θ −cos θ

cos θ −sin θ

)(
∂ph3

∂ph4

)
= −η2

τ2
r

(
cos θ −sin θ

sin θ cos θ

)(
∂ph3

∂ph4

)
.

Multiplying by Ψ−1
θ on the left tells us that

(∂ph3
∂ph4

)
is a real eigenvector of

(
0 −1
1 0

)
unless r = η2 = 0.

Since this matrix has only imaginary eigenvalues this is impossible.
The z-part of the equation now becomes

[ξa, ∂bha] +
η1

τ2
∂ahz = 0.

Recall from Lemma 5.4 that ∂bhz = [Ca, ∂bha] so that ∂bh3 = 0 (the t-direction is orthogonal to
the commutator). Since w3 = h3 + C3 and n3 ⊥ [n, n], we see that if ∂ph3 6= 0 then η1 = 0. The
rest is now clear by inspection. 2

By comparing with Corollary 5.14 and Lemma 5.15 we see that the kernel of D is equal to
the tangent space of the moduli space, proving the cleanliness claimed in Theorem 7.1.

From the expected and actual dimension formulae for the moduli spaces we see that the
moduli spaces of pseudoholomorphic tori are regular if and only if ∂ph3 6= 0. We will now write
down sections of the obstruction bundles for each moduli space which is not regular. Since a fibre
of the obstruction bundle is a space of (0, 1)-forms, it suffices to specify the value of a section σ
on the vector ∂a.

2242

https://doi.org/10.1112/S0010437X15007460 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007460


Pseudoholomorphic tori in Kodaira–Thurston

Lemma 7.6. The section σ(∂a) = n3 is a nowhere-vanishing section of the obstruction bundle
over moduli spaces h1 6≡ 0, ∂ph3 = 0.

Proof. Since ∂ph3 = 0 and ∂qh3− τ1∂ph3 = 0 we see that in this case ∂qh3 = 0 as well. If (α, η, ξ)
is an infinitesimal variation then we show that∫

D(ψ,τ,w)∂(α, η, ξ)(∂a) · σ(∂a) dvol = 0

by examining the contributions from the three parts separately.
First, since α(∂ahz) ∈ a, it is obviously orthogonal to n3 so this term vanishes. Next, the

integrand contribution from η is

1

τ2

(
η1∂ahz + η2

(
∂bha + ∂bhz +

1

2
[∂bha, Ca]

))
· n3.

Since ∂ph3 = ∂qh3 = 0 this vanishes. Finally, the contribution from ξ is∫ (
ψ∂aξ − ∂bξ −

1

2
ψ[wa, ∂aξa] +

1

2
([ξa, ∂bha] + [wa, ∂bξa])

)
· n3 dvol .

The first two terms vanish by integrating by parts (using Γ-equivariance of ξ3, see § 7.2) since n3

is constant. The other three vanish because n3 is orthogonal to ψ[n, n] and to [n, n]. 2

This completes the proof of Theorem 7.1.

7.4 Orientations
To determine the orientations on our moduli spaces we need to write down a homotopy from
the linearised ∂-operator to its complex-linear part DC. By this we mean the part which is
complex-linear in ξ. Define

S(ξ) = 1
2([ξ, ∂bw] + [w, ∂bξ]− ψ[ξ, ∂aw]− ψ[w, ∂aξ])

and set

Dε(α, η, ξ)(∂a) = ψ∂aξ − ∂bξ + α

(
∂aw −

1

2
[w, ∂aw]

)
+

1

τ2
(η1∂aw + η2∂bw)

+S(ξ)− ε

2
(S(ξ)− ψS(ψξ)). (7.7)

This is D when ε = 0 and DC when ε = 1. We obtain (after cross-differentiating)

∆ξ = ψ[∂[aξ, ∂b]w] +
1

2
[w,∆ξ]

− ε

2
(ψ[∂[aξ, ∂b]w] + [ψ∂[aξ, ∂b]w]) +

ε

4
(ψ[w,ψ∆ξ]− [w,∆ξ]).

This gives the a and z parts

∆ξa −
(

1− ε

2

)
ψ[∂[aξa, ∂b]wa] =

ε

4
ψ[wa, ψ∆ξz] (7.8)

∆ξz +
ε

2
[ψ∂[aξz, ∂b]wa] =

2− ε
4

[w,∆ξa]. (7.9)
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If we define Q = ξz − 1
2 [w, ξa] then

∂Q= ∂ξz − 1
2 [∂w, ξa]− 1

2 [w, ∂ξa]

∆Q= ∆ξz − [∂awa, ∂aξa]− [∂bwa, ∂bξa]− 1
2 [wa,∆ξa].

The left-hand side of (7.8) is bounded. The right-hand side can be rewritten as

ε

4
ψ

[
wa, ψ

(
∆Q+ [∂awa, ∂aξa] + [∂bwa, ∂bξa] +

1

2
[wa,∆ξa]

)]
,

which is a sum of terms which are linear or quadratic in a and b; in particular, it is unbounded
unless the coefficients vanish and hence the whole right-hand side is zero. Equation (7.8) therefore
reduces to a linear elliptic equation which (up to the factor of 1−ε/2) we have dealt with before. In
particular, we deduce that ξa is constant. Equation (7.9) now reduces to a linear elliptic equation
which we have dealt with before and we deduce that Q is constant.

Returning to the original (7.7), and bearing in mind that ξa and ξz − 1
2 [w, ξa] are constant,

we have a- and z-components

0 = α(∂ahz) +
η2

τ2
∂bha +

ε

4
ψ

[
ψ

(
ξz −

1

2
[w, ξa]

)
, ∂bw

]
0 =

(
1− ε

4

)
[ξa, ∂bw] +

1

τ2
(η1∂ahz + η2(∂bw)z).

Lemma 7.10. When ∂ph3 6= 0, the space of solutions to this equation is three-dimensional.
Explicitly, if we write α = r

(−sin θ −cos θ
cos θ −sin θ

)
, the solutions are

ξa = 0, Q = ∂ahz, r = 0, η = 0, (S1)
ξa = ∂bha, Q = 0, r = 0, η = 0 (S2)

and

ξa = −
∂ph4C[2∂bh1]

2(1− ε/4)|∂bha|2
(
−∂bh2

∂bh1

)
, r = ∂ph3

Q =
4

ε

(
cos θ −sin θ

sin θ cos θ

)(
∂qh4

−∂qh3

)
, η = i∂ph4τ2. (S3)

Proof. The second solution is obvious; the first follows from (5.5) and (7.8); the third follows
from (5.6) and (7.9) and the fact that

[−∂bh2n1 + ∂bh1n2, ∂bh1n1 + ∂bh2n2] = |∂bha|2n4. 2

The canonical orientation is now given by picking the oriented basis (S1), (S2) (which are
related by ψ, thanks to (5.5)) and (S1) in that order. When we enumerate the tori we will be able
to assume after an SL(2,Z)-transformation that ∂ph3 > 0 so (S1) is positively oriented relative
to the base W . We rescale (S1) by ε and let ε tend to zero. Solution (S1) becomes

ξa = 0, Q = 4

(
cos θ −sin θ

sin θ cos θ

)(
∂qh4

−∂qh3

)
, r = 0, η = 0.

Note that by (5.5), (
cos θ −sin θ

sin θ cos θ

)(
∂qh4

−∂qh3

)
=

(
∂ph4

−∂ph3

)
.
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By Corollary 5.14 and Lemma 5.12 we know that the unparametrised moduli space M(W,A),
consisting of curves HeC0+D, admits a reparametrisation action which one can use to ensure that
the (S1) and (S2) components of D vanish so that

D = λ


0

0

∂ph4

−∂ph3

 .

The moduli spaceM1,1(W,A) therefore consists of triples (HeC0+D(λ), p, q) with (p, q) ∈ T 2. We
have shown that the orientation on the moduli space is precisely the one given by the three-form
dλ ∧ dp ∧ dq.

8. Enumeration of tori in K

The aim of this section is to compute the Gromov–Witten invariant in a non-zero homology class
A =

∑
AijEij . By Lemma 4.14 we can transform this homology class by an automorphism ϕ of

Γ to a class ϕ∗A = [m,m, n, n] where m = gcd(A13, A23) and n = gcd(A14, A24). Equation (4.6)
implies that

ϕ∗GW1,1(W,A) = GW1,1(W,ϕ∗A),

so without loss of generality we can assume that A = [m,m, n, n] for the sake of computing its
Gromov–Witten invariants.

For such a class, Theorem 7.1 tells us that:

(a) if m = 0 then the Gromov–Witten invariant vanishes;
(b) if m 6= 0 then the moduli spaceM1,1(W,A) is regular.

We therefore consider only the case m 6= 0. By Lemma 5.3,

M1,1(W,A) =Mful(W,A)×T 2 T 2,

which is a union over all fully reduced homomorphisms ρ with [ρ] = A of

Mρ(W )×T 2 T 2.

In terms of the Lie algebra homomorphism h : R2
→ n (the logarithm of the unique homomorphic

extension H : R2
→ N of ρ), the fully reduced homomorphisms have the matrix form


∂ph1 ∂qh1

∂ph2 ∂qh2

∂ph3 ∂qh3

∂ph4 ∂qh4

 =



0 −sgn(m)d

0 −sgn(m)d

|m|
d

∂qh3

− n

sgn(m)d
∂qh4

 ,

where d is a positive divisor of gcd(m,n), ∂qh3 ∈ Z, 0 6 ∂qh3 < |m|/d and ∂qh4 + 1
2∂qh1∂qh2 ∈ Z.

We can now use the concrete description of the moduli space given in Corollary 5.14 and its
orientation as given in § 7.4 to describe the evaluation cycle. The moduli space consists of maps

2245

https://doi.org/10.1112/S0010437X15007460 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007460


J. D. Evans and J. Kędra

HeC0+D(λ) where H = exp(h) and

D(λ) = λ


0

0

∂ph4

−∂ph3

 , C0 =


0

∂qh4 − τ1∂ph4

∂qh1

0

0

 , λ ∈
[
0,

1

gcd(∂ph3, ∂ph4)

]
.

Note that h determines τ1 and hence also C0. For a Lie algebra homomorphism h and a real
number λ we denote by u(λ, h) : T 2

→ K the curve represented by

HeC0+D(λ) : R2
→ N.

Lemma 8.1. Let k ∈ Z and let ρ : Z2
→ Γ be a reduced homomorphism with underlying Lie

algebra homomorphism h. Consider ρ′, the modified homomorphism whose underlying Lie algebra
map h′ has the same derivatives as h except for

∂qh
′
4 = ∂qh4 + k.

Then the tori u(λ, h) and u(λ, h′) are equal if and only if k ∈ (∂qh1)Z = dZ.

Proof. Under this change, C0 changes to C ′0 = C0 + (k/∂qh1)n2. We have

exp(h′) exp(C ′0 +D(λ)) = exp(h+ qkn4) exp

(
k

∂qh1
n2

)
exp(C0 +D(λ))

and

exp(h+ qkn4) exp

(
k

∂qh1
n2

)
= exp

(
h+ qkn4 +

k

∂qh1
n2 −

1

2
qkn4

)
= exp

(
h+

k

∂qh1
n2 +

1

2
qkn4

)
= exp

(
k

∂qh1
n2

)
exp(h)

and this agrees with exp(h) modulo the right action of Γ if and only if ∂qh1 divides k. 2

Corollary 8.2. Let A = [m,m, n, n] ∈ H2(K;Z) be a homology class with m 6= 0. For each
divisor d of gcd(m,n) there are |m|/d values of ∂qh3 and d values of ∂qh4 giving distinct tori and
henceM1,1(W,A) has |m|σ0(gcd(m,n)) components. 2

We need to calculate the homology class of the evaluation cycle for each of these components.
For simplicity, we first ignore the equivalence relation (u, z) ∼ (u ◦ ϕ−1, ϕ(z)) for ϕ ∈ Aut(u)
mentioned in Corollary 5.14; this means we are passing to an |Aut(u)|-sheeted cover of the moduli
space which we write as M′1,1(W,A). We will later divide out by the size of the automorphism
group to compensate for this.

Using the coordinates (λ, p, q) 7→ (HeC0+D(λ), p + iq) on M′1,1(W,A), the evaluation map
sends (λ, p, q) to


1 q∂qh2 +

∂qh4 − τ1∂ph4

∂qh1
R 0

0 1 q∂qh1 0

0 0 1 0

0 0 0 λ∂ph4 + p∂ph3 + q∂qh3

 , ψ

 ∈ K ×W,
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where ψ is the unique complex structure for which HeC0+D(λ) is (jτ , Jψ)-holomorphic,

R = −λ∂ph3 + p∂ph4 + q∂qh4 + 1
2q

2∂qh1∂qh2

and λ ∈ [0, d/gcd(m,n)]. Since ψ is determined by the derivatives of the Lie algebra
homomorphism h, see (5.8), it is constant over each component of the moduli space and the
evaluation map can be thought of as a three-cycle in K. This cycle represents the three-
dimensional homology class

−(∂qh1E134 + ∂qh2E234)
|∂phz|2

gcd(∂ph3, ∂ph4)
= sgn(m)

m2 + n2

gcd(m,n)
(E134 + E234)

as we can see by integrating the forms eijk pulled back along the map exp(h+ C + 1
2 [h,C]).

As we remarked above, we are currently overcounting because we have not divided out by
the equivalence relation (u, z) ∼ (u ◦ ϕ−1, ϕ(z)) for ϕ ∈ Aut(u). By Lemma 6.1, if we write
k = ∂qh4 + ∂qh1∂qh2/2 gcd(∂qh1, ∂qh2) and ` = ∂qh3 then the torus corresponding to the choice
of d dividing gcd(m,n), 0 < k 6 d and 0 < ` 6 |m|/d contributes

1

gcd(gcd(m,n),mk + n`)
.

This gives an factor of

(†) =
∑

d|gcd(m,n)

d∑
k=1

|m|/d∑
`=1

1

gcd(gcd(m,n), (mk + n`)/d)
.

Lemma 8.3. The following equality holds:

∑
d|gcd(m,n)

d∑
k=1

|m|/d∑
`=1

1

gcd(gcd(m,n), (mk + n`)/d)
=

|m|
gcd(m,n)2

∑
d|gcd(m,n)

d2.

Before we prove this lemma we give the formula for the one-point Gromov–Witten invariant
GW1,1(W,A) when A = [m,m, n, n]:

m(m2 + n2)σ2(gcd(m,n))

gcd(m,n)3
(E134 + E234)⊗ [?] ∈ H3(K ×W ;Z).

We now ignore the [?] factor. Pushing this result forward using (4.6) allows us to compute the
Gromov–Witten invariant GW1,1(W,A) for A = [ma,mb, na, nb] where gcd(a, b) = 1:

GW1,1(W,A) =
(m2 + n2)σ2(gcd(m,n))

gcd(m,n)3
(maE134 +mbE234). (8.4)

This proves Theorem 1.2. 2

Proof of Lemma 8.3. For convenience, define µ = gcd(m,n), m̄ = |m|/µ, n̄ = n/µ and λ =
m̄k + n̄`. We have

1

gcd(gcd(m,n), (mk + n`)/d)
=

d/µ

gcd(d, sgn(m)m̄k + n̄`)
.
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We convert the sum over k into a sum over λ:
d∑

k=1

1

gcd(d, sgn(m)m̄k + n̄`)
=

d∑
λ=1

#{k : sgn(m)m̄k + n̄` ≡ λ mod d}
gcd(d, λ)

=

d∑
λ=1

gcd(m̄, d)

gcd(d, λ)
if(gcd(m̄, d) | λ− n̄`)

where if(X) is the Boolean function taking the value 1 if X is true and 0 otherwise. To get this
line we use the fact that a linear congruence ax = y mod d has gcd(a, d) solutions modulo d if
gcd(a, d) | y and none otherwise. Now perform the sum over `:

|m|/d∑
`=1

if(gcd(m̄, d) | λ− n̄`) =
|m|

d gcd(m̄, d)

=
m̄

gcd(m̄, d)

µ

d

since λ − n̄` ≡ 0 mod gcd(m̄, d) has a unique solution modulo gcd(m̄, d), since gcd(m̄, n̄) = 1,
and hence |m|/d gcd(m̄, d) solutions in {1, . . . , |m|/d}. Substituting this back into the full formula
gives

(†) =
∑
d|µ

d∑
λ=1

gcd(m̄, d)

gcd(d, λ)

d

µ

m̄

gcd(m̄, d)

µ

d

=
∑
d|µ

d∑
λ=1

m̄

gcd(d, λ)

=
|m|

gcd(m,n)2

∑
d|gcd(m,n)

d2

where in the last line we have used Cesàro’s formula∑
d|n

d∑
i=1

f(gcd(i, d)) =
∑
d|n

f

(
n

d

)
d,

valid for any arithmetic function f : this follows from [Dic52, p. 129] and the elementary properties
of Dirichlet convolutions. 2
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