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We study the behaviour of a particle bed immersed in water when a flow generated by
an oscillating plate is induced above it. We first consider a rigid plate submerged and
oscillated over a particle bed. During upward motion of the plate, a portion of the bed
fails, allowing particle displacement, and the bed surface to deform into a heap. We have
already determined the flow of the fluid above and within the bed. This work describes
the particle motion within the failed region of the bed: when the particles are mobile,
they follow the fluid. We depth average the balance of mass and obtain an evolution
equation for the displacement of the bed surface. We solve this equation and compare
the predictions with the measurements of surface displacement in earlier experiments on
rigid square plates. We carry out new experiments to measure the surface displacements
under elongated plates. Elongated rigid plates behave similarly to the rigid square ones.
Flexible plates produce multiple heaps. We determine that the peaks of these heaps are
correlated with the flexural modes of the plates and occur at points along the bed at
which the fluid pressure has its extreme values. Different plate flexural modes, resulting in
different numbers of heaps, are produced by driving the plate at different frequencies. The
particle motion within the bed and heap evolution under a flexible plate can be roughly
described by regarding it as two or more rigid plates. We test the predictions of the theory
against experiments.

Key words: particle/fluid flow, wet granular material, sediment transport

1. Introduction

Geometric features on the surface of a submerged particle bed, such as ripples and dunes,
are often due to shear forces applied by the fluid to the bed. Early studies by Shields
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(Shields 1936) related the strength of a turbulent shearing flow to the onset of the particle
motions that are responsible for such features. Charru, Andreotti & Claudin (2013) review
the mechanisms that control the emergence and development of such bedforms.

Less common are features that develop in the absence of shear (Houssais, Maldarelli
& Morris 2021). Johnson & Cowen (2020) describe the development of ripples on the
surface of a particle bed that are provoked by an array of distant turbulent jets that fire
randomly. La Ragione et al. (2019) and Laurent et al. (2022) consider a simpler system of
a submerged rigid plate oscillating above a particle bed and observe the slow formation
of a single heap beneath the plate. They relate the heap formation to the fluidization of
a region of the bed below the plate during its upward motion and the resulting creep of
particles being dragged by the fluid in each half-cycle.

Failure and fluidization of particle beds due to pressure gradients is associated with
avalanche fronts (Louge, Carroll & Turnbull 2011; Carroll, Turnbull & Louge 2012;
Carroll, Louge & Turnbull 2013), marine structures (Sumer 2014), surface waves (Liu
& Lara 2007) and internal waves (Rivera-Rosario, Diamessis & Jenkins 2017). Vertical
pressure gradients within a horizontal bed produce a vertical force on the particles in the
bed. When this vertical force is large enough, it can lift the particles near the surface of the
bed and so cause bed failure. This type of failure can lead to the development of bedforms.

Oscillatory forcing in the form of vibrations is also known to have a fluidizing influence
in systems of dry grains (Marchal, Smirani & Choplin 2009; Marchal et al. 2013) and
particle suspensions (Hanotin et al. 2012, 2015). Oscillatory motion of the grains is
analogous to thermal motions in Brownian or molecular systems, and it is possible to
relate the macroscopic rheological properties and the diffusional properties of the medium
at the grain scale (Hanotin et al. 2013). In our system, the grains, driven by oscillations
in the fluid, experience small local rearrangements that permit the slow global deformation
of the bed and the growth of the heap. This behaviour is similar to the creep deformation
seen in aggregates of dense, dry, frictional grains (Dijksman et al. 2011; van Hecke
2015), except it is driven by pressure, rather than shear forces. It is analogous to creep
phenomena that are present in many natural systems (Houssais et al. 2015; Ferdowsi,
Ortiz & Jerolmack 2018; Jerolmack & Daniels 2018; Deshpande et al. 2021; Deshpande,
Arratia & Jerolmack 2023).

The analysis of La Ragione et al. (2019) was based on the hypotheses that the flow in
the clear fluid above the bed is approximately inviscid, the flow within the particle bed
is described by Darcy’s law and the amplitude of the heap is small with respect to the
plate half-width. The flows above and below the bed surface are coupled by the pressure in
excess of the hydrostatic distribution. The analysis was confined to the prediction of bed
failure based upon the description of the fluid motion within the bed. Bed failure takes
place when the vertical pressure gradient in the fluid is equal to the buoyant weight of the
particles. This occurs during the upward motion of the plate. To determine the subsequent
evolution of the heap, an analytical description of the particle motion within the bed is
required.

A first attempt to characterize the heap evolution was made by Laurent et al. (2022)
using dimensional analysis. In the present work, we undertake a more detailed description
of the particle motion within the bed. The balance of momentum for the particles, used
with a simple model of particle interaction, leads to the conclusion that the resistance of
the particles is small and, when the particles are mobile, they follow the fluid. Given the
fluid pressure distribution within the bed from previous work, the components of the fluid
velocity can be calculated. This permits phrasing of the balance of mass for the particles
and averaging it over the depth of the particle flow to obtain an equation of evolution for the
displacement of the surface of the bed. We solve this equation and compare the predictions
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with the measurements of surface displacement in earlier experiments on a square plate.
When normalized by the maximum height, the profiles collapse in the same way as those
measured by Laurent et al. (2022).

We then describe experiments to measure the surface displacements under elongated
rigid and flexible plates. We first investigate the possibility that a single heap under a long,
rigid plate may become unstable and evolve into multiple heaps. However, we find that this
does not occur. We explore the importance of the flexibility and aspect ratio of the plate
on the pressure distribution and morphology of the bed beneath it. Long, flexible plates
induce multiple heaps. We indicate how the length of the plate and its vibrational modes
influence the number of heaps on the bed. We compare the evolution predicted by the
model with that observed in the experiments. The evolution of the heaps, the maximum
heap amplitudes and the number of oscillations required to reach such amplitudes in the
experiments are rather well predicted by the model.

The theoretical model seems to catch the basic particle dynamics, which consists of a
bed liquefaction phase while the plate moves upwards and the fluid/particle trajectories
converge towards the place centre, and a compaction phase, where particles keep their
position. In the context of a simple model that incorporates this, the particle-response
time scale is identified. Because the plate transfers momentum to the particle bed through
the fluid pressure, if the plate is flexible, it is possible to modulate the heap shape by
varying the oscillation frequency; this, in turn, excites different flexural modes of the
plate, creates different pressure profiles on the surface of the bed and provokes heaps in
response to the different distributions. We compare the evolution predicted by the model
with that observed in the experiments. We assume that the heap stops growing when a
local value of the slope reaches the angle of repose of the material. The evolution of the
heaps, the maximum heap amplitudes and the number of oscillations required to reach
such amplitudes in the experiments are rather well predicted by the model.

2. Particle motion

Previous modelling of the mechanics of heap formation focused on the motion of the
fluid above and within the bed under a two-dimensional periodic array of rigid plates of
half-width W oscillating with amplitude A and frequency f at a mean distance H above a
particle bed (La Ragione et al. 2019). The origin of a Cartesian reference frame is placed
at the bed surface elevation which is initially horizontal, see figure 1.

The inviscid flow equations were solved above the bed for a fluid of mass density ρf
to provide the pressure distribution in the fluid at the surface of the bed. This pressure
distribution was then employed as a boundary condition for Darcy’s equation, assumed to
govern the fluid flow within the bed.

The lowest Fourier component of the solution of this equation was taken to be the
dynamic pressure, p′, of the fluid above hydrostatic within the bed

p′(x, y, t) = 64
π
ρf AWf 2 W

H
exp

((π

2
y
W

))
cos

(π

2
x
W

)
sin(2πft). (2.1)

We focus here on the bed, y ≤ 0, and the region under the plate from its centre to its edge,
0 ≤ x ≤ W. At positions and times at which the gradient exceeded the buoyant weight of
the particles, the bed was considered to fail. Data on the initiation of heap formation in the
experiments of La Ragione et al. (2019) and Laurent et al. (2022) confirmed this scaling.
Also, the components of the fluid velocity are proportional to the spatial gradient of this
pressure.

993 A16-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.705


A. Prati, M. Larcher, J.T. Jenkins and L. La Ragione
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Figure 1. The experimental set-up with the Cartesian reference at the top of the bed under the plate.

When the bed fails, the particles become mobile, experience the drag of the fluid and
interact through the narrow layers of fluid that surround them. In this work, we focus on
mobile particles, employ mass and momentum balances that include particle stresses due
to the particle interactions and derive and solve an equation for the evolution of the height
of the heap. As a further simplification, we assume that, while the particles are mobile, the
fluid pressure is at its largest negative value

p′ = −64
π
ρf f 2WA

W
H

exp
((π

2
y
W

))
cos

(π

2
x
W

)
. (2.2)

In order to understand how particles move to create a heap, we consider first the particle
mass balance

W
Af τ

∂c
∂ t̃

+ ∂(cŨ)
∂ x̃

+ ∂(cṼ)
∂ ỹ

= 0, (2.3)

in which c is the particle concentration, x̃ = x/W and ỹ = y/W are the dimensionless
coordinates of a point in the bed, τ is the characteristic time used to create the
dimensionless time t̃ and Ũ = U/(Af ) and Ṽ = V/(Af ) are the dimensionless particle
velocities along x and y. We defer providing the definition of τ until after we depth average
(2.3). During the upward motion of the plate there is a local expansion of the bed that
permits particles to move inward and upward while, during the downward motion of the
plate, particles do not move. That is, there is a reversible motion of the fluid associated with
the oscillation of the plate that is not shared by the particles. In Appendix A, we show that,
in the upward motion of the plate, the particle velocity and fluid velocity are essentially the
same. The velocities become closer as the permeability of the bed, κ , decreases. Provided
that, when the particles are mobile, the fluid and the particle velocities coincide, we
can combine (2.1) with Darcy’s law U = −κ/(ρf νf )∂p′/∂x and V = −κ/(ρf νf )∂p′/∂y,
in which νf is the kinematic viscosity of the water, and obtain

Ũ = −32
κ

νf
f

W
H

exp
(π

2
ỹ
)

sin
(π

2
x̃
)

(2.4)
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and

Ṽ = 32
κ

νf
f

W
H

exp
(π

2
ỹ
)

cos
(π

2
x̃
)
. (2.5)

We are interested to the evolution of the height, h, of the evolving heap, so we integrate
the particle mass balance over a rough estimate of the fluidized region

∫ h̃(x̃,ỹ,t̃)

−1

[
W

Af τ
∂c
∂ t̃

+ ∂(cŨ)
∂ x̃

+ ∂(cṼ)
∂ ỹ

]
dỹ = 0, (2.6)

where h̃ = h/W. We apply Leibniz’s rule, ignore terms at ỹ = −1 and use the kinematic
boundary condition (

∂ h̃
∂ t̃

)
h̃

+
(

Ũ
∂ h̃
∂ x̃

)
h̃

− (Ṽ)h̃ = 0, (2.7)

to obtain

W
Af τ

c̄
∂ h̃
∂ t̃

+ (1 + h̃)c̄
∂Ũ
∂ x̃

+ cŨ
∂ h̃
∂ x̃

= 0, (2.8)

where we have introduced the depth average of a typical quantity ψ

ψ̄ = 1

1 + h̃

∫ h̃

−1
ψ dỹ, (2.9)

and neglected the variation of the average concentration, c̄, with time and space.
Upon taking the depth average of the velocity Ũ (see (2.4)), (2.8) becomes

∂ h̃
∂ t̃

− 2
π

exp((πh̃/2)) sin
(π

2
x̃
) ∂ h̃
∂ x̃

= exp((πh̃/2)) cos
(π

2
x̃
)
, (2.10)

where we have neglected h̃ compared with 1 and taken the characteristic time

τ = Hνf

32κf 2A
. (2.11)

With this definition of τ , the prefactor of the first term in (2.8) is R̃ = 32(W/H)(κ/μf )ρf f .
Because it also appears as a prefactor in (2.4) and (2.5) for the velocities, it is absent
from (2.10). However, t̃ = t/τ ; so t̃ = (A/W)R̃tf . Consequently, t̃ and R̃ are related. The
parameter (A/W)R̃ is the ratio of the flow forcing to the flow resistance. In the present
study, it is of the order of 10−5.

The solution of the partial differential in (2.10) is obtained using the method of
characteristics, under the hypothesis that for small h̃, exp(πh̃/2) ∼ 1

h̃ = ln

⎡
⎢⎣ 2 et̃

1 + e2t̃ + (1 − e2t̃) cos
(π

2
x̃
)
⎤
⎥⎦ . (2.12)

In figure 2(a), we show profiles of height vs distance from the centre, both normalized by
the half-width of the plate, for equal intervals of dimensionless time. The calculation is
stopped at a normalized height of approximately 0.1, based on the angle of repose. At this
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Figure 2. (a) The evolution of heap height at different dimensionless times; (b) the evolution normalized by
the centre height.

height, the slope at some point on the heap, calculated from (2.12), first exceeds the tangent
of the angle of repose, when this angle is approximately 17◦ (Zhou et al. 2002). This
defines a regime in which the evolution of the heap occurs without localized avalanches
and the associated loss of material. In figure 2(b), we show these profiles, divided by
the height at the centre; they collapse in a way similar to the data plotted by Laurent et al.
(2022). We later compare the predictions of (2.12) with the results of experiments focusing
on this part of the heap formation.

3. Experiment

We next describe new experiments to study the variation of the bed morphology when a
pressure distribution is induced by elongated plates. The experimental set-up is sketched
in figure 1. It consists of a transparent tank that contains the particle bed, composed of
glass beads with a mean diameter dp = 0.71 mm, with particle sizes between 0.4 and
0.8 mm, and density ρs = 2.7 gr cm−3. Submerged above the bed, a plate, with a thickness
Hplate, is connected by a steel rod to a Bruel and Kjaer Mini-shaker Type 4810 and
oscillated. The maximum power of the shaker is 15 Watts and the maximum force provided
ranges between 10 and 7 N, depending on the frequency. A Bruel and Kjaer Miniature
Hydrophone, Type 8103 is used to measure the water pressure above the bed.

In figure 3(a), we show the two different laser sheets used to illuminate the profiles
of the bedforms, with two IOI Flare 12M180 CoaXPress high-speed cameras to record
the evolving phenomenon. The wavelengths of the lasers are 532 nm (green) and 635 nm
(red). Two laser sources and two cameras are necessary because both the longitudinal and
the transverse profiles of the bedforms are measured at different times. We do not show
the transverse data because they do not vary. The maximum resolution of the cameras is
4095 × 3072 pixels and is adjusted for each experiment.

Two frame rates are employed, depending on the purpose of the recordings: a high frame
rate, between 250 and 600 fps, when the displacement of the plate is measured; a low
frame rate, between 0.1 and 10 fps, to track the slow bed evolution. The measurements are
not simultaneous; the first is done in light, the second is done in darkness. We measure
the displacement of points on the plate by marking them with small dots, see figure 3(b),
tracking the positions of these dots in time, and reconstructing their vertical displacements.

As the plate oscillates, the bed fails and one or more heaps form. In each frame, the
profiles of the heaps are identified using the contrast between the brightness of the laser
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(a)

(b)

Figure 3. The experimental set-up: (a) a detail of an experiment with two perpendicular laser sheets, (b) and
the hydrophone and the small white dots to monitor the plate displacements.

Rigid Plate Flexible Plate

3.5 × 17.5 cm 5 × 15 cm

Frequency (Hz) Amplitude Frequency (Hz) Amplitude

30 1.19 30 1.80
40 0.61 60 0.89
50 0.31 90 1.83

Table 1. Experimental data.

sheets and the darkness of the background. The laser illuminates the heap’s edge, allowing
the reconstruction of its growth during the experiment. Grey-scale images, taken with the
cameras, are analysed using Matlab image-processing methods. In table 1 we show the
dimensions of the plates and the amplitude and frequencies of each test. Prior to each
experiment, the bed is flattened with a metal tool designed for these tests; its lower part is
a vertical plate of the same width of the tank, while its upper part is a metal rail that rests
on the upper edge of the tank. The remaining perturbations on the bed surface are of the
order of magnitude of the particle diameter.

At the beginning of the experiment, we set the frequency, adjust the input voltage
and measure the resulting amplitude, expressed here in particle diameters. Amplitude
is used to indicate the maximum vertical displacement experienced by the plate during
each experiment and is measured for different experimental configurations; this maximum
excursion has been found at different locations along the plate. In table 1 and in the results
section, the amplitude is made dimensionless by the particle mean diameter dp.

The flexible plate used in the experiments has a thickness of 3 mm, a width of 5 cm
and a length of 15 cm. In all experiments, W is always half of the longitudinal length of
the plate. The plate is made of PMMA (Poly-Methil-Metacrylate): its Young’s modulus is
E = 2.9 GPa, its Poisson coefficient is ν = 0.2 and its density is ρ = 1180 kg m−3. The
rigid plate, 3.5 cm wide and 17.5 cm long, was made stiffer by a bar glued on its upper
surface.

In all experiments, the values of H and Hwater are, respectively, 2.1 and 4.5 cm, see
figure 1. We repeated the experiments varying these parameters, but it did not influence
the number of generated heaps.
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Figure 4. (a–c) The dimensionless displacement, Dz/dp, of the plate during the test; and (d–f ) bed topography
at the end of the test (coloured dots) for the 3.5 × 17.5 cm plate at a shaker amplitude of 1.19 particle diameters
and a frequency of 30 Hz (a,d), 0.61 particle diameters and a frequency of 40 Hz (b,e) and 0.31 particle
diameters and a frequency of 50 Hz (c, f ).

4. Results

4.1. Rigid plate
The results from the first set of tests for the long rigid plate, 3.5 × 17.5 cm, are shown
in figure 4. The question here was whether the single heap under a long rigid plate
was stable, or could be provoked into evolving into multiple heaps. However, despite the
different input frequencies, the bed profiles were all of one heap. This is consistent with
the deformation of the plate shown in the first row of panels in figure 4.

Each of these plots features eight lines that connect the position, at a specific time, of the
dots drawn on the edge of the plate, as in figure 3(b). In all experiments, the measurements
are acquired over a time equal to half the oscillation period T , those at t = 0 are darkest,
those at t = T/2 are brightest. The final bed morphology is attained within approximately
two minutes. The last row of panels shows the surface of the bed at the end of the test.
In the bottom row, z = 0 mm indicates the elevation of the bed before the plate is set in
motion.

4.2. Flexible plate
In the second set of tests, we investigate how the bed morphology changes with the
frequency, using a plate with dimensions 5 × 15 cm. In figure 5 we show the bed evolution
associated, respectively, with the frequencies of 30, 60 and 90 Hz. Again, the number of
heaps is related to the pressure profiles induced by the oscillating, deformable plane.

While the first and the last rows of panels in this figure provide the same information as
in figure 4, the second row of panels in figure 5 shows, for each experiment, the maximum
and minimum pressures measured above the bed, when the hydrophone is moved at a
constant rate below the plate. The growth of the heaps under the flexible plates can be
described using the solution for the rigid plate and the appropriate pressure distributions.
That for two heaps beneath the plate employs the largest negative value

p′ = −64
π
ρf f 2W2 A

H
exp

( πy
2W

)
cos

(
π

x
W

− π

2

)
, (4.1)
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Figure 5. (a–c) The dimensionless displacement, Dz/dp, of the plate during the test; maximum and minimum
pressures measured above the bed, when the hydrophone is moved at a constant rate below the plate (d–f ) and
(g–i) bed topography at the end of the test (coloured dots) for the 5 × 15 cm plate at a shaker amplitude of 1.80
particle diameters and a frequency of 30 Hz (a,d,g), 0.89 particle diameters and a frequency of 60 Hz (b,e,h)
and 1.83 particle diameters and a frequency of 90 Hz (c, f,i).

and results in

h̃ = ln

[
2 et̃

1 + e2t̃ + (1 − e2t̃) cos(πx̃ − π/2)

]
. (4.2)

The corresponding pressure distribution for three heaps is

p′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−64
π
ρf f 2W2 A

H
exp

( πy
2W

)
cos

(
3π

2
x
W

)
, 0 ≤ x ≤ W

3

−64
π
ρf f 2W2 A

H
exp

( πy
2W

)
cos

[
3π

2

(
x
W

+ 2
3

)]
,

W
3

≤ x ≤ W,
(4.3)

with the equation of evolution

h̃ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
3

ln

[
2 et̃

1 + e2t̃ + (1 − e2t̃) cos(3πx̃/2)

]
, 0 ≤ x̃ ≤ 1

3

2
3

ln

[
2 et̃

1 + e2t̃ + (1 − e2t̃) cos[3π(x̃ + 2/3)/2]

]
,

1
3

≤ x̃ ≤ 1.

(4.4)

In figure 6 we show plots of the evolution of the heaps under the flexible plates. In
Appendix B we include an analysis of the oscillatory motion of a submerged flexible plate.
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Figure 6. Evolution of the heap under a flexible plate: (a) first mode of vibration; (b) second mode of
vibration.
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Figure 7. Evolution of normalized heap height over time: (a) long-term progression, with the initial regime as
a shadowed area; (b) comparison between theoretical prediction (solid line) and experimental results (squares)
with error bars.

5. Comparison

In this section we compare experimental data with the theoretical prediction. We first
focus on the rigid square plate, for which W = 3.75 cm. We present experimental data
illustrating the evolution of the height of the heap, measured at centre, when the plate
oscillates at f = 15 Hz with an amplitude A = 1.15 mm. In figure 7(a), we depict the
dimensionless height, h̃, plotted against the dimensionless time, t̃, over an extended
duration, assuming the bed permeability, κ = 5 × 10−8 cm2. The evolution of the heap is
characterized by two regimes: in the first, indicated by the shadowed area in figure 7(a), the
heap forms without localized avalanches, reaching approximately 60 % of its final height,
as the incline of the developing profile remains below the angle of repose; in the second,
essentially nonlinear with t̃, there is a loss mass due to localized failures on the surface of
the heap.

According to the theory, for an angle of repose for glass beads submerged in water of
approximately 17◦, t̃ ≈ 0.1 is the onset of local failure. In this regime, the mass balance
equation given by (2.3) remains valid, accounting for a tangential flux from the edges
and a normal flux from the interior, without material loss. The corresponding value of
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Figure 8. Evolution of the normalized height of the heap under flexible rectangular plate, theory (solid line)

and experimental data (squares): (a) oscillation at 60 Hz, two heaps; (b) oscillation at 90 Hz, three heaps.

the dimensionless height, h̃ given by (2.12), is compared with the experimental data
in figure 7(b), where we have also indicated error bars representing variability across
multiple tests conducted under identical conditions. We observe reasonable agreement,
albeit with some limitations. That is, our current analysis reaches its limit as the mass
balance equation fails to incorporate terms addressing mass loss.

We also compare the theory against the experimental data for an oscillating rectangular
plate at both 60 Hz with amplitude A = 0.63 mm and 90 Hz with amplitude A = 1.30 mm,
as shown in figure 8(a,b). In the former case, two distinct heaps form, see figure 5(h), and
W∗ = W/2 because we assume that the first mode of vibration of the plate is analogous to
two rigid plates with a length W; in the latter, three heaps develop, illustrated in figure 5(i),
and W∗ = W/3 because the second mode of vibration of the plate is akin to three rigid
plates, each with length W/3. The limit of the onset of local failure is t̃ = 0.09, see
figure 6(a,b). The comparison is based upon two different values of the permeability,
κ = 1.5 × 10−8 cm2 at f = 60 Hz and κ = 8 × 10−9 cm2 at f = 90 Hz. This is consistent
with previous findings showing that permeability decreases as the frequency increases
(Johnson, Koplik & Dashen 1987).

6. Conclusion

We considered aspects of the development of heaps on the surface of a particle bed under
oscillating plates. We first provided a description of particle motion within the part of
the bed in which the particles are mobilized during the upward motion of the plate.
The solution of the differential equation that results from the analysis captures at least
some of the features of the growth of heaps under rigid, square plates. The comparison
with experimental data supports what we define as the linear regime, in which there is
no material loss during the evolution of the heap. We then reported on experiments on
rectangular, rather than square, plates.

When rigid rectangular plates were oscillated at several frequencies over a bed, a single
elongated heap occurred. Instead, the oscillation of rectangular, flexible plates resulted in
multiple heaps, whose number increases with the frequency of oscillation. The shape of
the heaps was correlated with the flexural modes of the plates and, as in the case of the
rigid plates, the peaks of the heaps corresponded to the extreme values of the pressure
profiles under the plates.
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A rough prediction of the growth of the heaps under flexible plates was obtained by
regarding the flexible plates as two or more rigid plates. The growth of these heaps was
also tested against the experiments with a reasonable agreement in the linear regime. The
results emphasize the importance of the distribution of negative pressure on the surface of
the bed to the motion of the particles within the bed and to the evolution of the deformation
of its surface.
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Appendix A

We report the analysis of the fluid–particle interaction within the region of failed bed
where particles become mobile each time the plate above the bed moves upwards. We
start with fluid and particle momentum balances in which we indicate with lower case
quantities associated with the fluid and upper case quantities associated with the particles.
The kinematic viscosity of the fluid is νf while the permeability of the bed, whose
concentration is c, is κ . For the fluid we have

ρf
∂

∂t
(1 − c)ui + ρf

∂

∂xk
(1 − c)uiuk = − ∂

∂xi
(1 − c)p + ∂tik

∂xk
+ ρf (1 − c)gi − mi, (A1)

while for the particles

ρp
∂

∂t
cUi + ρp

∂

∂xk
cUiUk = − ∂

∂xi
cP + ∂Tik

∂xk
+ ρpcgi + mi, (A2)

in which the fluid–solid interaction is given in terms of m = cμ/κ(ui − Ui)+ p∂c/∂xi, ρp
and ρf are, respectively, the density of the particle and the fluid and tik is the stress for the
fluid while Tik is the stress for the particles. Given the solution for the static case of (A1)
and (A2) that results in a relation between the gradient of the average particle pressure and
the buoyant gravity ĝ = (1 − 1/σ)g with σ = ρp/ρf , and the gradient of the fluid pressure
and gravity g, the y component of the fluid and particle momentum balances reduce to

∂p
∂y

= −ρf g − c
1 − c

μ

κ
(v − V) (A3)

and

0 = −∂Pc

∂y
+ ∂S
∂x

− ρpcĝ + c
1 − c

μ

κ
(v − V), (A4)

where Pc is the collisional particle pressure. The corresponding x-component of the
particle momentum balance is

0 = −∂Pc

∂x
+ ∂S
∂y

+ c
1 − c

μ

κ
(u − U). (A5)

993 A16-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-0152-8897
https://orcid.org/0000-0003-0152-8897
https://orcid.org/0000-0002-7929-0316
https://orcid.org/0000-0002-7929-0316
https://orcid.org/0000-0002-9731-0528
https://orcid.org/0000-0002-9731-0528
https://orcid.org/0000-0002-3566-2966
https://orcid.org/0000-0002-3566-2966
https://doi.org/10.1017/jfm.2024.705


Multiple heap formation under a submerged oscillating plate

We employ particle stress associated with impulsive particle interactions, analogous to
those in dense kinetic theory (Jenkins & Larcher 2023), in which Af corresponds to the
square root of the granular temperature T1/2. The dimensionless particle stress are then

P̃c = F(c)+ F(c)
A
W

(
∂Ũ
∂ x̃

+ ∂Ṽ
∂ ỹ

)
(A6)

and

S̃ = F(c)
A
W

(
∂Ũ
∂ ỹ

+ ∂Ṽ
∂ x̃

)
, (A7)

in which the transport coefficients are identical and the lengths, velocities and stresses,
indicated by a tilde, are made dimensionless with W, fA and ρp( fA)2. The static
gravitational balance between particle pressure and gravity is

∂

∂ ỹ
F(c) = − Wĝ

( fA)2
c, (A8)

so F(c) = −Wĝ/( fA)2cỹ with P̃c( ỹ = 0) = 0. From (A4) and (A5) the dimensionless
particle velocities are

Ũ = ũ + (1 − c)ε

[
ỹ

(
∂2Ũ
∂ x̃2 − ∂2Ũ

∂ ỹ2

)
+
(
∂Ũ
∂ ỹ

+ ∂Ṽ
∂ x̃

)]
(A9)

and

Ṽ = ṽ + (1 − c)ε

[
ỹ

(
∂2Ṽ
∂ x̃2 − ∂2Ṽ

∂ ỹ2

)
+
(
∂Ũ
∂ x̃

+ ∂Ṽ
∂ ỹ

)]
, (A10)

in which

ε = σ
κ ĝ

Wf νf
. (A11)

For the typical values of the parameters in the experiment, (A11) leads to a negligible value
for ε. For example, κ ≈ 10−9 cm2, σ = 2.65, f = 40 Hz, A = 0.07 cm, W = 3.75 cm and
the water kinematic viscosity νf = 10−2 cm2 s−1. So ε ∼ ×10−6. This implies Ũ ∼ ũ and
Ṽ ∼ ṽ.

Appendix B

In this appendix, we present a simple analysis of the vibrational modes of a plate,
considering the effect of water on its natural frequencies. We approximate half of the
plate as a cantilever with a fixed edge. Due to symmetry, we assume no rotations occur at
the centre where the steel rod is placed (see figure 3a,b). The angular frequency is (Song
1986)

ωk = λk

√
EJ

m̄W4 , (B1)

with E is the Young’s modulus, W is half of the length of the plate, m̄ = Aρ is the mass
per unit length, λk is the kth coefficient associated with the kth natural modes of vibration;
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it depends on the ratio a/W, in which a is the width of the cross-section. The moment of
inertia, J, for the rectangular plate is

J = 1
12(1 − ν2)

aH3
plate, (B2)

in which Hplate is the height, so A = aHplate, and ρ is the material density. Equation (B1)
becomes

ωk = λk
Hplate

2W2

√
E

3(1 − ν2)ρ
. (B3)

We use a flexible plate with thickness Hplate = 3 mm, length 2W = 15 cm and width a =
5 cm. The material is PMMA with Young’s modulus E = 2.9 GPa, Poisson’s ration ν =
0.2 and density ρ = 1180 kg m−3. So the natural frequencies, with a/W ≈ 0.67 are f1 =
137 Hz for the first mode and f2 = 372 Hz for the second mode, with λ1 = 3.5, λ2 = 9.5
(see table 2-1 in Song 1986), assuming a beam-like behaviour.

To include the contribution of the fluid to the vibration of the plate, we must take in
account an added mass per unit length which is, according to Yadykin, Tenetov & Levin
(2003),

m∗ = ρf
ξ

π
Wa, (B4)

where ξ depends on the aspect ratio of the plate, a/W. For the rectangular plate, a/W =
5/7.5 and ξ = 1.5 for the first mode and ξ = 1.0 for the second mode (Yadykin et al.
2003). The angular frequency becomes

ωk = λk

√
EJ

(m̄ + m∗)W4 (B5)

or

ωk = λk
Hplate

2W2

√
EHplate

3(1 − ν2)(ρHplate + ξ/πρf W)
. (B6)

The new natural frequencies are f ∗
1 = 41 Hz for the first mode and f ∗

2 = 111 Hz for the
second mode. Both are close to what is seen in the experiments.
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