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BIGNESS OF THE TANGENT BUNDLE OF A FANO THREEFOLD
WITH PICARD NUMBER TWO

HOSUNG KIM , JEONG-SEOP KIM and YONGNAM LEE

Abstract. In this paper, we study the positivity property of the tangent

bundle TX of a Fano threefold X with Picard number 2. We determine the

bigness of the tangent bundle of the whole 36 deformation types. Our result

shows that TX is big if and only if (−KX)3 ≥ 34. As a corollary, we prove that

the tangent bundle is not big when X has a standard conic bundle structure

with non-empty discriminant. Our main methods are to produce irreducible

effective divisors on P(TX) constructed from the total dual VMRT associated to

a family of rational curves. Additionally, we present some criteria to determine

the bigness of TX .

§1. Introduction

Throughout this paper, we will work over the field of complex numbers. Let X be a

smooth projective variety. We say that the tangent bundle TX of X is pseudoeffective (resp.

big) if the tautological class OP(TX)(1) of the projectivized bundle P(TX) is pseudoeffective

(resp. big).

In general, it is difficult to give a numerical characterization of pseudoeffectivity or bigness

of the tangent bundle, even in low dimension with low rank of the Picard group. It has been

shown by Hsiao [6, Cor. 1.3] that the tangent bundle of a toric variety is big. Höring, Liu,

and Shao [5, Th. 1.4] give a complete answer to del Pezzo surfaces: If X is a del Pezzo

surface of degree d, then

(a) TX is pseudoeffective if and only if d≥ 4,

(b) TX is big if and only if d≥ 5.

Also in the paper [5], they solve these problems for del Pezzo threefolds. In [4], Höring and

Liu consider Fano manifolds X with Picard number one, and they prove that if X admits a

rational curve with trivial normal bundle and with big TX , then X is isomorphic to the del

Pezzo threefold of degree five. These all results indicate that assuming bigness should lead

to strong restrictions on Fano manifolds and lead us to consider naturally Fano threefolds

with Picard number 2. In this paper, we prove the following main theorem. The details are

given in Table 1 in the introduction.

Theorem 1.1. We determine the bigness of the tangent bundle TX of whole 36

deformation types of Fano threefolds X with Picard number 2. In particular, the tangent

bundle TX is big if and only if (−KX)3 ≥ 34.

We show the main theorem by using the common property of all elements in the

deformation family. Therefore, the property of bigness of TX does not depend on

deformations.
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2 H. KIM ET AL.

Table 1. The bigness of TX for Fano threefolds X with Picard number 2.

No. (−KX)3 X Big TX

1, 3, 5, 10,
16, 19

4, 8, 12, 16,
22, 26

Blow-ups of a smooth del Pezzo threefold Vi of degree i
where i= 1, 2, 3, 4

× (3.3)

2 6 A double cover of P2×P1 whose branch locus is a divisor of
bidegree (4,2)

× (5.5.1)

4 10 The blow-up of P3 with center an intersection of two cubics × (4.4)
6 12 (6.a) a divisor on P2×P2 of bidegree (2,2) (6.b) a double

cover of W whose branch locus is a member of |−KW |
× (5.4.1)

7 14 The blow-up of smooth quadric threefold Q⊆ P4 with
center an intersection of two members of |OQ(2)|

× (2.9)

8 14 A double cover of the blow-up V7 of P3 at a point whose
branch locus is a member B of |−KV7

| such that (8.a)
B∩D is smooth (8.b) B∩D is reduced but not smooth,
where D is the exceptional divisor of the blow-up V7 → P3

× (5.4.2)

9 16 The blow-up of P3 with center a curve of degree 7 and
genus 5 which is an intersection of cubics

× (5.3.2)

11 18 The blow-up of a smooth cubic threefold V3 ⊆ P4 with
center a line on it

× (5.3.1)

12 20 The blow-up of P3 with center a curve of degree 6 and
genus 3 which is an intersection of cubics

× (4.4)

13 20 The blow-up of a smooth quadric threefold Q⊆ P4 with
center a curve of degree 6 and genus 2

× (5.2.1)

14 20 The blow-up of a smooth del Pezzo threefold V5 ⊆ P6 of
degree 5 with center an elliptic curve which is an
intersection of two hyperplane sections

× (2.7)

15 22 The blow-up of P3 with center an intersection of a quadric
A and a cubic B such that (15.a) A is smooth (15.b) A is
reduced but not smooth

× (4.4)

17 24 The blow-up of a smooth quadric threefold Q⊆ P4 with
center an elliptic curve of degree 5 on it

× (4.4)

18 24 A double cover of P2×P1 whose branch locus is a divisor of
bidegree (2,2)

× (5.2.2)

20 26 The blow-up of a smooth del Pezzo threefold V5 ⊆ P6 with
center a twisted cubic on it

× (5.1.1)

21 28 The blow-up of a smooth quadric threefold Q⊆ P4 with
center a twisted quartic, a smooth rational curve of
degree 4 which spans P4, on it

× (3.7)

22 30 The blow-up of V5 ⊆ P6 with center a conic on it × (4.4)
23 30 The blow-up of a smooth quadric threefold Q⊆ P4 with

center an intersection of A ∈ |OQ(1)| and B ∈ |OQ(2)|
such that (23.a) A is smooth (23.b) A is not smooth

× (4.6)

24 30 A divisor on P2×P2 of bidegree (1,2) × (5.1.2)
25 32 The blow-up of P3 with center an elliptic curve which is an

intersection of two quadrics
× (4.4)

26 34 The blow-up of a smooth del Pezzo threefold V5 ⊆ P6 of
degree 5 with center a line on it

© (3.4)

27 38 The blow-up of P3 with center a twisted cubic © (3.5)
28 40 The blow-up of P3 with center a plane cubic © (3.5)

(Continued)
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Table 1. (Continued).

No. (−KX)3 X Big TX

29 40 The blow-up of a smooth quadric threefold Q⊆ P4 with
center a conic on it

© (4.6)

30 46 The blow-up of P3 with center a conic © (3.5)
31 46 The blow-up of a smooth quadric threefold Q⊆ P4 with

center a line on it
© (3.4)

32 48 A divisor on P2×P2 of bidegree (1,1) © (2.5)
33–36 54–62 Smooth toric varieties ©

We also note that Fano threefolds of (−KX)3 ≥ 34 (Nos. 26–36 in [13, Table 2]) have

infinite automorphism groups [17, Th. 1.2]. As a corollary, we give a complete answer for

the bigness of the tangent bundle TX when X has a standard conic bundle structure.

Corollary 1.2. Let X be a Fano threefold with Picard number 2. We suppose that X

has a standard conic bundle structure. Then TX is not big if and only if X has a standard

conic bundle structure with non-empty discriminant.

Our method and explicit description of total dual VMRTs are also applicable to some

general cases other than the case of Fano threefolds. Besides our main theorem, we obtain

the following.

Main Theorem. Let X be the blow-up of P3 along a smooth nondegenerate curve Γ.

Assume that Γ has at most a finite number of quadrisecant lines on P3. Then TX is big if

and only if Γ is a twisted cubic curve.

A Fano threefold X is called primitive if it is not isomorphic to the blow-up of a Fano

threefold along a smooth irreducible curve. Due to Batyrev’s classification of toroidal Fano

threefolds [1] and Mori-Mukai’s classification of Fano threefolds with Picard number 2,

No. 32 in [13, Table 2] (a divisor on P2×P2 of bidegree (1,1)) is the only non-toric case

which has a conic bundle structure with empty discriminant. In this case, TX is big (see

Remark 2.5). We note that if X is a primitive Fano threefold with Picard number 2, then

X has a standard conic bundle structure [13, Th. 5].

A conic bundle is a proper flat morphism π :X → S of nonsingular varieties such that it

is of relative dimension 1 and the anticanonical divisor −KX is relatively ample. A conic

bundle π :X → S is called standard if for any prime divisor D ⊂ S, its inverse image π∗(D)

is irreducible. If X is a Fano threefold with Picard number 2 admitting a conic bundle

π :X → S, then S is the projective plane P2 and π is standard. Let π :X → P2 be a conic

bundle structure over P2 with the discriminant curve Δ ⊆ P2 of degree d = degΔ. By [10,

§1] and [16, Cors. 3.3.3 and 3.9.1], Δ has only normal crossings in P2 and d ≥ 3. Also,

from [16, Lem. 3.6], b3(X ) = 2b2(P
2) + 2b2(X ) − 2b2(P

2) + 2pa(Δ) − 4 = 2pa(Δ) − 2

= d2 − 3d.

Assume that X is a Fano threefold with Picard number 2, which has a standard conic

bundle structure with non-empty discriminant. Then according to [13, Table 2], 3≤ d ≤ 8

and d 
= 7, and there are 9 deformation types (Nos. 2, 6, 8, 9, 11, 13, 18, 20 and 24 in [13,

Table 2]).

Let P(TX) be the projectivized bundle Π : P(TX)→X of the tangent bundle TX of X. We

will denote by ζ =OP(TX)(1) the tautological class of P(TX). Here, we use Grothendieck’s
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notion for P(TX). We note that −KP(TX) = 3ζ. Our main strategy of the proof of the main

theorem is to find two irreducible effective divisors C̆1 and C̆2 on P(TX), which are the total

dual VMRTs associated to families of rational curves, and express a positive multiple of ζ

as a combination of [C̆1], [C̆2] and α · (effective divisor) with α ∈ Z.

In particular, if X has a standard conic bundle structure π :X → P2, we have a natural

irreducible effective divisor C̆ on P(TX) induced from the fibers of π : X → P2 according

to [5, Cor. 2.13], and [C̆] ∼ ζ +Π∗(KX − π∗KP2). To find irreducible effective divisors C̆
constructed from the total dual VMRT associated to a family of rational curves, we use

explicit descriptions of Fano threefolds with Picard number 2 in [13, Table 2]. Especially,

we describe irreducible effective divisors C̆ induced from the total dual VMRT associated

to a family of rational curves when X are imprimitive Fano threefolds. Additionally, we

provide some criteria to disprove the bigness of TX when X is the blow-up of a smooth

curve on P3 or a quadric hypersurface Q in P4 or the quintic del Pezzo threefold V5.

The organization of the paper is as follows.

In Section 2, we briefly introduce the theory related to the total dual VMRT and present

some criteria to disprove the bigness of TX . Proposition 2.6 provides a criterion to disprove

the bigness of TX by making use of two rational curves on X not belonging to a given family

which associates a total dual VMRT on P(TX). In Proposition 2.8, we prove that TX is not

big when X has a del Pezzo surface of degree d≤ 4 fibration.

Section 3 presents some criteria to determine the bigness of TX when X is an imprimitive

Fano threefold, i. e., X is isomorphic to the blow-up f :X =BlΓZ → Z of a Fano threefold

Z along a smooth curve Γ. We first observe a relation between the bigness of TX and TZ ,

and then investigate the cases when Z is P3 (Remark 3.5) or a quadric hypersurface Q in

P4 (Proposition 3.6) or the quintic del Pezzo threefold V5 (Proposition 3.8).

Section 4 describes irreducible effective divisors C̆ on P(TX) induced from the total dual

VMRT associated to a family of rational curves when X is isomorphic to the blow-up of a

smooth curve Γ on P3 (Proposition 4.1 and Proposition 4.2) or a quadric hypersurface Q in

P4 (Proposition 4.5). We consider the family of the secant lines of Γ on P3 and the family

of the lines meeting at one point of Γ on P3 and Q. Our explicit description of total dual

VMRTs in Proposition 4.1 and Proposition 4.2 gets Theorem 4.3 as a corollary.

In Section 5, we treat mainly Fano threefolds X with Picard number 2 which admit a

standard conic bundle structure with non-empty discriminant.

In this present paper, we determine the bigness of the tangent bundle TX of Fano

threefolds X with Picard number 2. We also study the pseudoeffectivity of TX and expect

our methods to give some answer on Fano threefolds with higher Picard numbers. Based

on the result of Fano threefolds with Picard number one [4, Cor. 1.2] and our result for

Fano threefolds with Picard number two, we expect the anti-canonical degree determines

the bigness of TX for Fano threefolds. Hence, we raise bravely the following conjecture.

Conjecture 1.3. Let X be a Fano threefold. Then there is a constant C0 depending

only on the Picard number of X such that TX is big if and only if (−KX)3 ≥ C0.

Table 1 summarizes the bigness of the tangent bundle TX of Fano threefolds X with

Picard number 2. In the table, the numbers in the first columns correspond to the

deformation types in [13, Table 2], and those in the last columns indicate the remark or

subsection of each case. As a by-product of the proof, we can see that the tangent bundle

of a general element in the families of Nos. 21, 23, and 24 is Q-effective and not big.
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§2. Total dual VMRTs and some criteria to disprove bigness

In this section, we briefly introduce the theory related to the total dual VMRT, which

is first introduced by [8] in a study of Hecke curves on the moduli of vector bundles on

a curve. Later, [15] generalizes the theory to the case of minimal rational curves, and [5]

develops explicit formulas in the case where a variety has zero-dimensional VMRTs in a

study of the tangent bundles of del Pezzo manifolds.

Let X be a smooth projective variety. Let RatCurvesn(X) be the normalized space of

rational curves on X (see [11, Chap. II]). We mean by a family of rational curves on X an

irreducible component K of RatCurvesn(X).

We say a rational curve � on X is unbendable if its normalization ν : P1 → �⊆X satisfies

ν∗TX
∼=OP1(2)⊕OP1(1)

⊕r⊕OP1
⊕s for some r, s≥ 0 with r+s+1 = dimX.

An irreducible component K of RatCurvesn(X) is called a family of unbendable rational

curves on X if its general member [�] ∈ K is unbendable.

In the rest of this section, we consider a family K of unbendable rational curves on X.

Let q : U →K be the normalization of the universal family and e : U →X be the evaluation

morphism.

U e ��

q

��

X

K

.

It is known that the evaluation morphism e : U → X is dominant. We denote by Kx the

normalization of q(e−1(x)) ⊆ K. For a general point x ∈ X, there exists a rational map

τx : Kx ��� P(ΩX |x), which is called the tangent map, sending a curve which is smooth at

x to its tangent direction at x, and we define the variety of the minimal rational tangents

(VMRT, for short) Cx of K at x to be the closure of the image of τx in P(ΩX |x).
For an unbendable rational curve � on X, a minimal section of � is defined by a rational

curve �̃ on P(TX) with the normalization

ν̃ : P1 → �̃⊆ P(TX |�)⊆ P(TX)

associated to a trivial quotient ν∗TX →OP1 .

Unless X ∼= Pn, a general member [�] ∈ K is unbendable with s 
= 0, so there exists

a minimal section �̃ on P(TX). Let K̃ be a family of rational curves on P(TX), which

contains [�̃]. Then, for the normalized universal family q̃ : Ũ → K̃ and its evaluation morphism

ẽ : Ũ → P(TX), we have the following commutative diagram (see [15, §4]).

K̃ �� q̃

��

Ũ ẽ ��

��

P(TX)

Π

��
K ��

q U e
�� X.

We denote by C̆ the closure of the image ẽ(Ũ) in P(TX). The next proposition is essentially

proved in [15, Prop. 5] under the assumption that K is locally unsplit, i.e., Kx is proper for

general x ∈X.
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6 H. KIM ET AL.

Proposition 2.1 (cf. [15, Prop. 5]). Let K be a family of unbendable rational curves

on X. Then, for general x ∈X, C̆|x ⊆ P(TX |x) is the projectively dual variety of the VMRT

Cx ⊆ P(ΩX |x).

Due to the proposition above, C̆ is called the total dual VMRT associated to K. As there

exists a member [�̃] ∈ K̃ which satisfies ζ.�̃= 0, we can observe that C̆ is

dominated by a family of rational curves �̃ satisfying ζ.�̃= 0 on P(TX). (†)

Notice that for such �̃ with ζ.�̃= 0, Π(�̃) is a curve on X as ζ is relatively ample on P(TX)

over X.

Our main strategy to disprove the bigness of TX is to find an effective divisor D on P(TX)

that attains the property (†) and apply the following lemma.

Lemma 2.2. Let D =
∑n

i=1Di for some irreducible and reduced effective divisors Di on

P(TX). Assume that Di satisfies (†) for all i= 1, 2, . . . , n. If D ∼ kζ+Π∗H for some k > 0

and effective divisor H on X (possibly H = 0), then ζ is not big on P(TX).

Proof. Suppose that ζ is big. We can write Di = kiζ+Π∗Hi for some ki ≥ 0 and divisor

Hi on X. Let A be an ample divisor on X such that A+
∑l

i=1Hi is also ample for all

1≤ l ≤ n. Then there exists the smallest integer m> 0 such that mζ−Π∗A is effective by

Kodaira’s lemma. Let E0 ∼mζ−Π∗A be an effective divisor. For a general curve �̃1 in the

family whose members cover the divisor D1, we have

E0.�̃1 = (mζ−Π∗A).�̃1 =−A.Π(�̃1)< 0.

Thus E0−D1 ≥ 0, and we can find an effective divisor E1 = E0−D1. For a general curve �̃2
in the family whose members cover the divisor D2, we also have

E1.�̃2 = ((m−k1)ζ− (Π∗A+Π∗H1)).�̃2 =−(A+H1).Π(�̃2)< 0,

as A+H1 is ample by the assumption. Thus, we are again able to take an effective divisor
E2 = E1−D2. By iterating the process, we arrive to obtain an effective divisor

En = En−1−Dn = · · ·= E0−D =

(
m−

n∑
i=1

ki

)
ζ−

(
Π∗A+

n∑
i=1

Π∗Hi

)
= (m−k)ζ−Π∗A−Π∗H

on P(TX). In particular, (m − k)ζ − Π∗A is effective, and it contradicts the

minimality of m.

Now we want to find the explicit linear class of the total dual VMRT. Let K be a family of

unbendable rational curves on X. Let K be the normalization of the closure of K considered

as a subscheme of Chow(X) and q : U → K be the normalization of the universal family

over K which associates the evaluation morphism e : U →X.

P(e∗TX) ��

��

P(TX)

Π

��
U

e
��

q
��

X

K

.
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BIGNESS OF THE TANGENT BUNDLE OF A FANO THREEFOLD WITH PICARD NUMBER TWO 7

We denote by TU/K the dual Ω∨
U/K → TU . Then there exists the exact sequence

0→TU/K → e∗TX →G → 0

for some coherent sheaf G on U .

Proposition 2.3 [5, Cor. 2.10, Rem. 2.12, and Cor. 2.13]. Let X be a smooth projective

variety and K be a family of unbendable rational curves which is locally unsplit. Assume

that K has zero-dimensional VMRTs and G is locally free in codimension 1. Then the linear

class of the total dual VMRT C̆ on P(TX) is explicitly given as follows.

[C̆]∼ deg(e) · ζ−Π∗e∗(c1(TU/K)).

Moreover, the condition on G is verified when TU/K is locally free and e[�] : U [�] → X is

immersed for general [�] ∈K. In particular, if X admits a conic bundle structure π :X → Y

over a smooth projective variety Y, then the total dual VMRT C̆ on P(TX) associated to the

fibers of π satisfies

[C̆]∼ ζ+Π∗(KX −π∗KY ).

Remark 2.4. Let π :X = P(E)→ P2 be the ruled variety associated to a vector bundle

E of rank 2 on P2 whose normalization has negative degree. That is, H0(E⊗L) 
=0 for some

line bundle L with det(E⊗L)< 0. After normalization, we may assume that H0(E) 
=0 and

detE =OP2(−a) for some a > 0. Then, by Proposition 2.3, we obtain an effective divisor

[C̆]∼ ζ+Π∗(KX −π∗KP2) = ζ+Π∗(−2H−ah)

on P(TX) for h= π∗OP2(1) and the tautological class H =OP(E)(1).

Then we can write ζ by a positive linear combination

ζ ∼ [C̆]+2Π∗H+aΠ∗h

of three effective divisors on P(TX) which are linearly independent in N1(P(TX)). As a

multiple of ζ lies in the interior of the cone Eff(P(TX)) of effective divisors, ζ is big on

P(TX). That is, TX is big.

However, when X is a Fano threefold given as above (Nos. 35 and 36 in [13, Table 2]),

the bigness of TX follows from [6] as such Fano threefolds are toric.

Remark 2.5. Let π :X = P(TP2)→ P2 be the ruled variety associated to the tangent

bundle TP2 of P2. This is the Fano threefold X isomorphic to a (1,1)-divisor on P2×P2

(No. 32 in [13, Table 2]). Then X has two P1-fibration structures πi :X → P2 for i= 1, 2.

X

π1

��

π2 �� P2

P2

.

We denote by hi = π∗
iOP2(1). Then −KX ∼ 2h1+2h2.

Let C̆i be the total dual VMRT on P(TX) associated to the family of fibers of πi :X → P2

for i= 1, 2. Then, by Proposition 2.3, we have
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8 H. KIM ET AL.

[C̆1]∼ ζ+Π∗(KX −π∗
1KP2) = ζ+Π∗((−2h1−2h2)− (−3h1)) = ζ+Π∗h1−2Π∗h2,

[C̆2]∼ ζ+Π∗(KX −π∗
2KP2) = ζ+Π∗((−2h1−2h2)− (−3h2)) = ζ−2Π∗h1+Π∗h2.

So we can write a multiple of ζ by a positive linear combination of effective divisors on

P(TX) as

2ζ ∼ [C̆1]+ [C̆2]+Π∗(h1+h2).

Thus ζ is big on P(TX). That is, TX is big.

In the case where a Fano threefold X has Picard number 2, the following proposition

provides a criterion to disprove the bigness of TX by making use of two rational curves on

X not belonging to a given family which associates a total dual VMRT on P(TX).

Proposition 2.6. Let X be a smooth projective threefold with Pic(X)∼= ZH1⊕ZH2 for

some effective divisors H1 and H2. Let C̆ be the total dual VMRT associated to a family

K of unbendable rational curves on X. Assume that C̆ is a divisor on P(TX). Moreover,

assume that there exist two smooth rational curves �1 and �2 on X such that

• for each i= 1, 2, there exists a point xi ∈ �i where the VMRT Cxi ⊆ P(ΩX |xi) of K at xi

is defined and C̆|xi is the projective dual of Cxi. Moreover,

τ�i,xi 
∈ Cxi

for the tangent direction τ�i,xi ∈ P(ΩX |xi) of �i at xi,

• the normal bundle of �i in X is given by

N�i|X
∼=OP1(ai1)⊕OP1(ai2) for some ai2 ≤ ai1 ≤ 0,

• and the intersection numbers satisfy

H1.�1 = 0, H2.�1 > 0, H1.�2 > 0, H2.�2 = 0.

Then TX is not big.

Proof. Let

[C̆]∼ kζ+ b1Π
∗H1+ b2Π

∗H2

for some k > 0. Once we show that bi ≥ 0 for i= 1, 2, the assertion follows from Lemma 2.2

because C̆ satisfies (†).
Let x= x1 be the point where the first condition holds for �= �1. Let H = P(N�|X |x)⊆

P(TX |x) be the hyperplane projectively dual to the point τ�,x ∈ P(ΩX |x). Then, from the

first condition, we have

∅ 
=H\C̆|x ⊆ P(TX |x).

Hence, there exists a section �̃ ⊆ P(TX |�) ⊆ P(TX) corresponding to a quotient TX |� →
OP1(a) for a = a11 in a factor of N�|X passing through a point w ∈ H\C̆|x over x, i. e.,

w = �̃|x = �̃∩P(TX |x) (see Figure 1). Thus, we have �̃|x∩C̆|x = ∅ on P(TX |x), and it implies

that �̃ is not contained in C̆.
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Figure 1.

The total dual VMRT C̆|x at x when the VMRT Cx is finite.

From the second condition, we can observe that every section �̃⊆ P(TX |�)⊆ P(TX) which

corresponds to a quotient TX |� →OP1(a) in a factor of N�|X satisfies ζ.�̃ = a = a11 ≤ 0 in

P(TX). Therefore, for such �̃1 = �̃, we have

b2(H2.�1)≥ k(ζ.�̃1)+ b1(Π
∗H1.�̃1)+ b2(Π

∗H2.�̃1) = [C̆].�̃1 ≥ 0,

as �̃1 is not contained in C̆. Thus, b2 ≥ 0. By the same argument, we can show that

b1 ≥ 0.

Remark 2.7. Let f :X =BlΓV5 → V5 be the blow-up of the smooth del Pezzo threefold

V5 ⊆ P6 of degree 5 along a smooth curve Γ of degree 5 and genus 1 (No. 14 in [13, Table

2]). We have another extremal contraction p :X → P1 whose general fiber is a smooth del

Pezzo surface of degree 5.

X
f

����
��
��
�� p

���
��

��
��

�

V5 P1.

We denote by H1 = f∗OP3(1), H2 = p∗OP1(1), and D1 the exceptional divisor of f :X → V5.

Then

−KX ∼H1+H2 = 2H1−D1, H2 ∼H1−D1.

We have the following three families Ki of unbendable rational curves on X :

• K1 contains the strict transforms �1 of some lines l1 on V5 not meeting Γ,

• K2 contains the strict transforms �2 of some conics l2 on V5 meeting Γ at two points,

• K3 contains the strict transforms �3 of some conics l3 on V5 meeting Γ.

We denote by Ci,x the VMRT of Ki at x ∈X, C̆i the total dual VMRT on P(TX) associated

to Ki, and �̃i ⊆ P(TX |�i)⊆ P(TX) a minimal section of [�i] ∈ Ki for i= 1, 2, 3.

We can observe that dimK1 = dimK2 = 2 and dimK3 = 3. Thus C1,x and C2,x consist of

a finite number of points, whereas C3,x is a curve on P(TX |x) for general x ∈X.

We first show that C3,x is irreducible. It is known that the space of conics on V5 is

isomorphic to Gr(4,5) ∼= P4 [9, Prop. 1.2.2], and the subspace of conics passing through a

fixed point of V5 corresponds to a codimension 2 linear subspace of P4. Since two general

planes in P4 meet at a single point, there exists a unique conic passing through a general

pair of points of V5. Moreover, as there are only finitely many conics passing through a fixed
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point of V5 and meeting Γ at two points with multiplicity, for general x ∈ X, we have a

rational map Γ ��� P(ΩX |x) sending general y ∈ Γ to the tangent direction at x of the conic

passing through x and y ∈ Γ, and the closure of its image is C3,x. Thus, C3,x is irreducible.

We next show that C3,x is not linear. Note that C3,x contains all the tangent directions at

x of conics l⊂ V5 with x∈ l and l.Γ= 2. Let Xt be the fiber of p :X → P1 with x∈Xt. Then

P(ΩXt |x) is a line in P(ΩX |x)∼= P2. Any rational curve C in Xt with x ∈C and K−1
Xt

.C = 2

is the strict transform of some irreducible conic l⊂ V5 with x∈ l and l.Γ= 2. Therefore, the

number of the intersection points C3,x∩P(ΩXt |x) is greater than or equal to the number of

tangent directions of rational curves C in Xt with x ∈ C and K−1
Xt

.C = 2, which is greater

than 1, because we have several conic bundle structures on the del Pezzo surfaces of degree

five. Thus, degC3,x > 1.

By the previous arguments, we can now say that the total dual VMRT C̆3 is a divisor on

P(TX). Due to the irreducibility of C̆3,x, we have C̆i|x 
⊆ C̆3|x for general x ∈X since C̆i|x is a

union of a finite number of lines on P(TX |x) for i= 1, 2. Thus, C̆i 
⊆ C̆3, and we can conclude

that C̆3.�̃i ≥ 0 as the minimal sections �̃i cover C̆i for i= 1, 2. Now, let

[C̆3]∼ kζ+ b1D1+ b2H2

for some k > 0 and b1, b2 ∈ Z. Then we have

b2 = C̆3.�̃1 ≥ 0 and b1 =
1

2
C̆3.�̃2 ≥ 0.

Thus by Lemma 2.2, TX is not big.

Proposition 2.8. Let X be a smooth projective threefold. Assume that there exists a

morphism p :X → C onto a smooth projective curve C whose general fiber is a smooth del

Pezzo surface of degree d≤ 4. Then TX is not big.

Proof. We first prove the following claim.

Claim. If S is a smooth del Pezzo surface of degree d≤ 4, then H0(S,SymmTS(KS)) = 0

for all m> 0.

Assume that d= 4. Suppose that H0(S,SymmTS(KS)) 
= 0 for some m> 0. Then we can

take the smallest m > 0 with H0(S,SymmTS(KS)) 
= 0. Let D be an effective divisor on

P(TS) such that D ∼mξ+Λ∗KS for the tautological class ξ =OP(TS)(1) of Λ : P(TS)→ S.

Following the proof of [5, Prop. 3.5], there exist 5 pairs |�i1| and |�i2| of pencils of conics on
S such that

[�i1]+ [�i2]∼−KS and [C̆i1]+ [C̆i2]∼ 2ξ,

where C̆i1 and C̆i2 are the total dual VMRTs on P(TS), which are, respectively, associated to

the pencils |�i1| and |�i2| for i=1, . . . , 5. Then, for a minimal section �̃ij ⊆P(TX |�ij )⊆P(TX)

of �ij , we have

D.�̃ij = (mξ+Λ∗KS).�̃ij =KS .�ij < 0.

So C̆ij are contained in the support of D for all i = 1, . . . , 5 and j = 1, 2 as �̃ij cover C̆ij .
Thus, there is an effective divisor

(m−10)ξ+Λ∗KS =D−
5∑

i=1

(C̆i1+ C̆i2)
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on P(TS), and it contradicts the minimality of m> 0. This proves the claim for d= 4.

Assume that d≤ 3. Then, by [5, Th. 1.2], TS is not pseudoeffective, soH0(S,SymmTS) = 0

for all m> 0, and hence H0(S,SymmTS(KS)) = 0 for all m> 0 because −KS is effective.

This proves the claim for d≤ 3.

Let S =Xt be a general fiber of p :X →C, which is a smooth del Pezzo surface of degree

d≤ 4. By twisting OS(KS) after taking the symmetric power to the exact sequence

0→ TS → TX |S →OS → 0,

we obtain the following exact sequence on S.

0→ SymmTS(KS)→ SymmTX |S(KS)→ Symm−1TX |S(KS)→ 0.

Note that H0(S,KS) = 0. Then, by induction on m> 0, it follows that H0(S,SymmTX |S
(KS)) = 0 for all m> 0 due to the claim. Thus, TX |S is not big.

Suppose that TX is big. Consider the family {P(TX |Xt)}t∈C of codimension 1 subvarieties

of P(TX) which cover P(TX), i. e. P(TX) =
⋃

t∈C P(TX |Xt). Notice that ξ = ζ|Xt is the

tautological class of P(TX |Xt). Since ζ is big, |mζ| gives a birational map P(TX) ��� PN

for m� 1, so |mξ| induces a birational map P(TX |Xt) ��� PM , and hence TX |Xt is big for

general t ∈ C, a contradiction. Therefore, TX is not big.

Remark 2.9. Let f : X = BlΓQ → Q be the blow-up of a smooth quadric threefold

Q⊆ P4 along a smooth curve Γ of degree 8 and genus 5 (No. 7 in [13, Table 2]). Then the

other extremal contraction of X is given by a fibration p :X → P1 whose general fiber is a

smooth del Pezzo surface of degree 4. By Proposition 2.8, TX is not big.

§3. Strict transforms of total dual VMRTs

In this section, we present some criteria to determine the bigness of TX in the case when

X is an imprimitive Fano threefold, i. e., X is isomorphic to the blow-up f :X =BlΓZ →Z

of a Fano threefold Z along a smooth curve Γ. We first observe a relation between the

bigness of TX and TZ , and then investigate some cases when Z is P3, a smooth quadric

threefold Q⊆ P4, or the smooth del Pezzo threefold V5 ⊆ P6 of degree 5.

Let Φ : P(TZ) → Z and Φ̃ : P(f∗TZ) → X be the natural projections. We denote by

η =OP(TZ)(1) and η̃ =OP(f∗TZ)(1). Then η̃ = f̃∗η for the natural morphism f̃ : P(f∗TZ)→
P(TZ) induced by the blow-up f :X → Z.

Note that we have an exact sequence

0→ TX → f∗TZ → ι∗TD/Γ(D)→ 0

on X where TD/Γ(D) is a locally free sheaf on the exceptional divisor D with the embedding

ι :D ↪→X.

Maruyama’s description of the elementary transformation [12] yields the exact sequence

0→ η̃⊗IS → η̃ →OS(η̃)→ 0

on P(f∗TZ) where

Φ̃∗(η̃⊗IS) = TX , Φ̃∗η̃ = f∗TZ ,
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and S ∼= PD(TD/Γ(D)) is the subvariety of P(f∗TZ) defined by the quotient f∗TZ →
ι∗TD/Γ(D). Let β be the blow-up of P(f∗TZ) along S. Then there exists the commutative

diagram

BlSP(f
∗TZ)

β

�����
���

�� α

����
���

���

P(TZ)

Φ
��

P(f∗TZ)

˜Φ
��

�����������
˜f�� P(TX)

Π
��

Z X
f�� X,

(3.1)

where α is the blow-down of BlSP(f
∗TZ) along the strict transform of Φ̃∗D. So, if we denote

by R the exceptional divisor of β, then

β∗η̃−R∼ α∗ζ

on BlSP(f
∗TZ). Therefore, we have the following linear equivalence.

α∗β
∗η̃ ∼ ζ+Π∗D.

Lemma 3.1 (cf. [5, Cor. 2.3]). Let E be a vector bundle on X. Then E is pseudoeffective

if and only if E⊗OX(H) is big for every big Q-divisor H on X.

Proof. Let ζ =OP(E)(1) be the tautological class of P(E). Assume that ζ+Π∗H is big

for every big Q-divisor H on X. If H is a big Q-divisor on X, then εH is big for any ε > 0.

So we can observe that ζ is given by the limit of a family of big Q-divisors ζ + εΠ∗H as

ε→ 0. Thus,ζ is pseudoeffective.

Conversely, assume that ζ is pseudoeffective, and let H be an arbitrary big Q-divisor on

X. Then H ∼ A+N for some ample divisor A and effective divisor N. Because ζ+mΠ∗A

is ample on P(TX) for sufficiently large m� 0, we can write

m(ζ+Π∗H) = (ζ+mΠ∗A)+mΠ∗N +(m−1)ζ,

as the sum of a big divisor (ζ+mΠ∗A)+mΠ∗N and a pseudoeffective divisor (m−1)ζ on

P(TX). Thus, ζ+Π∗H is big.

Lemma 3.2 (cf. [5, Cor. 2.4]). Let f :X →Z be the blow-up of a smooth projective variety

Z along a smooth subvariety. If TX is big, then TZ is big. Moreover, if TX is pseudoeffective,

then TZ is pseudoeffective.

Proof. We continue to use the notation above. Note that α, β, and f̃ are birational

morphisms in (3.1). Thus, we have the following implication.

ζ is big ⇔ α∗ζ is big ⇒ α∗ζ+R∼ (f̃ ◦β)∗η is big ⇔ η is big.

Now, assume that TX is pseudoeffective and letH ′ be a bigQ-divisor on Z. By Lemma 3.1,

TX ⊗OX(f∗H ′) is big as f∗H ′ is big on X. Then we can show that TZ ⊗OZ(H
′) is big on

Z using the same argument as before. Since H ′ was arbitrary, by Lemma 3.1 again, TZ is

pseudoeffective.
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Remark 3.3. Let f :X = BlΓVi → Vi be the blow-up of a smooth del Pezzo threefold

Vi of degree i for i= 1, 2, 3, 4. Due to [5, Th. 1.5], TVi is not big. Thus by Lemma 3.2, TX

is not big. There are 7 deformation types of such Fano threefolds: No. 1, 3, 5, 10, 11, 16,

and 19 in [13, Table 2].

Remark 3.4. Let f :X =BlΓV5 → V5 be the blow-up of the smooth del Pezzo threefold

V5 of degree 5 along a line Γ (No. 26 in [13, Table 2]). Then the extremal contractions

of X are given by the blow-ups f1 :X → Z1 and f2 :X → Z2 along smooth curves where

Z1 =Q is a smooth quadric threefold and Z2 = V5. We denote by Hi = fi
∗OZi(1), and Di

the exceptional divisor of fi :X → Zi. Then, from [14, Th. 5.1],

KX ∼−H1−H2 =−3H1+D1 =−2H2+D2, D1 ∼ 2H1−H2, D2 ∼−H1+H2.

Let αi, βi, f̃i, Φi, ηi be defined as before. As D1 = 2η1 − 2Φ∗
1OQ(1) on P(TQ) and

D2 = 3η2−Φ∗
2OV5(1) on P(TV5) are effective (for D1, see [18, Th. 5.8] or Proposition 3.6,

and for D2, see [5, Th. 5.4]), E1 = α1∗β
∗
1 f̃1

∗
D1 and E2 = α2∗β

∗
2 f̃2

∗
D2 are effective divisors

on P(TX), whose linear classes are given by

[E1]∼ 2ζ−2Π∗H1+2Π∗D1 = 2ζ+2Π∗H1−2Π∗H2,

[E2]∼ 3ζ−Π∗H2+3Π∗D2 = 3ζ−3Π∗H1+2Π∗H2.

So we can write a multiple of ζ by a positive linear combination of effective divisors on

P(TX) as

5ζ = [E1]+ [E2]+Π∗H1.

Thus, ζ is big on P(TX). That is, TX is big.

Let f :X =BlΓQ→Q be the blow-up of a smooth quadric threefold Q⊆ P4 along a line

Γ (No. 31 in [13, Table 2]). We denote by H = f∗OQ(1), and D the exceptional divisor

of f :X → Q. By [20], X is isomorphic to the ruled variety π :X = P(E(1))→ P2 for the

vector bundle E of rank 2 which fits into the exact sequence

0→OP2 → E →Ix → 0

for the ideal sheaf Ix of a point x on P2. Then, for h= π∗OP2(1),

−KX ∼ 3H−D = 2H+h, h∼H−D, D ∼H−h.

Let C̆ be the total dual VMRT associated to the family of fibers of π : X → P2 and

E =α∗β
∗f̃∗D for D=2η−2Φ∗OQ(1) on P(TQ) as in the previous case. Then, by Proposition

2.3, we have

[C̆]∼ ζ+Π∗(KX −π∗KP2) = ζ−2Π∗H+2Π∗h,

[E ]∼ 2ζ−2Π∗H+2Π∗D = 2ζ−2Π∗h.

So we can write a multiple of ζ by a positive linear combination of effective divisors on

P(TX) as

3ζ = [C̆]+ [E ]+2Π∗H.

Thus, ζ is big on P(TX). That is, TX is big.
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Remark 3.5. Let f :X =BlΓP
3 → P3 be the blow-up of the projective space P3 along a

smooth curve Γ. We denote byH = f∗OP3(1), and D is the exceptional divisor of f :X →P3.

From the exact sequence

0→OP(f∗T
P3)

(kη̃−kΠ∗H)⊗IS →OP(f∗T
P3)

(kη̃−kΠ∗H)→OS(kη̃−kΠ∗H)→ 0

on P(f∗TP3), we can observe that there exists an effective divisor E0 ∼ kη̃−kH on P(f∗TP3)

which vanishes on S for some k > 0. Indeed, h0(Sk(TP3(−1))) = Θ(k3) is observed from the

exact sequence

0→OP3(−1)
⊕(k+2

3 ) →OP3
⊕(k+3

3 ) → Sk(TP3(−1))→ 0,

obtained by taking symmetric powers to the Euler sequence, whereas h0(OS(kη̃−kΠ∗H)) =

O(k2) as OS(kη̃−kΠ∗H) is a line bundle on the surface S ∼= PD(TD/Γ(D)). Thus, we obtain

an effective divisor

[E ]∼ kα∗β
∗η̃−kΠ∗H−mΠ∗D = kζ−kΠ∗H+(k−m)Π∗D

on P(TX) for some m> 0, which is the strict transform of E0 from P(f∗TP3) to P(TX).

If Γ is degenerate (No. 28 and 30 in [13, Table 2] for instance), then H−D is effective

on X. So we can write a multiple of ζ by a positive linear combination of effective divisors

on P(TX) as

kζ = [E ]+kΠ∗(H−D)+mΠ∗D

for some k > 0 and m> 0. Thus ζ is big on P(TX). That is, TX is big.

If Γ is a twisted cubic curve (No. 27 in [13, Table 2]), then, by [20], X is isomorphic to

the ruled variety π : X = P(E(1)) → P2 for the vector bundle E of rank 2 which fits into

the exact sequence

0→OP2(−1)⊕2 →OP2
⊕4 → E(1)→ 0

on P2. Then, for h= π∗OP2(1),

−KX ∼ 4H−D = 2H+h, h∼ 2H−D, D ∼ 2H−h.

Let C̆ be the total dual VMRT on P(TX) associated to the family of fibers of π :X → P2.

Then, by Proposition 2.3, we have

[C̆]∼ ζ+Π∗(KX −π∗KP2) = ζ−2Π∗H+2Π∗h= ζ+2Π∗H−2Π∗D.

So we can write a multiple of ζ by a positive linear combination of effective divisors on

P(TX) as

3kζ = k[C̆]+2[E ]+2mΠ∗D

for some k > 0 and m> 0. Thus, ζ is big on P(TX). That is, TX is big.

Proposition 3.6. Let f :X = BlΓQ→Q be the blow-up of a smooth quadric threefold

Q⊆P4 along a smooth curve Γ. Then there exists an irreducible and reduced effective divisor

[C̆]∼ 2ζ−2Π∗H+2Π∗D

on P(TX) which satisfies (†) for H = f∗OQ(1) and the exceptional divisor D of f :X →Q.
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Proof. Let M be the family of lines l on Q, which is known to be M ∼= P3. Then

Nl|Q ∼=OP1(1)⊕OP1 , and M is a family of unbendable rational curves on Q. Let D̆ be the

total dual VMRT on P(TQ) associated with M. As Q is homogeneous and the VMRT Dz

of M at z ∈Q is irreducible and reduced, so is D̆|z for all z ∈Q, and hence D̆ is irreducible

and reduced.

Let H ′ =OQ(1) and η=OP(TQ)(1) be the tautological class of Φ : P(TQ)→Q. It is known

that

[D̆]∼ 2η−2Φ∗H ′

(see [19, Proof of Prop. 3.1] for instance). Therefore, we can write

[f̃∗D̆] = 2f̃∗η−2Φ̃∗H,

where f̃ : P(f∗TQ)→ P(TQ) and Φ̃ : P(f∗TQ)→X are the natural morphisms induced by

f :X →Q and Φ : P(TQ)→Q.

Let K be the family of rational curves on X containing the strict transform [�] of [l] for

general [l] ∈M. Since a general member [l] ∈M does not intersect with the blow-up center

Γ, K is a family of unbendable rational curves on X.

Let C̆ be the total dual VMRT on P(TX) associated to K. Because the total dual VMRT

D̆ is given by the union of minimal sections of rational curves of M, C̆|U and D̆|V coincide

under the isomorphism P(TX |U )∼= P(TQ|Z) over U =X\D and V =Q\Γ. As the closure is

uniquely determined by a subset out of codimension 1, C̆ is the strict transform of D̆ from

P(TQ) to P(TX). Moreover, C̆ is the strict transform of f̃∗D̆ from P(f∗TQ) to P(TX). As D̆
is irreducible and reduced, so is its strict transform C̆.

Let m≥ 0 be the order of vanishing of f̃∗D̆ on S ∼= PD(TD/Γ(D)) ⊆ P(f∗TQ). Then the

strict transform C̆ of f̃∗D̆ from P(f∗TQ) to P(TX) satisfies

[C̆]∼ α∗β
∗(2η̃−2Φ̃∗H)−mΠ∗D = 2ζ−2Π∗H+(2−m)Π∗D.

We will complete the proof by showing that m = 0, which is equivalent to showing that

S 
⊆ f̃∗D̆.

Let z ∈ Γ. Then P(f∗TQ|f−1(z)) ∼= P(TQ|z)× f−1(z). Moreover, P(TD/Γ(D)|f−1(z)) is a

subvariety of P(f∗TQ|f−1(z)) whose image is f̃(P(TD/Γ(D)|f−1(z))) = P(NΓ|Q|z) in P(TQ|z).
Since the line P(NΓ|Q|z) is not contained in the conic D̆|z ⊆ P(TQ|z), f̃∗D̆|z does not contain

P(TD/Γ(D)|f−1(z)) = S|f−1(z) (see Figure 2). Thus, we can conclude that S 
⊆ f̃∗D̆.

Remark 3.7. Let f : X = BlΓQ → Q be the blow-up of a smooth quadric threefold

Q⊆ P4 along a smooth curve Γ of degree 4 and genus 0 (No. 21 in [13, Table 2]). Then the

extremal contractions of X are given by two distinct blow-ups fi :X →Q for i = 1, 2. We

denote by Hi = f∗
i OQ(1) and Di the exceptional divisor of fi :X →Q for i= 1, 2. Then

−KX ∼H1+H2 = 3H1−D1 = 3H2−D2, D1 ∼ 2H1−H2, D2 ∼−H1+2H2.

Let C̆i be the total dual VMRT on P(TX) given by Proposition 3.6 for i = 1, 2. Then the

sum of two effective divisors

[C̆1] = 2ζ−2Π∗H1+2Π∗D1 = 2ζ+2Π∗H1−2Π∗H2,

[C̆2] = 2ζ−2Π∗H2+2Π∗D2 = 2ζ−2Π∗H1+2Π∗H2
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Figure 2.

The restriction f̃∗D̆|x ⊆ P(f∗TQ|x) of f̃∗D̆ ⊆ P(f∗TQ) over x ∈D.

yields an effective divisor on P(TX) satisfying (†). Thus by Lemma 2.2, ζ is not big on

P(TX).

Proposition 3.8. Let f : X = BlΓV5 → V5 be the blow-up of the smooth del Pezzo

threefold V5 of degree 5 along a smooth curve Γ contained in an intersection of two

hyperplane sections, which is not a line on V5. Then there exists an irreducible and reduced

effective divisor

[C̆]∼ 3ζ−Π∗H+3Π∗D

on P(TX) which satisfies (†) for H = f∗OV5(1) and the exceptional divisor D of f :X → V5.

Proof. Let D̆ be the total dual VMRT on P(TV5) associated to the family of lines on V5.

Then, according to [5, Th. 5.4],

[D̆]∼ 3η−Φ∗H ′

for H ′ =OV5(1) and the tautological class η =OP(TV5
)(1) of Φ : P(TV5)→ V5.

Let C̆ be the total dual VMRT on P(TX) associated to the family of the strict transforms

of lines on V5. Then C̆ is the strict transform of D̆ from P(TV5) to P(TX). By the same

argument in the proof of Proposition 3.6, the proof is completed once we show that S 
⊆ f̃∗D̆.

The VMRT of the family of lines on V5 at a point z ∈ V5 is the union of three points on

P(ΩV5 |z) with multiplicity [3, Lem. 2.3(1)]. So D̆|z is the union of three lines on P(TV5 |z). If
there is a point z ∈ Γ such that every line passing through z is not tangent to Γ at z, then

P(NΓ|V5
|z) 
⊆ D̆|z on P(TV5 |z), and it implies that S 
⊆ f̃∗D̆. Thus, it suffices to show that

there are only finitely many lines on V5 which is tangent to Γ.

We consider V5 as the subvariety of P6 and fix a 4-dimensional linear subspace L of P6

containing Γ. Then L∩V5 is a union of finitely many curves on V5. If a line l on P6 is

tangent to Γ, then l⊆ L, and if l is also contained in V5, then l⊆ L∩V5. Therefore, we can

conclude that there are only finitely many lines l on V5 which is tangent to Γ.

§4. Total dual VMRTs on blow-ups

In this section, developing the idea of [5, Lem. 5.3], we present some formulas for total

dual VMRTs on P(TX), which are distinctly constructed from the ones in the previous

section, in the case when X is an imprimitive Fano threefold.
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Proposition 4.1. Let f : X = BlΓP
3 → P3 be the blow-up of the projective space P3

along a smooth nondegenerate curve Γ of degree d and genus g. Assume that Γ has at most

a finite number of quadrisecant lines on P3. Then there exists an irreducible and reduced

effective divisor

[C̆]∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1
2(d−1)(d−2)−g

)
ζ+(d+g−1)Π∗H−

(
(d−1)− 1

2(d−2)(d−3)+g
)
Π∗D

if Γ has a trisecant line(
1
2(d−1)(d−2)−g

)
ζ+(d+g−1)Π∗H− (d−1)Π∗D

otherwise

on P(TX) which satisfies (†) for H = f∗OP3(1) and the exceptional divisor D of f :X → P3.

Proof. Let K be the family of unbendable rational curves on X containing the strict

transforms of general secant lines of Γ on P3. Note that N�|X ∼=OP1 ⊕OP1 for general [�]∈K.

We can observe that K ∼= S2Γ. Indeed, S2Γ is smooth, and there exists a finite morphism

from S2Γ to the locus of secant lines of Γ in the Grassmannian Gr(2,4) of lines on P3.

Let q0 : U0 →K be the universal family of the secant lines of Γ on P3 and e0 : U0 → P3 be

its evaluation morphism. Note that q0 : U0 →K is a P1-fibration and U0
∼= PK(V ) for some

vector bundle V of rank 2 on K, where V is given by the pull-back of the universal bundle

via the induced morphism K→Gr(2,4).

As a general hyperplane meets a general secant line at 1 point on P3, we take

V = q0∗e0
∗OP3(1) so that OPK(V )(1) = e0

∗OP2(1).

We first prove the case where Γ has a trisecant line. Let q : U →K be the normalization

of the universal family of curves on X with the evaluation morphism e : U → X. Then

q : U →K is a conic bundle over K whose discriminant locus is the locus of trisecant lines

of Γ on P3. Moreover, U is obtained by the blow-up σ : U →U0 along some curve in U0 over

the locus in K of trisecant lines.

K U e ��q��

σ
��

X

f
��

K U0
∼= PK(V )

e0
��

q0

��

		������
P3.

Let ξ = σ∗OPK(V )(1) and E be the exceptional divisor of σ : U → U0. Then we can write

KU/K = σ∗K
PK(V )/K+E =−2ξ+ q∗c1(V )+E.

Let C̆ be the total dual VMRT on P(TX) associated to K. Then C̆ is irreducible by

its construction, and it is reduced as a general VMRT Cx of K is reduced for general

x ∈X. Moreover, as K is locally unsplit, we can apply Proposition 2.3 to obtain the linear

equivalence

[C̆]∼ kζ+Π∗e∗(KU/K)

on P(TX) for k=deg(e). From the commutativity, we have ξ = σ∗e0
∗OP3(1) = e∗f∗OP3(1) =

e∗H, and

e∗(KU/K) =−2e∗ξ+e∗q
∗c1(V )+ e∗E =−2kH+e∗q

∗c1(V )+ e∗E.
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First, let

e∗q
∗c1(V ) = aH+ bD

for some a, b ∈ Z. We know from blow-up formulas (e. g. see [14, (4.3)]) that

H3 = 1, H2.D = 0, H.D2 =−d.

Thus,

aH3 = e∗q
∗c1(V ).H2 = q∗c1(V ).ξ2 = q∗c1(V ).(q∗c1(V )ξ− q∗c2(V )) = c1(V )

2
,

and c1(V )
2
= kH3+ c2(V ) due to

kH3 = ξ3 = q∗c1(V )ξ2− q∗c2(V )ξ = q∗c1(V )(q∗c1(V )ξ− q∗c2(V ))− q∗c2(V )ξ

= c1(V )
2− c2(V ).

Then the number r := c2(V ) can be calculated by the number of points of the degeneracy

locus of a general member of |OPK(V )(1)|. That is, r=#{[�]∈K|�⊆P} for general P ∈ |H|.
On the other hand,

bH.D2 = e∗q
∗c1(V ).H.D = q∗c1(V ).ξ.e∗D = (ξ2+ q∗c2(V )).e∗D = kH2.D+ q∗c2(V ).e∗D

= 2c2(V ),

as a general secant line meets Γ at 2 points on P3 so that e∗D ≡ 2ξ in N1(U/K).

Moreover, we can deduce that

e∗E =mD

for some m> 0 from the observation that the image e(E) lies on the exceptional locus of

f : X → P3, and the multiplicity m is given by the number of trisecant lines of Γ on P3

passing through a general point of Γ.

By the projection πx from a general point x in P3, it gives a one-to-one correspondence

between the number of secant lines of Γ through x and the number of nodes of the curve

πx(Γ) in P2, which is k. Also, by the projection πy from a general point y ∈ Γ, it gives a

one-to-one correspondence between the number of trisecant lines of Γ through y and the

number of nodes of the curve πy(Γ) in P2, which is m. Then the genus-degree formula for

plane curves gives k and m. The number r can also be computed (cf. [5, Lem. 5.3]). That is,

k = (the number of nodes in a general hyperplane projectionΓ→ P2)

=
1

2
(d−1)(d−2)−g,

r = (the number of choices of two points among Γ∩P2 for a general hyperplane P2 ⊆ P3)

=

(
d

2

)
,

m= (the number of nodes in the projection Γ→ P2 from a general point of Γ)

=
1

2
(d−2)(d−3)−g.
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Then we obtain the formula in the statement after plugging in the numbers to the equation

kζ+Π∗(−2kH+e∗q
∗c1(V )+ e∗E) = kζ−2kΠ∗H+

{
(r+k)Π∗H− 2r

d
Π∗D

}
+mΠ∗D

= kζ+(r−k)Π∗H−
(
2r

d
−m

)
Π∗D.

The proof for the second case is similar to the first case except σ = IdU0
, and hence

m= 0.

Proposition 4.2. Let f : X = BlΓP
3 → P3 be the blow-up of the projective space P3

along a smooth nondegenerate curve Γ. Then there exists an irreducible and reduced effective

divisor

[C̆]∼ kζ−kΠ∗H+ bΠ∗D for some b≥ k−2

on P(TX) which satisfies (†). Here, k > 0 is the degree of the dual curve of a plane curve

which is the image of Γ under the projection from a general point of P3, H = f∗OP3(1), and

D is the exceptional divisor of f :X → P3.

Proof. Let K be the family of unbendable rational curves on X containing the strict

transforms of general lines on P3 meeting Γ. Note that N�|X ∼= OP1(1)⊕OP1 for general

[�] ∈ K. We denote by Cx the VMRT of K at x ∈X and C̆ the total dual VMRT on P(TX)

associated to K.

Let x ∈X\D and z = f(x). We define Cz ⊆ P(ΩP3 |z) to be the plane curve parametrizing

the tangent directions of lines on P3 passing through z and a point of Γ, and denote

by C̆z ⊆ P(TP3 |z) the projectively dual curve of Cz. Notice that Cz is isomorphic to the

plane curve which is the image of Γ under the projection P3 ��� P2 from z. By the natural

isomorphism P(ΩX |x) ∼= P(ΩP3 |z), we have the identifications Cx ∼= Cz and C̆|x ∼= C̆z for

general x ∈X\D. As Cx is irreducible and reduced, so is C̆|x for general x ∈X, and hence

C̆ is irreducible and reduced.

Let

[C̆]∼ kζ+aΠ∗H+ bΠ∗D

for some k > 0 and a, b ∈ Z. Then k is equal to the degree of C̆z.

Let [�] be a general member of K and �̃⊆ P(TX |�)⊆ P(TX) be its minimal section. Since

the members of the family K̃ of rational curves on P(TX) containing [�̃] dominates C̆, we
have

dimK̃ = 3≥−KC̆.�̃+dim C̆ − |Aut(P1) |= (3ζ− (kζ+aΠ∗H+ bΠ∗D)).�̃+1.

We note that the dimension of K is 3 and �̃ is uniquely determined by �, and hence we have

dimK̃ = 3. Therefore, b≥−a−2.

Let l0 be a general line on P3 and �0 be its strict transform on X. Note that N�0|X
∼=

Nl0|P3
∼=OP1(1)⊕OP1(1). Let �̃0 ⊆ P(TX |�0)⊆ P(TX) be the section of �0 corresponding to

a quotient TX |�0 →N�0|X →OP1(1). We will complete the proof by showing that

C̆.�̃0 = k+(aH+ bD).�0 = k+a= 0,

and it is sufficient to show that C̆ ∩ �̃0 
= ∅ if and only if �̃0 ⊆ C̆.
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Assume that C̆ ∩ �̃0 
= ∅. That is, �̃0|x ∈ C̆|x for some x∈ �0. Then it is enough to show that

�̃0|x ∈ C̆|x for all x∈ �0. Let l̃0 ⊆P(TP3 |l0)⊆P(TP3) be the image of �̃0 under the isomorphism

P(TX |�0)
�−→ P(TP3 |l0). So it is reduced to prove the following claim.

Claim. l̃0|z ∈ C̆z for some z ∈ l0 implies that l̃0|z ∈ C̆z for all z ∈ l0.

Notice that l̃0 is a section of l0 corresponding to a quotient TP3 |l0 →Nl0|P3 →OP1(1). Let

P be a plane containing l0 on P3. Then it determines a quotient

TP3 |l0 →Nl0|P3 →NP |P3 |l0 ∼=OP1(1), (4.1)

and vice versa. That is, given l0 on P3, there is a 1-to-1 correspondence between a plane P

containing l0 and a section l̃0 of l0 corresponding to a quotient TP3 |l0 → Nl0|P3 →OP1(1),

both are parametrized by P2.

Let z ∈ l0. As the kernel of the quotient (4.1) is TP |l0 , the line Lz := P(ΩP |z)⊆ P(ΩP3 |z)
parametrizes the tangent directions of P at z. Thus, the line Lz is tangent to Cz ⊆ P(ΩP3 |z)
if and only if the point P(NP |P3 |z) is contained in C̆z ⊆ P(TP3 |z) as Lz = P(ΩP |z) and

P(NP |P3 |z) are projectively dual. This is equivalent to say that P is tangent to Γ on P3

because Cz and Lz are linear projections of Γ and P, respectively, after identifying P3 ���
P(ΩP3 |z) to the projection from z. If we choose a plane P that contains l0 and tangents to

Γ, then any point z ∈ l0 satisfies the above. Therefore, we have the claim.

Theorem 4.3. Let f :X =BlΓP
3 → P3 be the blow-up of the projective space P3 along a

smooth nondegenerate curve Γ. Assume that Γ has at most a finite number of quadrisecant

lines on P3. Then TX is big if and only if Γ is a twisted cubic curve.

Proof. Let d and g be the degree and genus of Γ. If d= 3, then TX is big by Remark 3.5.

Otherwise, if d ≥ 4, then let C̆1 and C̆2 be the total dual VMRTs on P(TX), respectively

given by Propositions 4.2 and 4.1. Then, for general, x ∈ X, C̆1|x is projectively dual to

a plane curve of degree d with δ = 1
2(d− 1)(d− 2)− g nodes, hence the degree of C̆1|x is

given by

d(d−1)−2δ = d(d−1)−2 ·
(
1

2
(d−1)(d−2)−g

)
= 2d+2g−2.

So C̆1 and C̆2 satisfy

[C̆1]∼ (2d+2g−2)ζ− (2d+2g−2)Π∗H+((2d+2g−4)+ c)Π∗D,

[C̆2]∼
(
1

2
(d−1)(d−2)−g

)
ζ+(d+g−1)Π∗H−

(
(d−1)− 1

2
(d−2)(d−3)+g

)
Π∗D

for some c ≥ 0 where H = f∗OP3(1) and D is the exceptional divisor of f : X → P3 (the

second formula is valid even in the case d = 4 and g = 1 where Γ has no trisecant line on

P3). Then they yield an effective divisor

[C̆1]+2[C̆2] = kζ+((d−1)(d−4)+ c)Π∗D

on P(TX) satisfying (†) for some k > 0 and c ≥ 0. Thus by Lemma 2.2, ζ is not big on

P(TX).

Remark 4.4. Let X be a Fano threefold given by the blow-up f :X = BlΓP
3 → P3 of

the projective space P3 along a smooth nondegenerate curve Γ of degree d and genus g.
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No. in [13, Table 2] 4 9 12 15 17 19 22 25

(d,g) (9,10) (7,5) (6,3) (6,4) (5,1) (5,2) (4,0) (4,1)

Then Γ has no quadrisecant line on P3. Indeed, if Γ has a quadrisecant line, then X is not

Fano because the strict transform � of a quadrisecant line satisfies −KX · �= 0.

By Theorem 4.3, TX is not big in the above cases.

Proposition 4.5. Let f :X = BlΓQ→Q be the blow-up of a smooth quadric threefold

Q⊆ P4 along a smooth curve Γ of degree d. Assume that Γ has at most a finite number of

trisecant lines on Q. Then there exists an irreducible and reduced effective divisor

[C̆]∼ dζ+(m−2)Π∗D

on P(TX) which satisfies (†). Here, m≥ 0 is the number of secant lines of Γ on Q passing

through a general point of Γ, and D is the exceptional divisor of f :X →Q.

Proof. We continue to use the notation in the proof of Proposition 4.1. The proof

is similar to the proposition. Let K be the family of unbendable rational curves on X

containing the strict transforms of lines meeting Γ on Q and C̆ be the total dual VMRT on

P(TX) associated to K. From the diagram

K U e ��q��

σ
��

X

f

��
K U0

∼= PK(V )
e0

��
q0

��

		������
Q,

we have the formula

[C̆]∼ kζ+Π∗e∗(KU/K) = kζ−2Π∗e∗ξ+Π∗e∗q
∗c1(V )+Π∗e∗E

for k = deg(e).

As a general hyperplane section meets a general line at 1 point on Q, we take V = q∗e
∗H

so that ξ = e∗H for the tautological class ξ =OPK
(1). Then e∗ξ = kH. Let

e∗q
∗c1(V ) = aH+ bD and e∗E =mD

for some a, b ∈ Z and m ≥ 0. In this case, H3 = 2, H2.D = 0, and H.D2 = −d. Thus from

the same calculation in the proof of Proposition 4.1,

a=
1

2
c1(V )

2
= k+

1

2
r, b=−1

2
q∗c2(V ).e∗D =−1

d
r

for r := c2(V ) as a general line is chosen to meet Γ at 1 point on Q so that e∗D ≡ ξ in

N1(U/K).

Thus, we obtain the formula in the statement using the following correspondences.

k = (the number of lines on Q joining Γ and a general point of Q)

= d,

r = (the number of lines on Q meeting Γ and contained in a general hyperplane section of Q)

= 2d,

m= (the number of secant lines of Γ on Q passing through a general point of Γ).
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Remark 4.6. Let f : X = BlΓQ → Q be the blow-up of a smooth quadric threefold

Q ⊆ P4 along a smooth curve Γ. We denote by H = f∗OQ(1), and D is the exceptional

divisor of f :X →Q.

If Γ is a quartic elliptic curve (No. 23 in [13, Table 2]) given by the intersection of Q with

A ∈ |OP4(1)| and B ∈ |OP4(2)| on P4, then the number of secant lines of Γ on Q passing

through a general point of Γ is m= 2.

Indeed, in No. 23.a, a secant line of Γ on Q corresponds to a rule in the quadric surface

Q∩A ⊆ A ∼= P3 and Γ = Q∩A∩B corresponds to a (2,2)-divisor on the quadric surface

Q∩A. Then the number of secant lines of Γ on Q passing through a general point of Γ is

m= 2. In No. 23.a, the locus of secant lines of Γ is two disjoint lines which is parametrized

by two rulings in Q∩A. In No. 23.b, the locus of secant lines of Γ is a double line which

is also parametrized by the ruling in a quadric cone surface Q∩A. So we have the same

m= 2.

Let C̆ be the total dual VMRT on P(TX) given by Proposition 4.5. Then it yields an

effective divisor

[C̆]∼ 4ζ

on P(TX) satisfying (†). Thus by Lemma 2.2, ζ is not big on P(TX).

If Γ is a smooth conic (No. 29 in [13, Table 2]), then there is no secant line of Γ on Q

because the plane spanned by Γ and Q have Γ as their intersection.

Let C̆1 be the total dual VMRT on P(TX) given by Proposition 4.5. Then it yields an

effective divisor

[C̆1]∼ 2ζ−2Π∗D

on P(TX). Together with the total dual VMRT C̆2 on P(TX) given by Proposition 3.6, we

can write a multiple of ζ by a positive linear combination of effective divisors on P(TX) as

4ζ = [C̆1]+ [C̆2]+2Π∗H.

Thus, ζ is big on P(TX). That is, TX is big.

§5. Conic bundles with non-empty discriminant

In this section, we disprove the bigness of TX in the case when a Fano threefold X

admits a standard conic bundle structure π :X → P2 with non-empty discriminant Δ⊆ P2

of degree d = degΔ. When the discriminant is empty, i. e., X admits a P1-fibration, we

have proved the bigness of TX from a number of remarks in previous sections except No. 24

in [13, Table 2], which admits another conic bundle structure with non-empty discriminant

(see 5.1.2).

5.1 Degree 3

There are two deformation types of standard conic bundle π :X → P2 with d= 3: No. 20

and 24 in [13, Table 2].

5.1.1. No. 20

Let f :X → V5 be the blow-up of the smooth del Pezzo threefold V5 of degree 5 along a

smooth curve Γ of degree 3 and genus 0.
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X = BlΓV5

π=ϕ|H−D|
��

f �� V5

P2

.

We denote by H = f∗OV5(1), and D the exceptional divisor of f :X → V5. Then

−KX ∼ 2H−D =H+h, h∼H−D, D ∼H−h.

Let C̆1 be the total dual VMRT on P(TX) associated to the family of fibers of π :X → P2.

Then we know from Proposition 2.3 that

[C̆1]∼ ζ+Π∗(KX −π∗KP2) = ζ+Π∗((−H−h)− (−3h)) = ζ−Π∗H+2Π∗h.

On the other hand, let C̆2 be the total dual VMRT on P(TX) associated to the family of

the strict transforms of lines on V5. Then, by Proposition 3.8,

[C̆2]∼ 3ζ−Π∗H+3Π∗D = 3ζ−Π∗H+3Π∗(H−h) = 3ζ+2Π∗H−3Π∗h.

So 5ζ can be expressed as

2[C̆1]+ [C̆2] = 5ζ+Π∗h

on P(TX) satisfying (†). Thus by Lemma 2.2, ζ is not big.

5.1.2. No. 24

Let X be a (1,2)-divisor on P2×P2. Then X is not only a conic bundle π1 :X → P2 but

also a ruled variety π2 :X = P(E)→ P2 for some vector bundle E of rank 2 on P2.

X

π1

��

π2 �� P2

P2

.

We denote by hi = π∗
iOP2(1) for i= 1, 2. Then −KX ∼ 2h1+h2.

Let C̆i be the total dual VMRT on P(TX) associated to the family of fibers of πi :X → P2

for i= 1, 2. Then we know from Proposition 2.3 that

[C̆1]∼ ζ+Π∗(KX −π∗
1KP2) = ζ+Π∗((−2h1−h2)− (−3h1)) = ζ+Π∗h1−Π∗h2,

[C̆2]∼ ζ+Π∗(KX −π∗
2KP2) = ζ+Π∗((−2h1−h2)− (−3h2)) = ζ−2Π∗h1+2Π∗h2.

So 3ζ can be expressed as

2[C̆1]+ [C̆2] = 3ζ

on P(TX) satisfying (†). Thus by Lemma 2.2, ζ is not big.

5.2 Degree 4

There are two deformation types of standard conic bundles π :X → P2 with d = 4: No.

13 and 18 in [13, Table 2].
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5.2.1. No. 13

Let f : X = BlΓQ → Q be the blow-up of a smooth quadric threefold Q ⊆ P4 along a

smooth curve Γ of degree 6 and genus 2 [2, §5.2].

X = BlΓQ

π=ϕ|2H−D|
��

f �� Q

P2

.

We denote by h = π∗OP2(1), H = f∗OQ(1), and D the exceptional divisor of f : X → Q.

Then

−KX ∼ 3H−D =H+h, h∼ 2H−D, D ∼ 2H−h.

Let C̆1 be the total dual VMRT on P(TX) associated to the family of fibers of π :X → P2.

Then we know from Proposition 2.3 that

[C̆1]∼ ζ+Π∗(KX −π∗KP2) = ζ+Π∗((−H−h)− (−3h)) = ζ−Π∗H+2Π∗h.

On the other hand, let C̆2 be the total dual VMRT on P(TX) associated to the family of

the strict transforms of lines on Q. Then, by Proposition 3.6,

[C̆2]∼ 2ζ−2Π∗H+2Π∗D = 2ζ−2Π∗H+2Π∗(2H−h) = 2ζ+2Π∗H−2Π∗h.

So 3ζ can be expressed as

[C̆1]+ [C̆2] = 3ζ+Π∗H

on P(TX) satisfying (†). Thus by Lemma 2.2, ζ is not big.

5.2.2. No. 18

Let f :X → P2×P1 be the double cover branched over a (2,2)-divisor B on P2×P1.

X
π



���
���

���
���

�
p

����
���

���
���

��

f
��

P2 P2×P1�� �� P1.

We denote by h= π∗OP2(1) and H = p∗OP1(1). Then −KX ∼ f∗(−KP2×P1 − 1
2B) =H+2h.

Let C̆1 be the total dual VMRT on P(TX) associated to the family of fibers of the conic

bundle π :X → P2. Then we know from Proposition 2.3 that

[C̆1]∼ ζ+Π∗(KX −π∗KP2) = ζ+Π∗((−H−2h)− (−3h)) = ζ−Π∗H+Π∗h.

Note that p :X → P1 is a del Pezzo fibration whose general fiber Xt is isomorphic to a

smooth quadric surface whereas a singular fiber is isomorphic to a quadric cone (cf. [14, p.

109]). Let

• K be the family of rational curves on X containing a rule � of Xt
∼= P1×P1,

and C̆2 be the total dual VMRT on P(TX) associated to K, whose linear class is given by

[C̆2]∼ kζ+ cΠ∗H+dΠ∗h
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for some k > 0 and c, d ∈ Z. Because there are two families of rules in each smooth fiber

Xt, K may parametrize both of the families in Xt, or parametrize only one of the families

in Xt.

The second case does exist: if K parametrizes only the lines of one ruling, then we can

choose a section s of the fibration. The curves in K meeting the section s form a divisor

D ⊂ X such that the restriction to the general fiber is OP1×P1(1,0). This contradicts to

ρ(X/P1) = 1.

When K parametrizes both of the families of rules in each smooth fiber Xt, it is obvious

that k = 2. Let K be the normalization of the closure of K as a subscheme of Chow(X)

and q : U →K be the normalization of the universal family with the evaluation morphism

e : U →X. Note that q : U → K is a P1-fibration over K, and from its construction, there

exists a rank 2 vector bundle V on K such that U = PK(V ). Indeed, from a fixed embedding

X → P3×P1 with the second projection being a quadric fibration, V is given by the pull-

back of the universal bundle over the Grassmannian Gr(2,4) via the induced morphism

K→Gr(2,4)×P1 →Gr(2,4). Then, by Proposition 2.3, the linear class of C̆2 satisfies

[C̆2]∼ 2ζ+Π∗e∗(KU/K).

We take V = q∗e
∗h so that ξ = e∗h for the tautological class ξ =OPK(V )(1). Then

e∗(KU/K) = e∗(−2ξ+ q∗c1(V )) =−4h+e∗q
∗c1(V ).

Let

e∗q
∗c1(V ) = aH+ bh

for some a, b ∈ Z. Then

2a= aH.h2 = e∗q
∗c1(V ).h2 = q∗c1(V ).ξ2 = q∗c1(V )(q∗c1(V )ξ− q∗c2(V )) = c1(V )

2
.

From c1(V )
2−c2(V ) = ξ3 = 2h3 = 0, we have a= 1

2c1(V )
2
= 1

2c2(V ). We can find r := c2(V )

as the number of indeterminate points of a rational section of q : U →K linearly equivalent

to ξ = e∗h.

We fix a general member h0 ∈ |h|. Then h0 = π∗L0 for some line L0 on P2. Recall that

a smooth fiber Xt is isomorphic to the double cover πt :Xt → P2 branched over a conic Ct

and h0 ∩Xt = πt
−1(L0). Then h0 ∩Xt is a union of two rules in the fiber Xt if and only

if L0 is tangent to Ct on P2. Here, a singular fiber (two-dimensional quadric cone) of p is

not affected due to a general choice of h0: a singular fiber is obtained by a double cover P2

branched over a union of two lines. Since we have only finitely many singular fibers of p,

we can choose a line h0 which is not one of the lines of the branch loci of the singular fibers

of p.

As the condition of being tangent to L0 corresponds to a hypersurface of degree 2 in the

space of conics, there are only four conics Ct for t= 1, 2, 3, 4 such that h0∩Xt = π−1
t (L0)

is a union of two rules. Thus, the total number of q-fibers contained in ξ0 = e∗h0 on U is

r = 2×4 = 8, and so a= 4.

On the other hand,

2b= bH.h2 = e∗q
∗c1(V ).H.h= q∗c1(V ).ξ.e∗H

= (ξ2+ q∗c2(V )).e∗H = ξ2.e∗H = e∗(H.h2) = 2H.h2 = 4,
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as � does not meet H on X for general [�] ∈ K so that e∗H ≡ 0 in N1(U/K). Thus b = 2,

and we have

[C̆2]∼ 2ζ+4Π∗H−2Π∗h.

So 3ζ can be expressed as

2[C̆1]+ [C̆2] = 3ζ+2Π∗H

on P(TX) satisfying (†). Thus by Lemma 2.2, ζ is not big.

5.3 Degree 5

There are two deformation types of standard conic bundles π : X → P2 with d = 5: π

corresponds to odd (No. 11), or even theta characteristic (No. 9 in [13, Table 2]).

5.3.1. No. 11

If π corresponds to odd theta-characteristic, then X is isomorphic to the blow-up BlΓV3

of a smooth cubic threefold V3 ⊆ P4 along a line Γ. We know that TX is big only if TV3 is big

by Lemma 3.2, but TV3 cannot be big by [5, Th. 1.4]. Thus, TX is not big (see Remark 3.3).

5.3.2. No. 9

If π corresponds to even theta-characteristic, then X is isomorphic to the blow-up f :

X = BlΓP
3 → P3 of the projective space P3 along a smooth curve Γ of degree 7 and genus

5 [2, §5.1].

X = BlΓP
3

π=ϕ|3H−D|
��

f �� P3.

P2

We denote by h= π∗OP2(1), H = f∗OP3(1), and D is the exceptional divisor of f :X → P3.

Then

−KX ∼ 4H−D =H+h, h∼ 3H−D, D ∼ 3H−h.

Let C̆ be the total dual VMRT on P(TX) associated to the family of the strict transforms

of secant lines of Γ on P3. Then, by Proposition 4.1,

[C̆]∼ 10ζ+11Π∗H−Π∗D = 10ζ+8Π∗H+Π∗h,

and C̆ satisfies (†). Thus by Lemma 2.2, ζ is not big on P(TX) (see also Remark 4.4).

5.4 Degree 6

There are two deformation types of standard conic bundles π :X → P2 with d= 6: No. 6

and 8 in [13, Table 2].
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5.4.1. No. 6

We first treat the case where X is isomorphic to a (2,2)-divisor on P2×P2 (No. 6.a).

X

π1

��

π2 �� P2

P2

.

We denote by hi = π∗
iOP2(1) for i= 1, 2. Then −KX ∼ h1+h2.

Let C̆i be the total dual VMRT on P(TX) associated to the family of fibers of the conic

bundle πi :X → P2 for i= 1, 2. Then we know from Proposition 2.3 that

[C̆1]∼ ζ+Π∗(KX −π∗
1KP2) = ζ+(Π∗(−h1−h2)−Π∗(−3h1)) = ζ+2Π∗h1−Π∗h2,

[C̆2]∼ ζ+Π∗(KX −π∗
2KP2) = ζ+(Π∗(−h1−h2)−Π∗(−3h2)) = ζ−Π∗h1+2Π∗h2.

So 2ζ can be expressed as

[C̆1]+ [C̆2] = 2ζ+Π∗(h1+h2)

on P(TX) satisfying (†). Thus, by Lemma 2.2, ζ is not big.

We next deal with the case where X is isomorphic to the double cover of a (1,1)-divisor

W on P2×P2, which is branched over a smooth member B ∈ |−KW | (No. 6.b).

X
π1

�����
���

���
��

π2

��		
			

			
			

f
��

P2 W�� �� P2.

We denote by hi = π∗
iOP2(1). Then −KX ∼ f∗(−KP2×P2 − 1

2B) = h1+h2.

Let C̆i be the total dual VMRT on P(TX) associated to the family of fibers of the conic

bundle πi :X → P2 for i= 1, 2. Then we know from Proposition 2.3 that

[C̆1]∼ ζ+Π∗(KX −π∗
1KP2) = ζ+(Π∗(−h1−h2)−Π∗(−3h1)) = ζ+2Π∗h1−Π∗h2,

[C̆2]∼ ζ+Π∗(KX −π∗
2KP2) = ζ+(Π∗(−h1−h2)−Π∗(−3h2)) = ζ−Π∗h1+2Π∗h2.

So 2ζ can be expressed as

[C̆1]+ [C̆2] = 2ζ+Π∗(h1+h2)

on P(TX) satisfying (†). Thus, by Lemma 2.2, ζ is not big on P(TX).

5.4.2. No. 8

Let f :X → V7 be the double cover branched over a smooth member B ∈ |−KV7 | where
V7 is the blow-up g : V7 = BlzP

3 → P3 of the projective space P3 at a point z ∈ P3. Note

that V7 is also given by the ruled variety φ : V7 = P(OP2 ⊕OP2(1))→ P2 over P2.

X
f ��

π=ϕ|H−D|
























V7 = BlzP
3 g ��

φ
��

P3.

��� � � � � � �

P2
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We denote by H = (g ◦ f)∗OP3(1), h = π∗OP2(1), D = f−1(D′) for the exceptional divisor

D′ of g : V7 → P3, and B0 = g(B) the image of B on P3. Then

−KX ∼ 2H−D =H+h, h∼H−D, D ∼H−h.

Note that B0 is a quartic surface with one ordinary double point at the center of the blow-

up z ∈ P3. Let K be the family of rational curves on X, which parametrizes the irreducible

components of preimages � of bitangent lines l to B0 on P3, and C̆ be the total dual VMRT

on P(TX) associated to K.

Let K be the normalization of the closure of K as a subscheme of Chow(X) and q : U →K
be the normalization of the universal family with the evaluation morphism e : U →X. Note

that q : U → K is a P1-fibration over K, and from its construction, there exists a rank 2

vector bundle V on K such that U = PK(V ). Indeed, from the morphism X → V7 → P3, V

is given by the pull-back of the universal bundle over the Grassmannian Gr(2,4) via the

induced morphism U →Gr(2,4). Then, by Proposition 2.3, the linear class of C̆ satisfies

[C̆]∼ kζ+Π∗e∗(KU/K)

for k=deg(e). We take V = q∗e
∗H so that ξ = e∗H for the tautological class ξ =OPK(V )(1).

Then

e∗(KU/K) = e∗(−2ξ+ q∗c1(V )) =−2kH+e∗q
∗c1(V ).

Let

e∗q
∗c1(V ) = aH+ bD

for some a, b ∈ Z. Then

2a= aH3 = e∗q
∗c1(V ).H2 = q∗c1(V ).ξ2 = q∗c1(V )(q∗c1(V )ξ− q∗c2(V )) = c1(V )

2
.

From c1(V )
2−c2(V ) = ξ3 = kH3 = 2k, we have a= 1

2c1(V )
2
= k+ 1

2c2(V ). We can calculate

r := c2(V ) as the number of indeterminate points of a rational section of q : U →K linearly

equivalent to ξ = e∗H.

On the other hand,

2b= bD3 = e∗q
∗c1(V ).D2 = q∗c1(V ).(e∗D)2 = 0,

as a general bitangent line l of B0 does not pass through z on P3, its strict transform �

does not meet D on X for general [�] ∈ K so that e∗D ≡ 0 in N1(U/K). Thus, b= 0.
In this case, k = deg(e) and r = #{l is a bitangent line to B0 on P3 | l ⊆ P} for general

P ∈ |OP3(1)| correspond to

k = (the number of bitangent lines of B4 ⊆ P3 passing through a general point)

= 12,

r = 2× (the number of bitangent lines of B4∩P2 contained in a general hyperplane P2 ⊆ P3)

= 56

(for the first equality, see [7, Th. 1.1]). So 12ζ can be expressed as

[C̆]∼ 12ζ+
(r
2
−k

)
Π∗H = 12ζ+16Π∗H

on P(TX) satisfying (†). Thus, by Lemma 2.2, ζ is not big on P(TX).
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5.5 Degree 8

There is one deformation type of standard conic bundle π :X → P2 with d= 8: No. 2 in

[13, Table 2].

5.5.1. No. 2

Let X be the double cover f :X → P2×P1 branched over a (4,2)-divisor B on P2×P1.

X
π



���
���

���
���

�
p

����
���

���
���

��

f
��

P2 P2×P1�� �� P1.

We denote by h= π∗OP2(1) and H = p∗OP1(1). Then −KX ∼ f∗(−KP2×P1 − 1
2B) =H+h.

Note that p :X → P1 is a del Pezzo fibration whose general fiber Xt is isomorphic to the

double cover πt : Xt → P2 branched over a smooth plane quartic Bt. Recall that Xt is a

del Pezzo surface of degree 2, which is also isomorphic to the blow-up ρt :Xt → P2 of the

projective plane P2 at 7 points in general position. Therefore, we can conclude that TX is

not big by Proposition 2.8.
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