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Abstract

Quasispecies theory predicts that there is a critical mutation probability above which a
viral population will go extinct. Above this threshold the virus loses the ability to replicate
the best-adapted genotype, leading to a population composed of low replicating mutants
that is eventually doomed. We propose a new branching model that shows that this is not
necessarily so. That is, a population composed of ever changing mutants may survive.
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1. Introduction

Compared to other species an RNA virus has a very high mutation rate and a great deal
of genomic diversity. Hence, a virus population can be thought of as an ensemble of related
genotypes called quasispecies; see Eigen (1971) and Eigen and Schuster (1977). From the virus
point of view, a high mutation rate is advantageous because it may create rather diverse virus
genomes, which may overwhelm the immune system of the host and ensure survival of the virus
population; see Vignuzzi et al. (2006). On the other hand, a high mutation rate may result in
many nonviable individuals and hurt the quasispecies; see Sanjuan et al. (2004) and Elena and
Moya (1999). It therefore seems that mutation rates should be high, but not too high. A simple
mathematical model makes this point. Consider a virus population having genomes 1 and 2,
where genome 1 has a replication rate a1 and genome 2 has a replication rate a2, with a1 > a2.
We suppose that, when type-1 individuals replicate, the new individual has a type-1 genome
with probability 1 − r and a type-2 genome with probability r . Type-2 genome individuals do
not mutate. The model is then

dv1

dt
= a1(1 − r)v1,

dv2

dt
= a1rv1 + a2v2, (1)

where vi is the number of type-i genomes for i = 1, 2. This is a variation of a model in
Section 8.5 of Nowak and May (2000). A slightly different, but perhaps better interpretation of
this model, is to think of genome 1 as being a specific (high performing) genome and genome 2
as the collection of all the other genomes in the population.

This system of differential equations is easily solved, and we can check that the ratio v1/v2
converges as t goes to ∞. It turns out that the limit is strictly positive if and only if r < 1−a2/a1.
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That is, in order for type 1 to be maintained in the population, the mutation r needs to be below
the threshold 1 − a2/a1. Hence, this model predicts that above a certain mutation threshold
faithful replication of the best-adapted genotype is compromised. Moreover, there seems to be
general agreement in the biology literature that above this threshold the virus population will
go extinct; see Eigen (2002) and Manrubia et al. (2010). We propose here a simple stochastic
model that shows that this is not necessarily so. In our model the population may survive, even
if faithful replication of the best-adapted genotype is compromised, with the population being
composed of ever changing mutants.

Our results may be biologically relevant for the following reason. An important current
strategy to fight HIV and other viruses is to try to increase the mutation probability of the
virus; see Eigen (2002) and Manrubia et al. (2010). This assumes that above a certain mutation
threshold the virus will die out. Our model suggests that at least in theory this strategy may not
work.

We now describe our continuous-time evolution process, which consists of individuals
characterized by fitness and genotype. Let µ be a probability distribution with support contained
in [0, ∞), and let r ∈ [0, 1]. Start with one individual at time 0, and sample a birth rate λ from
the distribution µ, which we think of as representing fitness. The individual gives birth at rate
λ and dies at rate 1. Every time there is a birth, the new individual

(i) with probability 1 − r , keeps the same type and birth rate λ as its parent, and

(ii) with probability r , is given a new type and a birth rate λ′ sampled independently of
everything else from the distribution µ.

Thinking of r as a mutation probability, we call an individual born by the latter mechanism
a mutant. If µ has no atoms then every mutant will have a distinct birth rate. On the other
hand, if µ does have atoms, a mutant may have a birth rate that has appeared previously in the
population. This allows different types to have the same fitness. For convenience, we label the
genotypes in the order they appear, starting with the initial individual with type 1.

Let Z(t) denote the number of individuals alive at time t . We say that the evolution process
survives if Z(t) > 0 for all t ≥ 0 and dies out otherwise. Our main interest is in determining
whether survival with positive probability is possible and by what mechanism survival can be
achieved.

Theorem 1. For 0 ≤ r ≤ 1 and probability distributions µ on [0, ∞), the evolution process
survives with positive probability if and only at least one of the following survival conditions
holds:

µ({λ : λ(1 − r) > 1}) > 0, (2)∫
{λ : λ(1−r)≤1}

λr

1 − λ(1 − r)
dµ(λ) > 1. (3)

We note that the integral in (3) is infinite if µ assigns positive mass to 1/(1 − r). The two
extreme cases, r = 0 and r = 1, are easy to understand. If r = 0 then (3) cannot hold and (2)
reduces to µ([1, ∞)) > 0. In this case, no new types are ever produced, the initial branching
rate is used forever by all individuals. Conditional on the initial branching rate λ, Z(t) is a
linear birth–death process which survives if and only if λ > 1. Thus, (2) is equivalent to a
positive probability of survival. When r = 1, every birth is a mutant birth, (2) cannot hold,
and (3) reduces to

∫
λ dµ(λ) > 1. It is not hard to see that, conditional on a given individual’s
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branching rate λ, the total number of offspring of that individual is k with probability

1

1 + λ

(
λ

1 + λ

)k

, k = 0, 1, . . . ,

and mean λ. Thus, the unconditional mean number of offspring of the first individual is∫
λ dµ(λ), and the total number of individuals that ever live in the evolutionary process is the

same as the total progeny in a Galton–Watson process with an offspring distribution which has
this mean. The total progeny is infinite with positive probability if and only if this mean is
larger than 1, so (3) is equivalent to a positive probability of survival.

Condition (2) corresponds to the prediction of the differential equation model (1). That is,
below a certain threshold for the mutation probability, the virus can survive because a well-
adapted (i.e. high λ) fixed genotype can survive. However, if (2) fails, it is still possible to
have survival by (3). In this case survival holds because of a growing ‘cloud’ of ever changing
mutants of low replicative ability.

Observe that, for any ε > 0 and r in [0, 1), there are distributions µ for which (2) holds but∫
λ dµ(λ) < ε. This shows that the behavior of our evolution process is drastically different

from the classical Galton–Watson process in homogeneous or random environments. For
these processes, survival is possible if and only if the expected offspring (or a closely related
expectation) is large enough (see Harris (1989) for homogeneous environments and Smith and
Wilkinson (1969) for random environments).

It is clear that if the support of µ is unbounded then (2) holds for all r < 1, so for interesting
examples we consider distributions with compact support. Among these distributions, a natural
family to consider is the uniform distribution on [0, a], a > 0. As the following shows, this
class exhibits all possible types of survival behavior depending on the exact values of a and r .

Corollary 1. Let µ be the uniform distribution on [0, a], a > 0. If 0 < a ≤ 1 then the
evolution process dies out almost surely (a.s.) for all r ∈ [0, 1], while if a > 2 then the evolution
process survives with positive probability for all r ∈ [0, 1]. If a = 2 then the evolution process
dies out a.s. for r = 1 and survives with positive probability for all r ∈ [0, 1). If 1 < a < 2
then there exists rc ∈ (1 − 1/a, 1) such that

• if r < 1−1/a then (2) holds and the evolution process survives with positive probability,

• if 1 − 1/a ≤ r < rc then (3) holds and the evolution process survives with positive
probability,

• if r ≥ rc then the evolution process dies out a.s.

In words, whether the population goes extinct when the mutation rate is above a certain
threshold depends crucially on the value of a. If a > 2, there is no such threshold: the
population survives for any mutation probability r . Note also that, for 1 < a < 2, there are two
distinct thresholds: 1−1/a and rc. If r < 1−1/a, a well-adapted genome may survive forever,
while if 1 − 1/a ≤ r < rc, no fixed genome can survive forever. In this regime the population
survives as a growing cloud of ever changing mutants. Finally, if r ≥ rc, the population goes
extinct.

2. Proof of Theorem 1

Recall that we start with a single genotype-1 individual at time 0 whose λ has been
sampled from distribution µ. Recall also that each birth, with probability r , produces a mutant
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representing a new genotype, with its birth rate λ sampled independently from µ. Consider
the branching process started by the initial type-1 individual in which all mutation births are
ignored, letting Xt be the number of type-1 individuals alive at time t . Conditional on the initial
branching rate λ, Xt is a birth–death process with individual birth rate λ(1−r) and death rate 1.
In particular, it is well known (see Chapter 4 of Karlin and Taylor (1975)) that it survives with
positive probability if and only if λ(1 − r) > 1, and that

E(Xt | λ) = exp((λ(1 − r) − 1)t). (4)

Integration of the condition λ(1 − r) > 1 with respect to µ gives

P(Xt ≥ 1 for all t > 0) > 0 if and only if µ({λ : λ(1 − r) > 1}) > 0.

Now let Yt be the number of mutants born by time t to type-1 individuals. Then Yt ↑ Y∞ as
t → ∞, the total number of mutants ever born to type-1 individuals. Note that if r > 0 then
Y∞ < ∞ if and only if Xt = 0 eventually. For h > 0, it is easy to see that

E(Yt+h − Yt | λ, Xt ) = λrhX(t) + o(h) as h ↓ 0,

from which it follows that
d

dt
E(Yt | λ) = λr E(Xt | λ),

and, therefore, using (4),

E(Yt | λ) = rλ

∫ t

0
E(Xs | λ) ds = rλ

∫ t

0
exp((λ(1 − r) − 1)s) ds.

Integration with respect to the measure µ now yields

E(Yt ) =
∫ +∞

0

∫ t

0
rλ exp((λ(1 − r) − 1)s) ds dµ(λ).

By the monotone convergence theorem, E(Yt ) ↑ E(Y∞) as t → ∞. Letting m(r) = E(Y∞), it
is easy to show using the above that

m(r) =

⎧⎪⎨
⎪⎩

+∞ if µ({λ : λ(1 − r) > 1}) > 0,∫
[0,1/(1−r)]

rλ

1 − λ(1 − r)
dµ(λ) if µ({λ : λ(1 − r) > 1}) = 0.

Assume now that (2) does not hold, which implies that X∞ < ∞ a.s., and, hence, Y∞ < ∞
a.s. We define an auxiliary process (Zn)n≥0 similar to the tree of genotypes first introduced by
Schinazi and Schweinsberg (2008) for a different model. The process (Zn) will be a branching
process with the property that

∑∞
n=1 Zn is the total number of mutants that will ever appear in

our evolution process. To define (Zn), we start with the zeroth generation, the initial type-1
individual, and set Z0 = 1. Next, the first generation will consist of all mutants ever born
to type-1 individuals. Thus, the size of the first generation is Z1 = Y∞. Supposing that
one of these individuals has type i, we let Y i∞ be the total number of mutants ever born to
type-i individuals. Doing the same for each first generation individual generates the second
generation, which has size Z2 = ∑

i Y i∞, where the sum is over first generation individuals.
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We may continue as above, obtaining a (discrete-time) Galton–Watson process (Zn)n≥0
with offspring distribution pk = P(Y∞ = k) = ∫

P(Y∞ = k | λ) dµ(λ), where
∑∞

n=1 Zn is the
number of mutants that will ever appear in the evolution process. The mean of the offspring
distribution of (Zn)n≥0 is m(r), and, hence, the total number of mutations is infinite with
positive probability if and only if m(r) > 1.

To complete the proof, we claim that there are only two ways for the evolution process to
survive: either the branching process (ignoring mutations) started by some individual survives
forever with positive probability ((2) holds), or the total number of mutations is infinite with
positive probability ((3) holds). It is clear that if either of these occurs then the evolution
process survives with positive probability. Suppose now that both (2) and (3) fail. Then, with
probability 1, each genotype that ever appears gives birth to only finitely many individuals, and
also the total number of mutations is finite a.s. This means that the total number of individuals
that will ever appear is finite.

3. Proof of Corollary 1

Let µ be the uniform distribution on [0, a], a > 0. Then (2) is equivalent to a(1 − r) > 1.
If a(1 − r) ≤ 1 then

m(r) = 1

a

∫ a

0

rλ

1 − (1 − r)λ
dλ. (5)

Case 1: 0 < a ≤ 1. Here a(1 − r) ≤ 1 for all r ∈ [0, 1], so (2) does not hold. Furthermore,
the fact that a ≤ 1 implies that the integrand in (5) is an increasing function of r . Thus, for all
r ∈ [0, 1],

m(r) ≤ m(1) = 1
2a < 1,

and, hence, (3) also fails. For every r , the evolution process dies out a.s.
Case 2: a > 1. A little calculus shows that

m(r) = − r

1 − r
− 1

a

r

(1 − r)2 ln(1 − a(1 − r)), r ∈
(

1 − 1

a
, 1

)
.

To complete the proof of Corollary 1, we will need the following properties of m(r).

(P1) m(r) is continuous on (1 − 1/a, 1], limr↓1−1/a m(r) = ∞, and limr↑1 m(r) = a/2.

(P2) If a ≥ 3
2 then m(r) is strictly decreasing on (1 − 1/a, 1).

(P3) If 1 < a < 3
2 then there exists ra ∈ (1 − 1/a, 1) such that m(r) is strictly decreasing on

(1 − 1/a, ra) and strictly increasing on (ra, 1).

The proof of (P1) is simple and is thus omitted. The proofs of (P2) and (P3) require some work,
so we will postpone them for now and complete the proof of Corollary 1 assuming that (P2)
and (P3) have been established. We consider three subcases.

• If a ≥ 2 and 1 − 1/a < r < 1, then, by (P2), m(r) > m(1) = a/2 ≥ 1, so (3) holds
for all r ∈ (1 − 1/a, 1). Also, m(1) = a/2 implies that (3) holds for a > 2 but fails for
a = 2.

• If 3/2 ≤ a < 2 then, by (P1), m(1) < 1, and, hence, by (P1) and (P2), there exists a
unique rc ∈ (1 − 1/a, ra) such that m(rc) = 1. By (P2), (3) holds for r < rc but fails
for r ≥ rc.
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• If 1 < a < 3/2 then, by (P1) and (P3), m(ra) < 1. It follows that there exists a unique
rc ∈ (1 − 1/a, ra) such that m(rc) = 1, m(r) > 1 on (1 − 1/a, rc), and m(r) < 1 on
(rc, 1].

The proof of Corollary 1 is now complete except for the proofs of (P2) and (P3). At this
point it is convenient to change variables. If we define the function

g(x) = 1 − x + 1

a
(x − x2) ln

(
1 − a

x

)
, x ∈ (a, ∞),

then

m(r) = g

(
1

1 − r

)
.

Moreover, m is increasing (decreasing) on the interval (r1, r2) if and only if g is increasing
(decreasing) on the interval ((1 − r1)

−1, (1 − r2)
−1). A little calculation gives the first three

derivatives of g:

g′(x) = −1 − x − 1

x − a
− 1

a
(2x − 1) ln

(
1 − a

x

)
,

g′′(x) = −a − 3ax + 2x2

x(x − a)2 − 2

a
ln

(
1 − a

x

)
,

g′′′(x) = −a2 + ax(2a − 3)

x2(x − a)3 .

With some additional calculation we can explicitly check that

lim
x↓a

g′(x) = −∞, lim
x→+∞ g′(x) = 0, (6)

lim
x↓a

g′′(x) = +∞, lim
x→+∞ g′′(x) = 0. (7)

We also note that, by (P1),

lim
x↓a

g(x) = ∞, lim
x→+∞ g(x) = 1

2a.

Suppose that a ≥ 3
2 . Then g′′′(x) < 0 for all x > a, and, hence, the function g′′ is strictly

decreasing on (a, ∞). In view of (7), g′′ must be positive on (a, +∞), which implies that
g′ is strictly increasing on (a, +∞). In view of (6), g′ must be negative on (a, +∞), which
implies that g is strictly decreasing on (a, +∞). This means that m(r) is strictly decreasing on
(1 − 1/a, 1), so (P2) is proved.

Finally, suppose that 1 < a < 3
2 , and set b = a/(3−2a). Then b > a, g′′′ < 0 on (a, b), and

g′′′ > 0 on (b, ∞). As a consequence, g′′ is strictly decreasing on (a, b) and strictly increasing
on (b, ∞). In view of (7) there must exist a unique c ∈ (a, b) such that g′′ > 0 on (a, c) and
g′′ < 0 on (c, ∞). This implies that g′ is strictly increasing on (a, c) and strictly decreasing
on (c, ∞). In view of (6) there must exist a unique xa ∈ (a, c) such that g′ < 0 on (a, xa) and
g′ > 0 on (xa, ∞). This implies that g is strictly decreasing on (a, xa) and strictly increasing
on (xa, ∞). By setting ra = 1 − 1/xa and using the correspondence between the functions m

and g, we obtain (P3).
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