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Abstract

We give a large family of weighted projective planes, blown up at a smooth point, that

do not have finitely generated Cox rings. We then use the method of Castravet and

Tevelev to prove that the moduli space M0,n of stable n-pointed genus-zero curves does

not have a finitely generated Cox ring if n is at least 13.

1. Introduction

We work over an algebraically closed field k of characteristic zero. In their recent article [CT15],

Castravet and Tevelev proved that the moduli space M0,n does not have a finitely generated

Cox ring when n > 134. They reduced the non-finite generation problem from the case of moduli

spaces to the case of weighted projective planes blown up at the identity element t0 of the torus.

Examples of such weighted projective planes have been studied previously by many algebraists,

as the Cox rings of these blowups appear as symbolic algebras of monomial prime ideals. Goto

et al. [GNW94] gave an infinite family of weighted projective planes P(a, b, c), such thatBlt0P(a,

b, c) does not have a finitely generated Cox ring. The smallest such example, P(25, 29, 72), was

used by Castravet and Tevelev to get the bound n = 134.

We extend these results by giving a large family of weighted projective planes P(a, b, c), such

that the blowup Blt0P(a, b, c) does not have a finitely generated Cox ring. This family includes

all examples of Goto et al., but also weighted projective planes with smaller numbers, such as

P(7, 15, 26), P(7, 22, 17), P(12, 13, 17) (Table 1 lists more such examples). More generally, we

study projective toric surfaces X∆ of Picard number 1, such that the blowup Blt0X∆ does not

have a finitely generated Cox ring.

Using the reduction method of Castravet and Tevelev, we prove the following theorem.

Theorem 1.1. The moduli space M0,n does not have a finitely generated Cox ring when n > 13.

In the terminology of Hu and Keel [HK00], the theorem implies that M0,n is not a Mori

dream space when n > 13. In contrast, it is known from [HK00] that the variety M0,n has a

finitely generated Cox ring when n 6 6 (see [Cas09] for explicit generators in the case of M0,6).

Remarkably, all log-Fano varieties have finitely generated Cox rings by [BCHM10], but even

though M0,n is log-Fano for n 6 6 that is not the case for n > 7. In this way, Hu and Keel’s

question in [HK00] of whether the Cox ring of M0,n is finitely generated now only remains

unsettled for 7 6 n 6 12.
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Table 1. Weighted projective planes P(a, b, c), a, b, c 6 30, with relation (e, f,−g), that satisfy
the conditions of Theorem 1.5.

P(a, b, c) (e, f,−g) P(a, b, c) (e, f,−g) P(a, b, c) (e, f,−g)

P(7, 15, 26) (1, 3,−2) P(16, 25, 11) (1, 2,−6) P(22, 13, 29) (1, 5,−3)

P(7, 17, 29) (1, 3,−2) P(17, 13, 23) (1, 4,−3) P(22, 21, 17) (1, 3,−5)

P(7, 22, 17) (1, 2,−3) P(17, 16, 27) (1, 4,−3) P(23, 28, 25) (3, 2,−5)

P(7, 25, 19) (1, 2,−3) P(17, 21, 20) (1, 3,−4) P(24, 13, 19) (1, 4,−4)

P(10, 11, 27) (1, 4,−2) P(17, 25, 23) (1, 3,−4) P(24, 17, 23) (1, 4,−4)

P(10, 21, 13) (1, 2,−4) P(17, 29, 26) (1, 3,−4) P(24, 26, 17) (1, 3,−6)

P(10, 29, 17) (1, 2,−4) P(18, 23, 25) (3, 2,−4) P(26, 18, 29) (1, 5,−4)

P(11, 21, 25) (3, 2,−3) P(19, 11, 13) (1, 3,−4) P(27, 10, 29) (1, 6,−3)

P(12, 13, 17) (1, 3,−3) P(19, 22, 26) (2, 3,−4) P(27, 17, 28) (1, 5,−4)

P(12, 19, 23) (1, 3,−3) P(19, 26, 29) (2, 3,−4) P(27, 19, 14) (1, 3,−6)

P(12, 25, 29) (1, 3,−3) P(19, 27, 20) (1, 3,−5) P(27, 22, 23) (1, 4,−5)

P(13, 9, 29) (1, 5,−2) P(19, 29, 11) (1, 2,−7) P(27, 25, 17) (1, 3,−6)

P(13, 18, 25) (3, 2,−3) P(20, 21, 26) (1, 4,−4) P(29, 19, 21) (1, 4,−5)

P(14, 29, 25) (3, 2,−4) P(20, 22, 27) (1, 4,−4) P(29, 30, 17) (1, 3,−7)

0
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(x2,y2) 
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x

y

Figure 1. Triangle ∆.

Let us recall that for a normal Q-factorial projective variety X with a finitely generated class

group Cl(X), a Cox ring of X is any multigraded algebra of the form

R(X;D1, . . . , Dr) =
⊕

(m1,...,mr)∈Zr

H0(X,OX(m1D1 + · · ·+mrDr)),

where D1, . . . , Dr are Weil divisors whose classes span Cl(X) ⊗ Q. The finite generation of a

Cox ring of X is equivalent to the finite generation of every Cox ring of X, and it has strong

implications for the birational geometry of X (see [HK00]). In the language of [HK00], X is a

Mori dream space if and only if X has a finitely generated Cox ring.

To construct the toric varieties X∆, we start with a triangle ∆ ⊂ R2 as shown in Figure 1.

The vertices of ∆ have rational coordinates, (0, 0) is one vertex, and the point (0, 1) lies in the

interior of the opposite side. Such a triangle is uniquely determined by the slopes of its sides

s1 < s2 < s3.
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The triangle ∆ defines a toric variety X∆, whose fan is the normal fan of ∆. Let Blt0X∆ be
the blowup of X∆ at the identity point of the torus t0 ∈ T ⊂ X∆.

Theorem 1.2. Let the triangle ∆ as in Figure 1 be given by rational slopes s1 < s2 < s3. The
variety Blt0X∆ does not have a finitely generated Cox ring if the following two conditions are
satisfied.

(i) Let

w =
1

s2 − s1
+

1

s3 − s2
.

Then w 6 1.

(ii) Let n = |[s1, s2] ∩ Z|. Then |(n− 1)[s2, s3] ∩ Z| = n and ns2 /∈ Z.

The number w in the theorem is the width of ∆: if (x1, y1) and (x2, y2) are the two non-zero
vertices of ∆, then w = x2 − x1. To explain the second condition, consider a multiple m∆ that
has integral vertices. A column in m∆ consists of all lattice points with a fixed first coordinate.
Then n is the number of lattice points in the second column from the left (i.e. with x-coordinate
mx1+1). The second condition requires that the nth column from the right (i.e. with x-coordinate
mx2 − (n− 1)) contains exactly n lattice points. Moreover, the (n+ 1)th column from the right
should not contain a lattice point on the top edge.

It is easy to construct examples of triangles ∆ that satisfy the conditions of Theorem 1.2. In
fact, one can find a non-empty open region in R3, so that any rational point (s1, s2, s3) in that
region defines such a triangle.

Different triangles may give rise to isomorphic toric varieties. However, if a triangle ∆ exists
with the property that w 6 1, then the two lattice points (0, 0) and (0, 1) in ∆ are determined
by the toric variety X∆. (As we will see below, the binomial 1− y determined by the two lattice
points defines an irreducible curve C ⊂Blt0X∆ of non-positive self-intersection C ·C 6 0, hence
its class lies on the boundary of the cone of effective curves and is thus uniquely determined up
to a scalar multiple. The image of the curve C in X∆ passes through two of the three torus-fixed
points, hence if there were two different curves, their intersection would be positive.) The other
triangles that give rise to toric varieties that are isomorphic by a toric morphism are obtained
from ∆ by applying an integral linear transformation that preserves the two lattice points.
These transformations are generated by reflections across the y-axis and shear transformations
(x, y) 7→ (x, y + ax) for a ∈ Z. The shear transformation adds the integer a to each of the three
slopes and does not affect the two conditions of the theorem. The reflection switches the columns
from the left with the columns from the right. A triangle and its reflection cannot both satisfy
the conditions of Theorem 1.2 for n 6= 2. When n = 2, ∆ satisfies the two conditions if and only
if its reflection satisfies them.

Example 1.3. Let
s1 = −2

3 , s2 = 1
2 , s3 = 8.

Then the two conditions of the theorem are satisfied with w = 104/105 and n = 1. The normal
fan of ∆ has rays generated by

v1 = (2, 3), v2 = (1,−2), v3 = (−8, 1),

which satisfy the relation
15v1 + 26v2 + 7v3 = 0.
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Moreover, since v1, v2, v3 generate the lattice Z2, the toric variety X∆ is the weighted projective
plane P(15, 26, 7). Then by Theorem 1.2,Blt0P(15, 26, 7) ∼= Blt0P(26, 15, 7) does not have a finitely
generated Cox ring. This last fact also admits a simpler direct proof; see Remark 2.5.

Example 1.4. Take
s1 = −11

3 , s2 = −4
3 , s3 = 2

3 .

Then one checks that the two conditions are satisfied, with w = 3/7 + 3/6 = 13/14, n = 2. The
normal fan of the triangle ∆ has rays generated by

v1 = (11, 3), v2 = (−4,−3), v3 = (−2, 3),

satisfying the relation
6v1 + 13v2 + 7v3 = 0.

The vectors v1, v2, v3 generate a sublattice of index 3 in Z2. It follows that X∆ is a quotient of
P(6, 13, 7) by an order-three subgroup of the torus.

As the examples above illustrate, the toric varieties X∆ are, in general, quotients of weighted
projective planes P(a, b, c) by a finite subgroup of the torus. We would like to know which
weighted projective planes P(a, b, c) correspond to triangles as in Theorem 1.2. Let e, f, g be
positive integers, gcd(e, f, g) = 1, such that

ae+ bf − cg = 0.

We call (e, f,−g) a relation for P(a, b, c).

Theorem 1.5. Let P(a, b, c) be a weighted projective plane with relation (e, f,−g). Then the
blowup Blt0P(a, b, c) does not have a finitely generated Cox ring if the following conditions are
satisfied.

(i) Let

w =
g2c

ab
.

Then w 6 1.

(ii) Let n be the number of integers δ 6 0, such that

(b, a) + δ(e,−f)

has non-negative components, both divisible by g. Then there must exist exactly n integers
γ > 0, such that

(n− 1)(b, a) + γ(e,−f)

has non-negative components, both divisible by g. Moreover, n(b, a) 6= (0, 0) (mod g).

To find whether the theorem applies to a weighted projective plane P(a, b, c), one has to
consider all relations (e, f,−g), possibly after permuting a, b, c. However, there can be at most
one such relation satisfying w 6 1, even after permuting a, b, c (this is again due to the existence
of a curve C of non-positive self-intersection). To find this relation, one only needs to consider
the values g 6

√
ab/c and search for e and f . In any case, finding the relation and checking the

two conditions of the theorem are best done on a computer. Using a computer we found 6814
weighted projective planes P(a, b, c) with a, b, c 6 100 that satisfy the conditions of the theorem.1

The 42 cases with a, b, c 6 30 are listed in Table 1.

1 The list of these projective planes is available on the authors’ websites.
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Example 1.6. Consider P(19, 11, 13), with relation (e, f,−g) = (1, 3,−4). We check that the two
conditions hold.

(i) w = 208/209 < 1.

(ii) The set of integers δ 6 0 such that

(11, 19) + δ(1,−3)

has non-negative components divisible by 4 is δ ∈ {−3,−7,−11}. Hence n = 3. Now the set of
integers γ > 0, such that

2(11, 19) + γ(1,−3)

has non-negative components divisible by 4 is γ ∈ {2, 6, 10}. Finally, 3(11, 19) 6= (0, 0) (mod 4).

It follows that Blt0P(19, 11, 13) does not have a finitely generated Cox ring.

Example 1.7 [GNW94]. Consider the family of weighted projective planes P(7N − 3, 8N − 3,
(5N − 2)N), where N > 4, 3 - N . We check that the two conditions are satisfied with relation
(e, f,−g) = (N,N,−3). Note that we need 3 - N for gcd(e, f, g) = 1.

(i)

w =
9(5N − 2)N

(7N − 3)(8N − 3)
< 1 when N > 3.

(ii) For δ ∈ {−2,−5},
(8N − 3, 7N − 3) + δ(N,−N)

has non-negative components divisible by 3. Hence n = 2. For γ ∈ {1, 4},

(8N − 3, 7N − 3) + γ(N,−N)

has non-negative components divisible by 3. Moreover, since 3 - N ,

2(8N − 3, 7N − 3) 6= (0, 0) (mod 3).

Similarly, the other family considered by Goto et al. in [GNW94], P(7N − 10, 8N − 3, 5N2−
7N + 1), N > 5, satisfies the two conditions with relation (e, f,−g) = (N,N − 1,−3). (In fact,
the case N = 3 of this family, P(11, 21, 25), is listed in Table 1.)

Remark 1.8. Our proofs do not work in positive characteristic. The reason is that we use the
vanishing of partial derivatives to describe the order of vanishing of a polynomial at a point.
This description fails in positive characteristic.

However, more is known in positive characteristic. In positive characteristic, if Blt0P(a, b, c)
contains an irreducible curve C 6= E of negative self-intersection, then it has a finitely generated
Cox ring (see [Cut91] Proposition 4 and the discussion preceding it). All our examples ofBlt0P(a,
b, c) contain such a curve C of negative self-intersection.

2. Proof of Theorem 1.2

We start the proof using a geometric argument as in [CT15].
The toric variety X∆ is Q-factorial and Cl(X∆)⊗Q is one-dimensional, with basis the class

of the Q-divisor H corresponding to the triangle ∆. Denote X = Blt0X∆. Then Cl(X) ⊗ Q is
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two-dimensional, with basis the classes of the exceptional divisor E and the pullback of H, which
we also denote H.

Recall from toric geometry [Ful93] that lattice points in m∆ correspond to certain torus-
invariant sections of OX∆

(mH). We identify a lattice point (i, j) with the monomial xiyj

considered as a regular function on the torus T . The two lattice points (0, 0) and (0, 1) define a
section 1− y of OX∆

(H). We let C be the strict transform of this curve in X. Then C has class
[H − E]. Since the self-intersection H2 is equal to twice the area of ∆ (which equals w), we get

C2 = H2 + E2 = w − 1 6 0.

It follows that C and E are two irreducible curves on X with non-positive self-intersection. Their
classes generate the Mori cone of curves of X (which in the case of surfaces coincides with the
pseudoeffective cone of X). Its dual, the nef cone of X, is generated by the class of H and the
class D = [H − wE] ∈ C⊥.

By a result of Cutkosky [Cut91], the Cox ring of X is finitely generated if and only if there
exists an integer m > 0, such that some effective divisor in the class mD does not have the curve
C as a component. We will fix an m large and divisible enough such that mD is integral, and
prove that any section of OX(mD) vanishes on C. We may replace m by an integer multiple if
necessary. Notice that this implies that although D generates an extremal ray of the nef cone of X
it is not semiample, so the Cox ring of X cannot be finitely generated by [HK00, Definition 1.10
and Proposition 2.9].

A divisor in the class mD is defined by a Laurent polynomial (considered as a regular function
on the torus T )

f(x, y) =
∑

(i,j)∈m∆∩Z2

aijx
iyj ,

that vanishes to order at least W = mw at the point t0 = (1, 1). In other words, all partial
derivatives of f of order up to W − 1 vanish at t0. Now it suffices to prove that for such f , the
coefficient amx1,my1 at one of the non-zero vertices of m∆ is zero. Indeed, this implies that the
section defined by f vanishes at the T -fixed point in X∆ corresponding to the vertex. Similarly,
the curve C passes through that fixed point, but since C ·D = 0, it follows that f must vanish
on C.

Remark 2.1. There is a more algebraic argument for the claim in the previous paragraph. We
want to prove that f(x, y) vanishes on C, in other words, that 1− y divides f . This happens if
and only if the column sums

ci =
∑

(i,j)∈m∆∩Z2

aij

all vanish. There are W + 1 column sums ci. The derivatives ∂lx for l = 0, . . . ,W − 1 give W
linearly independent relations on ci. If we can find one more linearly independent relation, then
ci = 0 for all i. The vanishing of amx1,my1 gives such an extra relation.

We first transform the triangle m∆ by integral translations and shear transformations
(i, j) 7→ (i, j + ai) for a ∈ Z. The translation operation multiplies f with a monomial, and
the shear transformation performs a change of variables on the torus. The two operations do not
affect the order of vanishing of f at t0 or the conditions of the theorem. The shear transformation
has the effect of adding the integer a to each of the three slopes s1, s2, s3.
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W−2

−s2W 

−2 −1

y

x

n points

n points

n columns

Figure 2. Triangle ∆̃.

Let us start by bringing m∆ into the form shown in Figure 2. We first apply a shear
transformation, so that −2 < s2 < −1. (Note that s2 /∈ Z by condition (2).) We then translate
the triangle so that (mx1,my1) moves to a point with x-coordinate −2 and (mx2,my2) moves
to a point on the x-axis. Call the transformed triangle ∆̃. Note that the transformations do not
change the number of lattice points in the columns. In particular, the second column from the
left in ∆̃ again contains n lattice points.

Consider now the right n columns of the triangle ∆̃. If n = 1, then no more preparations
are needed. For n > 1, we may assume that the second column from the right contains at least
two lattice points. Otherwise apply the reflection (i, j) 7→ (−i, j) to the original triangle ∆ to
reduce to the case n = 1. Since −2 6 s2 < −1, it follows that the lattice points in the second
column from the right have y-coordinates 1, 0, . . . . By condition (2), the nth column from the
right contains exactly n lattice points, which must have y-coordinates 0, 1, . . . , n − 1. It now
follows that for any j = 1, . . . , n, the jth column from the right contains exactly j lattice points
with y-coordinates 0, 1, . . . , j − 1. In summary, the lattice points in the n columns on the right
are

(W − n− 1 + i, j), i, j > 0, i+ j < n.

Consider a derivative ( n∑
i=0

αi∂
i
x∂

n−i
y

)
∂W−n−1
x

of order W − 1. This derivative vanishes on all monomials xiyj for (i, j) ∈ ∆̃ ∩ Z2, except for
the monomials with i < 0. There are n + 1 such monomials, corresponding to lattice points in
the left two columns of ∆̃. We claim that there exist coefficients αi, such that the derivative,
when evaluated at t0, vanishes on all n monomials corresponding to lattice points in the second
column, and it does not vanish on the monomial corresponding to the vertex. This implies that
the coefficient in f of the monomial corresponding to the vertex must be zero.
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Consider monomials xiyj with (i, j) ∈ ∆̃ ∩ Z2 and i < 0. Let us first apply ∂W−n−1
x to these

monomials. The result is the set of monomials (with non-zero coefficients that we may ignore)

x−(a+1)yb+n+1, x−ayb+j , j = 0, . . . , n− 1.

Here a = W − n and b = −s2W − n − 1. Making m (and hence also W ) bigger if necessary,
we may assume that both a, b > 0. Lemma 2.2 below shows that we can choose the desired
coefficients αi if a(n+ 1) 6= bn. This condition is equivalent to −s2 6= 1 + 1/n, which follows from
the assumption that ns2 /∈ Z. 2

Lemma 2.2. Let n, a, b > 0 be integers such that a(n+ 1) 6= bn. Consider two sets of monomials:

S1 = {x−(a+1)yb+n+1}, S2 = {x−ayb+j}j=0,...,n−1.

Then there exists a derivative

D =
n∑

i=0

αi∂
n−i
x ∂iy,

such that D applied to every monomial in S2 vanishes at t0 = (1, 1), and D applied to the
monomial in S1 does not vanish at t0.

Proof. The strategy for the proof is as follows. It is fairly easy to write down a derivative D
that vanishes when applied to monomials in S2 and evaluated at t0. Applying this D to the
monomial in S1 and evaluating at t0 results in a complicated expression involving binomials. We
use Lemma 2.3 below to simplify this expression.

To start, there exists a non-zero derivative

D̃ =
n∑

i=0

βi∂
i
y,

such that D̃ applied to monomials yb+j , for j = 0, . . . , n − 1, vanishes at y = 1. By Lemma 2.4
below we may take

βi = (−1)i
(b+ n− i− 1)!

(b− 1)!

(
n

i

)
.

Now let

αi = (−1)i
βi

a · (a+ 1) · · · (a+ n− i− 1)
=

[b+ n− i− 1]n−i
[a+ n− i− 1]n−i

(
n

i

)
,

where we used the notation
[k]l = k(k − 1) · · · (k − l + 1).

With these coefficients αi, the derivative D applied to the monomials in S2 vanishes at t0. We
need to prove that D applied to the monomial in S1 does not vanish at t0.

We apply D to x−(a+1)yb+n+1 and evaluate at t0 to get

n∑
i=0

[b+ n− i− 1]n−i
[a+ n− i− 1]n−i

(
n

i

)
(−1)n−i[a+ n− i]n−i[b+ n+ 1]i.

Now simplify:

[a+ n− i]n−i
[a+ n− i− 1]n−i

=
a+ n− i

a
,

[b+ n− i− 1]n−i[b+ n+ 1]i =
[b+ n+ 1]n+2

(b+ n− i)(b+ n− i+ 1)
.
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Replacing i by n− i, the sum becomes

[b+ n+ 1]n+2

a

n∑
i=0

(−1)i
a+ i

(b+ i)(b+ i+ 1)

(
n

i

)
.

We can further express

1

(b+ i)(b+ i+ 1)

(
n

i

)
=

[b+ i− 1]b−1

[b+ n+ 1]b+1

(
b+ n+ 1

b+ i+ 1

)
,

hence the sum is

[b+ n+ 1]n+2

a[b+ n+ 1]b+1

n∑
i=0

(−1)i(a+ i)[b+ i− 1]b−1

(
b+ n+ 1

b+ i+ 1

)
.

We may ignore the non-zero constant in front of the sum and write the rest as

n∑
i=−(b+1)

(−1)i(a+ i)[b+ i− 1]b−1

(
b+ n+ 1

b+ i+ 1

)
−

−1∑
i=−(b+1)

(−1)i(a+ i)[b+ i− 1]b−1

(
b+ n+ 1

b+ i+ 1

)
.

Since p(x) = (a+x)[b+x−1]b−1 is a polynomial of degree b, the first sum vanishes by Lemma 2.3
below. In the second sum, the terms [b + i − 1]b−1 are zero unless i = −b − 1 or i = −b. Thus,
the sum is

−
(

(−1)−b−1(a− b− 1)[−2]b−1

(
n+ b+ 1

0

)
+ (−1)−b(a− b)[−1]b−1

(
n+ b+ 1

1

))
= ±[−1]b−1(bn− a(n+ 1)).

Now the result follows. 2

Lemma 2.3. Let n > 0 be an integer and p(x) a polynomial of degree less than n. Then

n∑
i=0

(−1)ip(i)

(
n

i

)
= 0.

Proof. We have, for 0 6 l < n,

n∑
i=0

(−1)ii(i− 1) · · · (i− l + 1)

(
n

i

)
= ∂lx(1− x)n|x=1 = 0.

The polynomials x(x − 1) · · · (x − l + 1), for l = 0, . . . , n − 1, span the space of all polynomials
of degree less than n. 2

Lemma 2.4. Let n, b > 0 be integers. Then the derivative

D̃ =
n∑

i=0

(−1)i
(b+ n− i− 1)!

(b− 1)!

(
n

i

)
∂iy

applied to monomials yb+j , j = 0, . . . , n− 1, vanishes at y = 1.
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Proof. We apply the derivative D̃ to the monomial yb+j and evaluate at y = 1 to get

n∑
i=0

(−1)i
(b+ n− i− 1)!

(b− 1)!

(
n

i

)
[b+ j]i.

Using that b+ j − i+ 1 6 b+ n− i− 1, we simplify

(b+ n− i− 1)!

(b− 1)!
[b+ j]i = (b+ j)(b+ j − 1) · · · (b+ j − i+ 1)(b+ n− i− 1) · · · (b+ 1)b

= [b+ j]j+1[b+ n− i− 1]n−j−1.

The polynomial p(x) = [b+ n− x− 1]n−j−1 has degree n− j − 1 < n, hence

[b+ j]j+1

n∑
i=0

(−1)ip(i)

(
n

i

)
= 0

by the previous lemma. 2

Remark 2.5. In the case n = 1, the proof of Theorem 1.2 can be simplified considerably. For
this, we first transform the polytope m∆ by a reflection across the y-axis, shear transformation
and translation to get to a ∆̃ that has its left vertex at (−1, b), right vertex at (W − 1, 0) and a
single lattice point in the second column from the right at (W−2, 0). Now the derivative ∂W−2

x ∂y
vanishes on all monomials except the monomial corresponding to the left vertex.

3. Proof of Theorem 1.5

Recall that the weighted projective plane P(a, b, c) is defined asProj k[x, y, z], where the variables
x, y, z have degree a, b, c, respectively. A relation (e, f,−g) defines a homogeneous polynomial
xeyf − zg of degree d = gc.

There is a degree map deg : R3
→ R that maps (u, v, w) 7→ au+ bv + cw. The toric variety

P(a, b, c) is then defined by the triangle ∆ = deg−1(d) ∩ R3
>0 in the plane deg−1(d) ∼= R2 and

lattice deg−1(d) ∩ Z3 ∼= Z2. (Indeed, the homogeneous coordinate ring
⊕

l>0

⊕
m∈l∆∩Z3 kχm of

X∆ is the dth Veronese subring of k[x, y, z]. The Proj of a graded ring and a Veronese subring
are isomorphic.) With d coming from the relation, we choose (0, 0, g) as the origin of the plane.
The unit vector in the ‘vertical’ direction is then (e, f,−g).

A divisor defined by a homogeneous polynomial of degree d in k[x, y, z] has self-intersection
number d2/(abc), which is the width of ∆:

w =
(gc)2

abc
=
g2c

ab
.

This identifies condition (1) of the theorem with condition (1) in Theorem 1.2. To identify
conditions (2) in the two theorems, we count lattice points in the columns of m∆.

Let us construct a linear function h on R3 that takes value i on the column with index i in
m∆. Since (0, 0, g) and (e, f, 0) lie in column 0, the function h must be the dot product with

α(f,−e, 0)

for some constant α. We can use h to compute w. The two non-zero vertices of ∆ are(
cg

a
, 0, 0

)
,

(
0,
cg

b
, 0

)
.
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Thus,

w = α

(
cg

a
f − cg

b
(−e)

)
= α

(cg)2

ab
,

from which we solve α = 1/c. (Note that we chose the vertex (cg/a, 0, 0) to be on the right-hand
side of the plane and the vertex (0, cg/b, 0) on the left-hand side.)

Consider m∆ and its vertex (on the left-hand side) P = (0,mcg/b, 0). Instead of counting
lattice points Q in the second column from the left, we count lattice points Q−P ∈ ker(deg)∩ Z3,

such that h(Q− P ) = 1. These points are of the form (u, v, w) ∈ Z3, u,w > 0, v 6 0, satisfying
the equations

h(u, v, w) = 1⇔ f

c
u− e

c
v = 1,

deg(u, v, w) = 0⇔ au+ bv + cw = 0.

There is a possibly non-integral point
1

g
(b,−a, 0)

satisfying these equations. Any other point is obtained from this one by subtracting a rational
multiple of (e, f,−g):

(u, v, w) =
1

g
(b,−a, 0) +

δ

g
(e, f,−g), δ 6 0.

Changing v to −v, we get that the number n of lattice points in the second column equals the
number of integers δ 6 0, such that

(b, a) + δ(e,−f)

has both components non-negative, divisible by g.
By a similar argument we get that the number of lattice points in the nth column from the

right is the number of integers γ > 0, such that

(n− 1)(b, a) + γ(e,−f)

has both components non-negative and divisible by g.
Finally, if the (n+ 1)th column from the right has a lattice point on the top edge, then this

point corresponds to the solution ε = 0, such that

n(b, a) + ε(e,−f)

has both components non-negative and divisible by g. This happens if and only if n(b, a) = (0,
0) (mod g). 2

4. The moduli space M0,n

We show that the Cox ring of M0,n is not finitely generated if the characteristic of k is 0 and
n > 13. For this we use the method of Castravet and Tevelev [CT15, Proposition 3.1] to reduce
to the case of a weighted projective plane blown up at the identity t0 of its torus.

Recall that the moduli space M0,n of stable n-pointed genus zero curves has been described
by Kapranov as the iterated blowup of Pn−3 along proper transforms of linear subspaces spanned
by n − 1 points in linearly general position. The Losev–Manin moduli space Ln is constructed
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similarly by blowing up Pn−3 along proper transforms of linear subspaces spanned by n−2 points
in linearly general position. The space Ln is a toric variety and its fan Σn is the barycentric
subdivision of the fan of Pn−3. More precisely, the fan Σn has rays generated by all vectors in
Rn−3 such that each entry is equal to either 0 or 1, and all their negatives.

The main reduction step follows from the result that, given a surjective morphism X → Y of
normal Q-factorial projective varieties, if X has a finitely generated Cox ring, then so does Y (see
Okawa [Oka15]). Using [CT15, Proposition 3.1] or its corollary, Theorem 4.1 below, for suitable
values of n, a, b, c (e.g. n= 13 and (a, b, c) = (26, 15, 7), see § 4.1), one can construct a rational map
Blt0Ln 99KBlt0P(a, b, c) as a sequence of such surjective morphisms and small modifications (i.e.
isomorphisms in codimension one) of normal Q-factorial projective varieties. Moreover, there
exist surjective morphisms M0,n → Blt0Ln and M0,n+1 → M0,n. Small modifications do not
change the Cox ring, hence the non-finite generation of a Cox ring of M0,n would follow from
the non-finite generation of a Cox ring of Blt0P(a, b, c).

The following is an immediate corollary of the main reduction result of Castravet and Tevelev
[CT15, Proposition 3.1].

Theorem 4.1 [CT15]. Let Ln be defined by the fan Σn in the lattice N = Zn−3, as above.
Suppose that there exists a saturated sublattice N ′ ⊂ N of rank n− 5, such that:

(i) the vector space N ′ ⊗Q is generated by rays of Σn;

(ii) there exist three rays of Σn with primitive generators u, v, w whose images generate N/N ′

and such that au+ bv+ cw = 0 (modN ′) for some integers a, b, c > 0, with gcd(a, b, c) = 1.

Then there exists a rational map Blt0Ln 99KBlt0P(a, b, c) that is a composition of rational
maps each of which is either a small modification between normal Q-factorial projective varieties
or a surjective morphism between normal Q-factorial projective varieties. In particular, if Blt0P(a,
b, c) does not have a finitely generated Cox ring, thenBlt0Ln (and M0,n) does not have it either.

4.1 Proof of Theorem 1.1
We show that Theorem 4.1 applies in the case n = 13 and (a, b, c) = (26, 15, 7).

Let e1, . . . , e10 be the canonical basis of Z10. Let

a1 = e1 + e5, a6 = e1 + e2 + e3 + e4 + e10,

a2 = e1 + e2 + e6, a7 = e5 + e6 + e7 + e8 + e9 + e10,

a3 = e1 + e2 + e3 + e7, a8 = e4 + e5 + e7,

a4 = e1 + e2 + e3 + e4 + e8, a9 = e1,

a5 = e1 + e2 + e3 + e4 + e9, a10 = e4.

The matrix A with columns a1, . . . , a10 has determinant 1, so a1, . . . , a10 form a basis of Z10. Let
u = e1, v = e2 and w = −4u− 2v + 2a1 + a2 + a3 − a8 + a10 = e3 + e5 + e6. So, we have that

26u+ 15v + 7w = 11a1 + 8a2 + 4a3 + a4 + a5 + a6 − a7 − 3a8,

a9 = u,

a10 = 4u+ 2v + w − 2a1 − a2 − a3 + a8.

Let N ′ ⊂ Z10 be the sublattice generated by a1, . . . , a8. Then Z10/N ′ is generated by a9, a10,
both of which can be expressed in terms of u, v, w. The vectors u, v, w satisfy the relation

26u+ 15v + 7w = 0 (modN ′).

We have seen that Blt0P(26, 15, 7) does not have a finitely generated Cox ring (see
Example 1.3), hence by Theorem 4.1, for any n > 13, the moduli space M0,n does not have
a finitely generated Cox ring either.
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