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We present sufficient conditions under which a given linear nonautonomous system
and its nonlinear perturbation are topologically conjugated. Our conditions are of a
very general form and provided that the nonlinear perturbations are well-behaved,
we do not assume any asymptotic behaviour of the linear system. Moreover, the
control on the nonlinear perturbations may differ along finitely many mutually
complementary directions. We consider both the cases of one-sided discrete and
continuous dynamics.
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1. Introduction

Let us consider a (one-sided) linear nonautonomous difference equation given by

xn+1 = Anxn, n ∈ N, (1.1)

as well as its nonlinear perturbation

xn+1 = Anxn + fn(xn), n ∈ N, (1.2)

where An : X → X, n ∈ N is a sequence of invertible bounded linear operators
acting on a Banach space X and fn : X → X, n ∈ N is a sequence of (nonlinear)
maps. In this note we are interested in describing sufficient conditions under which
the systems (1.1) and (1.2) are topologically conjugated, meaning that there exists
a sequence of homeomorphisms Hn : X → X, n ∈ N mapping the trajectories of
(1.1) into trajectories of (1.2). Whenever such conjugacies exist, many important
dynamical properties of the nonlinear system (1.2) can be obtained by studying the
linear system (1.1), which in general is much easier to deal with.

Linearization problems, as the one described above, have a long history. As cor-
nerstones of this theory (dealing with the case of autonomous dynamics), we refer
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to the works of Grobman [16, 17] and Hartman [18–20]. The first linearization
results dealing with the case of infinite-dimensional dynamics are due to Palis [23]
and Pugh [26]. The problem of formulating sufficient conditions under which the
conjugacy exhibits higher regularity properties was first considered in the pioneering
works of Sternberg [28, 29].

The first nonautonomous version of the Grobman–Hartman theorem was estab-
lished by Palmer [24] for the case of continuous time. The discrete time version of his
result (formulated in [1]) asserts that (1.1) and (1.2) are topologically conjugated
provided that the following conditions hold:

• (1.1) admits an exponential dichotomy (see [12]);

• the nonlinear terms fn are bounded and uniformly Lipschitz with a sufficiently
small Lipschitz constant.

In addition, several authors obtained important extensions of the Palmer’s theorem
by relaxing assumptions related to the linear systems (1.1) (or its continuous
counterpart). We refer to [3, 5, 6, 10, 21, 22, 27] and references therein. For
recent results dealing with the higher regularity of conjugacies in nonautonomous
linearization, we refer to [4, 7–9, 11, 13–15].

An ubiquitous assumption in most of those results is the existence of a decom-
position of the phase space X into the stable and unstable directions along which
(1.1) exhibits contraction and expansion, respectively. In other words, it is assumed
that (1.1) exhibits some sort of dichotomic behaviour (although not necessarily of
exponential nature). The key idea is that the lack of hyperbolicity can be compen-
sated by properly controlling the ‘size’ of nonlinear terms fn in (1.2). A notable
exception is the work of Reinfelds and Šteinberga [27] in which the authors obtain
a linearization result without any assumptions related to the asymptotic behaviour
of (1.1). However, the conditions concerned with nonlinearities fn are expressed in
terms of a Green function corresponding to (1.1) which is still essentially given by
decomposing X into two directions.

In this work, instead of considering a decomposition of X into just two directions,
we allow for a decomposition of X into several directions with possible different
behaviours of (1.1) along each of those directions. Our conditions are of general
form as in [5, 27] and no asymptotic behaviour is required for the linear dynamics.
On the other hand, the more ‘non-hyperbolic’ the linear system is (along certain
direction), the more restrictive are the assumptions on the perturbations fn (along
that direction). In fact, we allow the presence of certain directions along which
we do not impose any conditions on (1.1) and on the nonlinear perturbations fn

(besides requiring those to be continuous and bounded). In this general case, we
obtain only a quasi-conjugacy between systems (1.1) and (1.2), meaning that they
are conjugated except for a given deviation in the directions along which we have
no control. To the best of our knowledge, this is the first time such a general result
appears in the literature. We stress that our results are motivated by the recent
paper by Pilyugin [25] which deals with the multiscale nonautonomous shadowing.

The paper is organized as follows. In § 2, we consider the case of discrete time,
i.e. we establish sufficient conditions under which (1.1) and (1.2) are topologically
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conjugated. We discuss in detail the relationship between our result and related
results in the literature and we provide an explicit example illustrating the strength
of our result. Finally, in § 3 we establish an analogous result in the case of continuous
time.

2. The case of discrete time

2.1. Preliminaries

Let X = (X, | · |) be an arbitrary Banach space and denote by B(X) the space
of all bounded linear operators on X. By ‖ · ‖, we will denote the operator norm
on B(X). Given a sequence (An)n∈N of invertible operators in B(X) and m, n ∈ N,
let us consider the associated linear cocycle given by

A(m,n) =

⎧⎪⎨
⎪⎩

Am−1 · · ·An if m > n;
Id if m = n;
A−1

m · · ·A−1
n−1 if m < n.

2.2. Multiscale

Let K be a finite set of the form K = Ks ∪ Ku ∪ Kc, where Ki ∩ Kj = ∅
for i, j ∈ {s, u, c}, i �= j. Suppose that for each n ∈ N there exists a family of
projections P k

n , k ∈ K such that

∑
k∈K

P k
n = Id, (2.1)

and

P k
nP l

n = 0 for every k, l ∈ K, k �= l.

In particular, by considering Xk(n) = P k
n (X), we have that

X =
⊕
k∈K

Xk(n) for every n ∈ N.

Remark 2.1. We observe that the notion of multiscale considered in this work is
more general than the one considered by Pilyugin in [25]. Indeed, in the aforemen-
tioned work there is an extra assumption requiring that AnP k

n = P k
n+1An for every

n ∈ N and k ∈ K. Moreover, in [25] K has the form K = Ks ∪ Ku, i.e. Kc = ∅.

2.3. Standing assumptions

Given k ∈ Ks ∪ Ku, take λk > 0 and let (μk
n)n∈N and (νk

n)n∈N be sequences of
positive numbers such that:
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• for k ∈ Ks,

sup
n

n∑
l=1

‖A(n, l)P k
l ‖νk

l < +∞, (2.2)

and

sup
n

n∑
l=1

‖A(n, l)P k
l ‖μk

l � λk; (2.3)

• for k ∈ Ku,

sup
n

∞∑
l=n+1

‖A(n, l)P k
l ‖νk

l < +∞, (2.4)

and

sup
n

∞∑
l=n+1

‖A(n, l)P k
l ‖μk

l � λk. (2.5)

2.4. A linearization result

We are now ready to state our first main result.

Theorem 2.2. Let fn : X → X, n ∈ N be a sequence of maps such that An + fn is
a homeomorphism for each n ∈ N and

‖P k
nfn−1‖∞ � νk

n, (2.6)

for every k ∈ Ks ∪ Ku and n � 1, where

‖P k
nfn−1‖∞ := sup{|P k

nfn−1(x)| : x ∈ X}.

Moreover, assume that for each k ∈ Ks ∪ Ku, x, y ∈ X and n ∈ N,

|P k
nfn−1(x) − P k

nfn−1(y)| � μk
n|x − y|. (2.7)

Then, if ∑
k∈Ks∪Ku

λk < 1, (2.8)

i) there exist sequences of continuous maps Hn : X → X, n ∈ N and τn : X →⊕
k∈Kc Xk(n + 1), n ∈ N such that

Hn+1 ◦ An = (An + fn) ◦ Hn + τn ◦ Hn, for every n ∈ N. (2.9)

In addition,

sup
n∈N

‖Hn − Id‖∞ < +∞ and τn(x) = −
∑

k∈Kc

P k
n+1(fn(x));
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ii) there exist sequences of continuous maps H̄n : X → X, n ∈ N and τ̄n : X →⊕
k∈Kc Xk(n + 1), n ∈ N such that

H̄n+1 ◦ (An + fn) = An ◦ H̄n + τ̄n, for every n ∈ N. (2.10)

In addition,

sup
n∈N

‖H̄n − Id‖∞ < +∞ and τ̄n(x) = −τn.

Moreover, in the case when either Kc = ∅ or P k
nfn−1 ≡ 0 for every k ∈ Kc and

n � 1, we have that Hn and H̄n are homeomorphisms for each n ∈ N. In addition,

Hn ◦ H̄n = H̄n ◦ Hn = Id (2.11)

and

Hn+1 ◦ An = (An + fn) ◦ Hn, (2.12)

for every n ∈ N.

Remark 2.3. We observe that in the case when we have a good control of
the perturbations along all the directions (i.e., Kc = ∅ or P k

nfn−1 ≡ 0 for every
k ∈ Kc and n � 1), the previous result gives us a nonautonomous version of
Grobman–Hartman’s theorem. In the general case, however, we obtain a ‘quasi-
conjugacy’ between systems (1.1) and (1.2), i.e. those are conjugated except for
a given deviation (the factors τn and τ̄n in (2.9) and (2.10), respectively) in the
directions along which we do not have any control.

Remark 2.4. Another important observation is the generality of theorem 2.2: we do
not impose any condition on the linear maps (An)n∈N but rather only on the allowed
perturbations. Moreover, we allow for different levels of control on the perturba-
tions along different directions. In particular, it generalizes previous results such as
[6, theorem 2.1].

Remark 2.5. We note that the classical Palmer’s theorem [1, 24] corresponds to
the particular case when:

• |Ks| = |Ku| = 1 and Kc = ∅;

• there exist D, λ > 0 such that

‖A(m,n)Pn‖ � De−λ(m−n) for m � n,

and

‖A(m,n)P̃n‖ � De−λ(n−m) for m � n,

where Pn = P a
n and P̃n = P b

n for n ∈ N, Ks = {a}, Ku = {b}.

It is easy to verify that in this setting theorem 2.2 is applicable whenever (νk
l ) and

(μk
l ) are constant sequences, and μk

l is sufficiently small.
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Remark 2.6. Let Ks and Ku satisfy the same properties as in remark 2.5. We
emphasize that in the case when |Kc| = 1, a result similar to theorem 2.2 was
established (by using different techniques and under some additional assumptions)
in [2, Theorem 3].

As an illustration of the broad applicability of Theorem 2.2 we provide the
following simple example.

Example 2.7. Take X = R
5 and K = {1, 2, 3, 4, 5}. For each k ∈ K and n ∈ N, let

P k
n be the projection onto the kth coordinate. Moreover, let (An)n∈N be a sequence

of constant diagonal matrices given by

An = diag
(

1
2
, 1, 1, 1, 2

)
for every n ∈ N,

and consider Ks = {1, 2}, Kc = {3} and Ku = {4, 5}. Take λk = 1
5 for every k ∈ K

and

• νk
n = 1 and μk

n = 1
10 , for k ∈ {1, 5} and n ∈ N;

• νk
n = 1

2n and μk
n = 1

5·2n , for k ∈ {2, 4} and n ∈ N.

Let fn : X → X, fn = (f1
n, . . . , f5

n), n ∈ N be a sequence of continuous maps such
that

• ‖fk
n−1‖∞ � 1 and Lip(fk

n−1) � 1
10 , for k ∈ {1, 5} and n � 1;

• ‖fk
n−1‖∞ � 1

2n and Lip(fk
n−1) � 1

5·2n , for k ∈ {2, 4} and n � 1.

It is easy to verify that under the above assumptions, theorem 2.2 is applicable.
Observe the different levels of control we allow along each direction: the more
‘hyperbolic’ a direction is, the less restrictive are the conditions on the perturbations
along such a direction.

2.5. Proof of theorem 2.2

In this subsection we present the proof of theorem 2.2. For the sake of clarity, we
will divide it into several steps.

Let Y denote the space of all sequences h = (hn)n∈N of continuous maps hn :
X → X such that

‖h‖Y := sup
n∈N

‖hn‖∞ < +∞.

It is easy to verify that (Y, ‖·‖Y) is a Banach space.

Construction of maps Hn:

Let us consider the operator T : Y → Y given by

(T h)n(x) =
∑

k∈Ks∪Ku

(Tkh)n(x),
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where

• for k ∈ Ks, we set (Tkh)0(x) = 0 and

(Tkh)n(x) =
n∑

l=1

A(n, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x))),

for n � 1;

• for k ∈ Ku, we define

(Tkh)n(x) = −
∞∑

l=n+1

A(n, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x))),

for every n ∈ N and x ∈ X.

Since P k
l = P k

l P k
l , we have that

|(T h)n(x)| �
∑

k∈Ks∪Ku

|(Tkh)n(x)|

�
∑

k∈Ks

|(Tkh)n(x)| +
∑

k∈Ku

|(Tkh)n(x)|

�
∑

k∈Ks

n∑
l=1

‖A(n, l)P k
l ‖ · ‖P k

l fl−1‖∞

+
∑

k∈Ku

∞∑
l=n+1

‖A(n, l)P k
l ‖ · ‖P k

l fl−1‖∞,

which combined with (2.2), (2.4) and (2.6) implies that

sup
n∈N

‖(T h)n‖∞ < +∞.

Moreover, one can easily see that for every h ∈ Y and n ∈ N, (T h)n is continuous.
Hence, T : Y → Y is well-defined. We now claim that T : Y → Y is a contraction.
Indeed, take hi = (hi

n)n∈Z ∈ Y, i = 1, 2. Using (2.3) and (2.7) we get that for each
k ∈ Ks,

|(Tkh1)n(x) − (Tkh2)n(x)| �
n∑

l=1

‖A(n, l)P k
l ‖μk

l ‖h1
l−1 − h2

l−1‖∞

� λk‖h1 − h2‖Y ,

for x ∈ X and n ∈ N. Similarly, for each k ∈ Ku,

|(Tkh1)n(x) − (Tkh2)n(x)| �
∞∑

l=n+1

‖A(n, l)P k
l ‖μk

l ‖h1
l−1 − h2

l−1‖∞

� λk‖h1 − h2‖Y ,
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for x ∈ X and n ∈ N. Consequently,

|(T h1)n(x) − (T h2)n(x)| �
∑

k∈Ks∪Ku

λk‖h1 − h2‖Y

for every x ∈ X and n ∈ N and thus,

‖T h1 − T h2‖Y �
∑

k∈Ks∪Ku

λk‖h1 − h2‖Y .

Hence, by (2.8) we conclude that T is a contraction. Therefore, T has a unique
fixed point h = (hn)n∈N ∈ Y. Thus, we have that

hn+1(Anx) = (T h)n+1(Anx) =
∑

k∈Ks∪Ku

(Tkh)n+1(Anx), (2.13)

for x ∈ X and n ∈ N. Now, for k ∈ Ks, x ∈ X and n � 1, we have that

(Tkh)n+1(Anx)

=
n+1∑
l=1

A(n + 1, l)P k
l (fl−1(A(l − 1, n + 1)Anx + hl−1(A(l − 1, n + 1)Anx)))

=
n+1∑
l=1

A(n + 1, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x)))

= An

n∑
l=1

A(n, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x)))

+ P k
n+1(fn(x + hn(x)))

= An(Tkh)n(x) + P k
n+1(fn(x + hn(x))).

Similarly, for k ∈ Ks, x ∈ X and n = 0, we observe that

(Tkh)1(A0x) = P k
1 (f0(x + h0(x))) = An(Tkh)0(x) + P k

1 (f0(x + h0(x))).

Finally, for k ∈ Ku, x ∈ X and n ∈ N, we have that

(Tkh)n+1(Anx)

= −
∞∑

l=n+2

A(n + 1, l)P k
l (fl−1(A(l − 1, n + 1)Anx + hl−1(A(l − 1, n + 1)Anx)))

= −
∞∑

l=n+2

A(n + 1, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x)))

= −An

∞∑
l=n+1

A(n, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x)))

+ P k
n+1(fn(x + hn(x)))

= An(Tkh)n(x) + P k
n+1(fn(x + hn(x))).
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Combining these observations with (2.1), (2.13) and the fact that h is a fixed
point of T , we obtain that

hn+1(Anx) = Anhn(x) + fn(x + hn(x)) −
∑

k∈Kc

P k
n+1(fn(x + hn(x))),

for n ∈ N and x ∈ X. Consequently, defining Hn = Id + hn, n ∈ N, and τn : X →⊕
k∈Kc Xk(n + 1) by τn(x) = −

∑
k∈Kc P k

n+1(fn(x)) for n ∈ N, we get that (2.9)
holds.

Construction of maps H̄n:

We now consider h̄ = (h̄n)n∈N ∈ Y given by

h̄n(x) =
∑

k∈Ks∪Ku

h̄k
n(x),

where

• for k ∈ Ks, we set h̄k
0(x) = 0 and

h̄k
n(x) = −

n∑
l=1

A(n, l)P k
l fl−1(F(l − 1, n)x) for n � 1,

where

F(m,n) =

⎧⎪⎨
⎪⎩

Fm−1 ◦ . . . Fn for m > n;
Id for m = n;
F−1

m+1 ◦ . . . ◦ F−1
n for m < n,

and Fn = An + fn, n ∈ N;

• for k ∈ Ku and n ∈ N,

h̄k
n(x) =

∞∑
l=n+1

A(n, l)P k
l fl−1(F(l − 1, n)x).

It follows easily from (2.2), (2.4) and (2.6) that indeed h̄ ∈ Y. Moreover, we observe
that given x ∈ X and k ∈ Ks, we have that

h̄k
n+1(Fn(x))

= −
n+1∑
l=1

A(n + 1, l)P k
l fl−1(F(l − 1, n + 1)Fn(x))

= −
n+1∑
l=1

A(n + 1, l)P k
l fl−1(F(l − 1, n)x)

= −An

n∑
l=1

A(n, l)P k
l fl−1(F(l − 1, n)x) − P k

n+1fn(x)

= Anh̄k
n(x) − P k

n+1fn(x),
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for n � 1. Similarly, for x ∈ X and n = 0, we observe that

h̄k
1(F0(x)) = −P k

1 f0(x) = A0h̄
k
0(x) − P k

1 f0(x).

Moreover, for k ∈ Ku, x ∈ X and n ∈ N, we have that

h̄k
n+1(Fn(x))

=
∞∑

l=n+2

A(n + 1, l)P k
l fl−1(F(l − 1, n + 1)Fn(x))

=
∞∑

l=n+2

A(n + 1, l)P k
l fl−1(F(l − 1, n)x)

= An

∞∑
l=n+1

A(n, l)P k
l fl−1(F(l − 1, n)x) − P k

n+1fn(x)

= Anh̄k
n(x) − P k

n+1fn(x).

Consequently, using (2.1) and recalling the definition of h̄, it follows that for every
n ∈ N and x ∈ X,

h̄n+1(Fn(x)) = Anh̄n(x) − fn(x) +
∑

k∈Kc

P k
n+1fn(x).

Thus, defining H̄n = Id + h̄n, n ∈ N, and τ̄n : X →
⊕

k∈Kc Xk(n + 1) by τ̄n(x) =∑
k∈Kc P k

n+1(fn(x)) for n ∈ N, we conclude that (2.10) holds.

The cases when Kc = ∅ and P k
nfn−1 ≡ 0 for every k ∈ Kc:

Suppose that either Kc = ∅ or P k
nfn−1 ≡ 0 for every k ∈ Kc and n ∈ N. Hence, we

have that τn = τn = 0 for every n ∈ N. In particular, (2.9) and (2.10) imply that

Hn+1 ◦ An = (An + fn) ◦ Hn and H̄n+1 ◦ (An + fn) = An ◦ H̄n, (2.14)

for every n ∈ N. Hence, (2.12) holds. Moreover, it follows easily from (2.14) that

Hn(A(n,m)x) = F(n,m)Hm(x) (2.15)

and

H̄n(F(n,m)x) = A(n,m)H̄m(x), (2.16)

for every m, n ∈ N.
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Recalling the definitions of H̄n and Hn we get that for every n � 1 and x ∈ X,

H̄n(Hn(x)) = Hn(x) + h̄n(Hn(x))

= x + hn(x) + h̄n(Hn(x))

= x +
∑

k∈Ks

n∑
l=1

A(n, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x)))

−
∑

k∈Ku

∞∑
l=n+1

A(n, l)P k
l (fl−1(A(l − 1, n)x + hl−1(A(l − 1, n)x)))

−
∑

k∈Ks

n∑
l=1

A(n, l)P k
l fl−1(F(l − 1, n)Hn(x))

+
∑

k∈Ku

∞∑
l=n+1

A(n, l)P k
l fl−1(F(l − 1, n)Hn(x)).

(2.17)
Now, by (2.15) it follows that

F(l − 1, n)Hn(x) = Hl−1(A(l − 1, n)x)

= A(l − 1, n)x + hl−1(A(l − 1, n)x),

which combined with (2.17) implies that H̄n(Hn(x)) = x for every x ∈ X. The case
when n = 0 can be treated similarly.

Our objective now is to show that Hn(H̄n(x)) = x for every x ∈ X and n ∈ N.
We start by observing that

Hn(H̄n(x)) = H̄n(x) + hn(H̄n(x))

= x + h̄n(x) + hn(H̄n(x)).

Consequently,

Hn(H̄n(x)) − x = h̄n(x) + hn(H̄n(x)). (2.18)

By analysing the right-hand side of (2.18), we have that

h̄n(x) + hn(H̄n(x))

= −
∑

k∈Ks

n∑
l=1

A(n, l)P k
l fl−1(F(l − 1, n)x)

+
∑

k∈Ku

∞∑
l=n+1

A(n, l)P k
l fl−1(F(l − 1, n)x)

+
∑

k∈Ks

n∑
l=1

A(n, l)P k
l (fl−1(A(l − 1, n)H̄n(x) + hl−1(A(l − 1, n)H̄n(x))))

−
∑

k∈Ku

∞∑
l=n+1

A(n, l)P k
l (fl−1(A(l − 1, n)H̄n(x) + hl−1(A(l − 1, n)H̄n(x)))),
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for x ∈ X and n � 1. On the other hand, by using (2.16) we have that

A(l − 1, n)H̄n(x) + hl−1(A(l − 1, n)H̄n(x)) = Hl−1(A(l − 1, n)H̄n(x))

= Hl−1(H̄l−1(F(l − 1, n)x)).

Thus, combining the previous observations we get that

|h̄n(x) + hn(H̄n(x))|

�
∑

k∈Ks

n∑
l=1

‖A(n, l)P k
l ‖ · |P k

l fl−1(Hl−1(H̄l−1(F(l − 1, n)x)))

− P k
l fl−1(F(l − 1, n)x)|

+
∑

k∈Ku

∞∑
l=n+1

‖A(n, l)P k
l ‖ · |P k

l fl−1(F(l − 1, n)x)

− P k
l fl−1(Hl−1(H̄l−1(F(l − 1, n)x)))|

�
∑

k∈Ks

n∑
l=1

‖A(n, l)P k
l ‖μk

l−1|Hl−1(H̄l−1(F(l − 1, n)x))) −F(l − 1, n)x|

+
∑

k∈Ku

∞∑
l=n+1

‖A(n, l)P k
l ‖μk

l−1|Hl−1(H̄l−1(F(l − 1, n)x))) −F(l − 1, n)x|.

Therefore, using (2.18) it follows that

|Hn(H̄n(x)) − x|

�
∑

k∈Ks

n∑
l=1

‖A(n, l)P k
l ‖μk

l−1|Hl−1(H̄l−1(F(l − 1, n)x))) −F(l − 1, n)x|

+
∑

k∈Ku

∞∑
l=n+1

‖A(n, l)P k
l |μk

l−1|Hl−1(H̄l−1(F(l − 1, n)x))) −F(l − 1, n)x|.

(2.19)
Now, since h = (hn)n∈N ∈ Y and h̄ = (h̄n)n∈N ∈ Y, it follows by (2.18) that
H ◦ H̄ − Id := (Hn ◦ H̄n − Id)n∈N ∈ Y, which combined with (2.3), (2.5) and (2.19)
implies that

‖H ◦ H̄ − Id‖Y �
∑

k∈Ks∪Ku

λk‖H ◦ H̄ − Id‖Y .

Thus, from (2.8) it follows that ‖H ◦ H̄ − Id‖Y = 0, and consequently Hn(H̄n(x)) =
x for every x ∈ X and n ∈ N.

Summarizing, we have proved that (2.11) holds. In particular, we conclude that
Hn and H̄n are homeomorphisms for each n ∈ N. The proof of theorem 2.2 is
completed.
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3. The case of continuous time

The purpose of this section is to establish the version of theorem 2.2 for the case
of continuous time. Let A : [0, ∞) → B(X) and f : [0, ∞) × X → X be continuous
maps. We consider the associated semilinear differential equation

x′ = A(t)x + f(t, x) t � 0, (3.1)

as well as the associated linear equation

x′ = A(t)x t � 0. (3.2)

By T (t, s) we will denote the evolution family associated to (3.2). Furthermore,
U(t, s) will denote the nonlinear evolution family corresponding to (3.1), i.e.
U(t, s)v = x(t), where x : [0, ∞) → X is the solution of (3.1) such that x(s) = v.

Let K be as in subsection 2.2. Suppose that for each t � 0 and k ∈ K there is a
projection P k(t) on X such that:

•
∑

k∈K P k(t) = Id;

• P k(t)P l(t) = 0 for k, l ∈ K, k �= l;

• for k ∈ K, t �→ P k(t) is measurable.

Furthermore, we assume that there are Borel measurable functions μk, νk : [0, ∞) →
[0, ∞) and positive numbers λk > 0, k ∈ Ks ∪ Ku such that:

• for k ∈ Ks,

sup
t

∫ t

0

‖T (t, s)P k(s)‖νk(s) ds < +∞, (3.3)

and

sup
t

∫ t

0

‖T (t, s)P k(s)‖μk(s) ds � λk; (3.4)

• for k ∈ Ku,

sup
t

∫ ∞

t

‖T (t, s)P k(s)‖νk(s) ds < +∞, (3.5)

and

sup
t

∫ ∞

t

‖T (t, s)P k(s)‖μk(s) ds � λk. (3.6)

The following is the version of theorem 2.2 in the present setting.

Theorem 3.1. Assume that the following conditions hold:

• for k ∈ Ks ∪ Ku and t � 0,

‖P k(t)f(t, ·)‖∞ � νk(t); (3.7)

https://doi.org/10.1017/prm.2022.63 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.63


1622 L. Backes and D. Dragičević

• for k ∈ Ks ∪ Ku, t � 0 and x, y ∈ X,

|P k(t)f(t, x) − P k(t)f(t, y)| � μk(t)|x − y|; (3.8)

• (2.8) holds.

Then,

• there exists a continuous map H : [0, ∞) × X → X such that if t �→ x(t) is a
solution of (3.2), then t �→ H(t, x(t)) is a solution of

x′ = A(t)x +
∑

k∈Ks∪Ku

P k(t)f(t, x); (3.9)

• there exists a continuous map H̄ : [0, ∞) × X → X such that if t �→ y(t) is a
solution of (3.1), then t �→ H̄(t, y(t)) is a solution of

x′ = A(t)x +
∑

k∈Kc

P k(t)f(t, y(t))); (3.10)

• we have that

sup
t

‖H(t, ·) − Id‖∞ < +∞ and sup
t

‖H̄(t, ·) − Id‖∞ < +∞. (3.11)

Moreover, in the case when Kc = ∅ or P k(t)f(t, ·) ≡ 0 for t � 0 and k ∈ Kc, then
H(t, ·) and H̄(t, ·) are homeomorphisms for each t � 0 satisfying

H(t, H̄(t, x)) = H̄(t,H(t, x)) = x, (3.12)

H(t, T (t, s)x) = U(t, s)H(s, x) and H̄(t, U(t, s)x) = T (t, s)H̄(s, x), (3.13)

for t, s � 0 and x ∈ X.

Proof. We follow closely the proof of theorem 2.2. Let Y denote the space of all
continuous functions h : [0, ∞) × X → X such that

‖h‖Y := sup
t�0

‖h(t, ·)‖∞ = sup
t,x

|h(t, x)| < +∞.

Then, (Y, ‖ · ‖Y) is a Banach space. We define an operator T : Y → Y by

(T h)(t, x) =
∑

k∈Ks∪Ku

(Tkh)(t, x),

where

• for k ∈ Ks, we set

(Tkh)(t, x) =
∫ t

0

T (t, s)P k(s)(f(s, T (s, t)x + h(s, T (s, t)x))) ds,

for every t � 0 and x ∈ X;
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• for k ∈ Ku, we set

(Tkh)(t, x) = −
∫ ∞

t

T (t, s)P k(s)(f(s, T (s, t)x + h(s, T (s, t)x))) ds,

for every t � 0 and x ∈ X.

Observe that

|(T h)(t, x)| �
∑

k∈Ks∪Ku

|(Tkh)(t, x)|

�
∑

k∈Ks

|(Tkh)(t, x)| +
∑

k∈Ku

|(Tkh)(t, x)|

�
∑

k∈Ks

∫ t

0

‖T (t, s)P k(s)‖ · ‖P k(s)f(s, ·)‖∞ ds

+
∑

k∈Ku

∫ ∞

t

‖T (t, s)P k(s)‖ · ‖P k(s)f(s, ·)‖∞ ds,

which combined with (3.3), (3.5) and (3.7) implies that

sup
t�0

‖(T h)(t, ·)‖∞ < +∞.

This easily implies that T h ∈ Y. Take now h1, h2 ∈ Y. By using (3.4) and (3.8) we
get that for each k ∈ Ks,

|(Tkh1)(t, x) − (Tkh2)(t, x)| �
∫ t

0

‖T (t, s)P k(s)‖μk(s)‖h1(s, ·) − h2(s, ·)‖∞ ds

� λk‖h1 − h2‖Y ,

for x ∈ X and t � 0. Similarly, by using (3.6) and (3.8), we have that for each
k ∈ Ku,

|(Tkh1)(t, x) − (Tkh2)(t, x)| �
∫ ∞

t

‖T (t, s)P k(s)‖μk(s)‖h1(s, ·) − h2(s, ·)‖∞ ds

� λk‖h1 − h2‖Y ,

for x ∈ X and t � 0. Consequently,

|(T h1)(t, x) − (T h2)(t, x)| �
∑

k∈Ks∪Ku

λk‖h1 − h2‖Y

for every x ∈ X and t � 0 and thus,

‖T h1 − T h2‖Y �
∑

k∈Ks∪Ku

λk‖h1 − h2‖Y .
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Hence, by (2.8) we conclude that T is a contraction. Therefore, T has a unique
fixed point h ∈ Y. Therefore,

h(t, T (t, s)x) = (T h)(t, T (t, s)x) =
∑

k∈Ks∪Ku

(Tkh)(t, T (t, s)x), (3.14)

for x ∈ X and t, s � 0. Now, for k ∈ Ks, x ∈ X and t, s � 0, we have that

(Tkh)(t, T (t, s)x)

=
∫ t

0

T (t, r)P k(r)(f(r, T (r, t)T (t, s)x + h(r, T (r, t)T (t, s)x))) dr

=
∫ t

0

T (t, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr

= T (t, s)
∫ s

0

T (s, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr

+
∫ t

s

T (t, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr

= T (t, s)(Tkh)(s, x) +
∫ t

s

T (t, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr.

Similarly, for k ∈ Ku, x ∈ X and t, s � 0, we have that

(Tkh)(t, T (t, s)x)

= −
∫ ∞

t

T (t, r)P k(r)(f(r, T (r, t)T (t, s)x + h(r, T (r, t)T (t, s)x))) dr

= −
∫ ∞

t

T (t, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr

= −T (t, s)
∫ ∞

s

T (s, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr

+
∫ t

s

T (t, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr

= T (t, s)(Tkh)(s, x) +
∫ t

s

T (t, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr.

Combining these observations with (3.14) and the fact that h is a fixed point of T ,
we obtain that

h(t, T (t, s)x) = T (t, s)h(s, x) +
∫ t

s

T (t, r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr

−
∑

k∈Kc

∫ t

s

T (t, r)P k(r)(f(r, T (r, s)x + h(r, T (r, s)x))) dr,

for t, s � 0 and x ∈ X. By differentiating the above equality, we easily conclude
that if t �→ x(t) is a solution of (3.2), then t �→ H(t, x(t)) is a solution of (3.9),
where H(t, x) := x + h(t, x).
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We now consider h̄ ∈ Y given by

h̄(t, x) =
∑

k∈Ks∪Ku

h̄k(t, x),

where

• for k ∈ Ks and t � 0,

h̄k(t, x) := −
∫ t

0

T (t, s)P k(s)f(s, U(s, t)x) ds;

• for k ∈ Ku and t � 0,

h̄k(t, x) :=
∫ ∞

t

T (t, s)P k(s)f(s, U(s, t)x) ds.

It follows easily from (3.3), (3.5) and (3.7) that indeed h̄ ∈ Y. Moreover, we observe
that given x ∈ X and k ∈ Ks, we have that

h̄k(t, U(t, s)x)

= −
∫ t

0

T (t, r)P k(r)f(r, U(r, t)U(t, s)x) dr

= −
∫ t

0

T (t, r)P k(r)f(r, U(r, s)x) dr

= −T (t, s)
∫ s

0

T (s, r)P k(r)f(r, U(r, s)x) dr −
∫ t

s

T (t, r)P k(r)f(r, U(r, s)x) dr

= T (t, s)h̄k(s, x) −
∫ t

s

T (t, r)P k(r)f(r, U(r, s)x) dr,

for t, s � 0 and x ∈ X. Moreover, for k ∈ Ku, x ∈ X and t, s � 0, we have that

h̄k(t, U(t, s)x)

=
∫ ∞

t

T (t, r)P k(r)f(r, U(r, t)U(t, s)x) dr

=
∫ ∞

t

T (t, r)P k(r)f(r, U(r, s)x) dr

= T (t, s)
∫ ∞

s

T (s, r)P k(r)f(r, U(r, s)x) dr −
∫ t

s

T (t, r)P k(r)f(r, U(r, s)x) dr

= T (t, s)h̄k(s, x) −
∫ t

s

T (t, r)P k(r)f(r, U(r, s)x) dr.
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Consequently, it follows that for t, s � 0 we have that

h̄(t, U(t, s)x) = T (t, s)h̄(s, x) −
∫ t

s

T (t, r)f(r, U(r, s)x) dr

+
∑

k∈Kc

∫ t

s

T (t, r)P k(r)f(r, U(r, s)x) dr.

From this we easily conclude that if t �→ y(t) is a solution of (3.1), then t �→
H̄(t, y(t)) is a solution of (3.10), where H̄(t, x) = x + h̄(t, x). Finally, we observe
that since h, h̄ ∈ Y, we have that (3.11) holds.

Suppose now that either Kc = ∅ or P k(t)f(t, ·) ≡ 0 for every k ∈ Kc and t ∈ R.
From the previous observations, we conclude that (3.13) holds for t, s � 0 and
x ∈ X. Moreover, for every t � 0 and x ∈ X, we have that

H̄(t,H(t, x)) = H(t, x) + h̄(t,H(t, x))

= x + h(t, x) + h̄(t,H(t, x))

= x +
∑

k∈Ks

∫ t

0

T (t, s)P k(s)(f(s, T (s, t)x + h(s, T (s, t)x))) ds

−
∑

k∈Ku

∫ ∞

t

T (t, s)P k(s)(f(s, T (s, t)x + h(s, T (s, t)x))) ds

−
∑

k∈Ks

∫ t

0

T (t, s)P k(s)f(s, U(s, t)H(t, x)) ds

+
∑

k∈Ku

∫ ∞

t

T (t, s)P k(s)f(s, U(s, t)H(t, x)) ds.

By applying (3.13), we conclude that H̄(t, H(t, x)) = x for x ∈ X and t � 0.
We now claim that H(t, H̄(t, x)) = x for x ∈ X and t � 0. Observe that

H(t, H̄(t, x)) − x = h̄(t, x) + h(t, H̄(t, x)). (3.15)

For t � 0, we have that

h̄(t, x) + h(t, H̄(t, x))

= −
∑

k∈Ks

∫ t

0

T (t, s)P k(s)f(s, U(s, t)x) ds

+
∑

k∈Ku

∫ ∞

t

T (t, s)P k(s)f(s, U(s, t)x) ds

+
∑

k∈Ks

∫ t

0

T (t, s)P k(s)(f(s, T (s, t)H̄(t, x) + h(s, T (s, t)H̄(t, x)))) ds

−
∑

k∈Ku

∫ ∞

t

T (t, s)P k(s)(f(s, T (s, t)H̄(t, x) + h(s, T (s, t)H̄(t, x)))) ds.
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By (3.13), we have that

T (s, t)H̄(t, x) + h(s, T (s, t)H̄(t, x)) = H(s, T (s, t)H̄(t, x))

= H(s, H̄(s, U(s, t)x)),

and thus

|h̄(t, x) + h(t, H̄(t, x))|

�
∑

k∈Ks

∫ t

0

‖T (t, s)P k(s)‖ · |P k(s)f(s,H(s, H̄(s, U(s, t)x)))

− P k(s)f(s, U(s, t)x)| ds

+
∑

k∈Ku

∫ ∞

t

‖T (t, s)P k(s)‖ · |P k(s)f(s, U(s, t)x)

− P k(s)f(s,H(s, H̄(s, U(s, t)x)))| ds

�
∑

k∈Ks

∫ t

0

‖T (t, s)P k(s)‖μk(s)|H(s, H̄(s, U(s, t)x))) − U(s, t)x| ds

+
∑

k∈Ku

∫ ∞

t

‖T (t, s)P k(s)‖μk(s)|H(s, H̄(s, U(s, t)x))) − U(s, t)x| ds.

Therefore, using (3.15) it follows that

|H(t, H̄(t, x)) − x|

�
∑

k∈Ks

∫ t

0

‖T (t, s)P k(s)‖μk(s)|H(s, H̄(s, U(s, t)x))) − U(s, t)x| ds

+
∑

k∈Ku

∫ ∞

t

‖T (t, s)P k(s)|μk(s)|H(s, H̄(s, U(s, t)x))) − U(s, t)x| ds.

Set

G(t, x) = H(t, H̄(t, x)) − x, t � 0, x ∈ X.

Now, since h, h̄ ∈ Y, it follows from (3.15) that G ∈ Y, which combined with (3.4)
and (3.6) implies that

‖G‖Y �
∑

k∈Ks∪Ku

λk‖G‖Y .

Thus, from (2.8) it follows that G = 0, and consequently H(t, H̄(t, x)) = x for every
x ∈ X and t � 0. We conclude that (3.12) holds which completes the proof of the
theorem. �
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Example 3.2. Let X and K be as in example 2.7. For t � 0 and k ∈ K, let P k(t)
be the projection onto the kth coordinate. Moreover, take

A(t) = diag (−1, 0, 0, 0, 1) t � 0,

and consider Ks = {1, 2}, Kc = {3} and Ku = {4, 5}. Take λk = 1
5 for every k ∈ K

and

• νk(t) = 1 and μk(t) = 1
5 , for k ∈ {1, 5} and t � 0;

• νk(t) = e−t and μk
n = 1

5e−t, for k ∈ {2, 4} and t � 0.

Let f : [0, ∞) × X → X, f = (f1, . . . , f5) be a continuous map such that

• ‖fk(t, ·)‖∞ � 1 and Lip(fk(t, ·)) � 1
5 , for k ∈ {1, 5} and t � 0;

• ‖fk(t, ·)‖∞ � e−t and Lip(fk(t, ·)) � 1
5e−t, for k ∈ {2, 4} and t � 0.

It is easy to verify that under the above assumptions, theorem 3.1 is applicable.
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