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Abstract

We compare the dimension of a non-invertible self-affine set to the dimension of the
respective invertible self-affine set. In particular, for generic planar self-affine sets, we show
that the dimensions coincide when they are large and differ when they are small. Our
study relies on thermodynamic formalism where, for dominated and irreducible matrices,
we completely characterise the behaviour of the pressures.

2020 Mathematics Subject Classification: 28A80 (Primary); 37C45, 37D35 (Secondary)

1. Introduction

Let J be a finite set and (Ai + vi)i∈J a tuple of contractive affine self-maps on R
2, where

we have written A + v to denote the affine map x �→ Ax + v defined on R
2 for all matrices

A ∈ M2(R) and translation vectors v ∈R
2. If the affine maps Ai + vi do not have a com-

mon fixed point, then we call such a tuple an affine iterated function system. We also write
fi = Ai + vi for all i ∈ J and note that the associated tuple of matrices (Ai)i∈J is an element of
M2(R)J .

A classical result of Hutchinson [18] shows that for each affine iterated function system
(fi)i∈J there exists a unique non-empty compact set X′ ⊂R

2, called the self-affine set, such
that

X′ =
⋃
i∈J

fi(X
′). (1)

In this paper, if I = {i ∈ J : Ai is invertible} is non-empty, then the self-affine set X ⊂ X′
associated to (fi)i∈I is called invertible, and if J \ I is non-empty, then the self-affine set
X′ associated to (fi)i∈J is called non-invertible. Bárány, Hochman and Rapaport [2] and
Hochman and Rapaport [17] have recently shown that the Hausdorff dimension reaches
a natural upper bound, the affinity dimension, on a large deterministic class of invertible
self-affine sets.
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In our main result, Theorem 1·1 below, part (i) shows that generically under a separa-
tion condition the dimensions of X′ and X agree when they are at least 1. Furthermore, if
the dimension of X is strictly less than 1, then part (ii) demonstrates that generically the
dimensions of X′ and X are distinct. Regarding part (iii), let us first recall that Marstrand’s
projection theorem [24] gives dimH(projV (X′)) = min{1, dimH(X′)} for Lebesgue almost all
V ∈RP

1. Although the equality holds for generic V , it is often difficult to say whether a
particular V satisfies it. The purpose of part (iii) is to verify that the orthogonal complement
of the kernel of one of the rank one matrices is such a direction.

The precise definitions of the assumptions used in the theorem will be given in coming
sections.

THEOREM 1·1. Suppose that X′ and X are the planar self-affine sets associated to affine
iterated function systems (Ai + vi)i∈J and (Ai + vi)i∈I such that Ai ∈ GL2(R) for all i ∈ I ⊂ J,
respectively.

(i) If (Ai)i∈I is strictly affine and strongly irreducible such that dimaff((Ai)i∈I) � 1 and X
satisfies the strong open set condition, then

dimM(X′) = dimH(X),

dimH(projV (X′)) = 1

for all V ∈RP
1.

(ii) If (Ai)i∈J is dominated or irreducible such that maxi∈J ‖Ai‖ < 1/2, contains a rank
one matrix, and dimaff((Ai)i∈I) < 1, then

dimH(X′
v) > dimM(Xv)

for L2#J-almost all translation vectors v = (vi)i∈J ∈ (R2)#J.

(iii) If (Ai)i∈J contains a rank one matrix, (Ai)i∈I is strictly affine and strongly irreducible
such that dimaff((Ai)i∈I) < 1, and X satisfies the strong open set condition, then there
exists a rank one matrix A in A such that

dimH(X′) = dimH(projker (A)⊥(X′)) � 1.

We remark that Bárány and Körtvélyesi [5] have recently continued the above study. They
have demonstrated that if the affinity dimension is strictly less than one, then there exist two
large parameter sets for the defining matrices so that in the first one, the Hausdorff dimen-
sion of the non-invertible self-affine set equals the affinity dimension, and in the second
one, the Hausdorff dimension is strictly smaller than the affinity dimension. This observa-
tion proposes that determining the Hausdorff dimension in this situation requires a better
understanding of the geometry.

The remainder of the paper is organised as follows. In Section 2, we compare the
behaviour of the pressures and study the continuity. In particular, for dominated and
irreducible matrices, we completely characterise the continuity of the pressure in the non-
invertible case. In Section 3, we uncover how the study of non-invertible self-affine sets is
connected to the theory of sub-self-affine and inhomogeneous self-affine sets, and prove the
main result.
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2. Products of matrices
2·1. Rank one matrices

We denote the collection of all 2 × 2 matrices with real entries by M2(R), the general
linear group of degree 2 over R by GL2(R) ⊂ M2(R), and the orthogonal group in dimension
2 over R by O2(R) ⊂ GL2(R). A matrix A ∈ GL2(R) is called proximal if it has two real
eigenvalues with different absolute values. If A ∈ M2(R), then the singular values of A are
defined to be the non-negative square roots of the eigenvalues of the positive-semidefinite
matrix A
A and are denoted by α1(A) and α2(A) in non-increasing order. Recall that the
rank of A is the number of non-zero singular values of A. The identities α1(A) = ‖A‖ and
α1(A)α2(A) = | det (A)| for all A ∈ M2(R) are standard, as is the identity α2(A) = ‖A−1‖−1

in the case where A is invertible. For each A ∈ M2(R) and s � 0 we define the singular value
function by setting

ϕs(A) =

⎧⎪⎪⎨
⎪⎪⎩

α1(A)s, if 0 � s � 1,

α1(A)α2(A)s−1, if 1 < s � 2,

| det (A)|s/2, if 2 < s < ∞,

where we interpret 00 = 1. The value ϕs(A) represents a measurement of the s-dimensional
volume of the image of the Euclidean unit ball under A. Since α1(A)α2(A)s−1 =
α1(A)2−s| det (A)|s−1 for all 1 < s � 2, the inequality ϕs(AB) � ϕs(A)ϕs(B) is valid for all
s � 0. In other words, the singular value function is sub-multiplicative.

Note that if A ∈ M2(R) has rank one, then ϕs(A) = 0 for all s > 1. Recalling that A has rank
zero if and only if A is the zero matrix, we see that ϕs(A) = 0 for all s > 0. Let us next recall
that rank one matrices are projections. Let RP1 be the real projective line, that is, the set
of all lines through the origin in R

2. If V , W ∈RP
1, then the projection projWV : R2 → V is

the linear map such that projWV |V = Id|V and ker (projWV ) = W. Furthermore, the orthogonal

projection projV
⊥

V onto the subspace V is denoted by projV . The following lemma is well
known. But, as the proof is short, we provide the reader with full details.

LEMMA 2·1. A matrix A ∈ M2(R) has rank one if and only if there exist v, w ∈R
2 \

{(0, 0)} such that A = vw
. In this case,

A =
⎧⎨
⎩

〈v, w〉projker (A)
im(A) , if A is not nilpotent,

|v||w|Rprojker (A)⊥ , if A is nilpotent,

where R ∈ O2(R) is a rotation by an angle π/2. In particular, A(X) is bi-Lipschitz equivalent
to projker (A)⊥(X) for all X ⊂R

2.

Proof. Let us first prove the characterisation of rank one matrices. If A = vw
 for some
v, w ∈R

2 \ {(0, 0)}, then Ax = vw
x = 〈w, x〉v for all x ∈R
2. Therefore, A maps every x to a

scalar multiple of v, rank(A) = 1, and im(A) = span(v). If x ∈ span(w)⊥, then Ax = vw
x =
〈w, x〉v = 0 and ker (A) = span(w)⊥. Conversely, if rank(A) = 1, then there is v ∈R

2 \ {(0, 0)}
such that Ax is a scalar multiple of v for all x ∈R

2. In particular, this is true when x = (1, 0)
and x = (0, 1). That is, there are w1, w2 ∈R \ {0} such that A(1, 0) = w1v and A(0, 1) = w2v.
In other words,
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A =
(

w1v1 w2v1

w1v2 w2v2

)
= vw
,

where w = (w1, w2) ∈R
2 \ {(0, 0)}.

Let us then show that a rank one matrix A is a projection. If A is not nilpotent, then
span(v) = im(A) �= ker (A) = span(w)⊥. Since Ax = vw
x = 〈x, w〉v and it is easy to see that

projker (A)
im(A) (x) = 〈x, w〉

〈v, w〉v = 1

〈v, w〉Ax

for all x ∈R
2, we have shown the first case. If A is nilpotent, then span(v) = im(A) =

ker (A) = span(w)⊥. Since Rw/|w| = v/|v|, where R ∈ O2(R) is a rotation by an angle π/2,
we have

projker (A)⊥(x) = projspan(w)(x) = 〈x, w〉
|w|2 w = 〈x, w〉

|v||w|R−1v

and hence,

Rprojker (A)⊥(x) = 〈x, w〉
|v||w| v = 1

|v||w|Ax

as claimed.
Since the last claim follows immediately from the the fact that a rank one matrix is a

projection, we have finished the proof.

2·2. Pressure

Let J be a finite set and A = (Ai)i∈J ∈ M2(R)J be a tuple of matrices. We say that A is
irreducible if there does not exist V ∈RP

1 such that AiV ⊂ V for all i ∈ J; otherwise A is
reducible. Note that the irreducibility is equivalent to the property that the matrices in A do
not have a common eigenvector. Therefore, A is reducible if and only if the matrices in A can
simultaneously be presented (in some coordinate system) as upper triangular matrices. The
tuple A is strongly irreducible if there does not exist a finite set V ⊂RP

1 such that AiV = V
for all i ∈ J.

We call a proper subset C ⊂RP
1 a multicone if it is a finite union of closed non-trivial

projective intervals. We say that A is dominated if each matrix Ai is non-zero and there
exists a multicone C ⊂RP

1 such that AiC ⊂ Co for all i ∈ J, where Co is the interior of C.
Conversely, if a multicone C ⊂RP

1 satisfies such a condition, then we say that C is a strongly
invariant multicone for A. For example, the first quadrant is strongly invariant for any tuple
of positive matrices. Note that a dominated tuple is not necessarily irreducible and vice
versa. If A ∈ GL2(R)J is dominated and irreducible, then, by [4, lemma 2·10], A is strongly
irreducible.

We let J∗ denote the set of all finite words {∅} ∪⋃n∈N Jn, where ∅ satisfies ∅i = i∅= i
for all i ∈ J∗. For notational convenience, we set J0 = {∅}. The set JN is the collection
of all infinite words. We define the left shift σ : JN → JN by setting σi = i2i3 · · · for all
i = i1i2 · · · ∈ JN. The concatenation of two words i ∈ J∗ and j ∈ J∗ ∪ JN is denoted by ij ∈
J∗ ∪ JN and the length of i ∈ J∗ ∪ JN is denoted by |i|. If j ∈ J∗ ∪ JN and 1 � n < |j|, then
we define j|n to be the unique word i ∈ Jn for which ik = j for some k ∈ J∗ ∪ JN. Write
i|0 =∅. If i ∈ J∗ \ {∅}, then i− = i||i|−1 is the word obtained from i by deleting its last
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element. Furthermore, if i ∈ Jn for some n ∈N, then we set [i] = {j ∈ JN : j|n = i}. The
set [i] is called a cylinder set. We write Ai = Ai1 · · · Ain for all i = i1 · · · in ∈ Jn and n ∈N.
We say that A ∈ GL2(R)J is strictly affine if there is i ∈ I∗ such that Ai is proximal. Recall
that A ∈ GL2(R) is proximal if it has two real eigenvalues with different absolute values.
By [3, corollary 2·4], a dominated tuple in GL2(R)J is strictly affine.

If � ⊂ JN is a non-empty compact set such that σ (�) ⊂ �, then we define �n = {i|n ∈
Jn : i ∈ �} and �∗ =⋃

n∈N �n. We keep denoting (IN)n and (IN)∗ by In and I∗, respectively,
for all I ⊂ J and n ∈N. Given a tuple A = (Ai)i∈J ∈ M2(R)J of matrices, we define for each
such � ⊂ JN and s � 0 the pressure by setting

P(�, A, s) = lim
n→∞

1

n
log

∑
i∈�n

ϕs(Ai) = inf
n∈N

1

n
log

∑
i∈�n

ϕs(Ai) ∈ [ − ∞, ∞).

The assumption σ (�) ⊂ � guarantees that if i ∈ Jm and j ∈ Jn such that ij ∈ �m+n, then
i ∈ �m and j ∈ �n. Therefore, as the singular value function is sub-multiplicative, the
sequence ( log

∑
i∈�n

ϕs(Ai))n∈N is sub-additive and hence, the limit above exists or is −∞
by Fekete’s lemma.

Let A be a tuple of strictly contractive matrices and � ⊂ JN be a non-empty compact
set such that σ (�) ⊂ �. Since ϕs(Ai) � ϕt(Ai) maxk∈J ‖Ak‖(s−t) for all i ∈ J, we see that
P(�, A, s) � P(�, A, t) + (s − t) log maxk∈J ‖Ak‖ for all s > t � 0. Since A consists only of
strictly contractive matrices, we have maxk∈J ‖Ak‖ < 1 and hence, the pressure P(�, A, s)
is strictly decreasing as a function of s whenever it is finite. Notice also that P(�, A, 0) =
limn→∞ (1/n) log #�n � 0 and lims→∞ P(�, A, s) = −∞. In this case, we define the affinity
dimension by setting

dimaff(�, A) = inf{s � 0 : P(�, A, s) � 0}.
Notice that if the pressure s �→ P(�, A, s) is continuous at s0 = dimaff(�, A), then
P(�, A, s0) = 0.

We are interested in the properties of the pressure

P(A, s) = P(JN, A, s)

as a function of s and the affinity dimension dimaff(A) = dimaff(JN, A). To that end, let us
introduce some further notation. Let I = {i ∈ J : Ai is invertible}. In this case, we trivially
have that

IN = {i ∈ JN : Ai|n is invertible for all n ∈N}
is a compact subset of JN and satisfies σ (IN) = IN. Therefore, the pressure P(IN, A, s) is
well-defined for all s � 0. We also define

� = {i ∈ JN : Ai|n is non-zero for all n ∈N}.
It is easy to see that � is a compact subset of JN and satisfies σ (�) ⊂ �. Indeed, if j ∈ σ (�),
then there is i ∈ � such that j = σi and Ai|n �= 0 for all n ∈N. As clearly Aσi|n �= 0 for all
n ∈N, we see that j = σi ∈ � as claimed. Hence, also the pressure P(�, A, s) is well-defined
for all s � 0. Observe that the inclusion σ (�) ⊂ � can be strict: if J = {0, 1} and
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A0 =
(

0 1

0 0

)
, A1 =

(
0 0

0 1

)
,

then � = {0111 · · · , 111 · · · } and σ (�) = {111 · · · }.
LEMMA 2·2. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1, then

P(A, s) =

⎧⎪⎪⎨
⎪⎪⎩

log #J, if s = 0,

P(�, A, s), if 0 < s � 1,

P(IN, A, s), if 1 < s < ∞.

Furthermore, the function s �→ P(A, s) is strictly decreasing on [0, ∞), continuous on (0, 1),
and uniformly continuous on (1, ∞) whenever it is finite.

Proof. Recall first that ϕs(A) = α1(A)s = ‖A‖s for all 0 � s � 1. Therefore, as we inter-
preted 00 = 1, we have

P(A, 0) = lim
n→∞

1

n
log

∑
i∈Jn

‖Ai‖0 = log #J.

Since α1(A) > 0 if and only if A ∈ M2(R) is non-zero, we see that for each 0 < s � 1 the sin-
gular value function satisfies ϕs(Ai) = ‖Ai‖s > 0 if and only if i ∈ �∗. Therefore, P(A, s) =
P(�, A, s) for all 0 < s � 1. Furthermore, since α2(A) > 0 if and only if A ∈ GL2(R), we
have that for every 1 < s < ∞ the singular value function satisfies ϕs(Ai) > 0 if and only
if i ∈ I∗. This shows P(A, s) = P(IN, A, s) for all 1 < s < ∞. The function s �→ P(A, s) has
already seen strictly decreasing. The continuity on (0, 1) follows from [16, theorem 1·2(3)]
and the uniform continuity on (1, ∞) follows directly from [23, lemma 2·1].

The following lemma characterises the continuity of the function s �→ P(A, s) at 0.

LEMMA 2·3. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1, then the function s �→
P(A, s) is right-continuous at 0 if and only if the semigroup {Ai : i ∈ J∗} does not contain
rank zero matrices.

Proof. If the semigroup {Ai : i ∈ J∗} does not contain rank zero matrices, then � = JN

and the right-continuity at 0 is guaranteed by Lemma 2·2. If Ai has rank zero for some
i ∈ Jn and n ∈N, then clearly #�n < #Jn = (#J)n. Fix 0 < s � 1 and notice that Lemma 2·2
implies

P(A, s) � 1

n
log

∑
i∈�n

‖Ai‖s

and

lim
s↓0

P(A, s) � 1

n
log #�n <

1

n
log #Jn = P(A, 0),

where the limit exists by Lemma 2·2. In particular, the function s �→ P(A, s) is not right-
continuous at 0.
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The possible discontinuity at 1 has already been observed by Feng and Shmerkin [16,
remark 1·1]. In their example, the pressure is not finite when s > 1, but it is easy to see that
this is not a necessity. If J = {0, 1} and

A0 =
(

1 0

0 0

)
, A1 =

(
1 0

0 1

)
,

then, by lemma 2·2, for A = (A0, A1) ∈ M2(R)J we have P(A, 1) = log 2 and P(A, s) = 0 for
all s > 1. The continuity of the function s �→ P(A, s) at 1 will be characterised for dominated
and irreducible tuples in Lemma 2·10.

Let us next determine when the pressure is finite. For that, we need the following defini-
tion. Given a tuple A = (Ai)i∈J ∈ M2(R)J of matrices, we define the joint spectral radius by
setting

�(A) = lim
n→∞ max

i∈Jn
‖Ai‖1/n.

As the operator norm is sub-multiplicative, the sequence ( log maxi∈Jn ‖Ai‖)n∈N is sub-
additive and hence, the limit above exists by Fekete’s lemma.

LEMMA 2·4. If A = (Ai)i∈J ∈ M2(R)J is dominated or irreducible, then �(A) > 0.

Proof. Let us first assume that A is dominated and C ⊂RP
1 is a strongly invariant mul-

ticone for A. Since there exists a multicone C0 ⊂RP
1 such that

⋃
i∈Jn AiC ⊂⋃

i∈J AiC ⊂
C0 ⊂ Co for all n ∈N, we find, by applying [8, lemma 2·2], a constant κ > 0 such that

‖Ai|V‖� κ‖Ai‖ (2)

for all V ∈ C0 and i ∈ J∗. It follows that if V ∈ C0, then AjV ∈ C0 and ‖AiAj‖� ‖AiAj|V‖ =
‖Ai|AjV‖‖Aj|V‖� κ2‖Ai‖‖Aj‖ for all i, j ∈ J∗. Therefore,

�(A) � lim inf
n→∞ max

i1···in∈Jn
κ2(n−1)/n‖Ai1‖1/n · · · ‖Ain‖1/n � κ2 min

j∈J
‖Aj‖ > 0

as claimed.
Although the proof in the irreducible case can be found in [19, lemma 2·2], we present the

full details for the convenience of the reader. Denote the unit circle by S1 and suppose that for
each k ∈N there is xk ∈ S1 such that for every i ∈ J we have |Aixk| < 1/k. By the compactness
of S1, there is x ∈ S1 such that |Aix| = 0 for all i ∈ J. Choosing V = span(x) ∈RP

1, we see
that AiV = {(0, 0)} ⊂ V for all i ∈ J and A is reducible.

It follows that there is δ > 0 such that for every x ∈ S1 there exists i ∈ J for which |Aix|�
δ. Let us next apply this inductively. Fix x0 ∈ S1 and choose i1 ∈ J such that |Ai1x0|� δ.
Write x1 = Ai1x0 and choose i2 ∈ J such that |Ai2 (x1/|x1|)|� δ whence |Ai2Ai1x0| = |Ai2x1|�
δ|x1| = δ|Ai1x0|� δ2. Continuing in this manner, we find for each n ∈N a word in ∈ Jn such
that ‖Ain‖� |Ainx0|� δn. Hence,

�(A) � lim inf
n→∞ ‖Ain‖1/n � δ > 0

as wished.
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The following two lemmas characterise the finiteness of the pressure.

LEMMA 2·5. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1, then the following five
conditions are equivalent:

(i) P(A, s) > −∞ for all 0 � s � 1;

(ii) lims↓0 P(A, s) > −∞;

(iii) there does not exist n ∈N such that Ai = 0 for all i ∈ Jn;

(iv) there exists j ∈ JN such that Aj|n �= 0 for all n ∈N;

(v) �(A) > 0.

Furthermore, all of these conditions hold if A is dominated or irreducible.

Proof. Notice that the limit in (ii) exists by Lemma 2·2 and the implications (i) ⇒ (ii) and
(iv) ⇒ (iii) are trivial. Let us first show the implication (ii) ⇒ (iii). If (iii) does not hold,
then there exists n0 ∈N such that Ai = 0 for all i ∈ Jn0 . Since now ‖Ai‖ = 0 for all i ∈ Jn

and n � n0, we see that P(A, s) = −∞ for all s > 0 and (ii) cannot hold.
Let us then show the implication (iii) ⇒ (iv). If (iv) does not hold, then for every j ∈

JN there is n(j) ∈N such that Aj|n(j) = 0. By compactness of JN, there exist M ∈N and
j1, . . . , jM ∈ JN such that {[ji|n(ji)]}M

i=1 still covers JN. Choosing n = maxi∈{1,...,M} n(ji),
we see that for every i ∈ Jn there is i ∈ {1, . . . , M} such that Ai = Aji|n(ji)

Aσ n(ji)i = 0 and
(iii) cannot hold.

Since A is a tuple of strictly contractive matrices, the function s �→ P(A, s) is strictly
decreasing whenever it is finite. Therefore, we have P(A, s) � P(A, 1) � log �(A) for all
0 � s � 1 and hence, we have the implication (v) ⇒ (i). Therefore, to conclude the proof, it
suffices to show the implication (iii) ⇒ (v) and also verify condition (v) when A is domi-
nated or irreducible. While the latter is immediately assured by Lemma 2·4, we also see that
to prove the former, we may assume that A is reducible. This means that, after possibly a
change of basis, the matrices Ai in A are of the form

Ai =
(

ai bi

0 ci

)

for all i ∈ J. Since Ai(1, 0) = ai(1, 0) and Ai((bi/(ci − ai)), 1) = ci((bi/(ci − ai)), 1) when
ai �= ci, we see that max{|ai|, |ci|}� ‖Ai‖ for all i ∈ J. As the product of upper triangular
matrices is upper triangular with diagonal entries obtained as products of the corresponding
diagonal entries, we also have max{|ai1 · · · ain |, |ci1 · · · cin |}� ‖Ai‖ for all i = i1 · · · in ∈ Jn

and n ∈N. Therefore, if condition (v) does not hold i.e. �(A) = 0, then

max
i∈J

|ai| = lim
n→∞ max

i1···in∈Jn
|ai1 · · · ain |1/n � �(A) = 0

and, similarly, maxi∈J |ci| = 0. In other words, the diagonal entries in all of the matrices Ai

are zero. Thus, Ai = 0 for all i ∈ J2 and condition (iii) does not hold.

LEMMA 2·6. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1, then the following five
conditions are equivalent:

(i) P(IN, A, s) > −∞ for all s � 0;

(ii) P(A, s) > −∞ for all s � 0;
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(iii) lims↓1 P(A, s) > −∞;

(iv) there does not exist n ∈N such that Ai has rank at most one for all i ∈ Jn;

(v) there exists j ∈ J such that Aj ∈ GL2(R).

Proof. Notice that the limit in (iii) exists by Lemma 2·2 and the implications (i) ⇒ (ii)
and (ii) ⇒ (iii) are trivial. Let us first show the implication (iii) ⇒ (iv). If (iv) does not hold,
then there exists n0 ∈N such that Ai has rank at most one for all i ∈ Jn0 . It follows that for
every i ∈ Jn and n � n0 the rank of Ai is at most one as it is bounded above by the rank of
Ai|n0

. Therefore, as ϕs(Ai) = 0 for all i ∈ Jn, n � n0, and s > 1, we have P(A, s) = −∞ for
all s > 1 and (iii) cannot hold.

Let us then show the implication (iv) ⇒ (v). If (v) does not hold, then Aj has rank at most
one for all j ∈ J. It follows that for every i ∈ Jn and n ∈N the rank of Ai is at most one and
(iv) cannot hold.

Finally, let us show the implication (v) ⇒ (i). The condition (v) implies that Aj|n ∈ GL2(R)
for all n ∈N where j = jj · · · ∈ JN. Since ϕs(Aj|n) � α2(Aj|n) � α2(Aj)n > 0 for all n ∈N and
s � 0, we see that P(IN, A, s) � log α2(Aj) > −∞ for all s � 0 as wished.

2·3. Equilibrium states

Let Mσ (JN) be the collection of all σ -invariant Borel probability measures on JN. If
0 < s � 1, then we say that a measure μK ∈Mσ (JN) is s-Gibbs-type if there exists a constant
C � 1 such that

C−1e−nP(A,s)‖Ai‖s �μK([i]) � Ce−nP(A,s)‖Ai‖s

for all i ∈ Jn and n ∈N.

LEMMA 2·7. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1 and is dominated or
irreducible, then for every 0 < s � 1 there exist a unique ergodic s-Gibbs-type measure
μK ∈Mσ (JN).

Proof. Recall first that, by Lemma 2·5, the pressure P(A, s) is finite for all 0 < s � 1. If A is
irreducible, then the existence of the claimed measure μK ∈Mσ (JN) follows immediately
from [15, proposition 1·2]. We may thus assume that A is dominated. Fix 0 < s � 1 and
notice that, by (2), there exist κ > 0 and a multicone C0 ⊂RP

1 such that ‖Ai|V‖� κ‖Ai‖
for all V ∈ C0 and i ∈ J∗. Fixing V ∈ C0, we see that

log ‖Ai|n‖s + log κs �
n−1∑
k=0

log ‖Aσ ki|1 |AσiV‖s � log ‖Ai|n‖s

for all i ∈ JN and n ∈N. By [10, theorems 1·7 and 1·16], there exist an ergodic measure
μK ∈Mσ (JN) and a constant C � 1 such that

κsC−1e−nP(A,s)‖Ai‖s �μK([i]) � Ce−nP(A,s)‖Ai‖s

for all i ∈ Jn and n ∈N; see also [4, lemma 2·12]. The uniqueness of μK is now evident as
two different ergodic measures are mutually singular.
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If A = (Ai)i∈J ∈ M2(R)J is dominated, then it follows from (2) that ‖Ai‖�
κ2(n−1)‖Ai1‖ · · · ‖Ain‖� κ2(n−1) mini∈J ‖Ai‖n > 0 for all i = i1 · · · in ∈ Jn and n ∈N. Hence
the semigroup {Ai : i ∈ J∗} does not contain rank zero matrices and, by Lemma 2·3, the
function s �→ P(A, s) is right-continuous at 0. Furthermore, if there are no rank zero matri-
ces, then � = JN and the s-Gibbs-type measure μK ∈Mσ (JN) is fully supported on JN. If
A is irreducible, then μK is supported only on �.

Given μ ∈Mσ (JN) and A = (Ai)i∈J ∈ M2(R)J , we define for each s � 0 the energy by
setting

�(μ, A, s) = lim
n→∞

1

n

∑
i∈Jn

μ([i]) log ϕs(Ai) = inf
n∈N

1

n

∑
i∈Jn

μ([i]) log ϕs(Ai).

The limit above exists or is −∞ again by Fekete’s lemma. Recall that the entropy of μ is

h(μ) = − lim
n→∞

1

n

∑
i∈Jn

μ([i]) log μ([i]).

It is well known that

P(A, s) � h(μ) + �(μ, A, s) (3)

for all μ ∈Mσ (JN) and s � 0; for example, see [23, section 3]. A measure μK ∈Mσ (JN)
is an s-equilibrium state if it satisfies

P(A, s) = h(μK) + �(μK , A, s) > −∞. (4)

The following lemma shows the uniqueness of the equilibrium state in dominated and
irreducible cases.

LEMMA 2·8. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1 and is dominated or irre-
ducible, then for every 0 < s � 1 the ergodic s-Gibbs-type measure μK ∈Mσ (JN) is the
unique s-equilibrium state.

Proof. Fix 0 < s � 1 and let μK ∈Mσ (JN) be the ergodic s-Gibbs-type measure. Since,
by Lemmas 2·7 and 2·5,

h(μK) + �(μK , A, s) = lim
n→∞

1

n

∑
i∈�n

μK([i]) log
‖Ai‖s

μK([i])

= lim
n→∞

1

n

∑
i∈�n

μK([i]) log enP(A,s) = P(A, s) > −∞,

we see that μK is an s-equilibrium state. As μK is ergodic, the uniqueness follows from [23,
theorem 3·6].

If A = (Ai)i∈J ∈ M2(R)J contains an invertible matrix, then I �= ∅ and, by Lemma 2·6,
P(IN, A, s) > −∞ for all s � 0. In this case, regardless of domination and irreducibility, it
follows from [20, Theorem 4·1] that for every s > 0 there exists an ergodic measure νK ∈
Mσ (JN) supported on IN such that

P(IN, A, s) = h(νK) + �(νK , A, s). (5)

Note that such a measure is not necessarily unique; see [9, 15, 22, 23].

https://doi.org/10.1017/S0305004124000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000136


Non-invertible planar self-affine sets 11

LEMMA 2·9. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1, contains a rank one
matrix, and is dominated or irreducible, then

P(IN, A, s) < P(A, s)

for all 0 � s � 1.

Proof. Since A is dominated or irreducible, Lemma 2·5 shows that P(A, s) > −∞ for all
0 � s � 1. Notice that, by Lemma 2·2, P(IN, A, 0) = log #I < log #J = P(A, 0) and we may
fix 0 < s � 1. Therefore, by Lemma 2·8, there exists unique μK ∈Mσ (JN) such that

P(A, s) = h(μK) + �(μK , A, s) > −∞. (6)

Furthermore, by Lemma 2·7, μK satisfies

μK([i]) � C−1e−nP(A,s)‖Ai‖s > 0

for all i ∈ �n and n ∈N, where C � 1 is a constant. In particular, if Ak is a rank one matrix
in A, then μK([k]) > 0.

If A does not contain invertible matrices, then trivially P(IN, A, s) = −∞ for all s > 0
and there is nothing to prove. We may thus assume that A contains an invertible matrix.
Therefore, by (5), there exists a measure νK ∈Mσ (JN) supported on IN such that

P(IN, A, s) = h(νK) + �(νK , A, s). (7)

Since Ak is not invertible and νK is supported on IN, we have νK([k]) = 0. As μK is the
unique measure in Mσ (JN) satisfying (6) and μK([k]) > νK([k]), we see that νK does not
satisfy (6) and therefore, by (7),

P(A, s) > h(νK) + �(νK , A, s) = P(IN, A, s)

as claimed.

The following lemma characterises the continuity of the function s �→ P(A, s) at 1.

LEMMA 2·10. If A = (Ai)i∈J ∈ M2(R)J satisfies maxi∈J ‖Ai‖ < 1 and is dominated or
irreducible, then the function s �→ P(A, s) is continuous at 1 if and only if A does not contain
rank one matrices.

Proof. If A does not contain rank one matrices, then it contains only invertible or rank
zero matrices. By Lemma 2·2, rank zero matrices do not have any effect on the value of the
pressure P(A, s) when s > 0. Therefore, rank zero matrices have no impact on the continuity
at 1 and we may assume that A ∈ GL2(R)J . But in this case, the continuity follows from [23,
lemma 2·1].

Let us then assume that A contains a rank one matrix. If A does not contain invertible
matrices, then, as the function s �→ P(A, s) is strictly decreasing, Lemma 2·6 implies that
P(A, s) = −∞ for all s > 1. Furthermore, since A is dominated or irreducible, Lemma 2·5
shows that P(A, s) > −∞ for all 0 � s � 1 and the function s �→ P(A, s) is discontinuous at
1. We may thus assume that A contains an invertible matrix. By Lemma 2·6, we thus have
P(IN, A, s) > −∞ for all s � 0. Recall that, by [23, lemma 2·1], the function s �→ P(IN, A, s)
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is continuous at 1. Therefore, by Lemma 2·2, showing

P(IN, A, 1) < P(A, 1)

proves the function s �→ P(A, s) discontinuous at 1. But, as A contains a rank one matrix,
this follows immediately from Lemma 2·9.

3. Dimension of non-invertible self-affine sets

Recall that J is a finite set and the affine iterated function system is a tuple (fi)i∈J of
contractive affine self-maps on R

2 not having a common fixed point. We write fi = Ai + vi

for all i ∈ J, where Ai ∈ M2(R) and vi ∈R
2, and fi = fi1 ◦ · · · ◦ fin for all i = i1 · · · in ∈ Jn

and n ∈N. We let f∅ = Id to be the identity map. Note that the associated tuple of matrices
(Ai)i∈J is an element of M2(R)J and satisfies maxi∈J ‖Ai‖ < 1.

If I = {i ∈ J : Ai is invertible} is non-empty, then the invertible self-affine set X is associ-
ated to (fi)i∈I , and if J \ I is non-empty, then the non-invertible self-affine set X′ is associated
to (fi)i∈J . Recall the defining property (1) of a self-affine set. We use the convention that
whenever we speak about a self-affine set, then it is automatically accompanied with a tuple
of affine maps which defines it. This makes it possible to write that e.g. “a non-invertible self-
affine set is dominated” which obviously then means that “the associated tuple A = (Ai)i∈J

of matrices in M2(R)J is dominated”.
The study of non-invertible self-affine sets is connected to the theory of sub-self-affine

sets. If the canonical projection π : JN →R
2 is defined such that

π(i) = lim
n→∞ fi|n(0) = lim

n→∞

n∑
k=1

Ai|k−1vik

for all i = i1i2 · · · ∈ JN, then we write X′′ = π(�), where � = {i ∈ JN : Ai|n is non-zero
for all n ∈N}. Observe that X = π(IN) ⊂ X′′ ⊂ π(JN) = X′ and, as σ (�) ⊂ �, the set X” is
sub-self-affine, i.e.

X′′ ⊂
⋃
i∈J

fi(X
′′); (8)

see [23]. The study is also connected to inhomogeneous self-affine sets. If C ⊂R
2 is

compact, then there exists a unique non-empty compact set XC ⊂R
2 such that

XC =
⋃
i∈I

fi(XC) ∪ C.

The set XC is called the inhomogeneous self-affine set with condensation C. Such sets were
introduced by Barnsley and Demko [7] and they have been studied for example in [1, 6, 11,
12, 21]. Note that X∅ is the invertible self-affine set X.

LEMMA 3·1. If X′ and X are non-invertible and invertible planar self-affine sets, respec-
tively, and X” is the associated sub-self-affine set defined in (8), then X′ \ X′′ is countable
and

X′ = XC = X ∪
⋃
i∈I∗

fi(C),

where XC is the inhomogeneous self-affine set with condensation C =⋃
i∈J\I fi(X′).
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Proof. Let us first show that X′ \ X′′ is countable. Writing vi =∑n
k=1 Ai|k−1vik , we see that

fi = Ai + vi for all i = i1 · · · in ∈ Jn and n ∈N. Let i ∈ JN \ � and choose n0(i) = min{n ∈
N : Ai|n is zero}. Since vi|n+1 =∑n+1

k=1 Ai|k−1vik = Ai|nvin+1 +∑n
k=1 Ai|k−1vik = vi|n for all

n � n0(i), a simple induction shows that

fi|n(X′) = {vi|n0(i)}
for all n � n0(i). As JN \ � is clearly separable, there exist countably many infinite words
i1, i2, . . . ∈ JN \ � such that JN \ � ⊂⋃

k∈N [ik|n0(ik)]. It follows that

X′ \ X′′ ⊂ {vik|n0(ik) : k ∈N}
is countable.

Let us then prove the claimed equalities. Noting that the argument of [26, lemma 3·9]
works also in the self-affine setting, we have

XC = X ∪
⋃
i∈I∗

fi(C). (9)

To prove the remaining equality, let us first show that X′ ⊂ XC. To that end, fix x ∈ X′. By
(9), we have X ⊂ XC and we may assume that x ∈ X′ \ X. But this implies that there exist
i ∈ I∗ and i ∈ J \ I such that x ∈ fii(X′). Since, again by (9),

fii(X
′) ⊂ fi(C) ⊂

⋃
i∈I∗

fi(C) ⊂ XC

we have shown that X′ ⊂ XC. The inclusion XC ⊂ X′ follows immediately from (9) since we
trivially have X ⊂ X′ and fi(C) ⊂ X′ for all i ∈ I∗. Thus X′ = XC as claimed.

We are interested in the dimension of the non-invertible self-affine set. Relying on (1),
the non-invertible self-affine set X′ can naturally be covered by the sets fi(B), where B is a
ball containing X′. Note that such sets are ellipses or line segments, depending on whether
the associated matrix is invertible or has rank one. Each set fi(B) can be covered by one ball
of radius α1(Ai)diam(B) or by α1(Ai)/α2(Ai) many balls of radius α2(Ai)diam(B). This
motivates us to study the limiting behaviour of sums

∑
i∈Jn ϕs(Ai) and hence, the pressure

P(A, s).
Recall that the upper Minkowski dimension dimM is an upper bound for the Hausdorff

dimension dimH for all compact sets; see [25, section 5·3]. The following lemma, general-
ising [14, theorem 5·4], shows that the affinity dimension is an upper bound for the upper
Minkowski dimension for all non-invertible self-affine sets.

LEMMA 3·2. If X′ is a planar self-affine set, then

dimM(X′) � dimaff(A).

Proof. We may assume that dimaff(A) < 2 as otherwise there is nothing to prove. Let k ∈
{0, 1} be such that k � dimaff(A) < k + 1. Fix dimaff(A) < s < k + 1 and notice that P(A, s) <

0. By [14, proposition 4·1], we thus have

M =
∑
j∈J∗

ϕs(Aj) < ∞. (10)
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Let B be a ball containing X′. By scaling and translating, we may assume that B is the unit
ball. Write

Cr = {i ∈ J∗ : αk+1(Ai) � r < αk+1(Ai−)}
for all 0 < r < 1. If j ∈ JN, then αk+1(Aj|0) = αk+1(Id) = 1 and αk+1(Aj|n) → 0 as n → ∞.
Therefore, for each 0 < r < 1 there exists unique n ∈N such that j|n ∈ Cr and the collection
{[i] : i ∈ Cr} of pairwise disjoint cylinder sets is a cover of JN.

Fix 0 < r < 1 and i ∈ Cr, and observe that fi(B) is an ellipse with semi-axes α1(Ai) and
α2(Ai). Since αk+1(Ai) � r < αk+1(Ai−), the set fi(B) is covered by⎧⎨

⎩
4, if k = 0,

4 max{r−1α1(Ai), 1}, if k = 1

many balls of radius r. Notice that max{r−1α1(Ai), 1}� r−1α1(Ai−) and hence, fi(B) can
be covered by 4ϕk(Ai−)r−k many balls of radius r. Write

Ni(r) = 4ϕk(Ai−)r−k

and observe that

Ni(r)rs = 4ϕk(Ai−)rs−k � 4ϕk(Ai−)αk+1(Ai−)s−k = 4ϕs(Ai−)

for all i ∈ Cr. Recalling (10), we thus have∑
i∈Cr

Ni(r) � 4r−s
∑
i∈Cr

ϕs(Ai−) = 4r−s
∑
j∈J∗

∑
i∈Cr : i−=j

ϕs(Aj)

� 4r−s
∑
j∈J∗

#Jϕs(Aj) � 4M#Jr−s. (11)

Since {[i] : i ∈ Cr} is a covering of JN, it follows that {fi(B) : i ∈ Cr} is a covering of X′.
Hence X′ can be covered by

∑
i∈Cr

Ni(r) many balls of radius r. This together with (11)

gives dimM(X′) � s. The proof is finished by letting s ↓ dimaff(A).

It is easy to construct examples of self-affine sets having dimension strictly less than the
affinity dimension. For example, several self-affine carpets have this property. Nevertheless,
the classical result of Falconer [14, theorem 5·3] shows that, perhaps rather surprisingly,
the Hausdorff dimension of a non-invertible self-affine set equals the affinity dimension for
Lebesgue-almost every choice of translation vectors.

THEOREM 3·3. If X′
v is a planar self-affine set and A satisfies maxi∈J ‖Ai‖ < 1/2, then

dimH(X′
v) = min{2, dimaff(A)}

for L2#J-almost all translation vectors v = (vi)i∈J ∈ (R2)#J.

Originally, Falconer assumed that the matrices are invertible and their norms are bounded
above by 1/3. Solomyak [27] relaxed the bound to 1/2 which, by the example of Edgar
[13], is known to be the best possible. To see that min{2, dimaff(A)} in Theorem 3·3 is a lower
bound for the Hausdorff dimension also when the matrices are non-invertible, by Lemma 2·2
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it suffices to notice that [14, lemma 2·2] remains valid for all parameters s strictly less than
the rank of the matrix.

Recently a deterministic class of invertible self-affine sets were found for which the
Hausdorff dimension equals the affinity dimension. We say that X satisfies the open set con-
dition if there exists a non-empty open set U ⊂R

2 such that fi(U) ∩ fj(U) = ∅ and fi(U) ⊂ U
for all i, j ∈ I with i �= j. If such a set U also intersects X, then we say that X satisfies the
strong open set condition. The following breakthrough result for self-affine sets is proven by
Bárány, Hochman and Rapaport [2, theorems 1·1 and 7·1]:

THEOREM 3·4. If X is an invertible strictly affine strongly irreducible planar self-affine
set satisfying the strong open set condition, then

dimH(X) = min{2, dimaff(I
N, A)},

dimH(projV (X)) = min{1, dimaff(I
N, A)}

for all V ∈RP
1.

We emphasise that Theorem 3·4 uses the assumption that the affine iterated function sys-
tem consists only of invertible maps. It is currently not known whether the result holds also
with non-invertible maps. We also remark that Hochman and Rapaport [17] have recently
managed to relax the assumptions of the result. They showed that the strong open set
condition can be replaced by exponential separation, a separation condition which allows
overlapping.

The following three propositions collect our dimension results for non-invertible self-
affine sets.

PROPOSITION 3·5. Suppose that X′ and X are non-invertible and invertible planar self-
affine sets, respectively. If

dimH(X) = min{2, dimaff(I
N, A)}� 1,

dimH(projV (X)) = min{1, dimaff(I
N, A)} = 1

for all V ∈RP
1, then dimM(X′) = dimH(X) and dimH(projV (X′)) = 1 for all V ∈RP

1.

Proof. To simplify notation, write s = dimaff(IN, A). If 1 < s < ∞, then Lemma 2·2 shows
that dimaff(A) = s � 1. If s = 1, then we get P(A, t) = P(IN, A, t) < 0 = P(IN, A, 1) � P(A, 1)
for all 1 < t < ∞ and we again have dimaff(A) = s � 1. Therefore, by Lemma 3·2, we
have dimM(X′) � min{2, dimaff(A)} = min{2, s} = dimH(X) � dimH(X′). To finish the proof,
notice that 1 = dimH(projV (X)) � dimH(projV (X′)) � 1 for all V ∈RP

1.

PROPOSITION 3·6. Suppose that X′ and X are non-invertible and invertible planar self-
affine sets, respectively. If X′ is dominated or irreducible, A contains a rank one matrix,
dimaff(IN, A) < 1, and

dimH(X′) = min{2, dimaff(A)},
then dimH(X′) > dimM(X).
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Proof. To simplify notation, write s = dimaff(IN, A). Since s < 1, Lemma 2·9 implies that
0 = P(IN, A, s) < P(A, s). Therefore, as Lemmas 2·5 and 2·2 guarantee the continuity of
the pressure, we have s < dimaff(A). Therefore, by Lemma 3·2, we have dimM(X) � s <

min{2, dimaff(A)} = dimH(X′).

PROPOSITION 3·7. Suppose that X′ and X are non-invertible and invertible planar self-
affine sets, respectively. If A contains a rank one matrix and

dimH(X) = dimH(projV (X)) < 1

for all V ∈RP
1, then there exists a rank one matrix A in A such that dimH(X′) =

dimH(projker (A)⊥(X′)) � 1.

Proof. To simplify notation, write s = dimH(X). By Lemma 3·1, the non-invertible self-
affine set can be expressed as an inhomogeneous self-affine set,

X′ = XC = X ∪
⋃
i∈I∗

fi(C),

where C =⋃
i∈J\I fi(X′). Therefore, by the countable stability of Hausdorff dimension,

dimH(X′) = max{s, sup
i∈I∗

dimH(fi(C))}

= max{s, dimH(C)} = max{s, max
i∈J\I

dimH(Ai(X
′))}. (12)

Let A be a rank one matrix in A such that dimH(A(X′)) = maxi∈J\I dimH(Ai(X′)). Since,
by the assumption and Lemma 2·1, s = dimH(projker (A)⊥(X)) � dimH(projker (A)⊥(X′)) =
dimH(A(X′)), the claim follows from (12).

We are now ready to prove the main result. The proof basically just applies Theorems 3·3
and 3·4 in the above propositions.

Proof of Theorem 1·1. (i) Since, by Theorem 3·4, we have

dimH(X) = min{2, dimaff(I
N, A)}� 1,

dimH(projV (X)) = min{1, dimaff(I
N, A)} = 1

for all V ∈RP
1, Proposition 3·5 implies dimM(X′) = dimH(X) and dimH(projV (X′)) = 1 for

all V ∈RP
1.

(ii) Since, by Theorem 3·3, we have

dimH(X′
v) = min{2, dimaff(A)}

for L2#J-almost all v ∈ (R2)#J , Proposition 3·6 implies dimH(X′
v) > dimM(Xv) for L2#J-

almost all v ∈ (R2)#J .
(iii) Since, by Theorem 3·4, we have

dimH(X) = dimH(projV (X)) < 1

for all V ∈RP
1, Proposition 3·7 implies that there exists a rank one matrix A in A such that

dimH(X′) = dimH(projker (A)⊥(X′)) � 1.
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