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Abstract
This paper presents a multibeam dielectric rod antenna for mm-wave wireless power transfer
(WPT) applications. The proposed solution utilizes its unique multibeam setup which allows
the generation of adjustable beams simultaneously, without the need for an additional beam-
forming network. To enhance the compactness of the system, each Rexolite rod is fed through
an annular slot etched on a Rogers RO4003. The generated beams are steered toward the
desired directions by adjustment in the configuration of these rods. The final configuration
consists of five rods that were fabricated and measured. In this configuration, a beam coverage
between −30∘ and 30∘ can be obtained, while in the frequency of interest, a gain value above
12 dBi is achieved. With its adjustable configuration, the proposed solution can be adapted
to different operating scenarios. Moreover, the low cost and flexibility of the solution make
it a promising candidate for Radio Frequency Wireless Power Transfer (RF-WPT) Internet of
things applications.

Introduction

The growth of emerging fifth-generation (5G) communications networks [1] and the invest-
ments in the “Industry 4.0” scenarios [2] led to a rise in the number of Internet of things
(IoT) devices [3]. However, this rise results in an energy consumption crisis, which makes the
current energy management approach no longer applicable [4]. To overcome this, a robust
remotely powered system must be developed. Wireless power transfer (WPT) with a dedi-
cated power source can be a promising solution. While the idea of WPT is as old as the 19th
century [5, 6], among available approaches only RF-WPT can be used for long-range power
transmission.

RF-WPT technologies are generally available at low frequencies, since in this domain a
low propagation loss is experienced [7, 8]. However, in sub-6GHz bands, antenna dimen-
sions are large compared to the size of compact IoT devices. Hence, to reduce the size of the
system, instead of the sub-6GHz, mm-wave bands can be employed. Nevertheless, this fre-
quency range suffers from high propagation loss, whichmust bemitigated to achieve a desirable
power level on the receiver side. A focused beam can be used to compensate for this loss.
One drawback of transmitting power with a focused beam is its point-to-point transmitting
scheme, which restricts the number of users who can receive power simultaneously. As a result,
a multibeam solution must be utilized, in which the system can direct the power toward the
receiver(s) on demand, as depicted in Fig. 1. Moreover, the architecture of the RF-WPT sys-
tem is illustrated in Fig. 2. As illustrated, the focus of this work is on the transmitter units and
further details regarding the system level operation and receiver unit design are investigated
in [9].

The reconfigurable transmit array proposed in [10] operates at 25GHz and has a mea-
sured gain of 19.6 dBi; by rotating the feed horn, the main beam can be switched to ±15∘,
±5∘, and 0∘. However, as observed, this solution can only be capable of generating one
beam, which is not well suited once multiple beams must be generated simultaneously. In
[11], beamforming with four-tone signals is proposed for the microwave power transfer
at 5.8GHz. This solution with 16 array elements can generate multiple beams but at the
cost of low gain characteristics. Furthermore, a relatively complex system, including vari-
ous transitions, is used, which is incompatible with high-frequency ranges. A 4×4 Butler
matrix and a transmitter antenna array operating at 2.45GHz were used [12] to power up
rectifiers located in a specific direction. This system has a low level of adjustability, which
results in the fixed beam without the possibility of changing the generated beams’ direction.
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An earlier version of this paper was presented at the 18th
Conference of Antennas and Propagation (EuCAP 2024) and
was published in its proceedings [13]. In this solution, a novel
adjustable multibeam dielectric rod antenna design along with the
details about the antenna element structure is presented. The pro-
posed solution utilizes the arrangement of five dielectric rod anten-
nas, where each of these rods is directed toward the demanded
direction. Each of these rods is fed through an annular slot to
achieve a further compact solution. By adjusting the direction of
these rods or plugging them in or out, multiple beams can be gen-
erated in the specified direction. To illustrate this, a three-beam
and a five-beam system are presented. The final five-rod setup is
manufactured and measured. The generated beams are directed
toward angles between −30∘ and 30∘. The system has a −10 dB
impedance bandwidth between 20.3GHz and 28.4GHz, which
covers the 24GHz ISM band. Furthermore, the adjustable nature
of the proposed solution makes it suitable for target-orientated
applications in which different scenarios bring up new necessi-
ties in the system configuration. Moreover, one of the important
factors that need to be considered in this is the environmental
impact, since dielectric material is used for the fabrication of the
rods and as the substrate, further insight into thismatter is available
in [14, 15].

Antenna design

In this section, the simulation results of the annular slot, unit rod
antenna, and final multibeam system are presented.

Annular slot design

The detailed dimensions of the designed annular slot are shown
in Figure 3. The annular slot is designed on a 0.203mm thick

Figure 1. Multibeam narrow-beamwidth RF-WPT operating scenario for IoT
applications.

“Rogers Corporation RO4003C” (𝜀r = 3.38, tan 𝛿 = 0.0027)
substrate. The designed antennas were simulated and optimized
in the Ansysr Electronics Desktop HFSS 2023 R1. Without a
dielectric rod, the designed annular slot resonance frequency is
29.2GHz. However, once the dielectric rod is loaded, the reso-
nance frequency is shifted toward 24GHz. This design provides
a wideband bandwidth of 4GHz with S11 < −10 dB. Figure 4
shows the simulated reflection coefficient of the annular slot, and
the peak realized gain between 22GHz and 32GHz is depicted
in Figure 5. The reflection coefficient is below −10 dB between
27GHz and 31GHz, while the realized gain is above 5 dBi in this
range.

Slot-fed dielectric rod antenna design

The designed annular slot is utilized to feed the Rexolite rod (𝜀r =
2.53 and tan 𝛿 = 0.00066). Figure 6 shows the mechanical draw-
ing of the rod and its detailed dimensions.The rod is designed and
optimized to operate at 24GHz. The simulated radiation pattern
of the unit element antenna rod is illustrated in Fig. 7. The gain
of the antenna is, while a 3-dB beamwidth of approximately 28∘ is
achieved. It is worth mentioning that one of the other merits that
must be analyzed thoroughly is the mechanical stability of the sys-
tem, this requires investigation of the system either theoretically
or by relevant measurement procedures, which goes beyond the
scope of this paper and will be addressed in future work. Multiple
of these rods are used to create the final setup as shown in Fig. 9.
The slot is fed through the microstrip line on the bottom layer
and via a Southwest 1092-02A-6 end launch connector as illus-
trated in Fig 9. In order to feed this multibeam structure a simple
beamforming network can be used such as a single-pole-five-throw
(SP5T) switch as shown in Fig. 8.This type of switch generally has a
good isolation and hence a negligible leakage will be experienced.
Furthermore, the adjacent elements each have a good inter-port
isolation around, which yields a negligible mutual coupling. This
is because each of the rods is oriented toward different directions
utilizing the conformal arrangement of the rods.

Multibeam dielectric rod antenna design

The proposed plug-in plug-out adjustable multibeam configura-
tion is shown in Fig. 9. Configuration A is capable of generating
three beams. As shown in Fig. 10, by exciting ports P1, P3, and
P5, the corresponding beams at −30∘, 0∘, and 30∘ are generated,
respectively. Furthermore, configuration B is formed by plugging
in twomore unit rod antenna at−10∘ and 10∘, as depicted in Fig. 9.

Figure 2. Block diagram of traditional RF-WPT.
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Figure 3. Annular slot design and its dimensions.
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Figure 4. Simulated reflection coefficient and peak realized gain of the annular
slot.
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Figure 5. Simulated peak realized gain of the annular slot.

Figure 6. Unit element design of the rod antenna placed on the annular slot.
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Figure 7. Unit element rod antenna simulated normalized far-field yz and xz cuts
at 24GHz.

Figure 8. Possible beamforming network architecture using a SP5T switch.
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Figure 9. Plug-in plug-out adjustable multibeam configurations. The mechanical angles in the figure indicate the direction of the rod, which is identical to one of the
generated beams.
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Figure 10. Simulated, gain results of the three-beam system versus scan angle at
24GHz and 𝜙 = 90∘-plane (yz-plane).

Configuration B is capable of generating five beams as illustrated
in Fig. 11.

The simulated beam patterns of multiple beamforming
which is generated by feeding all the ports simultaneously
are shown in Fig. 12. The additional two beams improve the
overall coverage by enhancing the gain level and maintaining
a high gain value without a sudden drop in the gain level,
which is important in target-dedicated applications. It can also
deliver power to two more users simultaneously, which can be
adjusted according to the demand. Similarly, the adjustability
of the system makes it possible to increase this beam coverage
range.
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Figure 11. Simulated, gain results of the five-beam system versus scan angle at
24GHz and 𝜙 = 90∘-plane (yz-plane).

Measurement and discussion

The unit element rod antenna and the multibeam system are
measured in the anechoic chamber of EPFL MAG. The rod is
fabricated using a conventional machining process. The distance
between the antenna under test (AUT) and transmitter (Tx)
was 1m.

Air gap issue

One major problem that occurred employing this design was
the undesirable air gap introduced between the board and the
dielectric rod as illustrated in Fig. 13. Since the operation fre-
quency is high, this may cause severe effects on the design’s final
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Figure 12. Simulated normalized beam patterns of multiple beamforming.

Figure 13. Possible airgap introduction between the rod and printed circuit board.
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Figure 14. Measured and simulated reflection coefficient of the unit element rod
antenna with air gap consideration.

performance, including the frequency shift. For this reason, this
matter is investigated first by not applying any extra adhesive or
mechanism to avoid this air gap. Figure 14 shows the simulated
results of the single rod with and without a 100𝜇m air gap. The
measured reflection coefficient illustrated in Fig. 14 is once no air
gap removal technique is applied. As it is observable that once no
air gap removal technique is applied the measurement results are

Figure 15. AUT and the fabricated dielectric rod antenna mounted on the board.
(a) AUT and the 3D printed support during the radiation pattern measurement.
(b) Fabricated Rexolite rod antenna placed on the annular slot.
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Figure 16. Measured and simulated reflection coefficient of the unit element rod
antenna.

aligned with the one with an air gap in the simulation. There are
several possible techniques thatmay be applied to reduce and avoid
this undesirable effect. However, a simple solution formitigation of
this effect is to apply a layer of adhesive between the rod and the
annular slot to avoid the introduction of an air gap in between. For
this reason, in our measurements, we take this method into con-
sideration and a thin layer of adhesive is applied between the rod
and board.
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Figure 17. Measured and simulated maximum gains of the unit element rod
antenna versus frequency.
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Figure 18. Measured and simulated normalized gains of unit element rod antenna
at 24GHz and 𝜙 = 90∘-plane (yz-plane).

Unit element

The unit element rod measured in the anechoic chamber is
shown in Fig. 15(a), and the prototype is shown in Fig. 15(b).
The reflection coefficient measurements have been done using an
Agilent E8361A PNA network analyzer (Fig. 15(a)).

During the radiation pattern measurement, a 3D printed sup-
port is used, and the antenna is placed on this structure as shown
in Fig. 16 shows the reflection coefficient of the unit element rod
antenna. As it is observable, there is a good agreement between
the measurement and simulation results. The frequency at which
the minimum reflection coefficient value occurs is 24GHz, and a
below −10 dB reflection coefficient is achieved between 22GHz
and 28GHz.

The gain bandwidth of the design is shown in Fig. 17, a 4GHz
bandwidth is achieved above 13 dBi in simulation, while because
of the gain drop in the measurement, this bandwidth is achieved
with above 12 dBi threshold. Nevertheless, the normalized radia-
tion pattern of the antenna, as shown in Fig. 18, is in good match
with the simulation. The minor gain discrepancy between the

Figure 19. AUT and the fabricated multibeam dielectric rod antenna.
(a) Multibeam configuration radiation pattern measurement setup. (b) Fabricated
multibeam rod antenna configuration.
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Figure 20. Measured and simulated radiation pattern of multibeam rod antenna.

simulation andmeasurementmight have occurred due to the effect
of the extra layer of adhesive.

Multibeam unit

The multibeam rod antenna was measured in the anechoic cham-
ber as shown in Fig. 19(a). Figure 19(b) shows the final prototype
elements which each is fabricated separately and finally placed in
a 3D printed antenna housing. Each port is matched with 50Ω
termination during the radiation pattern measurement, however,
this is not mandatory as good isolation between the ports can be
achieved as the narrow beamwidth of each identical rod is directed
to a different direction. The feeding ports are labeled as P1, P2,
P3, P4, and P5. Each of these ports is fed individually during the
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Table 1. Comparison table of available dielectric rod solutions

Ref. Frequency (GHz) Bandwidth (GHz) Gain (dBi) Beam count Electrical length Feeding mechanism Radiation mechanism

[16] 77 8.5 30 3 18𝜆0 Grid and dielectric Rod Reflectoarray

[17] 300 N/A 25 3 20𝜆0 Dielectric rod Lens

[18] 11.2 0.8 17 3 8𝜆0 Patch-fed waveguide Dielectric rod

This work 24 4 14 5 6.8𝜆0 Annular slot Dielectric rod

measurement. However, as P1 and P2 are creating symmetrical
counterparts of each beam generated by P4 and P5, results for these
ports are not presented. Figure 20 illustrated the beamforming
capability of a multibeam rod antenna.

Conclusion

The proposed multibeam dielectric rod antenna solution is low-
cost and can generate adjustable beams on demand. The proposed
solution is capable of creating a directive beam in the desired
direction thanks to its adjustable plug-in plug-out configuration.
In this manner, the number of beams required can be adjusted
according to the number of targets, that are requesting power
simultaneously. The five-rod configuration capable of generating
five beams was fabricated and measured. The measured gain value
of 12 dBi is achieved at 24GHz, while a 4GHz above 12 dBi radia-
tion bandwidth is achieved. Furthermore, the comparison between
the proposed solution and other available dielectric rod designs
is available in Table 1. Minor differences between measured and
simulated gain are observed which might be due to the extra adhe-
sive layer. The adjustability of the system also helps to introduce,
with low complexity, a 2D beam scanning capability in the system.
Limited coupling between adjacent elements is observed as each
element generates a narrow beam that points to a different angle
than that of the adjoining unit. The aforementioned capabilities
make the proposed solution a suitable RF power delivery solution
for applications in IoT.
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