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Abstract
Given a graph H and a positive integer n, the Turán number ex(n,H) is the maximum number of edges
in an n-vertex graph that does not contain H as a subgraph. A real number r ∈ (1, 2) is called a Turán
exponent if there exists a bipartite graph H such that ex(n,H)= �(nr). A long-standing conjecture of
Erdős and Simonovits states that 1+ p

q is a Turán exponent for all positive integers p and q with q> p.
In this paper, we show that 1+ p

q is a Turán exponent for all positive integers p and q with q> p2. Our
result also addresses a conjecture of Janzer [18].
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1. Introduction
1.1 Rational exponent conjecture
Given a family H of graphs, the Turán number ex(n,H) is the largest number of edges in an n-
vertex graph that does not contain anymember ofH as a subgraph.WhenH consists of one single
graph H, we write ex(n,H) for ex(n, {H}).

Determining Turán numbers for various graphs is one of the central problems in extremal
graph theory. The celebrated Erdős-Stone-Simonovits theorem states that for any non-bipartite
graph H, ex(n,H)=

(
1− 1

χ(H)−1

) (n
2
) + o(n2), where χ(H) is the chromatic number of H. For

bipartite graphsH, it follows from the Kővári-Sós-Turán theorem that ex(n,H)=O(n2−α), where
α = αH > 0 is a constant. However, finding good estimates on ex(n,H) for bipartite graphs H is
difficult. Until recently, the order of magnitude of ex(n,H) was known only for very few bipartite
graphs H. Following [25], we say that a real number r ∈ (1, 2) is realizable (by H) if there exists a
bipartite graphH such that ex(n,H)= �(nr). If r is realizable then we also call it aTurán exponent.
A well-known conjecture of Erdős and Simonovits, known as the rational exponent conjecture,
asserts that every rational number r ∈ (1, 2) is a Turán exponent.

Conjecture 1.1 ([8]). For all positive integers q> p, 1+ p
q is a Turán exponent.

Until recently, the only rationals in (1, 2) for which the conjecture was known to be true
were rationals of the form 1+ 1

q and 2− 1
q for positive integers q≥ 2, realized by so-called theta
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graphs and complete bipartite graphs, respectively. In a recent breakthrough work, Bukh and
Conlon [3] showed that for any rational number r ∈ (1, 2), there exists a finite familyHr of graphs
such that ex(n,Hr)= �(nr). Bukh and Conlon’s work has, to a large extent, rejuvenated peo-
ple’s interest on Conjecture 1.1. In the last year or so, several new infinite sequences of new
Turán exponents have been obtained by various groups. First, Jiang, Ma, and Yepremyan [21]
showed that 2− 2

2m+1 is realizable by generalized cubes and that 7
5 is realizable by the so-called

3-comb-pasting graph. A few months later, Kang, Kim, and Liu [25] showed that for all positive
integers p< q, where q≡ ±1 (mod p), 2− p

q is realizable. More specifically, rationals of the form
2− t

st−1 , where s, t ≥ 2, are realized by the so-called blowups of certain height 2 trees. (We will
define blowups precisely in subsection 1.2.) Rationals of the form 2− t

st+1 are realized by graphs
obtained from theta graphs via some iterative operations. More recently, some new sequences
of Turán exponents were obtained along the study of Turán numbers of subdivisions. For any
integers s, t ≥ 1, k≥ 2, let Kk

s,t denote the graph obtained from the complete bipartite graph Ks,t
by subdividing each edge k− 1 times. Let Ls,t(k) be obtained from Kk

s,t by adding an extra vertex
joined to all vertices in the part of Ks,t of size t. Confirming a conjecture of Kang, Kim, and Liu
[25], Conlon, Janzer, and Lee [7] showed that there exists t0 such that for all integers s, k≥ 1, t ≥ t0,
ex

(
n, Ls,t(k)

) = �
(
n1+

s
sk+1

)
, and thus establishing 1+ s

sk+1 as Turán exponents. Subsequently, in
verifying a conjecture of Conlon, Janzer, and Lee [7], Janzer [18] proved that there exists a t0 such
that for all integers s, k≥ 2, t ≥ t0, ex

(
n,Kk

s,t

)
= �

(
n1+

s−1
sk

)
, thus establishing 1+ s−1

sk as Turán
exponents. Earlier, Conlon, Janzer, Lee [7] had proven the conjecture for k= 2, while Jiang and
Qiu [22] proved the conjecture for k= 3, 4.

1.2 Our results
In this paper, we build on the recent work on subdivisions to establish the following large three-
parameter family of Turán exponents, which includes all the ones obtained by Conlon, Janzer, and
Lee [7] and by Janzer [18].

Theorem 1.2. For any positive integers p, k, b with k≥ b, 1+ p
kp+b is a Turán exponent.

As an immediate corollary, we get the following easily stated result.

Theorem 1.3. For any positive integers p and q with q> p2, 1+ p
q is a Turán exponent.

Using a reduction lemma of Kang, Kim, and Liu [25], Theorem 1.2 also yields

Corollary 1.4. For any integers b, p, s≥ 1 and k≥ 0, if k≥ b− 1, then 2− kp+b
s(kp+b)+p is a Turán

exponent.

Corollary 1.4 implies the following.

Corollary 1.5. For any positive integers p, q with q> p, if (q mod p)≤ √p, then 2− p
q is a Turán

exponent.

Theorem 1.2 follows from a theorem (Theorem 1.15) that we prove on the Turán number of
subdivisions ofKs,t where different edges ofKs,t may be subdivided different number of times. The
theorem is interesting on its own and partially answers a conjecture of Janzer (Conjecture 1.13),
which we will describe in the next subsection.

1.3 The Bukh-Conlon Conjecture and Janzer’s conjecture
At the core of the work of Bukh and Conlon [3] is the study of so-called blowups of balanced
rooted trees, defined as follows (also see [3]).
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Definition 1.6. A rooted tree (T, R) consists of a tree T together with an independent set R⊆
V(T), which we refer to as the roots. When the choice of R is clear, we will simply write T for
(T, R).

Definition 1.7. Given a rooted tree (T, R) and a non-empty subset S⊆V(T) \ R, let ρT(S)= e(S)
|S| ,

where e(S) is the number of edges in T that have at least one end in S. Let ρT = ρT(V(T) \ R)
and call it the density of T. We say (T, R) is balanced if ρT(S)≥ ρ(T) for any non-empty subset
S⊆V(T) \ R.
Definition 1.8. The t-blowup of a rooted tree (T, R), denoted by t ∗ TR, is the union of t labelled
copies of T which agree on R but are pairwise vertex disjoint outside R. If the choice of R is clear,
then we write t ∗ T for t ∗ TR.

The key result of Bukh and Conlon [3] is the following lower bound theorem, established using
an innovative random algebraic approach. Interested readers can find the full statement in [3].

Theorem 1.9 ([3]). Suppose that (T, R) is a balanced rooted tree with density ρ. Then there exists
an integer t0 ≥ 2 such that for all integers t ≥ t0 we have ex(n, t ∗ TR)= �

(
n2−

1
ρ

)
.

Bukh and Conlon further made the following conjecture on a matching upper bound.

Conjecture 1.10 ([3]). Suppose that (T, R) is a balanced rooted tree with density ρ. Then for all
positive integers t we have ex(n, t ∗ TR)=O

(
n2−

1
ρ

)
.

Besides being interesting on its own, a significance of Conjecture 1.10 is that it implies
the rational exponent conjecture. Indeed, for each rational r ∈ (1, 2), Bukh and Conlon were
able to construct a balanced rooted tree (T, R) with density ρ = 1

2−r . Hence Theorem 1.9 and
Conjecture 1.10 together would give ex(n, t ∗ TR)= �(nr) for some sufficiently large positive
integer t. A careful reader will note that Bukh and Conlon’s conjecture is in fact much stronger
than the rational exponent conjecture. Indeed, to prove the rational exponent conjecture, it
suffices to find, for each r ∈ (1, 2), a balanced rooted tree (T, R) with density ρ = 1

2−r for which
the Bukh-Conlon conjecture holds. This suggests that one way to make further progress on the
rational exponent conjecture is to find suitable balanced rooted trees to explore Conjecture 1.10
with. One family of trees whose exploration has brought some success are the so-called spiders.

Definition 1.11. Let s≥ 2 be an integer. An s-legged spider S with centre u is a tree consisting
of s paths (called the legs of S) that share one common end u but are vertex disjoint outside u.
Moreover, we say S has length vector ( j1, . . . , js) and leaf vector (x1, . . . , xs) if for every 1≤ i≤ s,
its i-th leg has length ji and has ends u and xi.

For spiders with roots being all of its leaves, checking balancedness is simple.

Proposition 1.12. Let s, k be integers where s≥ 2, k≥ 1. Let S be an s-legged spider and R the set of
its leaves. Suppose the longest leg of S has length k. Then (S, R) is a balanced rooted tree if and only
if e(S)≥ (s− 1)k.

When S is an s-legged spider with length vector (k, . . . , k) and R is the set of its leaves, t ∗
SR is the subdivision Kk

s,t of Ks,t , considered by Janzer [18]. When S is an (s+ 1)-legged spider
with length vector (1, k, . . . , k) and R is the set of its leaves, t ∗ SR is the graph Ls,t(k), considered
by Conlon, Janzer, and Lee [7]. Motivated by the earlier mentioned results on ex

(
n, Ls,t(k)

)
and

ex
(
n,Kk

s,t

)
, Janzer [18] made the following conjecture.

Conjecture 1.13 ([18]). Let s≥ 2, k, b, t ≥ 1 be integers. Let S be an s-legged spider where the
longest leg has length k. Suppose that e(S)= (s− 1)k+ b, where 0≤ b≤ k. Then ex(n, t ∗ S)=
O

(
n1+

s−1
(s−1)k+b

)
.
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Even though Janzer’s conjecture is a special case of the Bukh-Conlon conjecture, it is also
interesting on its own due to its connection to the study of subdivisions. Let S be as specified
in Conjecture 1.13. It follows from Theorem 1.9 that there exists a t0 such that for all t ≥ t0,
ex(n, t ∗ S)= �

(
n1+

s−1
(s−1)k+b

)
. Hence, if Conjecture 1.13 is true, it will establish all rationals of

the form 1+ p
pk+b as Turán exponents, where p, k are positive integers and b is an integer with

0≤ b≤ k. Here, we settle an important case of Conjecture 1.13 that allows us to obtain all the
Turán exponents that Conjecture 1.13 would give.

Definition 1.14. For positive integers k, b and s, let Ssb,k denote the s-legged spider with length
vector (b, k, . . . , k).

Using this notation, we have Kk
s,t = t ∗ Ssk,k and Ls,t(k)= t ∗ Ss+1

1,k . In this paper, we will prove the
following common generalization of the result of Conlon, Janzer, and Lee on ex(n, Ls,t(k)) and the
result of Janzer on ex

(
n,Kk

s,t

)
, from which our main theorem, Theorem 1.2, follows.

Theorem 1.15. For any s, t ≥ 2 and k≥ b≥ 1, ex
(
n, t ∗ Ssb,k

)
=O

(
n1+

s−1
(s−1)k+b

)
.

As in [6, 7, 22, 18], we will use the following variant of the regularization lemma of Erdős and
Simonovits [11], as given in [24]. Given a positive constant K, a graph G is K-almost-regular if
�(G)≤Kδ(G).

Lemma 1.16 ([24]). Let 0< ε < 1 and c≥ 1. There exists n0 = n0(ε)> 0 such that the following
holds for all n≥ n0. If G is a graph on n vertices with e(G)≥ cn1+ε , then G contains a K-almost-

regular subgraph G′ on m≥ n
ε−ε2
2+2ε vertices such that e(G′)≥ 2c

5 m
1+ε and K =

⌈
20 · 2 1

ε2
+1

⌉
.

By Lemma 1.16, in order to prove Theorem 1.15, it suffices to prove the following.

Theorem 1.17. Let s, t ≥ 2 and k≥ b≥ 1. Let K =K(s, b, k) be obtained by Lemma 1.16 with ε :=
s−1

(s−1)k+b . There exist positive constants n0 and C depending only on s, t, b, k such that for all integers

n≥ n0 if G is an n-vertex t ∗ Ssb,k-free K-almost-regular graph then δ(G)< Cn
s−1

(s−1)k+b .

The rest of the paper is organized as follows. In Section 2, we introduce some notation and
preliminary lemmas. In Section 3, we prove Theorem 1.17, from which Theorems 1.15 and 1.2
follow. In Section 4, we give a sketch of proofs of Corollaries 1.4 and 1.5 and some concluding
remarks.

2. Notation and preliminaries
Given a positive integer m, let [m]= {1, . . . ,m}. Given a graph G and a vertex w, for each
i≥ 1 let 
i(w) be the set of vertices z such that there exists a path in G of length i with
ends w and z. When i= 1, we often write NG(w) for 
1(w). Let e(G) be the number
of edges in G. We use standard asymptotic notations, that is, given two positive func-
tions f (n) and g(n), by f = on(g), f = ωn(g), f = �n(g), f =On(g), f = �n(g), we respectively
mean limn→∞ f /g = 0, lim infn→∞ f /g = ∞, lim infn→∞ f /g > 0, lim supn→∞ f /g < ∞, 0<

lim infn→∞ f /g ≤ lim supn→∞ f /g < ∞. Whenever the context is clear, we drop the subscript n.
If G is a graph and S is a set of vertices in it, then we define

N∗
G(S)=

⋂
x∈S

NG(x),

and call it the common neighbourhood of S in G.
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For the rest of the paper, we fix integers s, t ≥ 2 and k≥ b≥ 1, and let K =K(s, b, k) be obtained
by Lemma 1.16 with ε := s−1

(s−1)k+b .
Below are some key concepts introduced in [7], which we adapt for our setting.

Definition 2.1. Let L be a positive integer, we define f (1, L)= L and for j≥ 2,

f ( j, L) := 10j4
[
2KjL · f (j− 1, L)2

]s+3 .

We will need the following property of the function in various places of the paper.

Proposition 2.2. For every integer j≥ 2, f (j,L)
j2f (j−1,L)2 ≥max{2L2, f (j− 1, L)} holds.

The next two definitions are crucial to our overall arguments.

Definition 2.3. We recursively define j-admissible, j-light paths, and j-heavy paths in a graph G.
Any edge is both 1-admissible and 1-light. For j≥ 2, a path P is j-admissible if it has length j and
for each 1≤ � < j every subpath of length � in P is �-light.

Among j-admissible paths P with ends x and y, we further say that P is j-light if the number of
j-admissible paths with ends x and y in G is less than f (j, L) and that P is j-heavy otherwise.

Since the length of a path P is fixed, we often drop the prefix j and � in the definitions above.
Note that j-admissible and j-light paths are defined for all j≥ 1 while j-heavy paths are defined
only for j≥ 2. In [22], the concepts of admissible, light, and heavy paths were extended for spiders.
Here, we adapt the definitions from [22] further.

Definition 2.4. We recursively define s-legged admissible, light, and heavy spiders in a graph G.
Any spider of height 1 is both admissible and light. Let S be an s-legged spider with leaf vector
(x1, . . . , xs) and length vector (j1, . . . , js) = (1, 1, . . . , 1). We say that S is admissible if every leg
of it is a light path as defined in Definition 2.3 and every s-legged proper sub-spider of S is light.
Suppose S is admissible. Then we further say that it is light if the number of admissible spiders inG
with leaf vector (x1, . . . , xs) and length vector (j1, . . . , js) is less than f (j, L) where j= j1 + · · · + js.
If S is admissible but not light, then we say that it is heavy.

At this point, let us say a few words about the function f (j, L) given in Definition 2.1, as this
function plays an important role in our arguments. In application we always assume that the
parameter L is sufficiently larger than s, t, k and K and roughly speaking f (j, L) is chosen so that
f (j, L)� f (j− 1, L), that is, f (j,L)

f (j−1,L) → ∞ as L→ ∞.
Next, we give several lemmas. Lemma 2.6 is similar to one used in [7]. Lemma 2.7 has its anal-

ogous counterparts in [22] and [18]. However, since our terminologies and choices of constants
are slightly different, we include full proofs for completeness.

Lemma 2.5. Let G be a K-almost-regular graph. Let 1≤ i≤ j be integers. Let x,w, y be vertices in G.
Then the number of j-admissible paths in G that have x,w, y as the first, (i+ 1)-th and last vertices,
respectively is at most f (i, L) · f (j− i, L). Furthermore, if i= 1 or j− 1, then there aremost f (j− 1, L)
such paths.

Proof. Let P be the family of j-admissible paths in G that have x,w, y as the first, (i+ 1)-th, and
last vertices, respectively. Let P ∈P , by definition, each proper subpath of P is light. So P is the
union of an i-light path from x tow and a (j− i)-light path fromw to y. By definition of light paths
there are at most f (i, L) i-light paths in G with ends x,w and at most f (j− i, L) (j− i)-light paths
with ends w and y. So |P| ≤ f (i, L) · f (j− i, L).

If i= 1 then every P ∈P is the union of the edge xw and a (j− 1)-light path with ends w and y.
So |P| ≤ f (j− 1, L). The case i= j− 1 is similar. �
Lemma 2.6. Let x, y be two vertices and C be a family of j-admissible paths between x and y. Then
there are at least |C|/[j2 · f (j− 1, L)2]members of C that are pairwise vertex disjoint outside {x, y}.
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Proof. Let C′ = {Q1, . . . ,Qr} ⊆ C be a maximal subfamily of C that are pairwise vertex disjoint
outside {x, y}. Let W = ⋃r

i=1 V(Qi) \ {x, y}. Then |W| = (j− 1)r. By maximality, every member
of C must contain a vertex v ∈W as an internal vertex. For each v ∈W and each 1≤ i≤ j− 1 let
Cv,i be the subfamily of members of C that contain v as its (i+ 1)-th vertex (when the member is
viewed from x to y). Then C = ⋃

v,i Cv,i. By Lemma 2.5, for any fixed v, i, we have |Cv,i| ≤ f (i, L) ·
f (j− i, L)≤ f (j− 1, L)2. Hence

|C| =
∣∣∣∣∣∣
⋃
v,i

Cv,i

∣∣∣∣∣∣ ≤
∑
v∈W

j−1∑
i=1

f (j− 1, L)2 < rj2f (j− 1, L)2.

Solving the inequality for r, we get the desired claim. �
For two spiders with the same leaf vector and length vector, we say they are internally disjoint

if they are vertex disjoint outside their leaves.

Lemma 2.7. Let S be a family of admissible spiders with leaf vector (x1, . . . , xs) and length vector
(j1, . . . , js). Then there are at least |S|/ [

j2 · f (j− 1, L)2
]
members of S that are pairwise vertex

disjoint outside {x1, . . . , xs}, where j= j1 + · · · + js.

Proof. Let S ′ = {S1, . . . , Sr} ⊆ S be a maximal subfamily of members of S that are pairwise ver-
tex disjoint outside {x1, . . . , xs}. Let W = ⋃r

i=1 V(Si) \ {x1, . . . , xs}. Then |W| = (j− s+ 1)r. By
maximality of S ′, every member of S must contain some v ∈W as a non-leaf vertex. For each
v ∈W let Dv denote the subfamily of members of S that contain v as the centre. For each v ∈W,
i ∈ [s], and 1≤ � < ji, let Sv,i,� denote the subfamily of members of S in which v is on the i-th leg
and the distance from v to xi is �. Then S = (⋃

v∈W Dv
) ∪

(⋃
v∈W,i∈[s],1≤�<ji Sv,i,�

)
.

Let S ∈Dv. Then by definition, for each i ∈ [s], the i-th leg of S is a ji-light path between v and
xi. Hence, by the definition of light paths,

|Dv| ≤
s∏

i=1
f (ji, L)≤ f (j− 1, L)2,

where the last inequality holds because by Definition 2.1 we have that
∏s

i=1 f (ji, L)≤ f (j1 + j2 −
1, L)2

∏s
i=3 f (ji, L)≤ f (j1 + j2, L)

∏s
i=3 f (ji, L)≤ · · · ≤ f (j1 + · · · + js−1, L)f (js, L)≤ f (j− 1, L)2.

Next, fix v ∈W, i ∈ [s], and 1≤ � < ji. Let S ∈ Sv,i,�. Since S is admissible, the v, xi-path in S
is �-light while the rest of S is an s-legged proper sub-spider, which by definition, is light. This
implies that

|Sv,i,�| ≤ f (�, L)f (j− �, L)≤ f (j− 1, L)2.

Putting everything together, we obtain

|S| ≤ |W|f (j− 1, L)2 +
∑
v∈W

s∑
i=1

ji−1∑
�=1

f (j− 1, L)2,

which implies that |S| ≤ rj2f (j− 1, L)2, from which the claim follows. �
The following lemma is proved in [22]. A spider has height � if all of its legs have length �.

Lemma 2.8 ([22] Lemma 3.6). Let G be a K-almost-regular graph with minimum degree δ. Let x be
a vertex. Let C be a family of paths of length h with one end x and another end in a set S. For each
i ∈ [h] there exists a vertex xi and a spider of height i with centre xi and leaves in S which has at least
|C|/[h(Kδ)h−1] legs. Furthermore, xi = x if and only if i= h.
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We also need a standard averaging lemma as below.

Lemma 2.9. Let 0< c< 1 be a real and m be a positive integer. Let G be a bipartite graph with a
bipartition (X, Y). Suppose that e(G)≥ c|X||Y| and that c|X| ≥ 2m. Then there exists an m-set S in
X such that |N∗

G(S)| ≥ (c/2)m|Y|.
Proof. By our assumption, the average degree of vertices in Y is at least c|X|. Let F be the family
of K1,m’s with centre in Y . Then |F | = ∑

y∈Y
(dG(y)

m
) ≥ |Y|(c|X|

m
)
, where the last inequality uses the

convexity of the function
( x
m
)
. Hence, by averaging there exists an m-set S in X such that the

number of members of F that have S as the leaf set is at least

|Y|
(c|X|
m

)
(|X|
m

) ≥ |Y|
(
c|X| −m
|X| −m

)m
> (c/2)m|Y|,

where the last inequality uses the condition c|X| ≥ 2m. �
Finally, we need a standard cleaning lemma.

Lemma 2.10. If B is a bipartite graph with parts X and Y, then it has subgraph B′ such that e(B′)≥
e(B)
2 and ∀x ∈ X ∩V(B′), dB′(x)≥ e(B)

4|X| and ∀y ∈ Y ∩V(B′), dB′(y)≥ e(B)
4|Y| .

Proof. Whenever there is a vertex inX whose degree becomes less than e(B)
4|X| or a vertex in Y whose

degree becomes less than e(B)
4|Y| , we delete it. Let B

′ denote the final subgraph of B. As the number
of edges deleted is at most |X| · e(B)

4|X| + |Y| · e(B)
4|Y| = e(B)

2 , e(B′)≥ e(B)
2 . By definition, B′ satisfies our

requirements. �

3. Proof of Theorem 1.17
3.1 Overall structure of the proof
Our overall strategy has roots in the work of Conlon and Lee [6] and the work of Conlon, Janzer,
and Lee [7], particularly [7]. Some of the strategies used there were later augmented (through the
concepts of admissible, light, and heavy spiders) in the work of Jiang and Qiu [22] and the work
of Janzer [18]. In particular, Janzer [18] introduced a creative way to extending spiders, an idea
that we will develop further. Overall, our proof combines ideas from [7], [22], [18] and some new
ideas.

Let G be a K-almost-regular t ∗ Ssb,k-free graph on n vertices, where n is sufficiently large. To
the prove the theorem, it suffices to show that there exists a constant C depending on s, b, k such
that if δ(G)≥ Cn

s−1
(s−1)k+b , then G must contain a copy of t ∗ Ssb,k, which would contradict G being

t ∗ Ssb,k-free and complete the proof. The general strategy is to show that (1) G contains many
copies of Ssb,k and (2) most of these copies of Ssb,k are light. Then by averaging, there exist some
vector (x1, . . . , xs) of s vertices which is the leaf vector of a large number of light copies of Ssb,k. This
will imply that all these spiders are heavy, giving us contradiction. More specifically, the proof of
Theorem 1.17 follows readily after we establish the following two crucial lemmas.

Lemma 3.1. Let G be a t ∗ Ssb,k-free K-almost-regular graph on n vertices with minimum degree δ =
ω(1). Then provided that L is sufficiently large compared to s, t, k,K, for any 2≤ j≤ k, the number
of j-heavy paths in G is at most (j+1)j+1

L nδj.

Lemma 3.2. Let G be a t ∗ Ssb,k-free K-almost-regular graph on n vertices with minimum degree
δ = ω(1). Let 1≤ j1 ≤ b and 1≤ j2, . . . , js ≤ k be integers. Then provided that L is sufficiently large
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compared to s, t, k,K, the number of heavy spiders with length vector (j1, . . . , js) is at most 27Kj−2

L nδj
where j= j1 + · · · + js.

We now show how Theorem 1.17 follows from Lemma 3.1 and Lemma 3.2.

Proof of Theorem 1.17. Let L be a sufficiently large constant compared to s, t, k,K. Let G be
a K-almost-regular t ∗ Ssb,k-free graph on n vertices with minimum degree δ. Let h= e(Ssb,k)=
(s− 1)k+ b. Suppose to the contrary that δ ≥ Cn

s−1
(s−1)k+b , where C := 2f (h, L)(h+ 1)!. Let S be the

family of spiders in G with length vector (b, k, . . . , k). By a greedy process, it is easy to see that

|S| ≥ 1− o(1)
(h+ 1)! · nδh.

Let S1 be the family of spiders in S that contain some heavy path of length 2≤ j≤ k. As the
maximum degree of G is at most Kδ, by Lemma 3.1, we have

|S1| ≤
k∑

j=2

(
h
j

)
(j+ 1)j+1

L
nδj(Kδ)h−j ≤ (k+ 1)k+2Kskh!

L
nδh,

where the factor
(h
j
)
upper bounds the number of positions of a j-heavy path in Ssb,k. Let S2 be the

family of spiders in S that contain some s-legged heavy sub-spider. As the maximum degree of G
is at most Kδ, by Lemma 3.2, we have

|S2| ≤
∑

1≤j1≤b
1≤j2,...,js≤k

27Kj1+···+js−2

L
nδj1+···+js · (Kδ)h−(j1+···+js) ≤ 27Kskks

L
nδh.

Let S ′ = S − (S1 ∪ S2). Then it follows that

|S ′| ≥ |S| − (|S1| + |S2|)≥ 1− o(1)
(h+ 1)! · nδh − Ksk(27ks + (k+ 1)k+2h!)

L
nδh ≥ nδh

2(h+ 1)! ,

where the last inequality holds since L is sufficiently large. As δ ≥ Cn
s−1

(s−1)k+b , and C = 2(h+
1)!f (h, L), it follows that |S ′| ≥ f (h, L)ns. By averaging, there exists an s-tuple (x1, . . . , xs) of dis-
tinct vertices, such that the subfamily S ′′ which consists of all spiders in S ′ with leaf vector
(x1, . . . , xs) has size |S ′′| ≥ f (h, L). For any S ∈ S ′′, since S contains no heavy path of length at
most k, every leg of S is light. Since S does not contain any s-legged heavy sub-spider, S is light.
So S ′′ is a family of at least f (h, L) light spiders with leaf vector (x1, . . . , xs) and length vector
(b, k, . . . , k). This contradicts the definition of the light spider with length vector (b, k, . . . , k). �

Thus, to complete our proof of Theorem 1.17, it remains to prove Lemma 3.1 and Lemma 3.2.
Lemma 3.2 was proved by Janzer for the case b= k in details in [18]. An outline of the general
case was given in Lemma 4.3 in the same paper. Since our Lemma 3.2 is essentially the same as
Lemma 4.3 of [18] apart from some technical details, we omit its proof. Readers who are interested
in the details of the proof of Lemma 3.2 are referred to the arxiv version of the manuscript [23].
As the author of [18] pointed out the main obstacle to proving Conjecture 1.13 is to establish
analogous statements for heavy paths. Indeed, the method developed in [7] (and later used in [22]
and [18]) for heavy paths is not applicable in the new setting.

Our main contribution in this paper is to develop a method to handle heavy paths for t ∗ Ssb,k-
free graphs, resulting in Lemma 3.1. We believe that some of the ideas we developed here can be
further expanded to potentially yield further progress on Conjecture 1.1 and Conjecture 1.13.
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3.2 Building t ∗ Ssb,k using heavy paths
The rest of the section is devoted to proving Lemma 3.1. The proof consists of two parts: the case
of j> k+b

2 (Lemma 3.3) and the case of 2≤ j≤ k+b
2 (Lemma 3.4). We would like to point out that

it is possible to merge the two cases into one. However, we feel that each case contains useful ideas
and prefer to keep them separate.

3.2.1 Long heavy paths: the j> k+b
2 case

Lemma 3.3. Let G be a t ∗ Ssb,k-free K-almost-regular graph on n vertices with minimum degree
δ = ω(1). Then provided that L is sufficiently large compared to s, t, k,K, for any k+b

2 < j≤ k, the
number of j-heavy paths in G is at most nδj

L .

Proof. We define some constants as follows. Let

c1 = 1
4Lf (j− 1, L)2

, c2 = c1
4Kb , c3 = c1

4Kj−b , c4 = c3
bKb−1 , c5 = c2

Kj−b , c6 =
( c5
2

)t · c2.
Suppose to the contrary that the number of j-heavy paths is at least nδj

L . By averaging,
there exists a vertex w such that the family Pw consisting of all the j-heavy paths of the form
xx1 · · · xb−1wxb+1 · · · xj−1y has size at least δj

L . Let X be the set of vertices in G that play the role
of x in some member of Pw and Y the set of vertices in G that play the role of y in some member
of Pw. Then X ⊆ 
b(w) and Y ⊆ 
j−b(w). Since G is K-almost-regular and thus has maximum
degree at most Kδ, we have

|X| ≤ (Kδ)band|Y| ≤ (Kδ)j−b. (1)

Note that X, Y may not be disjoint. We define an auxiliary graph B on X ∪ Y , such that ∀x ∈
X, y ∈ Y , xy ∈ E(B) if and only if some member P of Pw have ends x and y.

Claim 1. For every x ∈ X there is an (x,w)-path of length b in G. For every y ∈ Y there is a (w, y)-
path of length j− b in G. For all x ∈ X, y ∈ Y such that xy ∈ E(B) there exist at least L internally
disjoint (x, y)-paths of length j in G.

Proof of Claim 1. The first two statements follow from the definitions of X and Y . Suppose x ∈
X, y ∈ Y and xy ∈ E(B). By definition, some member P ∈Pw has x, y as ends. By the definition of
Pw, P is j-heavy and thus there exist at least f (j, L) many j-admissible paths with ends x and y in
G. By Lemma 2.6 among them we can find at least

f (j, L)/
[
j2f (j− 1, L)2

] ≥ L

that are pairwise vertex disjoint outside {x, y}, where the inequality holds by
Proposition 2.2. �

For any fixed x ∈ X and y ∈ Y , by Lemma 2.5 there are at most f (b, L) · f (j− b, L) members of
Pw that have ends x and y. Hence

e(B)≥ |Pw|
f (b, L)f (j− b, L)

≥ δj

Lf (j− 1, L)2
.

Now, let us colour each vertex in X ∪ Y with colour 1 or 2 independently at random with
probability 1

2 each. Let X1 denote the set of vertices in X that receive colour 1 and Y2 the set of
vertices in Y that receive colour 2. Let B̃ denote the subgraph of B consisting of edges that join
a vertex in X1 to a vertex in Y2. Each edge of B has probability at least 1/4 of being in B̃. Hence
there exists a colouring such that the resulting B̃ has at least (1/4)e(B) edges. Then B̃ is bipartite
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with parts X1 and Y2 and by our discussion

e(̃B)≥ δj

4Lf (j− 1, L)2
= c1δj. (2)

By Lemma 2.10, B̃ contains a subgraph B′ with parts X′ ⊆ X1 and Y ′ ⊆ Y2 such that

∀x ∈ X′, dB′(x)≥ e(̃B)
4|X1| ≥ c1

4Kb δj−b = c2δj−b, (3)

and

∀y ∈ Y ′, dB′(y)≥ e(̃B)
4|Y2| ≥ c1

4Kj−b δb = c3δb. (4)

By (3) and (4),

|X′| ≥ c3δb, and |Y ′| ≥ c2δj−b.

Since X′ ⊆ X, by Claim 1, there are at least |X′| paths of length b with one end w and another
end in X′. By Lemma 2.8, there exists a spider T of height b with centre w and leaves in X′ whose
number of legs is at least |X′|

b(Kδ)b−1 ≥ c3
bKb−1 δ = c4δ.

Let X′′ ⊆ X′ be the leaf set of this spider. Then |X′′| ≥ c4δ. Let B′′ be the subgraph of B′ induced
by X′′ ∪ Y ′. By (1) and (3)

e(B′′)≥ c2δj−b|X′′| ≥ c2
Kj−b |X′′||Y ′| = c5|X′′||Y ′|.

Since |X′′| ≥ c4δ and δ = ω(1), for sufficiently large n we may assume that c5|X′′| ≥ 2t. By
Lemma 2.9

∃X0 ⊆ X′′ such that |X0| = t and |N∗
B′′(X0)| ≥ (c5/2)t|Y ′|. (5)

Now, let us fix a t-set X0 ⊆ X′′ guaranteed in (5). Let T0 be the sub-spider of T with leaf set X0.
Let Y ′′ =N∗

B′′(X0). Then

|Y ′′| ≥ (c5/2)t|Y ′| ≥ (c5/2)tc2δj−b = c6δj−b.

Let C be the family of paths of length j− b with one end w and another end in Y ′′. By Claim 1,
|C| ≥ |Y ′′| ≥ c6δj−b. Since G has maximum degree at most Kδ, for any vertex u =w, the number
of paths in C that contain u is at most (j− b)(Kδ)j−b−1 < j(Kδ)j−b−1. Let C1 be the family of paths
in C that are vertex disjoint from V(T0)− {w}. Then

|C1| ≥ |C| − (|V(T0)| − 1)j(Kδ)j−b−1 ≥ c6δj−b − btj(Kδ)j−b−1 ≥ (c6/2)δj−b,

where the last inequality holds for sufficiently large n because δ = ω(1). As j> k+b
2 , we have k−

j< j− b. Applying Lemma 2.8 to C1, as δ = ω(1), there exists a t-legged spider T1 of height k− j
with centre v1 =w and leaf set Y1 ⊆ Y ′′. Note that V(T0)∩V(T1)= ∅. Using the same strategy,
we can find s− 1 vertex disjoint t-legged spiders T1, . . . , Ts−1 of height k− j one by one, with Ti’s
centre vi =w and leaf set Yi ⊆ Y ′′, such that V(Ti)∩V(T0)= ∅.

Suppose X0 = {x1, . . . , xt}. For each i ∈ [s− 1], suppose Yi =
{
y1i , . . . , y

t
i
}
. Let Y0 = ⋃s−1

i=1 Yi.
Then Y0 ⊆ Y ′′ =N∗

B′′(X0). Hence, ∀x ∈ X0, y ∈ Y0, xy ∈ E(B′′)⊆ E(B) and by Claim 1 there exist at
least L internally disjoint paths of length j joining x and y. As L is a sufficiently large constant, we
can greedily find t(s− 1) paths Pi,� of length j, such that for any i ∈ [t] and � ∈ [s− 1], Pi,� has ends
xi and yi� and intersects

⋃s−1
i=0 V(Ti) only in xi and yi� and such that the Pi,�’s are pairwise vertex

disjoint outside
⋃s−1

i=0 V(Ti). Now, (
⋃s−1

i=0 Ti)∪
( ⋃

i∈[t],�∈[s−1] Pi,�
)
forms a copy of t ∗ Ssb,k in G,

a contradiction. This completes our proof. �
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3.2.2 Short heavy paths: the 2≤ j≤ k+b
2 case

This subsection handles the most difficult part of our main proof and is where most of the new
ideas are used.

Lemma 3.4. Let G be a t ∗ Ssb,k-free K-almost-regular graph on n vertices with minimum degree
δ = ω(1). Then provided that L is sufficiently large compared to s, t, k,K, for any 2≤ j≤ k+b

2 , the
number of j-heavy paths is at most (j+1)j+1

L nδj.

We break the proof of Lemma 3.4 into several steps. The general strategy is to show that if the
family F of j-heavy paths is too large then we find a copy of t ∗ Ssb,k in G, which is a contradiction.
We start by doing some cleaning to F in order to set up further arguments. Before that, let us set
some constants to be used throughout the subsection.

Definition 3.5. Let D= 2KjLf (j− 1, L)2 andM =Ds+1.

Comparing Definition 2.1 and Definition 3.5, we see that

f (j, L)= 10j4Ds+3 = 10j4D2 ·M. (6)

Now we introduce our cleaning lemma. Given a path P = v0v1 · · · vj and 0≤ i< j, we define
the initial i-segment of P to be the subpath v0v1 · · · vi.
Lemma 3.6. Let G be a K-almost-regular graph on n vertices with minimum degree δ = ω(1).
Suppose that the number of j-heavy paths is at least (j+1)j+1

L nδj. Then there exist a vertex w,
vertex disjoint sets A0, . . . ,Aj and a family F of j-heavy paths with

⋃j
i=0 Ai = ⋃

P∈F V(P)
satisfying

1. A0 ⊆ 
1(w) and Aj ⊆ 
j−1(w).
2. Each member of F has the form v0v1 · · · vj where ∀i ∈ {0, 1, . . . , j}, vi ∈Ai.
3. There exists a set V0 with A0 ⊆V0 ⊆ 
1(w) \Aj such that for every y ∈Aj, there are at

least |V0|
D many x ∈V0 such that x, y are ends of a heavy j-path in G. Furthermore, |V0| ≥

(2K/D)δ.
4. For each x ∈A0, there are at least M vertices y ∈Aj such that x, y are ends of at least DM

members of F . For each y ∈Aj, there are at least M vertices x ∈A0 such that x, y are ends of
at least DM members of F .

5. For each P ∈F and 0≤ i< j, the initial i-segment of P is contained in at least jM(Kδ)j−i−1

members of F .

Proof. Let C be the collection of all j-heavy paths in G. By our assumption, |C| ≥ (j+1)j+1

L nδj. Let
us independently colour each vertex of G with a colour in {0, 1, . . . , j}, with each colour chosen
uniformly at random. For each 0≤ i≤ j, let V ′

i denote the set of vertices in G receiving colour i.
For any j-heavy path P = v0v1 · · · vj, call P good if ∀0≤ i≤ j, vi ∈V ′

i . Let C′ denote the family of
all good heavy j-paths. Clearly each j-heavy path in G is good with probability ( 1

j+1 )
j+1. So there

exists a vertex colouring for which

|C′| ≥ |C|
(j+ 1)j+1 ≥ nδj

L
.

Let us fix such a colouring and the corresponding C′.
By averaging, there exists a vertex w such that the subfamily Pw of members of C′ of the form

v0wv2 · · · vj has size at least |Pw| ≥ δj

L . For each i ∈ {0, 1, . . . , j}, let Vi be the set of vertices in V ′
i
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that are contained in members of Pw. By our definitions, V0 ⊆ 
1(w) and Vj ⊆ 
j−1(w). Since G
has maximum degree at most Kδ, we have

|V0| ≤Kδ and |Vj| ≤ (Kδ)j−1. (7)
Let B denote the auxiliary bipartite graph with a bipartition (V0,Vj) such that ∀x ∈V0, y ∈

Vj, xy ∈ E(B) if and only if x, y are ends of somemember ofPw. For each xy ∈ E(B) with x ∈V0, y ∈
Vj, let Pxy be the subfamily of members of Pw that cover x, y and let Jxy be the family of j-heavy
paths in G that have x, y as ends.

Claim 1. For each xy ∈ E(B), we have 1≤ |Pxy| ≤ f (j− 1, L) and |Jxy| ≥ f (j, L).

Proof of Claim 1. Let xy ∈ E(B), with x ∈V0, y ∈Vj. That |Pxy| ≥ 1 is clear. Let P ∈Pxy. By
definition P is j-admissible and P = xw∪Q, where Q is a (w, y)-path of length j− 1. Since P
is admissible, Q is (j− 1)-light. So the number of possible Q in G is at most f (j− 1, L). So,
|Pxy| ≤ f (j− 1, L). Next, since P is a j-heavy path in G with ends x, y, by definition, G contains
at least f (j, L) j-heavy paths with ends x, y. So |Jxy| ≥ f (j, L). �

By Claim 1 and Definition 3.5

e(B)≥ |Pw|
f (j− 1, L)

≥ δj

Lf (j− 1, L)
≥ (2Kj/D)δj. (8)

Since |Vj| ≤ (Kδ)j−1, (8) implies
|V0| ≥ e(B)/|Vj| ≥ (2K/D)δ. (9)

Let V∗
j be the set of y ∈Vj for which dB(y)≥ |V0|

D . Let B∗ denote the subgraph of B induced by
V0 ∪V∗

j . Then

e(B∗)≥ e(B)− |V0||Vj|/D≥ (2Kj/D)δj − (Kδ)(Kδ)j−1/D=Kjδj/D. (10)
For each xy ∈ E(B∗), we have

|Jxy| ≥ f (j, L)≥ 10j2D2M,

where the last inequality holds by (6). Let J ′
xy be a subfamily of Jxy of size exactly 10j2D2M. Let

F0 =
⋃

xy∈E(B∗)
J ′
xy. (11)

Then by (10)

|F0| = e(B∗) · 10j2D2M ≥ 10j2DMKjδj. (12)
We next obtain F from F0 through some further cleaning. Initially let F =F0. Throughout

the process, for each x ∈V0, y ∈V∗
j let λ(x, y) denote the number of remaining members ofF that

have ends x, y. We update the function λ(x, y) automatically after each removal. Whenever is a
vertex x ∈V0 such that the number of y ∈V∗

j with λ(x, y)≥DM is less thanM (which we refer to
as x becomes small), remove all the members of F that contain x. Similarly, whenever there is a
vertex y ∈V∗

j such that the number of x ∈ X with λ(x, y)≥DM is less than M (which we refer to
as y becomes small), remove all the members of F that contains y. Whenever there is a member
P ∈F (viewed as a path from V0 to V∗

j ) contains an initial i-segment I, for some 0≤ i< j, that is
contained is less than jM(Kδ)j−i−1 members of F we remove all the members of F containing I.
We continue the process until no further removal can be performed.

The number of members of F we removed for each x ∈V0 that becomes small is
at most (

|V∗
j | −M

)
DM +M

(
10j2D2M

) ≤ 2DM(Kδ)j−1,
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for sufficiently large n, since δ = ω(1). Similarly, the number of members of F that we removed
for each vertex y ∈V∗

j that becomes small is at most

(|V0| −M)DM +M
(
10j2D2M

) ≤ 2DM(Kδ).

So, the total number of members of F we removed due to either a vertex in X becoming small
or a vertex in Y∗ becoming small is at most

|V0

∣∣∣·2DM(Kδ)j−1 + |V∗
j

∣∣∣ · 2DM(Kδ)≤ 4DM(Kδ)j.

The number of members of F that we removed due to some initial segment is contained in too
few members is at most

j−1∑
i=0

|V0|(Kδ)i · jM(Kδ)j−i−1 ≤ j2M(Kδ)j.

Combining the above two inequalities, the total number of members of F that we removed is
at most

(j2 + 4D)M(Kδ)j ≤ 5j2DMKjδj ≤ |F0|
2

.

So in particular, the final F is non-empty.
Now, for each 0≤ i≤ j, let Ai be the set of vertices in Vi that are contained in members of

the final F . In particular, note that Aj ⊆V∗
j . Let us check that w,A0, . . . ,Aj and F satisfy the

five conditions of the lemma. Condition 1 and condition 2 clearly hold by our discussion so
far. Condition 3 holds since Aj ⊆V∗

j and each vertex y ∈V∗
j satisfies dB(y)≥ |V0|

D and |V0| ≥
(2K/D)δ by (9). Conditions 4 and 5 hold due to our cleaning rules. This completes the proof of
the lemma. �
Lemma 3.7. Let G,A0, . . . ,Aj and F be as stated in Lemma 3.6. Then

1. For any 0≤ i< j and any u ∈Ai, there exists an M-legged spider of height j− i with centre u
and leaves in Aj.

2. Let F = {uv : u ∈Aj−1, v ∈Aj and ∃P ∈F , uv ∈ E(P)}. Then F has minimum degree at least
M.

Proof. Fix any i with 0≤ i< j and u ∈Ai. By the definition of Ai there exists P = v0v1 · · · vj ∈
F , where vi = u. Let I = v0v1 · · · vi. By condition 5 of Lemma 3.6, I is contained in at least
jM(Kδ)j−i−1 members of F . In other words, the family Q= {Q :Q ∈Ai × · · · ×Aj, I ∪Q ∈F}
has size at least jM(Kδ)j−i−1. Since each member ofQ is a path of length j− i from u to a vertex in
Aj, by Lemma 2.8, there exists a spider of height j− iwith centre u and leaves in Aj whose number
of legs is at least

jM(Kδ)j−i−1

j(Kδ)j−i−1 =M.

This proves part 1 of the lemma. Applying part 1 with i= j− 1, we have ∀u ∈Aj−1, dF(u)≥M.
Let y ∈Aj. By condition 4 of Lemma 3.6, there exist a vertex x ∈A0 such that there are at
least DM members of F that have ends x, y. By Lemma 2.6, among these there are at least
DM/[j2f (j− 1, L)2]≥M of them that are pairwise vertex disjoint outside {x, y}. In particular, this
implies dF(y)≥M. So part 2 also holds. �
Definition 3.8. For the rest of the subsection, we write b= qj+ b′ where q and b′ are integers with
1≤ b′ ≤ j.
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The next lemma plays an important role in our proof of Lemma 3.4. It sets up a well-placed
s-legged spider of height b to be used in building a copy of t ∗ Ssb,k.

Lemma 3.9. Let G, w, A0, . . . ,Aj, and F be as stated in Lemma 3.6. Let N =M/D.

1. If q is even, then there are N-legged spiders T and T′ in G, both of height b such that the leaf
set of T is contained in Ab′ and the leaf set of T′ is contained in Ab′−1.

2. If q is odd, then there are N-legged spiders T and T′ in G, both of height b, such that the leaf
set of T is contained in Aj−b′ and the leaf set of T′ is contained in Aj−b′+1.

Proof. Let B be a bipartite graph with parts A0 and Aj such that ∀x ∈A0, y ∈Aj xy ∈ E(B) if and
only if at least DM members of F have ends x, y. By Lemma 3.6 condition 4, B has minimum
degree at leastM. By Lemma 2.6, ∀xy ∈ E(B), there exist at leastDM/[j2f (j− 1, L)2]≥M internally
disjoint members of F with ends x, y.

Fix a vertex u ∈A0. Since δ(B)≥M =DN ≥ (q+ 1)N, where the last inequality follows from
Definition 3.5, we can greedily grow an N-legged spider R in B that has centre u and height q+ 1.
Since ∀xy ∈ E(B) there areM internally disjoint members of F with ends x, y, we can replace each
edge ab of R with a member of F with ends a, b so that the resulting graph is an N-legged spider
S of height (q+ 1)j in G. Let A be the set of vertices in S that are at distance b= qj+ b′ from u in
S. It is easy to see from the definition of S that if q is even then A⊆Ab′ and that if q is odd then
A⊆Aj−b′ . Let T be the sub-spider of S with centre u and leaf set A. Then T satisfies the first halves
of statements 1 and 2.

Now, fix a subset A′
0 ⊆A0 of size N, Since B has minimum degree at least M ≥ (q+ 2)N + 1,

in B we can find N disjoint paths of length q+ 1, Q1, . . . ,QN , avoiding w, such that ∀i ∈ [N],
Qi starts from a vertex xi ∈A′

0 . By a similar reason as in the previous paragraph, we can replace
the edges in

⋃N
i=1 Qi by members of F that avoid w such that for each i ∈ [N], Qi is turned into

a path Pi of length (q+ 1)j in G that still avoids w and that P1, . . . , PN are vertex disjoint. Let
S′ = ⋃N

i=1 Pi ∪ {wx1, . . . ,wxN}. Then S′ is an N-legged spider in G with centre w and height (q+
1)j+ 1. Let A′ be the set of vertices in S′ that are distance b= qj+ b′ from w in S′. It is easy to
see by the definition of S′ that if q is even then A′ ⊆Ab′−1 and that if q is odd then A′ ⊆Aj−b′+1.
Let T′ be the sub-spider of S′ with centre w and leaf set A′. Then T′ satisfies the second halves of
statement 1 and 2. �
Lemma 3.10. Let G, w, A0, . . . ,Aj and F be as stated in Lemma 3.6. Let m,m′ be positive integers
such that m′ ≤ m

2D and m≤ M
2k . Let 0≤ r ≤ j and U ⊆Ar be a subset of size m. Let W be a vertex

set such that W ∩U = ∅ and |W| ≤M/2. If p := k+ r − 2j is non-negative and even, then there
exists an m′-legged spider T′ with height k and leaf set U ′ ⊆U such that V(T′) \U ′ is disjoint from
W ∪U.

Proof. Suppose U = {u1, . . . , um}. Since U ⊆Ar , by Lemma 3.7 statement 1, for each i ∈ [m],
there exists an M-legged spider of height j− r with centre ui and leaves in Aj. Since M ≥
km+ |W| ≥ (j− r + 1)m+ |W|, by a greedy process, we can find a collection of vertex disjoint
paths Q1, . . . ,Qm, where for each i ∈ [m], Qi is a path of length j− r joining ui to a vertex yi in Aj
that avoids the setW. Let

Y = {y1, . . . , ym} ⊆Aj.

By Lemma 3.7 statement 2, the graph

F = {ab : a ∈Aj−1, b ∈Aj and ∃P ∈F , ab ∈ E(P)}
has minimum degree at least M. Using a greedy process we can find in F a collection of vertex
disjoint paths R1, . . . , Rm, where for each i ∈ [m], Ri is a path in F of length p that joins yi to
some vertex zi and avoids the set (W ∪ ⋃m

�=1 V(Q�)) \ {yi}. For each i ∈ [m], since yi ∈Aj and p is
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even, zi ∈Aj as well. Now {Qi ∪ Ri : i ∈ [m]} is family of m disjoint paths of length j− r + p that
avoidW.

Let Z = {z1, . . . , zm}. Since Z ⊆Aj, by Lemma 3.6 condition 3, there exists a set V0 with A0 ⊆
V0 ⊆ 
1(w) \Aj such that |V0| ≥ (2K/D)δ and for each i ∈ [m], there are at least |V0|/D many
x ∈V0 such that x, zi are the ends of a j-heavy path in G. Let B be a bipartite graph with parts
V0 and Z such that ∀x ∈V0, z ∈ Z, xz ∈ E(B) if and only if x, z are the ends of a j-heavy path in
G. Then e(B)≥ |V0||Z|/D. Since |Z|/D=m/D≥ 2m′, by Lemma 2.9 there exists anm′-set Z′ ⊆ Z
such that

|N∗
B(Z

′)| ≥
(

1
2D

)m′

|V0| ≥
(

1
2D

)M
|V0|.

Since |V0| ≥ (K/2D)δ, while δ = ω(1), for sufficiently large n, we have |N∗
B(Z′)| >

| ⋃m
i=1 V(Qi ∪ Ri)∪W|. So, there exists a vertex x ∈V0 \ (⋃m

i=1 V(Qi ∪ Ri)∪W) that is joined
to all of Z′ in B. Without loss of generality, suppose Z′ = {z1, . . . , zm′ }. For each i ∈ [m′], there
exists a j-heavy path with ends x and zi. In particular, by Lemma 2.6, there are at least f (j,L)

j2f (j−1,L)2 ≥
10j4D2M

j2D ≥M internally disjoint paths of length j between x and zi, where the first inequality fol-
lows by Definition 3.5 and (6). AsM >m′k+ |W|, we can find paths P1, . . . , Pm′ , where ∀i ∈ [m′],
Pi is a path of length j joining x to zi such that T′ := ⋃m′

i=1 (Pi ∪Qi ∪ Ri) is anm′-legged spider of
height k with centre x and leaf set {u1, . . . , um′ } and such that T′ avoids (U \ {u1, . . . , um′ })∪W.
The lemma holds for the above-defined T′ and U ′ = {u1, . . . , um′ }. �

Now, we are ready to prove Lemma 3.4.

Proof of Lemma 3.4. Suppose that the number of j-heavy paths in G is at least (j+1)j+1

L nδj. Let w,
A0, . . . ,Aj and F be obtained by Lemma 3.6. Our first step is to find an appropriate value of r to
apply Lemma 3.10 to. Recall that b= qj+ b′. Let

r :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b′, if q is even and k+ b′ − 2j is even

b′ − 1, if q is even and k+ b′ − 2j is odd

j− b′, if q is odd and k+ (j− b′)− 2j is even

j− b′ + 1, if q is odd and k+ (j− b′)− 2j is odd

As 1≤ b′ ≤ j, we have 0≤ r ≤ j.
Let p= k+ r − 2j. By the definitions of p and r, it is easy to see p is even. We claim that p is

non-negative. To prove this, it is enough to show that k+ b′ − 2j≥ 0 when q is even, and that
k+ (j− b′)− 2j≥ 0 when q is odd. First assume that q is even. If q= 0, then b= b′ and k+ b′ −
2j= k+ b− 2j≥ 0 where the inequality holds by our assumption j≤ k+b

2 ; if q≥ 2, then b≥ 2j+
b′ and thus k+ b′ − 2j≥ b+ b′ − 2j≥ 2b′ > 0. Now assume q is odd. Then we have that q≥ 1
and thus b≥ j+ b′. It follows that k+ (j− b′)− 2j= k− (j+ b′)≥ b− (j+ b′)≥ 0. Hence p is
non-negative.

Now, let m1 =M/D and for i= 2, . . . , s, let mi =mi−1/(2D). Using the definition of D, it is
easy to check that ∀i ∈ [s],mi ≤M/(2sk). By Lemma 3.9, there exists anm1-legged spider T1 with
height b and leaf set U1 ⊆Ar . The idea of the rest of the proof is to apply Lemma 3.10 s− 1 times.
Initially letW =V(T1) \U1. Since p= k+ r − 2j is non-negative and even, applying Lemma 3.10
with m1 and m2 playing the roles of m and m′ respectively and U1 playing the role of U, we can
find an m2-legged spider T2 with height k and leaf set U2 ⊆U1 such that V(T2) \U2 is disjoint
from W ∪U1. Now, we add V(T2) \U2 to W. Next, applying Lemma 3.10 with m2,m3 playing
the roles of m and m′ respectively and U2 playing the role of U, we can find an m3-legged spider
T3 with height k and leaf set U3 ⊆U2, such that V(T3) \U3 is disjoint fromW ∪U2. Now, we add
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V(T3) \U3 toW. We continue like this. It is easy to check that we can carry out the process for at
least s− 1 steps to find T2, . . . , Ts. Indeed, within the first s− 1 steps W has size at most km1 +
km2 + · · · + kms−1 < 2km1 = 2kM/D<M/2. This together with the definitions of m1, . . . ,ms
ensures that the conditions of Lemma 3.10 are satisfied. But now

⋃s
i=1 Ti forms a copy of

t ∗ Ssb,k in G, a contradiction. This completes our proof of Lemma 3.4. �

3.2.3 Proof of Lemma 3.1
Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. By Lemmas 3.3 and 3.4, for any 2≤ j≤ k, the number of j-heavy paths in G
is at most max

{
nδj
L , (j+1)j+1

L nδj
}

= (j+1)j+1

L nδj. This completes the proof. �

4. Concluding remarks
In [25], Kang, Kim and Liu extended the definition of balanced rooted trees to that of balanced
rooted bipartite graphs as follows. Let F be a bipartite graph and R a proper subset of V(F) called
the set of roots. For each non-empty set S⊆V(F), let ρF(S)= eS|S| , where eS is the number of
edges in G with at least one end in S. Let ρ(F)= ρF(V(F) \ R). We say that (F, R) is balanced
if ρF(S)≥ ρ(F) for every non-empty subset S⊆V(F) \ R. A real number r ∈ (1, 2) is called bal-
ancedly realizable if there is a connected bipartite graph F and a set R⊆V(F) such that (F, R)
is balanced with ρF = 1

2−r and that there is a positive integer t0 such that for all integers t ≥ t0,
ex(n, t ∗ F)= �(nr) holds. By definition, a balancedly realizable number is a Turán exponent.
Using a result of Erdős and Simonovits [11], Kang, Kim and Liu [25] proved the following.

Lemma 4.1 ([25]). Let a< b be two integers. If 2− a
b is balancedly realizable, then 2− a

a+b is also
balancedly realizable.

Proof of Corollary 1.4 and Corollary 1.5. By Theorem 1.9 and Theorem 1.15, for any positive
integers p, k, b with k≥ b, 1+ p

kp+b is balancedly realizable. Corollary 1.4 follows by applying
Lemma 4.1 repeatedly.

Now, suppose that q= sp+ p′ where s is a positive integer and 0≤ p′ ≤ √p. Since it is known
that 2− 1

s is a Turán exponent for all any integer s≥ 2, we may assume p′ > 0. Now, as 0< p′ ≤√p, there exists integers k and b such that p= kp′ + b and k≥ p′ − 1 and p′ ≥ b≥ 1. Then 2− p
q =

2− kp′+b
s(kp′+b)+p′ . By Corollary 1.4, it follows that 2− p

q is a Turán exponent. �
Finally, even though we obtained all the Turán exponents that Janzer’s conjecture would give, it

would still be very interesting to resolve his conjecture in the full. For the general bipartite Turán
problem, while tools such as dependent random choice have found success in the denser end of
the spectrum for bipartite graphs, it would be very interesting to developmore tools for the sparser
end of the spectrum. The recent active study of the Turán problem for subdivisions is a step in
that direction. It will be very interesting to continue explore problems of such nature.
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