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Abstract Given a non-negative integer n and a ring R with identity, we construct a hereditary abelian
model structure on the category of left R-modules where the class of cofibrant objects coincides with
GFn(R) the class of left R-modules with Gorenstein flat dimension at most n, the class of fibrant objects
coincides with Fn(R)⊥ the right Ext-orthogonal class of left R-modules with flat dimension at most
n, and the class of trivial objects coincides with PGF(R)⊥ the right Ext-orthogonal class of PGF left
R-modules recently introduced by Šaroch and Šťov́ıček. The homotopy category of this model structure
is triangulated equivalent to the stable category GF(R) ∩ C(R) modulo flat-cotorsion modules and it is
compactly generated when R has finite global Gorenstein projective dimension.

The second part of this paper deals with the PGF dimension of modules and rings. Our results suggest
that this dimension could serve as an alternative definition of the Gorenstein projective dimension. We
show, among other things, that (n-)perfect rings can be characterized in terms of Gorenstein homological
dimensions, similar to the classical ones, and the global Gorenstein projective dimension coincides with
the global PGF dimension.

Keywords: abelian model structure; (projectively coresolved) Gorenstein flat modules and dimensions;
global Gorenstein projective dimensions
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1. Introduction

Throughout this paper, R will be an associative ring with identity, and all modules will
be, unless otherwise specified, unital left R-modules. When right R-modules need to be
used, they will be denoted as MR, while in these cases left R-modules will be denoted
by RM . Whenever it is convenient, right R-modules are identified with modules over the
opposite ring Rop. We use I(R), P(R), F(R) and C(R) to denote the classes of injective,
projective, flat and cotorsion R-modules, respectively.
From a theorem by Christensen, Estrada and Thompson [8, Theorem 4.5], the sub-

category GF(R) ∩ C(R) of Gorenstein flat and cotorsion R-modules is a Frobenius
category with projective-injective objects all flat-cotorsion R-modules. Hence, the stable
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category E0 := GF(R) ∩ C(R) is a triangulated category. On the other hand, Šaroch and

Šťov́ıček [32, Section 4] constructed a hereditary abelian model structure M0 where the
class of cofibrant objects coincides with GF(R) and the class of fibrant objects coincides
with C(R). As a particular case of Estrada, Iacob and Pérez [18, Corollary 4.6] (see also [3,
Corollary 4.18]), the homotopy category Ho(M0) of this model structure is triangulated
equivalent to the stable category E0.
In the first part of this paper, § 3, we are interested in a general situation of the same

kind of problem: that of modules of bounded Gorenstein flat dimension. It is therefore
natural to ask whether we can construct a model structure such that the class of cofibrant
objects coincides with the class GFn(R) of all modules having Gorenstein flat dimension
at most an integer n ≥ 0.
First, we show that there is a trivial model structure (in the sense that every module

is a trivial object)

Nn = (GFn(R), R-Mod,GFn(R)⊥).

In fact, this is nothing but saying that GFn(R) is the left hand of a complete cotorsion
pair. However, the following result shows more than that.

Theorem A. (The n-Gorenstein flat cotorsion pair) The class GFn(R) forms
the left hand of a perfect hereditary cotorsion pair (GFn(R),GCn(R)) with GCn(R) =
PGF(R)⊥ ∩ Fn(R)⊥.
In particular, GFn(R) is covering and GCn(R) is enveloping.

Theorem A is essential to obtain our next main result (Theorem 3.6). This result pro-
vides us with a (non-trivial) model structure where the class of fibrant objects coincides
with Cn(R) := Fn(R)⊥ the right Ext-orthogonal class of all R-modules of flat dimension
at most n.
One of the consequences of this model structure is that the stable category En =

GFn(R) ∩ Cn(R) modulo objects in Fn(R) ∩ Cn(R) is triangulated (Corollary 3.7). In

the case n =0, Liang and Wang [29, Theorem 1(a)] have recently shown that this stable
category is compactly generated when R is right coherent with finite global Gorenstein
projective dimension. It is natural to ask whether this generatedness property is inherited
by En for all n ≥ 0. Based on their work, we answer this question in the positive, assuming
only that R has finite global Gorenstein AC-projective dimension.

Theorem B. (The n-Gorenstein flat model structure) There exists a hereditary
abelian model structure on R-Mod

Mn =
(
GFn(R),PGF(R)⊥, Cn(R)

)
.

Consequently, there are triangulated equivalences

GFn(R) ∩ Cn(R) ' · · · ' GF(R) ∩ C(R) ' PGF(R).

Furthermore, if R has finite global Gorenstein AC-projective dimension, then these
triangulated categories are compactly generated.
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The n-Gorenstein flat model structure has been found for two particular rings:
(Iwanaga-)Gorenstein rings by Pérez [30, Theorem 14.3.1] where the trivial objects are
known and coincide with modules having finite flat dimension and right coherent rings
by Xu [35, Theorem 4.5(2)] where less information is known about the class of trivial
objects.
Therefore, Theorem B generalizes and improves their results in the sense that we do

not need any assumption on the ring R with an explicit description of the trivial objects.
This makes Theorem B of interest since the class of trivial objects is the most important
class in any model structure for it determines the corresponding homotopy category, as
explained in the fundamental theorem of model categories [23, Theorem 1.2.10].
We point out that the proof of Theorem B is different from that of Pérez and Xu.

It is mainly based on the work developed by Šaroch and Šťov́ıček in [32]. One of the
key results (Theorem 3.4) is a new and useful characterization of modules having finite
Gorenstein flat dimension.
A guiding principle in the development of Gorenstein homological algebra is to study

analogues of results concerning absolute homological dimensions. For example, consider
the well-known questions: (Q1) Is every Gorenstein projective module Gorenstein flat?
and (Q2) Is the class of Gorenstein projective modules special precovering? These ques-
tions have been studied by many authors, such as Cortés-Izurdiaga and Šaroch [10],
Emmanouil [14], Enochs and Jenda [15] and Iacob [28] among others. One could also ask
similar questions in the case of Ding projective modules. However, all these questions
remain open.
Šaroch and Šťov́ıček [32], on the other hand, introduced PGF modules and showed

that they are Gorenstein flat and they form a special precovering class. These properties
can be seen as positive answers to Questions (Q1) and (Q2) if we think of PGF modules
as an alternative definition of Gorenstein projective modules.
Our main purpose of § 4 is to support the following claim: ‘the PGF dimension

could serve as an alternative definition of the Gorenstein (Ding) projective
dimension over any ring’.
Recall [16, Definition 2.1] that a ring R is left n-perfect if every flat R-module has

projective dimension ≤ n. In particular, left perfect rings are exactly left 0-perfect rings.
We show (Theorem 4.2) that a ring R is left n-perfect if and only if every Gorenstein
flat left R-module has PGF dimension at most n. In the case n =0, we obtain other
equivalent assertions similar to the classical ones, supporting the above claim.
It follows by [32, Theorem 4.4] that any PGF module is Gorenstein projective. But

whether the converse is true remains open. This leaves us with another question: (Q3)
When is any Gorenstein projective a PGF module? This question was first asked and
investigated by Šaroch and Šťov́ıček [32] and later by Iacob [28]. It turns out that this
question is closely related to Questions (Q1) and (Q2) (see Remark 4.13).
One nice way to study Question (Q3) is to measure how far a Gorenstein projective

module is from being PGF. It is proved (Proposition 4.11) that this can be reduced to two
cases: either Gorenstein projective modules are as close as possible to PGF, i.e. Gorenstein
projective and PGF modules coincide, or, as far as possible, and this means that the PGF
dimension of any Gorenstein projective module is infinite.
Next, we obtain a variety of conditions that are equivalent to the first case

(Proposition 4.11). Under these equivalent assertions, we get a positive answer to
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Questions (Q1) and (Q2) (Corollary 4.13). In particular, this is the case when R is right
weak coherent and left n-perfect or R is a ring such that every injective right R-module
has finite flat dimension.
Right weak coherent rings were introduced by Izurdiaga in [9] as a natural generaliza-

tion of right coherent rings. They are rings for which the direct product of any family of
flat R-modules has finite flat dimension. It turns out that these rings provide a general
framework in which one can replace the assumption of being coherent with that of being
weak coherent (see Corollary 4.9 and Remark 4.12).
The rest of § 4 is devoted to the global dimension of R with respect to the class PGF(R)

and its link to other global dimensions. First, we provide simple ways to compute it
(Theorem 4.14). This result is then used to show our last main result of this paper
which, along with its consequences (Corollaries 4.17 and 4.19), clearly support our claim
above. The following result states that, unlike the classes PGF(R) and GP(R), their
global dimensions coincide.

Theorem C. For any ring R, we have the following equality:

sup{PGF-pdR(M)|M is an R-module} = sup{GpdR(M)|M is an R-module}.

2. Preliminaries

Resolutions. Given a class X of R-modules and a class Y of right R-modules, an
X -resolution of an R-module M is an exact complex · · · → X1 → X0 → M → 0 where
Xi ∈ X .
A sequence X of R-modules is called (Y ⊗R −)-exact (respectively, HomR(X ,−)-exact,

HomR(−,X )-exact) if Y ⊗R X (respectively, HomR(X,X), HomR(X, X)) is an exact
complex for every Y ∈ Y (respectively, X ∈ X ).
An R-module M is said to have X -resolution dimension at most an integer n ≥ 0,

resdimX (M) ≤ n, if M has a finite X -resolution: 0 → Xn → · · · → X1 → X0 →
M → 0. If n is the least non-negative integer for which such a sequence exists then
its X -resolution dimension is precisely n, and if there is no such n then we define its
X -resolution dimension as ∞.
Given a class of R-modules Z, the X -dimension of Z is defined as:

resdimX (Z) = sup{resdimX (Z)|Z ∈ Z}.

X -coresolutions and X -coresolution dimensions are defined dually.

Gorenstein modules and dimensions. An R-module M is called Gorenstein flat if
it is a syzygy of an (I(Rop) ⊗R −)-exact exact sequence of flat R-modules. Replacing
flat with projective, we get the definition of projectively coresolved Gorenstein flat (PGF
for short) modules [32]. An R-module M is called Gorenstein projective if it is a syzygy
of a HomR(−,P(R))-exact exact sequence of projective R-modules. Gorenstein injective
modules are defined dually. We let GF(R) (respectively, PGF(R), GP(R) and GI(R))
denote the subcategory of Gorenstein flat (respectively, PGF, Gorenstein projective and
Gorenstein injective) R-modules.
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The Gorenstein flat (respectively, PGF, Gorenstein projective, Gorenstein injective)
dimension of an R-module M is defined as GfdR(M) := resdimGF(R)(M) (respectively,
PGF-pdR(M) := resdimPGF(R)(M), GpdR(M) := resdimGP(R)(M) and GidR(M) :=
coresdimGI(R)(M)).
Let GPD(R) (respectively, GID(R)) denote the global Gorenstein projective (respec-

tively, global Gorenstein injective) dimension of R, i.e.

GPD(R) := GpdR(R-Mod) = sup{GpdR(M)|M ∈ R-Mod}

(respectively, GID(R) := GidR(R-Mod) = sup{GidR(M)|M ∈ R-Mod}).

Definition 2.1. Let Fn(R) and GFn(R) denote the subcategories of R-modules having
flat and Gorenstein flat dimension at most n ≥ 0. We call modules in these subcategories
n-flat and n-Gorenstein flat, respectively.
An R-module M is said to be n-cotorsion (respectively, n-Gorenstein cotorsion) if

Ext1R(N,M) for all n-flat (respectively, n-Gorenstein flat) modules N. We use Cn(R) and
GCn(R) to denote the subcategrories of n-cotorsion and n-Gorenstein cotorsion modules,
respectively.

Note that 0-flat (respectively, Gorenstein 0-flat, 0-cotorsion, 0-Gorenstein cotorsion)
modules coincide with the flat (respectively, Gorenstein flat, cotorsion, Gorenstein
cotorsion) modules.

Cotorsion pairs. Given an abelian category A, and a class of objects X in A, we
use the following standard notation: X⊥ = {A ∈ A|Ext1A(X,A) = 0,∀X ∈ X} and
⊥X = {A ∈ A|Ext1A(A,X) = 0,∀X ∈ X}.
An X -precover of an object A ∈ A is a morphism f : X → A with X ∈ X , in such

a way that f∗ : HomA(X
′, X) → HomA(X

′,M) is surjective for every X ′ ∈ X . An
X -precover is called an X -cover if every endomorphism g : X → X such that fg = f is
an automorphism of X. If every object has an X -(pre)cover then the class X is said to
be (pre)covering. An X -precover is called special if it is epimorphism and Kerf ∈ X⊥.
X -(special pre)envelopes can be defined dually.
A pair (X ,Y) of classes of objects in A is called a cotorsion pair if X⊥ = Y and

X =⊥ Y. A cotorsion pair (X ,Y) is said to be:

• Hereditary if ExtiA(X,Y ) = 0 for every X ∈ X , Y ∈ Y and i ≥ 1.
• Complete if any object in A has a special X -precover and a special Y-preenvelope.
• Perfect if every module has an X -cover and a Y-envelope.
• Cogenerated by a set if there is a set S such that X = S⊥.

It is well-known that a perfect cotorsion pair (X ,Y) in R-Mod is complete. The converse
holds when X is closed under direct limits [19, Corollary 2.3.7]. A well-known method
for constructing complete cotorsion pairs in R-Mod is to cogenerate one from a set (see
[19, Theorem 3.2.1], for instance).
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Abelian model structures. Given a bicomplete category A, a model structure on A
is given by three classes of morphisms of A, called cofibrations, fibrations and weak
equivalences that satisfy a set of axioms [23, Definition 1.1.3].
Over a (bicomplete) abelian category A, Hovey defined abelian model structures and

showed that we can shift all our attention from morphisms to objects [24, Theorem 2.2].
Namely, an abelian model structure on A, is equivalent to a triple (known as Hovey
triple) M = (Q,W,R) of classes of objects in A such that (Q,W ∩R) and (Q ∩W,R)
are complete cotorsion pairs and W is thick. In this case, Q (respectively, R, W) is
precisely the class of cofibrant (respectively, fibrant, trivial) objects and an abelian model
structure (in the sense of [23, Definition 1.1.3]) is one which the following two conditions
are satisfied:
(i) A morphism is a (trivial) cofibration if and only if it is a monomorphism with

(trivially) cofibrant cokernel.
(ii) A morphism is a (trivial) fibration if and only if it is an epimorphism with (trivially)

fibrant kernel.
An abelian model structure is called hereditary if both of the associated cotorsion pairs

are hereditary (see Gillespie [22] for a nice survey on hereditary abelian model categories).
In this paper, we often identify abelian model structures with Hovey triples.
Given a model structure M, the homotopy category, denoted as HoA(M), is defined

by formally inverting the weak equivalences of M. More precisely, HoA(M) is obtained
after localizing A at the class of weak equivalences. If moreover, M is hereditary, the
homotopy category is known to be an algebraic triangulated category and it encodes a
variety of (relative) homological algebra on A.

3. n-Gorenstein flat modules and their model structure

In this section, we aim at proving Theorems A and B in the introduction. First, we need
some basic properties of n-Gorenstein flat modules.

Proposition 3.1. The class of n-Gorenstein flat R-modules is projectively resolving,
closed under direct sums, direct summands and direct limits.

Proof. It is clear that any projective module is Gorenstein flat, and then n-Gorenstein
flat. On the other hand, taking W =R in [2], we get that GF(R) = GWF(R) and this
class is closed under extensions by [32, Theorem 4.11]. Therefore, the class GFn(R) is
closed under extensions and kernels of epimorphisms by [2, Proposition 7.9] and direct
sums and summands by [2, Corollary 7.8(2)]. It remains to show that GFn(R) is closed
under direct limits.
Following [1, Corollary 1.7 and the Remark that follows it] it suffices to show that the

class GFn(R) is closed under well-ordered continuous direct limits of n-Gorenstein flat
R-modules:

(Mα)α<λ := M0 → M1 → · · · → Mω → Mω+1 → · · ·

Here continuous (or smooth in the sense of [1]) means that for each limit ordinal β < λ,
Mβ = lim−→α<β

Mα.
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• If λ < ω, then limα<λ Mα = Mλ−1 ∈ GFn(R).
• Assume now that λ = ω. By [2, Proposition 7.11], there exists an exact sequence
0 → M0 → F0 → G0 → 0 with F0 ∈ Fn(R) and G0 Gorenstein flat. Consider the
push out

0 M0 F0 G0 0

0 M1 V G0 0.

Since M1 ∈ GFn(R) and G0 is Gorenstein flat, V ∈ GFn(R). Using again
[2, Proposition 7.11], we get an exact sequence 0 → V → F1 → G → 0 with F1 ∈ Fn(R)
and G Gorenstein flat.
Consider another push out

0 0

0 M1 V G0 0

0 M1 F1 G1 0

G G

0 0.

Since G0 and G are Gorenstein flat, so is G1. Therefore, we get the following morphism
of exact sequences induced by the morphism M0 → M1:

A0 =: 0 M0 F0 G0 0

A1 =: 0 M1 F1 G1 0

.

Repeating this process, we get a commutative diagram with exact rows

A0 =: 0 M0 F0 G0 0

A1 =: 0 M1 F1 G1 0

A2 =: 0 M2 F2 G2 0

: : : :
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where Fi ∈ Fn and Gi is Gorenstein flat for every i ≥ 0. Applying the exact functor lim−→
to this commutative diagram, we get the induced exact sequence

lim−→Am =: 0 → lim−→Mm → lim−→Fm → lim−→Gm → 0

with lim−→Gm ∈ GF(R) ⊆ GFn(R) by [36, Lemma 3.1] and lim−→Fm ∈ Fn(R) since the

functor TorRn+1(X,−) commutes with direct limits for any right R-module X. Hence,
Mω = lim−→Mm ∈ GFn(R).
Finally, using transfinite induction, it is clear that the above argument generalizes and

we get that lim−→α<λ
Mα ∈ GFn(R) as desired. �

The following two lemmas will be used in several places in this paper.

Lemma 3.2. The inclusion Fn(R) ⊆ PGF(R)⊥ holds true.

Proof. It follows from the fact that PGF(R)⊥ is thick by [32, Theorem 4.9] and
F(R) ⊆ PGF(R)⊥ by [32, Theorem 4.11]. �

Lemma 3.3. (Fn(R), Cn(R)) is a perfect and hereditary cotorsion pair cogenerated by
a set.

Proof. Follows by [13, Theorem 3.4(2)] and its proof. �

The following characterization of n-Gorenstein flat modules is a key result to show
many results in this section. The case n =0 is due to Šaroch and Šťov́ıček [32,
Theorem 4.11].

Theorem 3.4. The following assertions are equivalent for any R-module M.

(1) M is n-Gorenstein flat.
(2) There exists a HomR(−,Fn(R) ∩ Cn(R))-exact exact sequence

0 → K → L → M → 0

where K ∈ Fn(R) and L ∈ PGF(R).
(3) Ext1R(M,C) = 0 for every C ∈ PGF(R)⊥ ∩ Cn(R).
(4) There exists an exact sequence of R-modules

0 → M → F → N → 0

where F ∈ Fn(R) and N ∈ PGF(R).

Consequently, Fn(R) = GFn(R) ∩ PGF(R)⊥.

Proof. 4. ⇒ 1. It follows by Proposition 3.1 since F ∈ Fn(R) ⊆ GFn(R) and N ∈
PGF(R) ⊆ GFn(R).
1. ⇒ 4. Assume that GfdR(M) ≤ n and proceed by induction on n.
The case n =0 follows from [32, Theorem 4.11(4)].
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Assume that n ≥ 1. There exists an exact sequence 0 → Gn → · · · → G0 → M → 0,
where Gi ∈ GF(R) for every i = 0, . . . , n. Let K = Ker(G0 → M). Clearly, GfdR(K) ≤
n − 1. So, by induction there exists an exact sequence 0 → K → F ′ → N ′ → 0, where
N ′ ∈ PGF(R) and fdR(F

′) ≤ n− 1. Consider the pushout diagram

0 0

0 K G0 M 0

0 F ′ D M 0

N ′ N ′

0 0

By the middle column D is Gorenstein flat. Using induction again, we get a short exact
sequence of R-modules 0 → D → F0 → N → 0 where F 0 is flat and N ∈ PGF(R).
Consider now another pushout diagram

0 0

0 F ′ D M 0

0 F ′ F0 F 0

N N

0 0

It remains to see that fdR(F ) ≤ n. But this is true by the middle row since F 0 is flat
and fdR(F

′) ≤ n− 1.
1. ⇒ 2. The case n =0 holds by [32, Theorem 4.11(2)]. So, we may assume that n ≥ 1.

By [32, Theorem 4.9], there exists a special PGF precover 0 → N → G → M → 0. By
[2, Proposition 7.9], GfdR(N) ≤ sup{GfdR(G),GfdR(M)− 1} ≤ n− 1 which implies by
(4) that there exists an exact sequence of R-modules 0 → N → K → G′ → 0 where
fdR(K) ≤ n− 1 and G′ ∈ PGF(R). Consider the pushout
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Since PGF(R) is closed under extensions, L ∈ PGF(R). Then, there exits (by definition)
an exact sequence 0 → L → P → L′ → 0, with P projective and L′ ∈ PGF(R). Consider
now another pushout

0 0

0 K L M 0

0 K P H 0

L′ L′

0 0

Since fdR(K) ≤ n− 1 and P is projective (then flat), H ∈ Fn(R) by the middle row. It
follows from the following commutative diagram with exact rows

0 HomR(H,X) HomR(P,X) HomR(K, X) Ext1R(H,X) = 0

0 HomR(M,X) HomR(L, X) HomR(K, X)

that 0 → L → K → M → 0 is HomR(−, X)-exact for any module X ∈ Fn(R) ∩ Cn(R).
2. ⇒ 3. Similar to [32, Theorem 4.11(2)⇒(3)], using the fact that any module C ∈

PGF(R)⊥ ∩ Cn(R) has a special n-flat precover which exists by Lemma 3.3.
3. ⇒ 4. Similar to [32, Theorem 4.11(3)⇒(4)] using the fact that every module F ∈

PGF(R)⊥ has a special n-flat precover which exists by Lemma 3.3 and that Fn(R) ⊆
PGF(R)⊥ by Lemma 3.2.
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Finally, it remains to show the equality. The inclusion Fn(R) ⊆ GFn(R) is clear and
by Lemma 3.2 we also have Fn(R) ⊆ PGF(R)⊥. Then, Fn(R) ⊆ GFn(R) ∩ PGF(R)⊥.
Conversely, if M ∈ GFn(R) ∩ PGF(R)⊥, then there exists by (4) a split exact sequence
of R-modules 0 → M → F → N → 0, where N ∈ PGF(R) and fdR(X) ≤ n. Then,
M ∈ Fn(R). �

The following result, which is Theorem A from the introduction, improves and general-
izes [30, Proposition 14.3.5] and [35, Lemma 4.4]. Here we have a more explicit description
of the right hand of the n-Gorenstein flat cotorsion pair without any assumptions on the
ring.

Corollary 3.5. The pair
(
GFn(R),PGF(R)⊥ ∩ Cn(R)

)
is a perfect hereditary cotor-

sion pair cogenerated by a set.
Consequently, the following assertions hold.

(a) Every R-module has a n-Gorenstein flat cover and n-Gorenstein cotorsion envelope.
(b) An R-module is n-Gorenstein cotorsion if and only if it is n-cotorsion from

PGF(R)⊥.

Proof. Let A = GFn(R) and B = PGF(R)⊥ ∩ Cn(R). By Theorem 3.4(3), A = ⊥B.
On the other hand, clearly PGF(R) ∪ Fn(R) ⊆ GFn(R). Then, A⊥ = GFn(R)⊥ ⊆
Fn(R)⊥ ∩ PGF(R)⊥ = B. Hence, A⊥ = B and (A,B) is a cotorsion pair.
Now we prove that this cotorsion pair is perfect. But, since GFn(R) is closed under

direct limits by Proposition 3.1(3), we only need to check that it is complete [19,
Corollary 2.3.7]. Following [19, Theorem 3.2.1(b)], a nice way to do that is to show that
it is cogenerated by a set. By the proof of [32, Theorem 4.9], (PGF(R),PGF(R)⊥) is a
cotorsion pair cogenerated by a set A1. We also know by Lemma 3.3 that the cotorsion
pair (Fn(R), Cn(R)) is cogenerated by a set A2. Then, PGF(R)⊥∩Cn(R) = A⊥

1 ∩ A⊥
2 =

(A1 ∪ A2)
⊥. This means that our desired pair is cogenerated by a set and hence

complete. �

Now we are ready to prove our second main result in this section. The following result
improves [30, Theorem 14.3.1] and [35, Theorem 4.5] in the sense that we need no extra
assumptions on the ring R with an obvious description of the trivial objects.

Theorem 3.6. For any ring R, there exists a hereditary abelian model structure on
R-Mod

Mn :=
(
GFn(R),PGF(R)⊥, Cn(R)

)
.

Equivalently, there exists a hereditary abelian model structure on R-Mod, in which the
cofibrations coincide with the monomorphisms with n-Gorenstein flat cokernel, the fibra-
tions coincide with the epimorphisms with n-cotorsion kernel, and PGF(R)⊥ is the class
of trivial objects.
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Proof. By Theorem 3.4, Fn(R) = GFn(R) ∩ PGF(R)⊥. Then, by Lemma 3.3 and
Corollary 3.5, there are two complete and hereditary cotorsion pairs:

(GFn(R),PGF(R)⊥ ∩ Cn(R)) and (GFn(R) ∩ PGF(R)⊥, Cn(R)).

Finally, the class PGF(R)⊥ is thick by [32, Theorem 4.9] which completes the proof. �

Recall that a Frobenius category A is an exact category with enough injectives and
projectives such that the projective objects coincide with the injective objects. In this
case, we can form the stable category A := A/ ∼, which has the same objects as A and
HomA/∼(X,Y ) := HomA(X,Y )/ ∼, where f ∼ g if and only if f − g factors through a
projective-injective object.
The following result can be proved directly as in the case n =0 (see [8, Theorem 4.5]).

However, we follow an alternative approach due to Gillespie [21]. Recall [21, Sections 4
and 5] that for any hereditary Hovey triple M = (Q,W,R), the subcategory Q ∩ R is
a Frobenius exact category (with the exact structure given by the short exact sequences
with terms in Q∩R) whose projective-injective objects are precisely those in Q∩W∩R.
Moreover, the stable category Q∩R is triangulated equivalent to Ho(M) (see also [22,
Proposition 4.2 and Theorem 4.3]). Consequently, we have the following corollary.

Corollary 3.7. The subcategory GFn(R) ∩ Cn(R) of both n-Gorenstein flat and n-
cotorsion R-modules is a Frobenius category. The projective-injective modules are given
by objects in Fn(R) ∩ Cn(R). Moreover, the homotopy category of the n-Gorenstein flat
model structure is triangle equivalent to the stable category GFn(R) ∩ Cn(R).

Let (T ,Σ) be a triangulated category with coproducts and an autofunctor Σ. Recall
that an object C of T is compact if for each family {Yi|i ∈ I} of objects of T , the
canonical morphism ⊕

i∈I

HomT (C, Yi) → HomT (C,
⊕
i∈I

Yi)

is an isomorphism. The category T is called compactly generated if there exists a set
S ⊆ T of compact objects such that for each 0 6= Y ∈ Y there is a morphism 0 6= f :
ΣmS → Y for some S ∈ S and m ∈ Z.
It follows by Liang and Wang [29, Theorem 1(a)] that the stable category E0 =

GF(R) ∩ C(R) is compactly generated when R is right coherent with finite left global
Gorenstein projective dimension. Based on their work, this property is inherited by the
stable categories PGF(R) and GFn(R) ∩ Cn(R) for every integer n ≥ 0 under the weaker
assumption that R has finite global Gorenstein AC-projective dimension. That is, the
supremum of the GPAC(R)-resolution dimension of all R-modules,

GPDAC(R) := sup{resdimGPAC (R)(M)|M is an R-module},

is finite, where GPAC(R) denotes the class of Gorenstein AC-projective modules in the
sense of [7].
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Corollary 3.8. There exist triangulated equivalences

GFn(R) ∩ Cn(R) w · · · w GF1(R) ∩ C1(R) w GF(R) ∩ C(R) ' PGF(R).

Furthermore, if GPDAC(R) < ∞, then these triangulated categories are compactly
generated.

Proof. By Theorem 3.6 and [32, Theorem 4.9], we have the model structures

Mn = (GFn(R),PGF(R)⊥, Cn(R)) and N = (PGF(R),PGF(R)⊥, R-Mod)

with the same trivial objects and the following inclusions

PGF ⊆ GF(R) ⊆ GF1(R) ⊆ · · · ⊆ GFn(R).

Applying [17, Lemma 5.4], we get the following triangulated equivalences

Ho(Mn) w · · · w Ho(M1) w Ho(M0) ' Ho(N ).

On the other hand, following Corollary 3.7 and [32, p. 27], we have

Ho(Mn) w GFn(R) ∩ Cn(R) and Ho(N ) w PGF(R)

as triangulated categories. Hence, the first statement follows.
Finally, if GPDAC(R) < ∞, then our last claim follows by [29, Theorem 24,

Proposition 21 and Corollary 33] and the above triangulated equivalences. �

It is well-known that the stable categories GP(R) and GI(R) are triangulated cat-

egories. Li and Wang showed in [29, Theorem 1] that these triangulated categories
are compactly generated whenever GPD(R) < ∞ with R right or left coherent. Their
proof is mainly based on [29, Theorem 25]. However, the coherence assumption in [29,
Theorem 25] is not needed if we replace GPD(R) < ∞ with GPDAC(R) < ∞. Therefore,
following the same argument in [29, Corollary 34], we have the improved result:

Corollary 3.9. Let R be a ring with GPDAC(R) < ∞. Then,

GP(R) ' GI(R) ' GF(R) ∩ C(R)

are compactly generated.

4. PGF dimension of modules and rings

In this section, we are interested in the PGF dimension of modules and rings and its
connection with other homological dimensions.
The following result is a key result to prove many of the results that will follow. It is

a combination of [33, Theorem 3.20] and [11, Theorem 3.4(i) ⇔ (ii)], except for the last
statement.
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Proposition 4.1. The following assertions are equivalent:

(1) PGF-pdR(M) ≤ n.
(2) M is a direct summand in a module N such that there exists an exact sequence of

R-modules

0 → N → X → N → 0

where pdR(X) ≤ n and TorRn+1(E,N) = 0 for any injective right R-module.
(3) There exists an exact sequence of R-modules

0 → M → X → G → 0

where G ∈ PGF(R) and pdR(X) ≤ n.

Consequently, PGFn(R) ∩ PGF(R)⊥ = Pn(R).

Proof. (1) is equivalent to (2) by [33, Theorem 3.20] and to (3) by [11, Theorem 3.4].
We only have to prove the equality PGFn(R) ∩ PGF(R)⊥ = Pn(R).
Clearly Pn(R) ⊆ PGFn(R) and by Lemma 3.2, Pn(R) ⊆ PGF(R)⊥. Then, Pn(R) ⊆

PGFn(R) ∩ PGF(R)⊥. Conversely, if M ∈ PGFn(R) ∩ PGF(R)⊥, then there exists by
(3) a split exact sequence of R-modules 0 → M → X → G → 0 where G ∈ PGF(R) and
pdR(X) ≤ n. Then, M ∈ Pn(R). �

As a consequence, we get new characterizations of left (n-)perfect rings. Recall that
[16, Definition 2.1] a ring R is left n-perfect if every flat R-module has projective
dimension at most n. In particular, left perfect rings are exactly left 0-perfect rings.

Theorem 4.2. A ring R is left n-perfect if and only every Gorenstein flat has PGF
dimension at most n. In particular, the following assertions are equivalent:

(1) R is left perfect.
(2) GF(R) = PGF(R).
(3) PGF(R) is closed under direct limits.
(4)

(
PGF(R),PGF(R)⊥

)
is a perfect cotorsion pair.

(5) PGF(R) is covering.
(6) Every Gorenstein flat R-module has a PGF cover.
(7) Every flat R-module has a projective cover.

Proof. (⇐) Clearly F(R) ⊆ GF(R) ⊆ PGFn(R) and by Lemma 3.2, F(R) ⊆
PGF(R)⊥. Thus, F(R) ⊆ PGFn(R)∩PGF(R)⊥ = Pn(R) by Proposition 4.1. This means
that R is left n-perfect. (⇒) Let M be a Gorenstein flat R-module. By [5, Theorem 3.5
and Proposition 3.6], M is a direct summand in a module N such that there exists an
exact sequence of R-modules 0 → N → F → N → 0 with F flat and TorR1 (E,N) = 0
for any injective right R-module. It follows that TorRk≥1(E,N) ∼= TorR1 (E,N) = 0. Since
F ∈ F(R) ⊆ Pn(R), it follows from Proposition 4.1 that M ∈ PGFn(R).
We now prove the equivalences (1)–(7):
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(1) ⇔ (2) By [32, Theorem 4.9]. It also follows from the above equivalence.
(2) ⇒ (3) By Proposition 3.1(3).
(3) ⇒ (4) By [32, Theorem 4.9] and [19, Corollary 2.3.7].
(4) ⇒ (5) Clear.
(5) ⇒ (6) Clear.
(6) ⇒ (7) Let F be a flat R-module and f : P → F be a PGF cover. We claim that f

is a projective cover. By Wakamatsu Lemma, K := Kerf ∈ PGF(R)⊥. But F ∈ F(R) ⊆
PGF(R)⊥ by Lemma 3.2 and PGF(R) ∩ PGF(R)⊥ = P(R) by Proposition 4.1. Hence,
P ∈ PGF(R)∩PGF(R)⊥ = P(R). It remains to show that for any morphism g : P → P
such that fg = f, is an automorphism. But this holds true as f is a PGF cover.
(7) ⇒ (1) By the proof of [15, Theorem 5.3.2(3)⇒ (1)]. �

Theorem 4.2 can be interpreted from the point of view of global dimensions. For this
purpose (and for later use), we introduce the following homological invariant.

Definition 4.3. The global PGF dimension of R with respect to a class X ⊆ R-Mod
is defined as: PGFDX (R) := sup{PGF-pdR(X)|X ∈ X}.
In particular, we set

PGFD(R) := PGFDR-Mod(R) = sup{PGF-pdR(M)|M ∈ R-Mod}

and we simply call it the global PGF dimension of R.

We note that the global PGF dimension has been recently studied by Dalezios and
Emmanouil [11].

Corollary 4.4. A ring R is left n-perfect if and only if PGFDGF(R)(R) ≤ n.
In particular, R is left perfect if and only if PGFDGF(R)(R) = 0.

We now turn our attention to the questions raised in § 1.

Remark 4.5. Consider the following assertions:

(GP1) Any Gorenstein projective R-module is Gorenstein flat.
(GP2) Any R-module has a special Gorenstein projective precover.
(GP3) Any Gorenstein projective R-module is PGF, that is, PGF(R) = GP(R).

It follows that (GP3) is equivalent to (GP1) by [28, Theorem 3] and implies (GP2)
by [32, Theorem 4.9]. However, it is not clear whether (GP2) implies (GP1) or (GP3).
Following this remark, our focus will be on (GP3).

Instead of asking whether any Gorenstein projective module is PGF or not, one could
ask the following question:
(Q4): How far is a Gorenstein projective module from being PGF?
The following result reduces this problem to two cases.

Proposition 4.6. The PGF dimension of a Gorenstein projective R-module M is
either zero or infinite.
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Consequently, the global dimension PGFDGP(R)(R) is either zero or infinite.

Proof. Assume n = PGF-pdR(M) < ∞ and let us consider a special PGF pre-
cover (which exists by [32, Theorem 4.9]) 0 → N → G → M → 0. By [11,
Proposition 2.4(ii)], PGF-pdR(N) ≤ max{PGF-pdR(G),PGF-pdR(M)} ≤ n. Hence,
N ∈ PGFn(R) ∩ PGF(R)⊥ = Pn(R) by Proposition 4.1. Moreover, since M ∈ GP(R),
there exists an exact sequence of R-modules 0 → M → P−1 → · · · → P−n → L → 0
with each Pj projective. Hence, Ext1R(M,N) ∼= Extn+1

R (L,N) = 0 as N ∈ Pn(R) and
then the above short exact sequence splits. Therefore, M ∈ PGF(R) and this means that
PGF-pdR(M) = 0. �

In order to continue our investigations, we need the notion of definable classes. Recall
from [31, Theorem 3.4.7] that a class of modules D is called definable if it is closed under
direct products, direct limits and pure submodules. Such a class is, in particular, closed
under direct sums and direct summands. We denote by 〈X 〉 the definable class generated
by a class of modules X , that is, the smallest definable class containing X . The definable
closure 〈X 〉 can be constructed, for instance, by closing X under direct products, then
under pure submodules and, finally, under pure quotients. In case X = {X}, we simply
write 〈X 〉 = 〈X〉.
It has been shown in many recent works [10, 18, 32] that the definable classes 〈R〉 and

〈R+〉 are of great importance. They will also be of interest to us. Thus, we propose the
following definition, giving names to the modules belonging to these classes.

Definition 4.7. An R-module is called definable flat if it belongs to the definable class
〈R〉. Dually, an R-module is called definable injective if it belongs to the definable class
〈(RR)

+〉.

Clearly, 〈R〉 = 〈P(R)〉 = 〈F(R)〉 and 〈(RR)+〉 = 〈I(Rop)〉 = 〈FI(Rop)〉. Moreover, R
is right coherent if and only if definable flat R-modules coincide with flats if and only if
definable injective right R-modules coincide with FP-injectives (see [31, Theorem 3.4.24]).
Recall that a module M is called FP-injective if Ext1(F,M)0 for every finitely presented
module F.
As we will see next, the class of definable flat modules is a key point for extending

many results from the class of coherent rings to a larger class of rings.

Lemma 4.8. Given an integer n ≥ 0, fdR(〈R〉) ≤ n if and only if the direct product
of any family of flat R-modules has finite flat dimension ≤ n.
Consequently, fdR(〈R〉) = sup{fdR(

∏
i Fi)|(Fi)iis a family of flat R-modules}.

Proof. (⇒) For every family (Fi)i of flat R-modules, we have Fi ∈ 〈F(R)〉 = 〈R〉 and
since 〈R〉 is closed under products,

∏
i Fi ∈ 〈R〉. Hence, fdR(

∏
i Fi) ≤ fdR(〈R〉) ≤ n. (⇐)

Assume fdR(
∏

F(R)) ≤ n and let X ∈ 〈R〉 = 〈F(R)〉. The definable class 〈F(R)〉 can
be constructed by closing F(R) under products, then under pure submodules and finally
under pure quotients. By hypothesis, any direct product of any family of flat R-modules
belongs to Fn(R), and clearly Fn(R) is closed under pure submodules and quotients
(since a short exact sequence E is pure if and only if its character E+ is split). Hence,
〈R〉 = 〈F(R)〉 ⊆ Fn(R), that is, fdR(〈R〉) ≤ n. �
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Izurdiaga [9] investigated rings for which the direct product of any family of flat R-
modules has finite flat dimension. He calls them [9, Section 4] right weak coherent rings.
Moreover, if n is the maximum of the set consisting of all flat dimensions of all direct
products of flat R-modules, then R is called right weak n-coherent. In particular, right
weak 0-coherent rings are nothing but right coherent rings. It follows by Lemma 4.8 that
R is right weak coherent if and only if and only if any definable flat module has finite
flat dimension. In this case, R is right weak n-coherent with n = fdR(〈R〉).
We also recall from [20] the notion of Ding projective modules (which are introduced

for the first time in [12] under a different name). An R-moduleM is called Ding projective
if it is a syzygy of a HomR(−,F(R))-exact exact sequence of projective R-modules. The
Ding projective dimension of an R-module M is defined as DpdR(M) = resdimDP(R)(M)
where DP(R) denotes the class of Ding projective R-modules.
As a consequence of the above lemma, the assumption that R is right coherent in [28,

Theorem 2] and [10, Corollary 5.10] can be replaced by that R is right weak coherent.

Corollary 4.9. Assume that R is a right weak coherent ring. Given an R-module M,
we have DpdR(M) = PGF-pdR(M). In particular, DP(R) = PGF(R) is the left hand
of a complete cotorsion pair.

Proof. We only need to show the equality PGF(R) = DP(R). The inclusion
PGF(R) ⊆ DP(R) holds for any ring R. For the other inequality, let M ∈ DP(R), then
M is a syzygy of a HomR(−,F(R))−exact exact sequence P of projective R-modules.
Let X be a definable flat R-module. By Lemma 4.8, m = fdR(X) < ∞. Then, X has a
finite flat resolution

0 → Fm → · · · → F0 → X → 0.

Applying the functor HomR(P,−) to this exact sequence, we get an exact sequence of
complexes

0 → HomR(P, Fm) → · · · → HomR(P, F0) → HomR(P, X) → 0.

As the class of exact complexes is thick, it follows that the complex HomR(P, X) is exact
and hence M ∈ PGF(R).
The last claim follows by [32, Theorem 4.9]. �

One could, as in Lemma 4.8, consider rings for which every definable flat has finite
projective dimension. The following lemma, which we will use later, says that such rings
are nothing new.

Lemma 4.10. pdR(〈R〉) < ∞ if and only if R is left weak coherent and right n-perfect
for some integer n ≥ 0.

Proof. (⇒) Assume n = pdR(〈R〉) < ∞. Then, pdR(X) ≤ n for all X ∈ 〈R〉. In
particular, fdR(X) ≤ pdR(X) ≤ n for all X ∈ 〈R〉 and pdR(X) ≤ n for all X ∈ F(R) ⊆
〈R〉. (⇐) Assume that m = fdR(〈R〉) < ∞. Given a partial projective resolution of an
R-module M ∈ 〈R〉
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0 → Km → Pm−1 → · · · → P0 → M → 0,

we get that Km is flat and hence pdR(Km) ≤ n asKm ∈ 〈R〉. Therefore, pdR(M) ≤ n+m.
Thus, pdR(〈R〉) ≤ n+m < ∞. �

Now we are ready to give a partial answer to Question (Q3) raised in § 1. Recall that
a HomR(−,P(R))-exact exact complex of projective modules is called totally acyclic
complex of projectives.

Proposition 4.11. PGF(R) = GP(R) if and only if any totally acyclic complex of
projectives is HomR(−, 〈R〉)-exact if and only if any totally acyclic complex of projectives
is (I(Rop)⊗−)-exact.
In particular, this is the case if one of the following holds:

(a) R is right weak coherent and left n-perfect for some integer n ≥ 0.
(b) R is a ring where any injective right R-module has finite flat dimension.

Proof. The equivalences follow immediately from [32, Corollary 4.5].
(a) By above, it suffices to show that any totally acyclic complex of projectives P is

HomR(−, X)-exact for any definable flat R-module X. But, this can be shown as in the
proof of Corollary 4.9, using a finite projective resolution of X which exists by assumption
and Lemma 4.10.
(b) Follows by [28, Proposition 9]. �

Remark 4.12.

(i) Notice that the assertion ‘any totally acyclic complex of projectives is
HomR(−, 〈R〉)-exact’ is equivalent to 〈R〉 ⊆ GP(R)⊥. Therefore, Proposition 4.11
improves [28, Theorem 4] in the sense that if we replace the class of flat modules with
that of definable flat we can drop the coherence assumption. We also note that every
right coherent ring is right weak coherent, so the example in Proposition 4.11(a) is
more general.

(ii) In view of Proposition 4.11, Remark 4.5 and Theorem 4.2, if R is right weak coher-
ent, then R is left perfect if and only if GP(R) = GF(R). This result improves
[8, Theorem 4.5 (i) ⇔ (iv)].

Consequently, partial answers to questions (Q1) and (Q2) are obtained.

Corollary 4.13. Assume that R satisfies the equivalent conditions of Proposition 4.11.

(1) For any R-module M, we have GfdR(M) ≤ GpdR(M).
In particular, every Gorenstein projective R-module is Gorenstein flat.

(2) (GP(R),GP(R)⊥) is a complete hereditary cotorsion pair.
In particular, every R-module has a special Gorenstein projective precover.

Proof. (1) We only need to show that GP(R) ⊆ GF(R). But this follows by
Proposition 4.16 as GP(R) = PGF(R) ⊆ GF(R).
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(2) Follows by Proposition 4.11 and [32, Theorem 4.9]. �

We now focus our attention on the global PGF dimension of R. As a first result, we
provide simple ways to compute it (compare with [11, Theorem 5.1]).

Theorem 4.14. The following assertions are equivalent:

(1) PGFD(R) ≤ n.
(2) The following two assertions hold.

(i) idR(M) ≤ n for every definable flat R-module M.
(ii) pdR(M) ≤ n for every injective R-module M.

(3) The following two assertions hold.
(i) fdRop(M) ≤ n for every definable injective right R-module M.
(ii) pdR(M) ≤ n for every injective R-module M.

(4) The following two assertions hold.
(i) fdRop(M) ≤ n for every (FP-)injective right R-module M.
(ii) pdR(M) ≤ n for every injective R-module M.

Consequently, the global PGF dimension of R can be computed by the following
formulas:

PGFD(R) = max{pdR(I(R)), idR(〈R〉)}
= max{pdR(I(R)), fdRop(〈R+〉)}
= max{pdR(I(R), fdRop(I(Rop))}.

Proof. 1. ⇒ 2. (a) Consider an R-module N and a finite PGF resolution:

0 → Gn → · · · → G0 → N → 0.

By [32, Corollary 4.5], Extk≥1
R (Gi,M) = 0 for any M ∈ 〈R〉 and i. Hence,

Extn+1
R (N,M) ∼= Ext1R(Gn,M) = 0. Then, idR(M) ≤ n.

(b) Let M be an injective R-module. Since PGF-pdR(M) ≤ n, there exists a split short
exact sequence 0 → M → X → G → 0 with pdR(X) ≤ n by Proposition 4.1(3). Hence,
pdR(M) ≤ n.
2. ⇒ 3. We only prove (a) as (b) is clear. For any definable injective right

R-module M, we have fdRop(M) ≤ n if and only if TorRn+1(M,−) = 0 if and only if

Extn+1
R (−,M+) ∼= TorRn+1(M,−)+ = 0 if and only idR(M

+) ≤ n. This later holds by
2(a) and [18, Remark 2.10] as M+ ∈ 〈R〉. Hence, fdRop(M) ≤ n.
3. ⇒ 4. (b) is clear and (a) follows by I(Rop) ⊆ FI(Rop) ⊆ 〈FI(Rop)〉 = 〈(RR)

+〉.
4. ⇒ 1. Let M be an R-module. Consider a projective and an injective resolution

of M :

· · · → P1 → P0 → M → 0 and 0 → M → I0 → I1 → · · · ,
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respectively. Decomposing these exact sequences into short exact ones we get, for every
integer i ∈ N,

0 → Li+1 → Pi → Li → 0 and 0 → Ki → Ii → Ki+1 → 0

where Li = Coker(Pi+1 → Pi) and Ki = Ker(Ii → Ii+1). Note that M = L0 = K0.
Adding the direct sum of the first sequences,

0 →
⊕
i∈N

Li+1 →
⊕
i∈N

Pi → M ⊕ (
⊕
i∈N

Li+1) → 0

to the direct product of the second ones,

0 → M ⊕ (
∏
i∈N

Ki+1) →
∏
i∈N

Ii →
∏
i∈N

Ki+1 → 0

we get an exact sequence of the form 0 → N → X → N → 0, where

X = (
⊕
i∈N

Pi)⊕ (
∏
i∈N

Ii) and N = M ⊕

(
(
⊕
i∈N

Li+1)⊕ (
∏
i∈N

Ki+1)

)
.

By (b), pdR(X) = pdR((
∏

i∈N Ii)) ≤ n and by (a), TorRn+1(E,N) = 0 for any injective
right R-module E. And since M is a direct summand in N, it follows from Proposition
4.1 that PGF-pdR(M) ≤ n as desired. �

Global dimensions of rings are known to characterize classical rings. And the global
PGF dimension is no exception. Recall that a ring R is called quasi-Frobenius if injec-
tive left (respectively, right) R-modules coincide with projective left (respectively, right)
modules.

Corollary 4.15. PGFD(R) = 0 if and only if R is quasi-Frobenius.

Proof. (⇒) By Theorem 4.14(2), we have P(R) ⊆ 〈R〉 ⊆ I(R) and I(R) ⊆ P(R).
Then, P(R) = I(R) and therefore R is quasi-Frobenius. (⇐) If R is quasi-Frobenius,
then I(R) = P(R) and I(Rop) = P(Rop) ⊆ F(Rop). Hence, PGFD(R) = 0 by
Theorem 4.14(4). �

At this point, it is natural to ask what the relationship between the global PGF
dimension and the global Gorenstein projective dimension could be. Clearly, GPD(R) ≤
PGFD(R) as PGF(R) ⊆ GP(R). Over an (Iwanaga-)Gorenstein ring R, it is an imme-
diate consequence of Huang [25, Theorems 4.9 and 4.13] that we have an equality
GPD(R) = PGFD(R). Dalezios and Emmanouil, on the other hand, have shown in
[11, Theorem 5.1] this equality when R has finite global PGF dimension.
Our last main result gives a positive answer to this question for any ring R. It is worth

noting that the following result, as pointed out to me by Sergio Estrada, is contained in
the proof of a recent result by Wang, Yang, Shao and Zhang [34, Theorem 3.7]. However,
our proof is different.
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Theorem 4.16. The global Gorenstein projective dimension of R coincides with the
global PGF dimension of R. That is, GPD(R) = PGFD(R).

Proof. The inequality GPD(R) ≤ PGFD(R) is clear since PGF(R) ⊆ GP(R). If
GPD(R) = ∞, then PGFD(R) = GPD(R) and we are done.
Assume n = GPD(R) < ∞. By [6, Corollary 2.7], pdR(E) ≤ n for every injective

R-module E. On the other hand, following [9, Examples 4.4(3)], R is right weak coherent.
It follows that fdR(〈R〉) < ∞ by Lemma 4.8. This implies that idR(〈R〉) ≤ n by [6,
Corollary 2.7]. Applying now Theorem 4.14(2), we get that PGFD(R) ≤ n. �

We end the paper with some consequences of Theorem 4.16.
Gorenstein injective modules are seen as dual to Gorenstein projective modules. Based

on this, one could introduce a dual notion of a PGF module. Let us call an R-module
Gorenstein definable injective if it is a syzygy of a HomR(〈R+〉,−)-exact exact sequence
of injective R-modules. Define its Gorenstein definable injective dimension as Gdid(M) =
resdimGDI(R)(M) where GDI(R) denotes the class of all Gorenstein definable injective
R-modules.
It is known that the global dimension of R can be computed either by projective or

injective dimensions, that is, the following equality holds:

sup{pdR(M)|M ∈ R-Mod} = sup{idR(M)|M ∈ R-Mod}.

This fact was extended to the Gorenstein setting by Enochs and Jenda [15, Section 12.3]
for (Iwanaga-)Gorenstein rings and later by Bennis and Mahdou [6, Theorem 1.1] for any
ring.
Inspired by this, one could ask whether the equality

sup{PGF-pdR(M)|M ∈ R-Mod} = sup{GdidR(M)|M ∈ R-Mod}

holds true as well?
Using again Theorem 4.16, we give a positive answer to this question.

Corollary 4.17. For any ring R, we have the following equalities:

PGFD(R) = GID(R) = GDID(R)

with GDID(R) := sup{GdidR(M)|Mis an R-module}.

Proof. First, we have the equality PGFD(R) = GID(R) that follows by Theorem 4.16
and [6, Theorem 1.1].
Clearly, GID(R) ≤ sup{Gdid(M)|M ∈ R-Mod} since GDI(R) ⊆ GI(R). Assume now

that n = GID(R) < ∞. If we prove that idR(M) < ∞ for any definable injective R-
module M, we are done, as this condition implies that GI(R) = GDI(R). Following
[6, Corollary 2.7], it suffices to show that fdR(M) < ∞ for any definable injective R-
module. But, using [10, Lemma 5.6(1)], it suffices to show that fdR(M) < ∞ for every
FP-injective R-module M.
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Let RM be FP-injective. Then, there exists a pure monomorphism 0 → M ↪→ E
with RE injective. Using again [6, Corollary 2.7], we get that fdR(E) ≤ n and hence
fdR(M) ≤ fdR(E) ≤ n < ∞ as desired. �

Remark 4.18. It clear by the definitions that we have the inequalities

GPD(R) ≤ DPD(R) ≤ PGFD(R) ≤ GPDAC(R),

GID(R) ≤ DID(R) ≤ GDID(R) ≤ GIDAC(R)

with

DPD(R) := sup{DpdR(M)|M is an R-module},
DID(R) := sup{DidR(M)|M is an R-module},

GPDAC(R) := sup{resdimGIAC (R)(M)|M is an R-module},

where GIAC(R) denotes the class of all Gorenstein AC-injective modules in the sense of
[7].
As stated above, Bennis and Mahdou showed in [6, Theorem 1.1] the equality

GPD(R) = GID(R) for any ring R. Generally, Huerta, Mendoza and Pérez have recently
shown in [26, Corollary 8.8] the following equalities:

GPDAC(R) = DPD(R) = GPD(R) = GID(R) = DID(R) = GIDAC(R).

The result [26, Corollary 8.8] is based on [26, Lemma 8.1], which is stated incorrectly
as indicated in the corrigendum [27]. So, the result [26, Corollary 8.8] is no longer avail-
able and the question of whether the equalities DPD(R) = DID(R) and GPDAC(R) =
GIDAC(R) hold for any ring R is still open. However, following Corollary 4.17, we have
a positive answer for the second equality. Generally, we have the following equalities for
any ring R:

PGFD(R) = DPD(R) = GPD(R) = GID(R) = DID(R) = GDID(R).

Auslander’s theorem on the global dimension states that we can compute the global
dimension of R by just computing the projective dimension of cyclic R-modules. That is,
the formula gldim(R) = sup{pdR(R/I)|I is a left idea} holds true. Bennis, Hu and Wang
[4, Theorem 1.1] extended this formula to the Gorenstein setting for commutative rings.
However, one can see that the same proof also holds for non-commutative rings. Taking
advantage of this fact, together with Theorem 4.16, we get a PGF version of Auslander’s
theorem.

Corollary 4.19. (Auslander’s theorem on the global PGF dimension) For
any ring R, we have the following formula:

PGFD(R) = sup{PGF-pdR(R/I)|I is a left ideal}.

Proof. The inequality {PGF-pdR(R/I)|I is a left ideal} ≤ PGFD(R) is clear. We
may assume that n = sup{PGF-pdR(R/I)|I is a left ideal} < ∞. Since PGF(R) ⊆
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GP(R), we have Gpd(R/I) ≤ PGF-pdR(R/I) ≤ n for every left ideal I, and therefore
sup{GpdR(R/I)|I is a left ideal} ≤ n. On the other hand, by the non-commutative ver-
sion of [4, Theorem 1.1], we have that GPD(R) = sup{GpdR(R/I)|I is a left ideal} ≤ n.
Finally, using Theorem 4.16, we get that PGFD(R) = GPD(R) ≤ n which completes the
proof. �
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