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Abstract The main purpose of this paper is to capture the asymptotic behaviour for solutions to a class
of nonlinear elliptic and parabolic equations with the anisotropic weights consisting of two power-type
weights of different dimensions near the degenerate or singular point, especially covering the weighted
p-Laplace equations and weighted fast diffusion equations. As a consequence, we also establish the local
Hölder estimates for their solutions in the presence of single power-type weights.
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1. Introduction and main results

In this paper, we will use the De Giorgi truncation method [16] to study the local
behaviour of solutions for a class of nonlinear elliptic and parabolic equations with
the weights comprising two power-type weights of different dimensions. For that
purpose, we should first establish the corresponding anisotropic weighted Sobolev embed-
ding theorems and Poincaré’s inequality, which are fundamental tools to investigate
relevant Sobolev spaces and partial differential equations. The former has recently
been established by Li and Yan [30], whose results improve and extend the classical
Caffarelli–Kohn–Nirenberg type inequalities in [10]. With regard to the latter, we pre-
pare to prove that this type of anisotropic weights belongs to the Muckenhoupt class
Aq under certain conditions, and then the anisotropic weighted Poincaré inequality is
obtained by utilizing the theories of Aq -weights, 1 < q <∞, see Section 2 below for the
finer details. This is another major novelty of this paper besides the regularity results with
anisotropic weights. For more relevant investigations on weighted Sobolev and Poincaré
inequalities, see [2, 3, 8, 9, 11, 14, 31, 33, 34] and the references therein.

© The Author(s), 2023. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society.

391

https://doi.org/10.1017/S0013091523000202 Published online by Cambridge University Press

mailto:miao_changxing@iapcm.ac.cn
mailto:zwzhao365@163.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091523000202&domain=pdf
https://doi.org/10.1017/S0013091523000202


392 C. Miao and Z. Zhao

The anisotropy of the weights considered in this paper comes from two power-type
weights of different dimensions. This complex weighted form will bring great difficulties
of analyses, computations and discussions in the following proofs, especially the findings
for regular indices which make this type of anisotropic weights become Aq -weights. The
mathematical formulations and main results for the considered nonlinear elliptic and
parabolic problems with anisotropic weights are, respectively, presented as follows.

1.1. The nonlinear elliptic equations with anisotropic weights

Consider a bounded smooth domain Ω ⊂ Rn with 0 ∈ Ω and n ≥ 2. With regard to
the weighted elliptic equations, we mainly study the local regularity of solution to the
following problem div(Aw|∇u|p−2∇u) = 0, in Ω,

0 ≤ u ≤M <∞, in Ω,
(1.1)

where w = |x′|θ1 |x|θ2 , the values of θ1 and θ2 are assumed in the following theorems,
1 < p < n + θ1 + θ2, M is a given positive constant, A(x) = (aij(x))n×n is symmetric
and satisfies

λ−1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ λ|ξ|2, λ ≥ 1 for a.e. x ∈ Ω and all ξ ∈ Rn. (1.2)

Here and throughout this paper, we use superscript prime to denote (n− 1)-dimensional
variables and domains, such as x ′ and B ′. Moreover, in the following, we simplify the
notations BR(0) and B′

R(0′) as BR and B′
R, respectively, where R> 0. The prototype

equation is the anisotropic weighted p-Laplacian, that is, the equation in the case when
A = I in Equation (1.1). Remark that the origin can be called the degenerate or singular
point of the weight. For example, if θ1 > 0, θ2 > 0, then the weight w = |x′|θ1 |x|θ2 → 0
as |x| → 0, while for θ1 < 0, θ2 < 0, it blows up as |x| tends to zero. For the former, the
origin is called the degenerate point of the weight, while it is called the singular point for
the latter.

For the weighted elliptic problem (1.1), Fabes et al. [22] established the local Hölder
regularity of weak solutions under the case of θ1 = 0, θ2 > −n and p = 2. However, the
value of Hölder index α obtained in [22] is not explicit. Recently, Dong et al. [21] utilized
spherical harmonic expansion to find the exact value of index α for the solution near the
degenerate point of the weight. To be precise, for problem (1.1) with Ω replaced by BR,
R> 0, let n ≥ 2, θ1 = 0, θ2 = p = 2 and A = κ(x)I, where κ satisfies that λ−1 ≤ κ ≤ λ in
BR and

∫
Sn−1 κxi = 0, i = 1, 2, . . . , n. Based on these assumed conditions, they derived

u(x) = u(0) +O(1)|x|α, α =
−n+

√
n2 + 4λ̃1
2

in BR/2,

where O(1) represents some quantity such that |O(1)| ≤ C = C(n, λ,M), λ̃1 ≤ n − 1 is
the first non-zero eigenvalue of the following eigenvalue problem:

−divSn−1(κ(ξ)∇Sn−1u(ξ)) = λ̃κ(ξ)u(ξ), ξ ∈ Sn−1.
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In particular, λ̃1 = n − 1 if A = I. See Lemmas 2.2 and 5.1 in [21] for more details. By
finding the explicit exponent α, they succeeded in solving the optimal gradient blow-up
rate for solution to the insulated conductivity problem in dimensions greater than two,
which has been previously regarded as a challenging problem. By their investigations
in [20, 21], we realize that the Hölder regularity for solutions to the weighted elliptic
problem (1.1) is in close touch with the insulated conductivity problem arising from
composite materials. Then the study on the regularity for weighted elliptic problem (1.1)
is a topic of theoretical interest and also of great relevance to applications for the insulated
composites. It is worth emphasizing that when p > 2, the exact value of index α still
remains open. In addition, with regard to the Hölder regularity for nonlinear degenerate
elliptic equations without weights, we refer to [32, 36, 38] and the references therein.

Before stating the definition of weak solution to problem (1.1), we first introduce some
notations. Throughout this paper, we will use Lp(Ω, w) and W 1,p(Ω, w) to represent
weighted Lp space and weighted Sobolev space with their norms, respectively, written as

‖u‖Lp(Ω,w) =
(∫

Ω
|u|pw dx

) 1
p ,

‖u‖W1,p(Ω,w) =
(∫

Ω
|u|pw dx

) 1
p +

(∫
Ω
|∇u|pwdx

) 1
p .

We say that u ∈W 1,p(Ω, w) is a weak solution of problem (1.1) if∫
Ω

Aw|∇u|p−2∇u · ∇ϕdx = 0, ∀ϕ ∈W 1,p
0 (Ω, w).

For later use, we introduce the following indexing sets:

A = {(a, b) : a > −(n− 1), b ≥ 0},
B = {(a, b) : a > −(n− 1), b < 0, a+ b > −n},
Cq = {(a, b) : a < (n− 1)(q − 1), b ≤ 0}, q > 1,

Dq = {(a, b) : a < (n− 1)(q − 1), b > 0, a+ b < n(q − 1)}, q > 1,

F = {(a, b) : a+ b > −(n− 1)}.

The local behaviour of solution to problem (1.1) near the degenerate or singular point of
the anisotropic weight is captured as follows.

Theorem 1.1. For n ≥ 2, (θ1, θ2) ∈ (A∪B)∩ (Cq ∪Dq)∩F , 1 < q < p < n+ θ1 + θ2,
let u be a weak solution of problem (1.1) with Ω = B1. Then there exists a constant
0 < α < 1 depending only on n, p, q, θ1, θ2, λ, such that

u(x) = u(0) +O(1)|x|α for all x ∈ B1/2, (1.3)

where O(1) denotes some quantity satisfying that |O(1)| ≤ C = C(n, p, q, θ1, θ2, λ,M).

Remark 1.2. If the considered domain B1 is replaced with BR0
for any given R0 > 0

in Theorems 1.1 and 1.4, then by applying their proofs with minor modification, we
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obtain that Equations (1.3) and (1.4) also hold with B1/2 replaced by BR0/2
. In this

case, the constant C will depend on R0, but the index α depends not on it.

Remark 1.3. The result in Theorem 1.1 can be extended to general degenerate elliptic
equations as follows: div(G(x,∇u)) = 0, in BR0

,

0 ≤ u ≤M <∞, in BR0
,

where R0 > 0, G : BR0
×Rn → Rn is a Carathéodory function such that for a.e. x ∈ BR0

and any ξ ∈ Rn, there holds

λ−1w(x)|ξ|p ≤ G(x, ξ) · ξ, |G(x, ξ)| ≤ λw(x)|ξ|p−1, w(x) = |x′|θ1 |x|θ2 .

Here λ ≥ 1, (θ1, θ2) ∈ (A ∪ B) ∩ (Cq ∪ Dq) ∩ F , 1 < q < p < n+ θ1 + θ2. In fact, it only
needs to slightly modify the proof of Lemma 3.1 below for the purpose of achieving this
generalization.

When θ1 = 0, the above weight becomes a single power-type weight. In this case, we
establish the Hölder estimates as follows.

Theorem 1.4. For n ≥ 2, θ1 = 0, θ2 > −(n − 1), 1 < p < n + θ2, let u be a
bounded weak solution of problem (1.1) with Ω = B1. Then there exist a small constant
0 < α = α(n, p, θ2, λ) < 1 and a large constant 0 < C = C(n, p, θ2, λ,M) such that

|u(x) − u(y)| ≤ C|x− y|α for all x, y ∈ B1/2. (1.4)

Observe that when θ1 = 0, Equation (1.1) will become degenerate elliptic equation in
any domain away from the origin, then we can directly establish its Hölder regularity
in these regions by using the interior Hölder estimates for degenerate elliptic equation.
This, in combination with Remark 1.2 and Theorem 1.4, gives the following corollary.

Corollary 1.5. For n ≥ 2, θ1 = 0, θ2 > −(n − 1), 1 < p < n + θ2, let u be a
weak solution of problem (1.1). Then u is locally Hölder continuous in Ω, that is, for
any compact subset K ⊂ Ω, there exists two constants 0 < α = α(n, p, θ2, λ) < 1 and
C = C(dist(K, ∂Ω),dist(0, ∂Ω), n, p, θ2, λ,M) > 0 such that Equation (1.4) holds with
B1/2 replaced by K.

1.2. The nonlinear parabolic equations with anisotropic weights

Let 0 ∈ Ω ⊂ Rn, n ≥ 2, be defined as above. The second problem of interest is concerned
with studying the local regularity of solution to the weighted nonlinear parabolic equation
as follows: w1∂tu

p − div(Aw2∇u) = 0, in ΩT ,

0 < m ≤ u ≤M <∞, in ΩT ,
(1.5)
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where ΩT = Ω × (−T, 0], T > 0, w1 = |x′|θ1 |x|θ2 , w2 = |x′|θ3 |x|θ4 , p ≥ 1, the ranges of
θi , i = 1, 2, 3, 4 are prescribed in the following theorems, m and M are two given positive
constants, the symmetric matrix A = (aij(x))n×n satisfies the uniformly elliptic condition
in Equation (1.2). When θi = 0, i = 1, 2, 3, 4, and A = I, Equation (1.5) becomes fast
diffusion equation, whose relevant mathematical problem is modeled by


∂tu

p − ∆u = 0, in Ω × (0,∞),

u = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0.

(1.6)

In physics, Equation (1.6) can be used to describe fast diffusion phenomena occurring in
gas kinetics, plasmas and thin liquid film dynamics. For more related applications and
physical explanations, see [15, 39] and the references therein.

For problem (1.6), it is well known that when u0(x) 6≡ 0, there exists a finite extinction
time T ∗ > 0 such that u(·, t) ≡ 0 in Ω if t ∈ [T ∗,∞) and u(·, t) > 0 in Ω if t ∈ (0, T ∗).
This, together with the continuity of u (see Chen-DiBenedetto [12]), indicates that for
any U ⊂⊂ Ω × (0, T ∗), there exist two positive constants m and M such that 0 < m ≤
u ≤M <∞ for (x, t) ∈ U . This fact motivates our investigation on the local regularity of
weak solution for the corresponding weighted problem (1.5). In particular, it can be called
the weighted fast diffusion equation when A = I in Equation (1.5). For the fast diffusion
problem (1.6), the regularity of solution and its asymptotic behaviour near extinction
time have been extensively studied, for example, see [7, 12, 15, 17–19, 27–29, 35] for the
regularity and [1, 4–6, 23] for the extinction behaviour, respectively. In particular, Jin
and Xiong recently established a priori Hölder estimates for the solution to a weighted
nonlinear parabolic equation in Theorem 3.1 of [28], which is critical to the establishment
of optimal global regularity for fast diffusion equation with any 1 < p <∞. Their results
especially answer the regularity problem proposed by Berryman and Holland [4]. It is
worth pointing out that the degeneracy of weight in [28] is located at the boundary. By
contrast, the degeneracy or singularity of the weights considered in this paper lies in
the interior. This will lead to some distinct differences in terms of the establishments
of Hölder estimates under these two cases. Moreover, since the weights considered in
this paper take more sophisticated forms comprising two power-type weights of different
dimensions, it greatly increases the difficulties of analyses and calculations. With regard
to the regularity for weighted parabolic problem in the case when p = 1 in Equation (1.5),
we refer to [13, 25, 37] and the references therein.

The weighted Lp space and weighted Sobolev spaces with respect to space variable have
been defined above. Similarly, for a weight w, let W 1,p(ΩT , w) represent the corresponding
weighted Sobolev spaces in (x, t) with its norm given by

‖u‖W1,p(ΩT ,w) =

(∫
ΩT

|u|pw dx dt

) 1
p

+

(∫
ΩT

(|∂tu|p + |∇u|p)w dx dt

) 1
p

.
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We say that u ∈W 1,2(ΩT , w2) is a weak solution of problem (1.5) if∫ t2

t1

∫
Ω

(w1∂tu
pϕ+Aw2∇u∇ϕ) dx dt = 0

for any −T ≤ t1 < t2 ≤ 0 and ϕ ∈ C1(ΩT ), which vanishes on ∂Ω × (−T, 0).
Introduce the following index conditions:

(S1) let n ≥ 4 and 1 + 2/(n− 1) < q < 2, if (θ1, θ2) ∈ (A ∪ B) ∩ Cq;
(S2) let n ≥ 3 and 1 + 2/n < q < 2, if (θ1, θ2) ∈ A ∩ Dq.

For the local behaviour of solution to problem (1.5), we have

Theorem 1.6. Suppose that p ≥ 1, (θ1, θ2) satisfies condition (S1) or (S2), (θ3, θ4) ∈
A ∪ B, θ1 + θ2 ≥ θ3 + θ4 = 2, θ1/θ3 = θ2/θ4, θ3, θ4 6= 0. Let u be a weak solution
of problem (1.5) with Ω × (−T, 0] = B1 × (−1, 0]. Then there exists a small constant
0 < α = α(n, p, q, θ1, θ2, θ3, λ,m,M) < 1 such that for any t0 ∈ (−1/4, 0),

u(x, t) = u(0, t0) +O(1)
(
|x| + θ1+θ2

√
|t− t0|

)α
, ∀(x, t) ∈ B1/2 × (−1/4, t0], (1.7)

where O(1) satisfies that |O(1)| ≤ C = C(n, p, q, θ1, θ2, θ3, λ,m,M).

Remark 1.7. We provide here explanations for the index conditions (S1) and (S2).
Observe that if (θ1, θ2) ∈ Cq, 1 < q < 2 and θ1 + θ2 ≥ 2, then we have (n− 1)(q− 1) > 2,
which requires that n ≥ 4 and q > 2/(n − 1) + 1. Similarly, if (θ1, θ2) ∈ Dq, 1 < q < 2
and θ1 + θ2 ≥ 2, it requires that n ≥ 3 and q > 2/n+ 1.

Remark 1.8. For any fixed R0 > 0, let BR0
× (−Rθ1+θ2

0 , 0] substitute for B1× (−1, 0]
in Theorems 1.6 and 1.9. Then applying their proofs with a slight modification, we
derive that Equations (1.7)–(1.8) still hold with t0 ∈ (−1/4, 0), B1/2 × (−1/4, t0] and

B1/2 × (−1/4, 0) replaced by t0 ∈ (−Rθ1+θ2
0 /4, 0), BR0/2

× (−Rθ1+θ2
0 /4, t0] and BR0/2

×
(−Rθ2

0 /4, 0), respectively. A difference lies in that the constant C will depend on R0, but
not on α.

In the case of θ1 = θ3 = 0, w1 and w2 become single power-type weight. Then we have

Theorem 1.9. For p ≥ 1, n ≥ 2, θ1 = θ3 = 0, θ2 ≥ θ4 = 2, let u be a weak solution of
problem (1.5) with Ω× (−T, 0] = B1 × (−1, 0]. Then there exist two constants 0 < α < 1
and C> 0, both depending only on n, p, θ2, λ,m,M, such that

|u(x, t) − u(y, s)| ≤ C
(
|x− y| + θ2

√
|t− s|

)α
(1.8)

for any (x, t), (y, s) ∈ B1/2 × (−1/4, 0).

When θ1 = θ3 = 0 and θ2 ≥ θ4 = 2, Equation (1.5) will be uniformly parabolic in
any domain away from the origin. Then we can directly use the interior Hölder estimates
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for uniformly parabolic equation to obtain its Hölder regularity in these regions. This,
together with Remark 1.8 and Theorem 1.9, leads to the following corollary.

Corollary 1.10. For p ≥ 1, n ≥ 2, θ1 = θ3 = 0, θ2 ≥ θ4 = 2, let u be a weak solution of
problem (1.5). Then u is locally Hölder continuous in Ω×(−T, 0), that is, for any compact
subset K ⊂ Ω×(−T, 0), there exist a small constant 0 < α = α(n, p, θ2, λ,m,M) < 1 and
a large constant C = C(dist(K, ∂(Ω × (−T, 0))),dist(0, ∂Ω), n, p, θ2, λ,m,M) > 0 such
that Equation (1.8) holds with K substituting for B1/2 × (−1/4, 0).

The rest of this paper is organized as follows. In § 2, we establish the anisotropic
weighted Poincaré type inequality and its corresponding isoperimetric inequality. Then
we make use of the De Giorgi truncation method [16] to study the local regularity for
solutions to the nonlinear elliptic and parabolic equations with anisotropic weights in § 3
and § 4, respectively.

2. Anisotropic weighted Poincaré inequality and its application to the

isoperimetric inequality

As pointed out in the introduction, this section is devoted to establishing the anisotropic
weighted Poincaré-type inequality. It will be achieved by proving that w = |x′|θ1 |x|θ2
is an Aq -weight under the condition (θ1, θ2) ∈ (A ∪ B) ∩ (Cq ∪ Dq), see Theorem 2.6
and Corollary 2.8 below. As a consequence, we derive the isoperimetric inequality of De
Giorgi type, which is critical to application for the De Giorgi truncation method in [16].

Denote by ωn the volume of unit ball in Rn. In this section, we employ the notation
a ∼ b to represent that there exists a constant C = C(n, θ1, θ2) > 0 such that 1

C b ≤ a ≤
Cb. To begin with, we have

Lemma 2.1. dµ := wdx = |x′|θ1 |x|θ2 dx is a Radon measure if (θ1, θ2) ∈ A ∪ B.
Moreover, µ(BR) ∼ Rn+θ1+θ2 for any R> 0.

Proof. It suffices to verify that the weight w is a locally integrable function in Rn

under these above cases. Specifically, it only needs to prove that for any r > 0, there
holds µ(Br) <∞. Recall the following elemental inequalities: for a, b ≥ 0,aq+bq

2 ≤ (a+ b)q ≤ aq + bq, 0 ≤ q ≤ 1,

aq + bq ≤ (a+ b)q ≤ 2q−1(aq + bq), q > 1.
(2.1)

Step 1. Consider the case when θ2 ≥ 0. Then we have from Equation (2.1) that

µ(Br) =2

∫
Br∩{xn>0}

|x′|θ1 |x|θ2 dx ∼
∫
B′
r

|x′|θ1 dx′
∫ √

r2−|x′|2

0

(
|x′|θ2 + x

θ2
n

)
dxn

∼
∫ r

0

(
sn+θ1+θ2−2

(
r2 − s2

) 1
2 + sn+θ1−2

(
r2 − s2

) θ2+1
2

)
ds

∼ rn+θ1+θ2

∫ 1

0

(
sn+θ1+θ2−2 (1 − s)

1
2 + sn+θ1−2 (1 − s)

θ2+1
2

)
ds.
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Observe that this type of integration is called Beta function. It makes sense if and only
if n+ θ1 + θ2 − 1 > 0 and n+ θ1 − 1 > 0. Then the conclusion is proved in the case when
(θ1, θ2) ∈ A.
Step 2. Consider θ2 < 0. Then it follows from Equation (2.1) that

µ(Br) =2

∫
Br∩{xn>0}

|x′|θ1 |x|θ2 dx

∼
∫
B′
r

|x′|θ1 dx′
∫ √

r2−|x′|2

0

1

|x′|−θ2 + x
−θ2
n

dxn. (2.2)

For the last integration term in Equation (2.2), we further split it as follows:

I1 =

∫
B′

1√
2
r

|x′|θ1 dx′
∫ |x′|

0

1

|x′|−θ2 + x
−θ2
n

dxn,

I2 =

∫
B′

1√
2
r

|x′|θ1 dx′
∫ √

r2−|x′|2

|x′|

1

|x′|−θ2 + x
−θ2
n

dxn,

I3 =

∫
B′
r\B′

1√
2
r

|x′|θ1 dx′
∫ √

r2−|x′|2

0

1

|x′|−θ2 + x
−θ2
n

dxn.

Observe that |x′|−θ2 ≤ |x′|−θ2 + x
−θ2
n ≤ 2|x′|−θ2 if 0 ≤ xn ≤ |x′|. Then for the first term

I 1, we have

I1 ∼
∫
B′

1√
2
r

|x′|θ1 dx′
∫ |x′|

0

|x′|θ2 dxn ∼
∫ r√

2

0

sn+θ1+θ2−1 ds

∼rn+θ1+θ2

∫ 1

0

sn+θ1+θ2−1 ds.

This integration makes sense iff n+ θ1 + θ2 > 0.
With regard to the second term I 2, we divide it into two cases to discuss as follow.
Case 1. If θ2 = −1, then

I2 ∼
∫
B′

1√
2
r

|x′|θ1 dx′
∫ √

r2−|x′|2

|x′|
x−1
n dxn ∼

∫ r√
2

0

sn+θ1−2 ln

√
r2 − s2

s
ds

∼ rn+θ1−1

∫ 1√
2

0

sn+θ1−2 ln

√
1 − s2

s
ds ∼ −rn+θ1−1

∫ 1√
2

0

sn+θ1−2 ln s ds
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∼− rn+θ1+θ2

(
sn+θ1+θ2 ln s

∣∣∣ 1√
2

0
−
∫ 1√

2

0

sn+θ1+θ2−1 ds

)
.

It makes sense iff n+ θ1 + θ2 > 0.
Case 2. If θ2 6= −1, then

I2 ∼
∫
B′

1√
2
r

|x′|θ1 dx′
∫ √

r2−|x′|2

|x′|
x
θ2
n dxn

∼
∫ 1√

2
r

0

sn+θ1−2

((
r2 − s2

) θ2+1
2 − sθ2+1

)
ds

∼ rn+θ1+θ2

∫ 1√
2

0

sn+θ1−2

((
1 − s2

) θ2+1
2 − sθ2+1

)
ds.

Note that min{1, 2−
θ2+1

2 } ≤ |(1 − s2)
θ2+1

2 | ≤ max{1, 2−
θ2+1

2 } in [0, 1√
2
]. Then it makes

sense iff θ1 > −(n− 1) and n+ θ1 + θ2 > 0.
The last term I 3 remains to be analyzed. Note that |x′| ≥

√
r2 − |x′|2 ≥ xn if 1√

2
r ≤

|x′| ≤ r and 0 ≤ xn ≤
√
r2 − |x′|2. Then we deduce

I3 ∼
∫
B′
r\B′

1√
2
r

|x′|θ1 dx′
∫ √

r2−|x′|2

0

|x′|θ2 dxn

∼
∫ r

1√
2
r

sn+θ1+θ2−2
√
r2 − s2 ds ∼ rn+θ1+θ2

∫ 1

1√
2

sn+θ1+θ2−2
√

1 − s2 ds

∼rn+θ1+θ2 ,

where we used the fact that the integrand sn+θ1+θ2
√

1 − s2 has no singular point in
[ 1√

2
, 1]. Consequently, combining these above facts, we obtain that if (θ1, θ2) ∈ B, then

dµ is a Radon measure. The proof is complete. �

Definition 2.2. A Radon measure dµ is called doubling if there exists some constant
0 < C <∞ such that µ(B2R(x̄)) ≤ Cµ(BR(x̄)) for any x̄ ∈ Rn and R> 0.

Theorem 2.3. The Radon measure dµ = wdx is doubling if (θ1, θ2) ∈ A ∪ B.

Remark 2.4. w = |x′|θ1 |x|θ2 degenerates to be an isotropic weight if θ1 = 0. In this
case, it is doubling if θ2 > −n. Its proof is simple and direct, see pages 505–506 in [24] for
more details. By contrast, it will involve complex analyses, computations and discussions
if θ1 6= 0.

Proof. For any x̄ ∈ Rn and R> 0, we divide all balls BR(x̄) into two types as follows:
the first type satisfies |x̄| ≥ 3R and the second type satisfies |x̄| < 3R.
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Step 1. Consider the case when |x̄| ≥ 3R. Observe that

∫
BR(x̄)

|x′|θ1 |x|θ2 dx ≥

(|x̄| −R)θ2
∫
BR(x̄)

|x′|θ1 dx, if θ2 ≥ 0,

(|x̄| +R)θ2
∫
BR(x̄)

|x′|θ1 dx, if θ2 < 0,
(2.3)

and

∫
B2R(x̄)

|x′|θ1 |x|θ2 dx ≤

(|x̄| + 2R)θ2
∫
B2R(x̄)

|x′|θ1 dx, if θ2 ≥ 0,

(|x̄| − 2R)θ2
∫
B2R(x̄)

|x′|θ1 dx, if θ2 < 0.
(2.4)

On one hand, we have∫
BR(x̄)

|x′|θ1 dx =2

∫
B′
R
(x̄′)

|x′|θ1
√
R2 − |x′ − x̄′|2 dx′ ≥

√
3R

∫
B′
R/2

(x̄′)
|x′|θ1 dx′.

Observe that |x′|θ1 increases radially if θ1 ≥ 0, while it decreases radially for θ1 < 0.
Then we obtain that

(i) for |x̄′| ≥ 3
2R, then

∫
B′
R/2

(x̄′)
|x′|θ1 dx′ ≥ωn−1

(
R

2

)n−1
(|x̄′| −R/2)

θ1 , if θ1 ≥ 0,

(|x̄′| +R/2)
θ1 , if θ1 < 0;

(ii) for |x̄′| < 3
2R, then

∫
B′
R/2

(x̄′)
|x′|θ1 dx′ ≥


∫
B′
R/2

(0′) |x
′|θ1 dx′, if θ1 ≥ 0,∫

B′
R/2

(
3
2R

x̄′
|x̄′|

) |x′|θ1 dx′, if θ1 < 0

≥ωn−1R
n−1+θ1


n−1

2n−1+θ1(n−1+θ1)
, if θ1 ≥ 0,

1
2n−1 , if θ1 < 0.

On the other hand, we have∫
B2R(x̄)

|x′|θ1 dx =2

∫
B′
2R

(x̄′)
|x′|θ1

√
4R2 − |x′ − x̄′|2 dx′

≤4R

∫
B′
2R

(x̄′)
|x′|θ1 dx′. (2.5)

By the same argument as above, we deduce that
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(1) for |x̄′| ≥ 3R, then

∫
B′
2R

(x̄′)
|x′|θ1 dx′ ≤ωn−1(2R)n−1

(|x̄′| + 2R)
θ1 , if θ1 ≥ 0,

(|x̄′| − 2R)
θ1 , if θ1 < 0;

(2.6)

(2) for |x̄′| < 3R, then∫
B′
2R

(x̄′)
|x′|θ1 dx′ ≤

∫
B′
5R

(0′)
|x′|θ1 dx′ =

(n− 1)ωn−1

n− 1 + θ1
(5R)n−1+θ1 . (2.7)

Note that if θ1 ≥ 0, then|x̄′| + 2R ≤ 2(|x̄′| −R/2), for |x̄′| ≥ 3R,

R < |x̄′| −R/2 < 5R/2, for 3R/2 < |x̄′| < 3R,

while, if θ1 < 0,|x̄′| − 2R ≥ 2
7 (|x̄′| +R/2), for |x̄′| ≥ 3R,

2R < |x̄′| +R/2 < 7R/2, for 3R/2 < |x̄′| < 3R.

Then combining these above facts, we obtain∫
B2R(x̄)

|x′|θ1 dx ≤ C(n, θ1, θ2)

∫
BR(x̄)

|x′|θ1 dx. (2.8)

Since |x̄| ≥ 3R, then |x̄| + 2R ≤ 4(|x̄ − R|) and |x̄| + R ≤ 4(|x̄| − 2R). This, in
combination with Equations (2.3)–(2.8), reads that for |x̄| ≥ 3R,∫

B2R(x̄)

|x′|θ1 |x|θ2 dx ≤ C(n, θ1, θ2)

∫
BR(x̄)

|x′|θ1 |x|θ2 dx. (2.9)

Step 2. Let |x̄| < 3R. Then we have∫
B2R(x̄)

|x′|θ1 |x|θ2 dx ≤
∫
B5R(0)

|x′|θ1 |x|θ2 dx ≤ C(n, θ1, θ2)Rn+θ1+θ2 .

First, if θ1 < 0, then∫
BR(x̄)

|x′|θ1 |x|θ2 ≥
∫
BR(x̄)

|x|θ1+θ2 dx

≥


∫
BR(0)

|x|θ1+θ2 dx, if θ2 ≥ −θ1,∫
BR

(
3R x̄

|x̄|

) |x|θ1+θ2 dx, if θ2 < −θ1
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≥Rn+θ1+θ2

 nωn
n+θ1+θ2

, if θ2 ≥ −θ1,

2θ1+θ2ωn, if θ2 < −θ1,

where we utilized the fact that |x|θ1+θ2 is radially increasing if θ1 + θ2 ≥ 0 and radially
decreasing if θ1 + θ2 < 0.

Second, if θ1 ≥ 0, we discuss as follows:

(i) for θ2 ≥ 0, similarly as before, we have∫
BR(x̄)

|x′|θ1 |x|θ2 dx ≥
∫
BR(x̄)

|x′|θ1+θ2 dx ≥
√

3R

∫
B′
R
(x̄′)

|x′|θ1+θ2 dx′

≥
∫
B′
R
(0′)

|x′|θ1+θ2 dx′ =
(n− 1)ωn−1

n+ θ1 + θ2 − 1
Rn+θ1+θ2 ;

(ii) for θ2 < 0, then

∫
BR(x̄)

|x′|θ1 |x|θ2 dx =

∫
BR(x̄)

|x′|θ1+θ2

(
|x′|
|x|

)−θ2

dx

≥ 8θ2

2θ1+θ2
Rθ1+θ2

∫
BR(x̄)∩{|x′|>R/2}

dx

≥ 8θ2

2θ1+θ2
Rθ1+θ2

∫
BR(0)∩{|x′|>R/2}

dx

≥8θ2(ωn − 22−nωn−1)

2θ1+θ2
Rn+θ1+θ2 .

Then combining these aforementioned facts, we obtain that Equation (2.9) also
holds if |x̄| < 3R. The proof is complete.

�

Definition 2.5. Let 1 < q <∞. We say that w is an Aq-weight, if there is a positive
constant C = C(n, q, w) such that

–

∫
B

w dx

(
–

∫
B

w
− 1

q−1 dx

)q−1

≤ C(n, q, w), with –

∫
B

=
1

|B|

∫
B

for any ball B in Rn.

Theorem 2.6. Let 1 < q <∞. If (θ1, θ2) ∈ (A ∪ B) ∩ (Cq ∪ Dq), then w = |x′|θ1 |x|θ2
is an Aq-weight.

Remark 2.7. From Theorems 2.3 and 2.6, we see that the Radon measure dµ =
w dx = |x′|θ1 |x|θ2 dx is doubling on a larger range (θ1, θ2) ∈ A ∪ B. This implies that
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when (θ1, θ2) ∈ (A ∪ B) \ (Cq ∪ Dq), the weight w = |x′|θ1 |x|θ2 provides an example of a
doubling measure but is not in Aq .

Proof. For 1 < q <∞, according to the definition of Aq -weight, it needs to verify the
following inequality:

–

∫
B

w dx

(
–

∫
B

w
− 1

q−1 dx

)q−1

≤ C(n, q, θ1, θ2) (2.10)

for any ball B ⊂ Rn. For any R> 0 and x̄ ∈ Rn, the ball BR(x̄) must belong to one of
the following two types: |x̄| ≥ 3R and |x̄| < 3R. On the one hand, if |x̄| ≥ 3R, then we
have

2

3
|x̄| ≤ |x̄| −R ≤ |x| ≤ |x̄| +R ≤ 4

3
|x̄|, for x ∈ BR(x̄). (2.11)

Applying Equations (2.4)–(2.7) with B2R(x̄) and B′
2R(x̄′) replaced by BR(x̄) and B′

R(x̄′),
it follows from Equation (2.11) that∫

BR(x̄)

|x′|θ1 |x|θ2 dx ≤C(θ2)|x̄|θ2
∫
BR(x̄)

|x′|θ1 dx ≤ C(θ2)|x̄|θ2+1

∫
B′
R
(x̄′)

|x′|θ1 dx′

≤C(n, θ1, θ2)|x̄|n+θ1+θ2

and ∫
BR(x̄)

|x′|−
θ1
q−1 |x|−

θ2
q−1 dx ≤C(q, θ2)|x̄|−

θ2
q−1

∫
BR(x̄)

|x′|−
θ1
q−1 dx

≤C(q, θ2)|x̄|−
θ2
q−1+1

∫
B′
R
(x̄′)

|x′|−
θ1
q−1 dx′

≤C(n, q, θ1, θ2)|x̄|n−
θ1+θ2
p−1 ,

where we require that −(n− 1) < θ1 < (n− 1)(q − 1) and θ2 ∈ R. Combining these two
relations, we obtain that Equation (2.10) holds in the case of |x̄| ≥ 3R.

On the other hand, if |x̄| < 3R, we have |x| ≤ 4R for x ∈ BR(x̄). Therefore, it follows
from Lemma 2.1 that

–

∫
BR(x̄)

|x′|θ1 |x|θ2 dx ≤ 4n–

∫
B4R(0)

|x′|θ1 |x|θ2 dx ≤ C(n, θ1, θ2)Rθ1+θ2

and (
–

∫
BR(x̄)

|x′|−
θ1
q−1 |x|−

θ2
q−1 dx

)q−1

≤4n(q−1)

(
–

∫
B4R(0)

|x′|−
θ1
q−1 |x|−

θ2
q−1 dx

)q−1

≤C(n, q, θ1, θ2)R−θ1−θ2 ,
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where these two relations hold if (θ1, θ2), (− θ1
q−1 ,−

θ2
q−1 ) ∈ A ∪ B, that is, (θ1, θ2) ∈

(A ∪ B) ∩ (Cq ∪ Dq). Therefore, Equation (2.11) holds for any B ⊂ Rn. The proof is
complete. �

Denote dµ := w dx = |x′|θ1 |x|θ2 dx. Combining Theorem 15.21 and Corollary 15.35
in [26] and Theorem 2.6 above, we obtain the following anisotropic weighted Poincaré
inequality.

Corollary 2.8. For n ≥ 2 and 1 < q <∞, let (θ1, θ2) ∈ [(A∪B)∩ (Cq ∪Dq)]∪ {θ1 =
0, θ2 > −n}. Then for any B := BR(x̄) ⊂ Rn, R> 0 and ϕ ∈W 1,q(B,w),∫

B

|ϕ− ϕB |q dµ ≤ C(n, q, θ1, θ2)Rq

∫
B

|∇ϕ|q dµ, (2.12)

where ϕB = 1
µ(B)

∫
B
ϕ dµ.

Remark 2.9. It is worth emphasizing that according to Corollary 15.35 in [26],
Equation (2.12) holds for any (θ1, θ2) ∈ {θ1 = 0, θ2 > −n} and 1 < q < ∞. This
conclusion is very strong, which is achieved by combining the theories of Aq -weights and
quasiconformal mappings; see Chapter 15 of [26] for further details.

Making use of the anisotropic weighted Poincaré inequality in Corollary 2.8, we can
establish the corresponding weighted isoperimetric inequality of De Giorgi type as follows.

Proposition 2.10. For n ≥ 2 and 1 < q <∞, let (θ1, θ2) ∈ [(A∪B)∩(Cq∪Dq)]∪{θ1 =
0, θ2 > −n}. Then for any R> 0, l> k and u ∈W 1,q(BR, w),

(l − k)q

(∫
{u≥l}∩BR

dµ

)q ∫
{u≤k}∩BR

dµ

≤ C(n, q, θ1, θ2)Rq(n+θ1+θ2+1)

∫
{k<u<l}∩BR

|∇u|q dµ (2.13)

and

(l − k)q

(∫
{u≤k}∩BR

dµ

)q ∫
{u≥l}∩BR

dµ

≤ C(n, q, θ1, θ2)Rq(n+θ1+θ2+1)

∫
{k<u<l}∩BR

|∇u|q dµ, (2.14)

where dµ = w dx = |x′|θ1 |x|θ2 dx.

Remark 2.11. Since the index q > 1, we have to establish two isoperimetric inequali-
ties in Proposition 2.10, which are used to capture the decaying rates of the distribution
function in Lemmas 3.4 and 4.5 below. Meanwhile, it also causes more complex
calculations in the proofs of Lemmas 3.4 and 4.5.
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Proof. Step 1. Set

u1 = inf{u, l} − inf{u, k}, ū1 =
1

µ(BR)

∫
BR

u1 dµ.

First, we have

∫
{u1=0}∩BR

ūq1 dµ =
1

(µ(BR))q

(∫
BR

u1 dµ

)q ∫
{u≤k}∩BR

dµ

≥ C(l − k)q

Rq(n+θ1+θ2)

(∫
{u≥l}∩BR

dµ

)q ∫
{u≤k}∩BR

dµ.

Second, it follows from Corollary 2.8 that∫
{u1=0}∩BR

|ū1|q dµ ≤
∫
BR

|u1 − ū1|q dµ ≤ CRq

∫
BR

|∇u1|q dµ

=CRq

∫
{k<u<l}∩BR

|∇u|q dµ.

The proof of Equation (2.13) is finished.
Step 2. Denote

u2 = sup{u, l} − sup{u, k}, ū2 =

∫
BR

u2 dµ

|BR|µ
.

By the same argument as before, we have

∫
{u2=0}∩BR

ūq2 dµ =
1

(µ(BR))q

(∫
BR

u2 dµ

)q ∫
{u≥l}∩BR

dµ

≥ C(l − k)q

Rq(n+θ1+θ2)

(∫
{u≤k}∩BR

dµ

)q ∫
{u≥l}∩BR

dµ

and ∫
{u2=0}∩BR

|ū2|q dµ ≤
∫
BR

|u2 − ū2|q dµ ≤ CRq

∫
BR

|∇u2|q dµ

=CRq

∫
{k<u<l}∩BR

|∇u|q dµ.

The proof is complete. �
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3. Regularity for solutions to degenerate elliptic equations with anisotropic

weights

Throughout this section, denote dµ := w dx = |x′|θ1 |x|θ2 dx. The first step is to establish
a Caccioppoli inequality for the truncated solution.

Lemma 3.1. Let u be the solution of problem (1.1). Then for any non-negative η ∈
C∞

0 (BR(x0)) with any BR(x0) ⊂ B1,∫
BR(x0)

|∇(vη)|pw dx ≤ C(n, p, λ)

∫
BR(x0)

|∇η|p|v|pw dx,

where v = (u− k)+ or (u− k)− with k ≥ 0.

Proof. First, pick test function ϕ = vηp if v = (u− k)+. Since

0 =

∫
BR(x0)

Aw|∇u|p−2∇u · ∇ϕ =

∫
BR(x0)

Aw|∇v|p−2∇v · ∇ϕ,

then it follows from Young’s inequality that

λ

∫
BR(x0)

|∇v|pηpw dx

≤
∫
BR(x0)

Aw|∇v|pηp = −p
∫
BR(x0)

Aw|∇v|p−2∇v · ∇ηvηp−1

≤ pλ

∫
BR(x0)

|η∇v|p−1|v∇η|w dx

≤ λ

2

∫
BR(x0)

|∇v|pηpw dx+ C

∫
BR(x0)

|v|p|∇η|pw dx, (3.1)

which yields that∫
BR(x0)

|∇(vη)|pw dx ≤2p−1

∫
BR(x0)

(
|η∇v|p + |v∇η|p

)
w dx

≤C
∫
BR(x0)

|∇η|p|v|pw dx.

Second, choose test function ϕ = −vη2 if v = (u− k)−. Then we have

0 =

∫
BR(x0)

Aw|∇u|p−2∇u · ∇ϕ = −
∫
BR(x0)

Aw|∇v|p−2∇v · ∇ϕ.

Therefore, in exactly the same way to Equation (3.1), we obtain that Lemma 3.1
holds. �
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We now improve the oscillation of the solution u in a small domain provided that u is
small on a large portion of a larger domain.

Lemma 3.2. Assume that n ≥ 2, (θ1, θ2) ∈ (A ∪ B) ∩ F , 1 < p < n + θ1 + θ2. For
R ∈ (0, 1), let 0 ≤ m ≤ inf

BR

u ≤ sup
BR

u ≤ M ≤ M . Then there exists a small constant

0 < τ0 = τ0(n, p, θ1, θ2, λ) < 1 such that for any ε> 0 and 0 < τ < τ0,

(a) if

|{x ∈ BR : u > M − ε}|µ ≤ τ |BR|µ, (3.2)

then

u ≤M − ε

2
, for x ∈ BR/2; (3.3)

(b) if

|{x ∈ BR : u < m+ ε}|µ ≤ τ |BR|µ,

then

u ≥ m− ε

2
, for x ∈ BR/2. (3.4)

Remark 3.3. The assumed condition in Equation (3.2) is natural, since

|{x ∈ BR : u > M − ε}|µ → 0, as ε→ 0.

This fact also implies that the value of τ can be chosen to satisfy that τ → 0, as ε → 0.
Then the key to applying Lemma 3.2 lies in making clear the dependency between τ and
ε in condition (3.2). The purpose will be achieved by establishing the explicit decaying
estimates in terms of the distribution function of u in Lemma 3.4 below.

Proof. Step 1. For ε> 0 and i = 0, 1, 2, . . . , let

ri =
R

2
+

R

2i+1
, ki = M − ε+

ε

2
(1 − 2−i).

Take a cutoff function ηi ∈ C∞
0 (Bri

), satisfying that ηi = 1 in Bri+1
, 0 ≤ ηi ≤ 1,

|∇ηi| ≤ C(ri − ri+1)−1 in Bri
. For k ∈ [m,M ] and ρ ∈ (0, R], write vi = (u − ki)

+ and
A(k, ρ) = {x ∈ Bρ : u > k}. By Theorem 1.1 in [30], we have the following anisotropic
Caffarelli–Kohn–Nirenberg type inequality:

‖u‖
L

(n+θ1+θ2)p
n+θ1+θ2−p (BR,w)

≤ C(n, p, θ1, θ2)‖∇u‖Lp(BR,w), ∀u ∈W 1,p
0 (BR, w),
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which, together with Lemma 3.1, reads that

(∫
BR

|ηivi|pχw dx

) 1
χ

≤ C

∫
BR

|vi|p|∇ηi|pw dx, χ =
n+ θ1 + θ2

n+ θ1 + θ2 − p
.

Since ∫
BR

|vi|p|∇ηi|pw dx ≤ C(M − ki)
p

(ri − ri+1)p
|A(ki, ri)|µ

and (∫
BR

|ηivi|pχw dx

) 1
χ

≥ (ki+1 − ki)
p|A(ki+1, ri+1)|

1
χ
µ ,

it then follows that there exists a positive constant i0 = i0(n, p, θ1, θ2) > 0 such that for
i ≥ i0,

|A(ki+1, ri+1)|µ
|BR|µ

≤(C22p(i+2))χR(θ1+θ2+n)(χ−1)−pχ

(
|A(ki, ri)|µ

|BR|µ

)χ

=(C22p(i+2))χ
(
|A(ki, ri)|µ

|BR|µ

)χ

≤
i∏

s=0

(C22p(i+2−s))χ
s+1

(
|A(k0, r0)|µ

|BR|µ

)χi+1

≤(C∗)i+1

(
|A(k0, r0)|µ

|QR|µ

)χ(i+1)

.

Fix τ0 = (C∗)−χ. Then we deduce that for any ε> 0 and 0 < τ < τ0, if Equation (3.2)
holds, then

|A(ki+1, ri+1)|µ
|BR|µ

≤ (C∗τχ)i+1 =

(
τ

τ0

)χ(i+1)

→ 0, as i→ ∞.

Hence, Equation (3.3) is proved.
Step 2. Similarly as above, set

ri =
R

2
+

R

2i+1
, k̃i = m+ ε− ε

2
(1 − 2−i), i ≥ 0.

For k ∈ [m,M ] and ρ ∈ (0, R], let ṽi = (u− k̃i)
− and Ã(k, ρ) = {x ∈ Bρ : u < k}. Then

applying the proof of Equation (3.3) with minor modification, we obtain that Equation
(3.4) also holds. The proof is finished. �
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The decaying estimates for the distribution function of the solution u are established
as follows.

Lemma 3.4. Suppose that n ≥ 2, (θ1, θ2) ∈ [(A∪ B) ∩ (Cq ∪Dq) ∩ F ] ∪ {θ1 = 0, θ2 >
−(n−1)}, 1 < q < p < n+ θ1 + θ2, 0 < γ < 1, 0 < R < 1

2 and 0 ≤ m ≤ inf
B2R

u ≤ sup
B2R

u ≤

M . Then for any ε> 0,

(a) if

|{x ∈ BR : u > M − ε}|µ
|BR|µ

≤ 1 − γ, (3.5)

then for any j ≥ 1,

|{x ∈ BR : u > M − ε

2j
}|µ

|BR|µ
≤ C

q
√
γj

p−q
pq

; (3.6)

(b) if

|{x ∈ BR : u < m+ ε}|µ
|BR|µ

≤ 1 − γ, (3.7)

then for any j ≥ 1,

|{x ∈ BR : u < m+ ε

2j
}|µ

|BR|µ
≤ C

q
√
γj

p−q
pq

,

where C = C(n, p, q, θ1, θ2, λ).

Proof. Step 1. For i ≥ 0, let ki = M − ε
2i

and A(ki, R) = BR ∩ {u > ki}. From

Equation (2.13), we know that for q > 1,

(ki+1 − ki)
q|A(ki+1, R)|qµ|BR \A(ki, R)|µ

≤ CRq(n+θ1+θ2+1)

∫
A(ki,R)\A(ki+1,R)

|∇u|qw dx. (3.8)

Using Equation (3.5), we have

|BR \A(ki, R)|µ ≥ γ|BR|µ = C(n, θ1, θ2)γRn+θ1+θ2 .

This, together with Equation (3.8), shows that

|A(ki+1, R)|µ ≤ C2i+1

ε q
√
γ
R

(n+θ1+θ2)(q−1)
q +1

(∫
A(ki,R)\A(ki+1,R)

|∇u|qw dx

)1
q

.
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Since 1 < q < p < n+ θ1 + θ2, we then have from Hölder’s inequality that∫
A(ki,R)\A(ki+1,R)

|∇u|qw dx

≤

(∫
A(ki,R)\A(ki+1,R)

|∇u|pw dx

) q
p
(∫

A(ki,R)\A(ki+1,R)

w dx

)p−q
p

≤

(∫
BR

|∇(u− ki)
+|pw dx

) q
p
(∫

A(ki,R)\A(ki+1,R)

w dx

)p−q
p

.

Choose a cutoff function η ∈ C∞
0 (B2R) satisfying that

η = 1 in BR, 0 ≤ η ≤ 1, |∇η| ≤ C(n)

R
in B2R. (3.9)

It then follows from Lemma 3.1 that(∫
BR

|∇(u− ki)
+|pw dx

) 1
p

≤ C

(∫
B2R

|(u− ki)
+|p|∇η|pw dx

) 1
p

≤ Cε

2i
R

n+θ1+θ2−p
p .

A combination of these above facts shows that

|A(ki+1, R)|µ ≤ C
q
√
γ
R(n+θ1+θ2)(1−

p−q
pq )|A(ki, R) \A(ki+1, R)|

p−q
pq

µ .

This leads to that for j ≥ 1,

j|A(kj , R)|
pq
p−q
ν ≤

j−1∑
i=0

|A(ki+1, R)|
pq
p−q
µ ≤ C

γ
p

p−q
R

(n+θ1+θ2)
(

pq
p−q−1

)
|BR|µ

≤ C

γ
p

p−q
|BR|

pq
p−q
µ .

Then Equation (3.6) is proved.
Step 2. For i ≥ 0, denote k̃i = m+ ε

2i
and Ã(ki, R) = BR∩{u < ki}. In light of Equation

(2.14), we see that for q > 1,

(k̃i − k̃i+1)q|Ã(k̃i+1, R)|qµ|BR \ Ã(k̃i, R)|µ

≤ CRq(n+θ1+θ2+1)

∫
Ã(k̃i,R)\Ã(k̃i+1,R)

|∇u|qw dx.

From Equation (3.7), we have

|BR \ Ã(k̃i, R)|µ ≥ γ|BR|µ = C(n, θ1, θ2)γRn+θ1+θ2 .

https://doi.org/10.1017/S0013091523000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000202


Local regularity for nonlinear elliptic and parabolic equations 411

Hence, we obtain

|Ã(k̃i+1, R)|µ ≤ C2i+1

ε q
√
γ
R

(n+θ1+θ2)(q−1)
q +1

(∫
Ã(k̃i,R)\Ã(k̃i+1,R)

|∇u|qw dx

)1
q

.

Analogously as before, it follows from Hölder’s inequality and Lemma 3.1 that for
1 < q < p < n+ θ1 + θ2(∫

Ã(k̃i,R)\Ã(k̃i+1,R)

|∇u|qw dx

)1
q

≤

(∫
Ã(k̃i,R)\Ã(k̃i+1,R)

|∇u|pw dx

) 1
p
(∫

Ã(k̃i,R)\Ã(k̃i+1,R)

w dx

)p−q
pq

≤

(∫
BR

|∇(u− k̃i)
−|pw dx

) 1
p
(∫

Ã(k̃i,R)\Ã(k̃i+1,R)

w dx

)p−q
pq

≤ C

(∫
B2R

|(u− k̃i)
−|p|∇η|pw dx

) 1
p

|Ã(k̃i, R) \ Ã(k̃i+1, R)|
p−q
pq

µ

≤ Cε

2i
R

n+θ1+θ2−p
p |Ã(k̃i, R) \ Ã(k̃i+1, R)|

p−q
pq

µ ,

where η is given by Equation (3.9). Then we obtain

|Ã(k̃i+1, R)|µ ≤ C
q
√
γ
R(n+θ1+θ2)(1−

p−q
pq )|Ã(k̃i, R) \ Ã(k̃i+1, R)|

p−q
pq

µ ,

and thus,

j|Ã(k̃j , R)|
pq
p−q
ν ≤

j−1∑
i=0

|Ã(k̃i+1, R)|
pq
p−q
µ ≤ C

γ
p

p−q
R

(n+θ1+θ2)
(

pq
p−q−1

)
|BR|µ

≤ C

γ
p

p−q
|BR|

pq
p−q
µ for j ≥ 1.

The proof is complete. �

A combination of Lemmas 3.2 and 3.4 yields the following improvement on oscillation
of u in a small domain.

Corollary 3.5. Assume that n ≥ 2, (θ1, θ2) ∈ [(A∪B)∩(Cq∪Dq)∩F ]∪{θ1 = 0, θ2 >
−(n−1)}, 1 < q < p < n+ θ1 + θ2, 0 < γ < 1, 0 < R < 1

2 and 0 ≤ m ≤ inf
B2R

u ≤ sup
B2R

u ≤

M . Then there exists a large constant k0 > 1 depending only on n, p, q, θ1, θ2, λ, γ such
that for any ε> 0,
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(i) if

|{x ∈ BR : u > M − ε}|µ
|BR|µ

≤ 1 − γ,

then

sup
BR/2

u ≤M − ε

2k0
;

(ii) if

|{x ∈ BR : u < m+ ε}|µ
|BR|µ

≤ 1 − γ,

then

inf
BR/2

u ≥ m+
ε

2k0
.

Proof. Applying Lemmas 3.2 and 3.4, we obtain that Corollary 3.5 holds. In par-
ticular, in the case of θ1 = 0, θ2 > −(n − 1), 1 < p < n + θ2, we fix q = p+1

2 in
Lemma 3.4. �

We are now ready to prove Theorems 1.1 and 1.4, respectively.

Proof of Theorem 1.1. For 0 < R ≤ 1
2 , denote

µ(R) = sup
BR

u, µ(R) = inf
BR

u, ω(R) = µ(R) − µ(R).

Note that one of the following two statements must hold: either

|{x ∈ BR : u > µ(R) − 2−1ω(R)}|µ ≤ 1

2
|BR|µ (3.10)

or

|{x ∈ BR : u < µ(R) + 2−1ω(R)}|µ ≤ 1

2
|BR|µ. (3.11)

Using Corollary 3.5 with γ = 1
2 , we derive that there is a large constant k0 > 1 such that

µ(R/2) ≤ µ(R) − ω(R)

2k0+1
, when Equation (3.10) holds

and

µ(R/2) ≥ µ(R) +
ω(R)

2k0+1
, when Equation (3.11) holds.
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In either case, we have

ω(R/2) ≤
(

1 − 1

2k0+1

)
ω(R) =

1

2α
ω(R), with α = −

ln
(
1 − 1

2k0+1

)
ln 2

.

Observe that for each 0 < R ≤ 1
2 , there exists an integer l ≥ 1 such that 2−(l+1) < R ≤

2−l. Since ω(R) is non-decreasing with respect to R, we then have

ω(R) ≤ ω(2−l) ≤ 2−(l−1)αω(2−1) = 4α2−(l+1)αω(2−1) ≤ CRα,

where C = C(n, p, q, θ1, θ2, λ,M). The proof is complete. �

Proof of Theorem 1.4. First, by applying the proof of Theorem 1.1 with a slight
modification, we also obtain that there exist a small constant 0 < α = α(n, p, θ2, λ) < 1
and a large constant C = C(n, p, θ2, λ,M) > 0 such that

|u(x) − u(0)| ≤ C|x|α for all x ∈ B1/2. (3.12)

For R ∈ (0, 1/2), y ∈ Q1/R, denote

uR(y) = u(Ry), AR(y) = A(Ry).

Hence, uR is the solution of

div(AR|y|θ2∇uR) = 0 in Q1/R.

After the change of variables, we see that this equation becomes degenerate elliptic equa-
tion in B1/2(ȳ) for any ȳ ∈ ∂B1. For any two given points x, x̃ ∈ B1/2, let |x̃| ≤ |x|
without loss of generality. Denote R = |x|. By the interior Hölder estimate for degenerate
elliptic equation, we derive that there exist two constants 0 < β = β(n, p, θ2, λ) < 1 and
0 < C = C(n, p, θ2, λ,M) such that for any ȳ ∈ ∂B1,

|uR(y) − uR(ȳ)| ≤ C|y − ȳ|β , ∀y ∈ B1/2(ȳ). (3.13)

Consequently, for |x− x̃| ≤ R2, we have from Equation (3.13) that

|u(x) − u(x̃)| = |uR(x/R) − uR(x̃/R)| ≤ C|(x− x̃)/R|β ≤ C|x− x̃|β/2,

while, for |x− x̃| > R2, we deduce from Equation (3.12) that

|u(x) − u(x̃)| ≤|u(x) − u(0)| + |u(0) − u(x̃)| ≤ C
(
Rα + |x̃|α

)
≤ CRα ≤ C|x− x̃|

α
2 .

Therefore, the proof of Theorem 1.4 is complete. �

https://doi.org/10.1017/S0013091523000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000202


414 C. Miao and Z. Zhao

4. Regularity for solutions to nonlinear parabolic equations with anisotropic

weights

Let n ≥ 2, R> 0 and −T ≤ t1 < t2 ≤ 0. For u ∈ C((t1, t2);L2(BR, w1)) ∩
L2((t1, t2);W 1,2

0 (BR, w2)), denote

‖u‖V 1
0 (BR×(t1,t2))

=

√
sup

t∈(t1,t2)

∫
BR

|u|2w1 dx+

∫ t2

t1

∫
BR

|∇u|2w2 dx dt,

where the anisotropic weights w1 and w2 are defined in Equation (1.5). The parabolic
Sobolev inequality with anisotropic weights is now given as follows.

Proposition 4.1. For n ≥ 2, R> 0, θ1 + θ2 > −(n − 2) and −T ≤ t1 < t2 ≤ 0, let
u ∈ C((t1, t2);L2(BR, w1)) ∩ L2((t1, t2);W 1,2

0 (BR, w2)). Then

‖u‖L2χ(BR×(t1,t2),w2)
≤ C‖u‖V 1

0 (BR×(t1,t2))
, with χ =

n+ θ1 + θ2 + 2

n+ θ1 + θ2
,

where C = C(n, θ1, θ2).

Proof. Applying the anisotropic version of the Caffarelli–Kohn–Nirenberg inequality
in [30], we obtain that for any u ∈W 1,2

0 (BR, w2),

(∫
BR

|u|
2(n+θ1+θ2)
n+θ1+θ2−2 |x′|

θ3(n+θ1+θ2)−2θ1
n+θ1+θ2−2 |x|

θ4(n+θ1+θ2)−2θ2
n+θ1+θ2−2 dx

)n+θ1+θ2−2
n+θ1+θ2

≤ C

∫
BR

|∇u|2|x′|θ3 |x|θ4 dx.

This, in combination with the Hölder’s inequality, leads to∫
BR

|u|2χ|x′|θ3 |x|θ4 dx

=

∫
BR

|u|2|x′|θ3−θ1(χ−1)|x′|θ4−θ2(χ−1)|u|2(χ−1)|x′|θ1(χ−1)|x|θ2(χ−1) dx

≤

(∫
BR

|u|
2

2−χ |x′|
θ3−θ1(χ−1)

2−χ |x|
θ4−θ2(χ−1)

2−χ dx

)2−χ(∫
BR

|u|2|x′|θ1 |x|θ2 dx

)χ−1

≤ C

∫
BR

|∇u|2|x′|θ3 |x|θ4 dx

(∫
BR

|u|2|x′|θ1 |x|θ2 dx

)χ−1

. (4.1)

Then integrating Equation (4.1) from t1 to t2, it follows from Young’s inequality that

(∫ t2

t1

∫
BR

|u|2χw2

) 1
χ

≤C

(
sup

t∈(t1,t2)

∫
BR

|u|2w1 dx

)χ−1
χ
(∫

BR

|∇u|2w2 dx

) 1
χ
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≤C

(
sup

t∈(t1,t2)

∫
BR

|u|2w1 dx+

∫ t2

t1

∫
BR

|∇u|2w2 dxdt

)
.

The proof is complete. �

The Caccioppoli inequality for the truncated solution is given as follows.

Lemma 4.2. Set m ≤ k ≤ M . Then for any BR(x0) ⊂ B1 and non-negative η ∈
C∞(BR(x0) × (−1, 0)), which vanishes on ∂BR(x0) × (−1, 0), we obtain that for −1 <
t1 < t2 < 0,

sup
t∈(t1,t2)

∫
BR(x0)

(vη)2w1 dx+

∫
BR(x0)×(t1,t2)

|∇(vη)|2w2 dx dt

≤
∫
BR(x0)

(v2 + C0v
3)η2w1 dx

∣∣∣
t1

+ C0

∫
BR(x0)×(t1,t2)

(η|∂tη|w1 + |∇η|2w2)v2 dx dt

and

sup
t∈(t1,t2)

∫
BR(x0)

(ṽ2 − C0ṽ
3)η2w1 dx+

∫
BR(x0)

|∇(ṽη)|2w2 dx dt

≤
∫
BR(x0)

(ṽη)2w1 dx
∣∣∣
t1

+ C0

∫
BR(x0)×(t1,t2)

(
η|∂tη|w1 + |∇η|2w2

)
ṽ2 dx dt,

where C0 = C0(n, p, λ,m,M), v = (u − k)+, ṽ = (u − k)−, u is the solution of
problem (1.5).

Proof. Choose test function ϕ = vη2. By denseness, we obtain that for t1 ≤ s ≤ t2,∫ s

t1

∫
BR(x0)

w1∂tu
pvη2 dx dt+

∫ s

t1

∫
BR(x0)

Aw2∇u∇(vη2) dxdt = 0.

On the one hand,∫ s

t1

∫
BR(x0)

w1∂tu
pvη2dxdt =p

∫ s

t1

∫
BR(x0)

w1vη
2up−1∂tv dxdt

=p

∫ s

t1

∫
BR(x0)

w1η
2[(v + k)p − k(v + k)p−1]∂tv dxdt

=p

∫ s

t1

∫
BR(x0)

w1η
2∂tH,

where

H :=
(v + k)p+1

p+ 1
− k(v + k)p

p
+

kp+1

p(p+ 1)
.
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Remark that the last term kp+1

p(p+1) in H is added to keep it non-negative. In fact, by Taylor

expansion, we obtain

(v + k)p+1

p+ 1
=
kp+1

p+ 1

(
1 +

v

k

)p+1

=
kp+1

p+ 1

(
1 + (p+ 1)

v

k
+
p(p+ 1)

2

v2

k2
+

(p− 1)p(p+ 1)

6

v3

k3
+O

(
v4

k4

))
,

and

k(v + k)p

p
=
kp+1

p

(
1 +

v

k

)p
=
kp+1

p

(
1 + p

v

k
+
p(p− 1)

2

v2

k2
+
p(p− 1)(p− 2)

6

v3

k3
+O

(
v4

k4

))
.

A consequence of these two relations shows that

(v + k)p+1

p+ 1
− k(v + k)p

p
= − kp+1

p(p+ 1)
+

1

2
kp−1v2 +

p− 1

3
kp−2v3 +O

(
v4

k4

)
,

which yields that

0 ≤ H− 1

2
kp−1v2 ≤ C(p,m,M)v3. (4.2)

In light of Equation (4.2), it follows from integration by parts that∫ s

t1

∫
BR(x0)

w1∂tu
pvη2 dx dt

≥ p

2
kp−1

∫
BR(x0)

w1η
2(x, s)v2(x, s) dx− p

2
kp−1

∫
BR(x0)

w1η
2(x, t1)v2(x, t1) dx

− C

∫
BR(x0)

w1η
2(x, t1)v3(x, t1) dx− C

∫ s

t1

∫
BR(x0)

w1η|∂tη|v2 dx dt.

On the other hand, utilizing Young’s inequality, we have∫
BR(x0)×(t1,s)

Aw2∇u∇(vη2) dx dt

=

∫
BR(x0)×(t1,s)

Aw2∇v(η2∇v + 2vη∇η) dx dt

≥ 1

λ

∫
BR(x0)×(t1,s)

|η∇v|2w2 dx dt− C

∫
BR(x0)×(t1,s)

vη|∇η||∇v|w2 dx dt

≥ 1

2λ

∫
BR(x0)×(t1,s)

|η∇v|2w2 dx dt− C

∫
BR(x0)×(t1,s)

v2|∇η|2w2 dx dt
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≥ 1

4λ

∫
BR(x0)×(t1,s)

|∇(ηv)|2w2 dx dt− C

∫
BR(x0)×(t1,s)

v2|∇η|2w2 dx dt,

where in the last inequality, we used the following elementary inequality:

|a− b|2 ≥ 1

2
|a|2 − |b|2 for any a, b ∈ Rn.

Therefore, the first inequality in Lemma 4.2 holds.
The proof of the second inequality in Lemma 4.2 is analogous by picking test function

ϕ = −ṽη2. Then we obtain

−
∫ s

t1

∫
BR(x0)

w1∂tu
pṽη2 =p

∫ s

t1

∫
BR(x0)

w1ṽη
2up−1 ∂tṽ

=p

∫ s

t1

∫
BR(x0)

w1η
2[−(k − ṽ)p + k(k − ṽ)p−1] ∂tṽ

=p

∫ s

t1

∫
BR(x0)

w1η
2 ∂tH̃,

where

H̃ =
(k − ṽ)p+1

p+ 1
− k(k − ṽ)p

p
+

kp+1

p(p+ 1)
.

Similarly as before, it follows from Taylor expansion that

−C(p,m,M)ṽ3 ≤ H̃ − 1

2
kp−1ṽ2 ≤ 0,

which reads that∫ s

t1

∫
BR(x0)

w1∂tu
pvη2 dx dt

≥ p

2
kp−1

∫
BR(x0)

w1η
2(x, s)ṽ2(x, s) dx− C

∫
BR(x0)

w1η
2(x, s)ṽ3(x, s) dx

− p

2
kq−1

∫
BR(x0)

w1η
2(x, t1)ṽ2(x, t1) dx− C

∫ s

t1

∫
BR(x0)

w1η|∂tη|ṽ2 dx dt.

By the same argument as before, we have

−
∫
BR(x0)×(t1,s)

Aw2∇u∇(ṽη2) dx dt =

∫
BR(x0)×(t1,s)

Aw2∇ṽ∇(ṽη2) dx dt

≥ 1

4λ

∫
BR(x0)×(t1,s)

|∇(ηṽ)|2w2 dx dt− C

∫
BR(x0)×(t1,s)

ṽ2|∇η|2w2 dx dt.

The proof is complete. �
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For R> 0 and (x0, t0) ∈ B1 × [−1 +Rθ1+θ2 , 0], denote

QR(x0, t0) := BR(x0) × (t0 −Rθ1+θ2 , t0].

For brevity, we use QR to represent QR(0, 0) in the following. Introduce two Radon
measures associated with the weights w1 and w2 as follows:

dµwi
= wi dx, dνwi

= wi dx dt, i = 1, 2,

satisfying that for E ⊂ B1 and Ẽ ⊂ Q1,

|E|µwi
=

∫
E

wi dx, |Ẽ|νwi
=

∫
Ẽ

wi dx dt.

Observe that by Hölder’s inequality, we know that for Ẽ ⊂ QR,

|Ẽ|νw2

|QR|νw2

≤ ≤
C|Ẽ|

θ3
θ1
νw1

R
(n+θ1+θ2)(θ1−θ3)

θ1

Rn+θ1+θ2+θ3+θ4
≤ C

(
|Ẽ|νw1

|QR|νw1

) θ3
θ1

, (4.3)

where C = C(n, θ1, θ2, θ3, θ4). Here we used the assumed condition that θ1/θ3 = θ2/θ4,
θ3, θ4 6= 0.

Similar to Lemma 3.2, we improve the oscillation of the solution u in a small region as
follows.

Lemma 4.3. Assume as in Theorem 1.6 or Theorem 1.9. For R ∈ (0, 1) and t0 ∈
[−1 +Rθ1+θ2 , 0], let 0 < m ≤ m ≤ inf

QR(0,t0)
u ≤ sup

QR(0,t0)

u ≤M ≤M . Then

(a) there exists a small constant 0 < τ0 = τ0(n, p, θ1, θ2, θ3, λ,m,M) < 1 such that for
any ε> 0 and 0 < τ < τ0, if

|{(x, t) ∈ QR(0, t0) : u(x, t) > M − ε}|νw1
≤ τ |QR(0, t0)|νw1

, (4.4)

then we have

u(x, t) ≤M − ε

2
for (x, t) ∈ QR/2(0, t0); (4.5)

(b) there exist two small constant 0 < ε0 = ε0(n, p, λ,m,M) < 1 and 0 < τ0 =
τ0(n, p, θ1, θ2, θ3, λ,m,M) < 1 such that for any 0 < ε ≤ ε0 and 0 < τ < τ0, if

|{(x, t) ∈ QR(0, t0) : u(x, t) < m+ ε}|νw1
≤ τ |QR(0, t0)|νw1

,

then we have

u(x, t) ≥ m− ε

2
for (x, t) ∈ QR/2(0, t0). (4.6)
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Remark 4.4. From the proof of Lemma 4.3 below, we see that the value of θ3 + θ4
has to be restricted to 2 and thus affect our final regular index in Theorems 1.6 and 1.9.

Proof. Without loss of generality, let t0 = 0.
Step 1. For ε> 0 and i = 0, 1, 2, . . . , set

ri =
R

2
+

R

2i+1
, ki = M − ε+

ε

2
(1 − 2−i).

Choose a cutoff function ηi ∈ C∞
0 (Qri

) such that

ηi = 1 in Qri+1
, 0 ≤ ηi ≤ 1, |∇ηi| ≤

C

ri − ri+1
, |∂tηi| ≤

C

r
θ1+θ2
i − r

θ1+θ2
i+1

in Qri
.

Denote vi = (u− ki)
+ and A(k, ρ) = {(x, t) ∈ Qρ : u > k} for k ∈ [m,M ] and ρ ∈ (0, R].

Then combining Proposition 4.1 and Lemma 4.2, we deduce

(∫
QR

|ηivi|2χw2

) 1
χ

≤ C

∫
QR

(
|∇ηi|2 + |∂tηi||x′|θ1−θ3 |x|θ2−θ4

)
v2iw2, (4.7)

where χ = (n+ θ1 + θ2 + 2)(n+ θ1 + θ2)−1. Note that

|∂tηi|Rθ1+θ2−θ3−θ4 ≤ CR2−θ3−θ4

(ri − ri+1)2
=

C

(ri − ri+1)2
. (4.8)

Therefore, we have∫
QR

(
|∇ηi|2 + |∂tηi||x′|θ1−θ3 |x|θ2−θ4

)
v2iw2 ≤ C(M − ki)

2

(ri − ri+1)2
|A(ki, ri)|νw2

and (∫
QR

|ηivi|2χw2 dx dt

) 1
χ

≥ (ki+1 − ki)
2|A(ki+1, ri+1)|

1
χ
νw2

.

Define

Fi :=
|A(ki, ri)|νw2

|QR|νw2

.

Then we have

Fi+1 ≤(C24(i+2))χR(n+θ1+θ2+θ3+θ4)(χ−1)−2χFχ
i

=(C24(i+2))χR
2(θ3+θ4−2)
n+θ1+θ2 Fχ

i = (C24(i+2))χFχ
i
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≤
i∏

s=0

(C24(i+2−s))χ
s+1

Fχi+1

0 . (4.9)

Observe from Equations (4.8)–(4.9) that the value of θ3 + θ4 must be chosen to be 2.
A consequence of Equations (4.3) and (4.9) shows that there exists a constant i0 =
i0(n, θ1, θ2, θ3) > 0 such that if i ≥ i0,

Fi+1 ≤ (C∗)i+1

(
|A(k0, r0)|νw1

|QR|νw1

) θ3
θ1

χi+1

≤ (C∗)i+1

(
|A(k0, r0)|νw1

|QR|νw1

) θ3
θ1

χ(i+1)

.

By taking τ0 = (C∗)
− θ1

θ3
χ
, we obtain that for any ε> 0 and 0 < τ < τ0, if Equation (4.4)

holds, then

Fi+1 ≤

(
C∗τ

θ3
θ1

χ

)i+1

=

(
τ

τ0

) θ3
θ1

χ(i+1)

→ 0 as i→ ∞.

That is, Equation (4.5) holds.
Step 2. Analogously as before, pick

ri =
R

2
+

R

2i+1
, k̃i = m+ ε− ε

2
(1 − 2−i), i ≥ 0.

Let ε0 = 1
C0

, where C 0 is given in Lemma 4.2. Denote ṽi = (u − k̃i)
−. Then we obtain

that for any 0 < ε ≤ ε0,

ṽ2i − C0ṽ
3
i ≥ (1 − C0ε)ṽ

2
i ≥ 0,

which implies that Equation (4.7) holds with v i replaced by ṽi. Then following the
left proof of Equation (4.5) above, we deduce that Equation (4.6) holds. The proof is
complete. �

The decaying estimates for the distribution function of u are stated as follows.

Lemma 4.5. Let the values of n, p, q, θi, i = 1, 2, 3, 4 be assumed in Theorem 1.6 or
Theorem 1.9 with θ3 + θ4 = 2 replaced by 0 ≤ θ3 + θ4 ≤ 2. Suppose that 0 < γ < 1,
0 < R < 1

2 , 0 < a ≤ 1, −1
2 < t0 ≤ −aRθ1+θ2 and m ≤ ma ≤ inf

B2R×[t0,t0+aRθ1+θ2 ]

u ≤

sup
B2R×[t0,t0+aRθ1+θ2 ]

u ≤Ma ≤M . Then

(a) for any ε> 0, if

|{x ∈ BR : u(x, t) > Ma − ε}|µw1

|BR|µw1

≤ 1 − γ, ∀t ∈ [t0, t0 + aRθ1+θ2 ],
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then for any j ≥ 1,

|{(x, t) ∈ BR × [t0, t0 + aRθ1+θ2 ] : u(x, t) > Ma − ε

2j
}|νw1

|BR × [t0, t0 + aRθ1+θ2 ]|νw1

≤ C

q
√
γ
√
aj

2−q
2q

; (4.10)

(b) for any 0 < ε ≤ ε0 = C−1
0 with C0 = C0(n, p, λ,m,M) given by Lemma 4.2, if

|{x ∈ BR : u(x, t) < ma + ε}|µw1

|BR|µw1

≤ 1 − γ, ∀t ∈ [t0, t0 + aRθ1+θ2 ],

then for any j ≥ 1,

|{(x, t) ∈ BR × [t0, t0 + aRθ1+θ2 ] : u(x, t) < ma + ε

2j
}|νw1

|BR × [t0, t0 + aRθ1+θ2 ]|νw1

≤ C

q
√
γ
√
aj

2−q
2q

,

where C = C(n, p, q, θ1, θ2, θ3, λ,m,M).

Remark 4.6. Since the proof of Lemma 4.5 only uses the aforementioned
Proposition 2.10 and Lemma 4.2 instead of Lemma 4.3, we can obtain a larger range
for the value of θ3 + θ4 than that in Lemma 4.3.

Proof. Step 1. For i ≥ 0, denote ki = Ma − ε
2i

and

A(ki, R; t) = BR ∩ {u(·, t) > ki}, A(ki, R) = (BR × [t0, t0 + aRθ1+θ2 ]) ∩ {u > ki}.

It then follows from Equation (2.13) that for 1 < q < 2,

(ki+1 − ki)
q|A(ki+1, R; t)|qµw1

|BR \A(ki, R; t)|µw1

≤ CRq(n+θ1+θ2+1)

∫
A(ki,R;t)\A(ki+1,R;t)

|∇u|qw1 dx. (4.11)

From the assumed condition, we have

|BR \A(ki, R; t)|µw1
≥ γ|BR|µw1

= C(n, θ1)γRn+θ1+θ2 .

Substituting this into Equation (4.11) and integrating from t0 to t0+aRθ1+θ2 , we deduce
from Hölder’s inequality that

∫ t0+aRθ1+θ2

t0

|A(ki+1, R; t)|µw1
dt

≤ C2i+1

ε q
√
γ
R

(n+θ1+θ2)(q−1)
q +1

∫ t0+aRθ1+θ2

t0

(∫
A(ki,R;t)\A(ki+1,R;t)

|∇u|qw1 dx

)1
q

dt
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≤ C2i+1a
q−1
q

ε q
√
γ

R
(n+2θ1+2θ2)(q−1)

q +1

(∫
A(ki,R)\A(ki+1,R)

|∇u|qw1 dx dt

) 1
q

.

In light of 1 < q < 2, it follows from Hölder’s inequality again that

(∫
A(ki,R)\A(ki+1,R)

|∇u|qw1

) 1
q

≤

(∫
A(ki,R)\A(ki+1,R)

|∇u|2w2

)1
2
(∫

A(ki,R)\A(ki+1,R)

|x′|
2θ1−qθ3

2−q |x|
2θ2−qθ4

2−q

)2−q
2q

≤ R
θ1+θ2−θ3−θ4

2 |A(ki, R) \A(ki+1, R)|
2−q
2q

νw1

(∫
BR×[t0,t0+aRθ1+θ2 ]

|∇(u− ki)
+|2w2

) 1
2

.

Pick a cutoff function η ∈ C∞
0 (B2R) such that

η = 1 in BR, 0 ≤ η ≤ 1, |∇η| ≤ C(n)

R
in B2R. (4.12)

Then from Lemma 4.2, we deduce

(∫
BR×[t0,t0+aRθ1+θ2 ]

|∇(u− ki)
+|2w2

) 1
2

≤ C

(∫
B2R

|(u− ki)
+(x, t0)|2w1 +

1

R2

∫
B2R×[t0,t0+aRθ1+θ2 ]

|(u− ki)
+|2w2

)1
2

≤ Cε

2i
R

n+θ1+θ2+θ3+θ4−2
2 ,

where in the last inequality, we used the assumed condition that 0 ≤ θ3 + θ4 ≤ 2.
Therefore, combining these above facts, we obtain

|A(ki+1, R)|νw1
≤Ca

q−1
q

q
√
γ

R
(n+2θ1+2θ2)(3q−2)

2q |A(ki, R) \A(ki+1, R)|
2−q
2q

νw1
,

which yields that for j ≥ 1,

j|A(kj , R)|
2q
2−q
νw1

≤
j−1∑
i=0

|A(ki+1, R)|
2q
2−q
νw1

≤Ca
2(q−1)
2−q

γ
2

2−q

R
(n+2θ1+2θ2)(3q−2)

2−q |BR × [t0, t0 + aRθ1+θ2 ]|νw1
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≤ C

γ
2

2−q a
q

2−q

|BR × [t0, t0 + aRθ1+θ2 ]|
2q
2−q
νw1

.

Then Equation (4.10) holds.
Step 2. For i ≥ 0, write

k̃i = ma +
ε

2i

and

Ã(ki, R; t) = BR ∩ {u(·, t) < ki}, Ã(ki, R) = (BR × [t0, t0 + aRθ1+θ2 ]) ∩ {u < ki}.

Using Equation (2.14), we obtain that for 1 < q < 2,

(k̃i − k̃i+1)q|Ã(k̃i+1, R; t)|qµw1
|BR \ Ã(k̃i, R; t)|µw1

≤ CRq(n+θ1+θ2+1)

∫
Ã(k̃i,R;t)\Ã(k̃i+1,R;t)

|∇u|qw1 dx.

Observe by the assumed condition that

|BR \ Ã(k̃i, R; t)|µw1
≥ γ|BR|µw1

= C(n, θ1, θ2)γRn+θ1+θ2 .

Analogously as above, integrating from t0 to t0 + aRθ1+θ2 and using Hölder’s inequality,
we have∫ t0+aRθ1+θ2

t0

|Ã(k̃i+1, R; t)|µw1
dt

≤ C2i+1a
q−1
q

ε q
√
γ

R
(n+2θ1+2θ2)(q−1)

q +1

(∫
Ã(k̃i,R)\Ã(k̃i+1,R)

|∇u|qw1 dx dt

)1
q

and∫
Ã(k̃i,R)\A(k̃i+1,R)

|∇u|qw1

≤

(∫
Ã(k̃i,R)\Ã(k̃i+1,R)

|∇u|2w2

) q
2
(∫

Ã(k̃i,R)\Ã(k̃i+1,R)

|x′|
2θ1−qθ3

2−q |x|
2θ2−qθ4

2−q

)2−q
2

≤ R
q(θ1+θ2−θ3−θ4)

2 |Ã(k̃i, R) \ Ã(k̃i+1, R)|
2−q
2q

νw1

(∫
BR×[t0,t0+aRθ1+θ2 ]

|∇(u− k̃i)
−|2w2

) q
2

.

For any 0 < ε ≤ ε0 = C−1
0 with C 0 given in Lemma 4.2, we know that

[(u− k̃i)
−]2 − C0[(u− k̃i)

−]3 ≥ (1 − C0ε)[(u− k̃i)
−]2 ≥ 0.
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Therefore, in view of 0 ≤ θ3+θ4 ≤ 2 and applying Lemma 4.2 with η defined by Equation
(4.12), we derive

∫
BR×[t0,t0+aRθ1+θ2 ]

|∇(u− k̃i)
−|2w2

≤ C

(∫
B2R

|(u− k̃i)
−(x, t0)|2w1 +

1

R2

∫
BR×[t0,t0+aRθ1+θ2 ]

|(u− k̃i)
−|2w2

)

≤ Cε2

4i
Rn+θ1+θ2+θ3+θ4−2.

Then we deduce

|Ã(k̃i+1, R)|
2q
2−q
νw1

≤Ca
2(q−1)
2−q

γ
2

2−q

R
(n+2θ1+2θ2)(3q−2)

2−q |Ã(k̃i, R) \ Ã(k̃i+1, R)|νw1
.

This leads to that for j ≥ 1,

j|Ã(k̃j , R)|
2q
2−q
νw1

≤
j−1∑
i=0

|Ã(k̃i+1, R)|
2q
2−q
νw1

≤Ca
2(q−1)
2−q

γ
2

2−q

R
(n+2θ1+2θ2)(3q−2)

2−q |BR × [t0, t0 + aRθ1+θ2 ]|νw1

≤ C

γ
2

2−q a
q

2−q

|BR × [t0, t0 + aRθ1+θ2 ]|
2q
2−q
νw1

.

The proof is complete. �

We now give explicit estimates for the distribution function of u at each time slice
from the starting time.

Lemma 4.7. Assume as in Theorem 1.6 or Theorem 1.9. Let 0 < γ < 1, 0 < R < 1
2 ,

− 1
2 < t0 ≤ −Rθ1+θ2 and m ≤ m1 ≤ inf

B2R×[t0,t0+Rθ1+θ2 ]

u ≤ sup
B2R×[t0,t0+Rθ1+θ2 ]

u ≤

M1 ≤ M . Then there exist a small constant ε̄0 = ε̄0(n, p, θ1, θ2, λ, γ,m,M) > 0 and a
large constant l̄0 = l̄0(n, p, q, θ1, θ2, θ3, λ, γ,m,M) > 1 such that

(i) for every 0 < ε ≤ ε̄0, if

|{x ∈ BR : u(x, t0) > M1 − ε}|µw1

|BR|µw1

≤ 1 − γ, (4.13)
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then for any t0 ≤ t ≤ t0 +Rθ1+θ2 ,

|{x ∈ BR : u(x, t) > M1 − 2−l0ε}|µw1

|BR|µw1

≤ 1 − γ

2
; (4.14)

(ii) for every 0 < ε ≤ ε̄0, if

|{x ∈ BR : u(x, t0) < m1 + ε}|µw1

|BR|µw1

≤ 1 − γ, (4.15)

then for any t0 ≤ t ≤ t0 +Rθ1+θ2 ,

|{x ∈ BR : u(x, t) < m1 + 2−l0ε}|µw1

|BR|µw1

≤ 1 − γ

2
. (4.16)

Remark 4.8. It is worth emphasizing that the explicit values of ε̄0 and l̄0 are given
by Equations (4.20) and (4.22) below.

Proof. Step 1. For a ∈ (0, 1] and k ∈ [m,M ], define

Aa(k,R) = (BR × [t0, t0 + aRθ1+θ2 ]) ∩ {u > k}.

Take a smooth cutoff function η ∈ C∞
0 (BR) satisfying that η= 1 in BσR, where σ ∈ (0, 1)

to be determined later. Set k1 > 1. Denote v = (u − (M1 − ε))+. From Lemma 4.2, we
obtain

sup
t∈(t0,t0+aRθ1+θ2)

∫
BR

v2η2w1 dx

≤
∫
BR

(v2 + Cv3)η2w1 dx
∣∣
t0

+ C

∫
BR×[t0,t0+aRθ1+θ2 ]

v2|∇η|2w2 dx dt. (4.17)

Observe that for t ∈ [t0, t0 + aRθ1+θ2 ],∫
BR

v2η2w1 dx
∣∣
t
≥ ε2(1 − 2−k1)2|BσR ∩ {u(x, t) > M1 − 2−k1ε}|µw1

,

and by Equation (4.13),∫
BR

(v2 + Cv3)η2w1 dx
∣∣
t0

≤ε2(1 + Cε)|{x ∈ BR : u(x, t0) > M1 − ε}|µw1

≤ε2(1 + Cε)(1 − γ)|BR|µw1
,

and ∫ t0+aRθ1+θ2

t0

∫
BR

v2|∇η|2w2 dx dt ≤ Cε2

(1 − σ)2R2
|Aa(M1 − ε,R)|νw2
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≤Cε
2Rθ3+θ4−2

(1 − σ)2
|BR|µw1

|Aa(M1 − ε,R)|νw2

|QR|νw2

=
Cε2

(1 − σ)2
|BR|µw1

|Aa(M1 − ε,R)|νw2

|QR|νw2

,

where we utilized the assumed condition of θ3 + θ4 = 2. A consequence of these facts
gives that for t ∈ [t0, t0 + aRθ1+θ2 ],

|BσR ∩ {u(x, t) > M1 − 2−k1ε}|µw1

≤ |BR|µw1

(
(1 + Cε)(1 − γ)

(1 − 2−k1)2
+

C

(1 − σ)2
|Aa(M1 − ε,R)|νw2

|QR|νw2

)
,

which, together with the fact that |BR \BσR|µw1
≤ C(1 − σ)|BR|µw1

, reads that

|BR ∩ {u(x, t) > M1 − 2−k1ε}|µw1

|BR|µw1

≤ (1 + Cε)(1 − γ)

(1 − 2−k1)2
+

C

(1 − σ)2

(
(1 − σ)3 +

|Aa(M1 − ε,R)|νw2

|QR|νw2

)
.

Pick σ such that

(1 − σ)3 =
|Aa(M1 − ε,R)|νw2

|QR|νw2

,

which yields that for t ∈ [t0, t0 + aRθ1+θ2 ],

|BR ∩ {u(x, t) > M1 − 2−k1ε}|µw1

|BR|µw1

≤ (1 + Cε)(1 − γ)

(1 − 2−k1)2
+ C

( |Aa(M1 − ε,R)|νw2

|QR|νw2

) 1
3

, (4.18)

where C = C(n, p, θ1, θ2, λ,m,M). Note that

|Aa(M1 − ε,R)|νw2

|QR|νw2

≤ a.

Take a small positive constant a such that a−1 is an integer and

Ca
1
3 ≤ γ

8
.

By fixing the value of a, we now divide the time interval [t0, t0 +Rθ1+θ2 ] into finite small
intervals. Denote N = a−1 and ti = t0 + iaRθ1+θ2 , i = 1, 2, . . . , N.
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Claim that there exist a small positive constant ε̄0 and a large positive constant k0 > 1
depending only on n, p, θ1, θ2, λ, γ,m,M such that for any 0 < ε ≤ ε̄0 and k1 ≥ k0,

(1 + Cε)(1 − γ)

(1 − 2−k1)2
≤ 1 − γ +

γ

8N
. (4.19)

In fact, since (1 − t)−2 ≤ (1 + 6t) for t ∈ (0, 12 ), then

1 + Cε

(1 − 2−k1)2
≤ (1 + Cε)(1 + 6 · 2−k1).

Let Cε = 6 · 2−k1 . Then we have

1 + Cε

(1 − 2−k1)2
≤ 1 + 2Cε+ C

2
ε2.

Pick

ε̄0 =
−2C +

√
4C

2
+ γ

2N(1−γ)

2C
2 , k0 = − ln 2

ln(Cε̄0) − ln 6
. (4.20)

Then we obtain that for any 0 < ε ≤ ε̄0 and k1 ≥ k0,

1 + Cε

(1 − 2−k1)2
≤1 + 2Cε̄0 + C

2
ε̄20 = 1 +

γ

8N(1 − γ)
.

That is, Equation (4.19) holds.
Consequently, it follows from Equation (4.18) that for 0 < ε ≤ ε̄0, k1 ≥ k0 and

t ∈ [t0, t1],

|BR ∩ {u(x, t) > M1 − 2−k1ε}|µw1

|BR|µw1

≤ 1 −
(

7

8
− 1

8N

)
γ.

Then applying Lemma 4.5, we deduce from Equation (4.3) that for any k2 > k1 ≥ k0,

|Aa(M1 − 2−k2ε,R)|νw2

|QR|νw2

≤C

(
|Aa(M1 − 2−k2ε,R)|νw1

|QR|νw1

) θ3
θ1

≤Ĉ

 √
a

q
√
γ(k2 − k1)

2−q
2q


θ3
θ1

,
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where Ĉ = Ĉ(n, p, q, θ1, θ2, θ3, λ,m,M). Pick

k2 = k1 + a
q

2−q γ
− 2

2−q

(
γ

8NC
3
√
Ĉ

)− 6θ1q
θ3(2−q)

.

Then we have

C

(
|Aa(M1 − 2−k2ε,R)|νw2

|QR|νw2

) 1
3

≤ γ

8N
. (4.21)

Choose k1 = k0 and l1 = k1 + k2. By letting 2−k2ε substitute for ε in Equation (4.18),
we have

sup
t∈[t0,t1]

|BR ∩ {u(x, t) > M1 − 2−l1ε}|µw1
≤
(

1 − γ +
γ

4N

)
|BR|µw1

.

Then it can be inductively proved that there exist a strictly increasing integer set {li}Ni=1

such that for i = 1, 2, . . . , N ,

sup
t∈[ti−1,ti]

|BR ∩ {u(x, t) > M1 − 2−liε}|µw1
≤
(

1 − γ +
iγ

4N

)
|BR|µw1

.

In fact, let the above relation hold in interval [ti−1, ti] and then prove that it also holds
in the next interval [ti, ti+1]. For simplicity, denote εi = 2−liε and γi = γ(1− i

4N ). Then
the assumption implies that

|BR ∩ {u(x, ti) > M1 − εi}|µw1
≤ (1 − γi)|BR|µw1

.

By the same argument as in Equation (4.18), it follows from Equations (4.19)–(4.21) that
for k̄1 ≥ k0 and t ∈ [ti, ti+1],

|BR ∩ {u(x, t) > M1 − 2−k̄1εi}|µw1

|BR|µw1

≤ (1 + Cεi)(1 − γi)

(1 − 2−k̄1)2
+ C

( |Aa(M1 − εi, R)|νw2

|QR|νw2

) 1
3

≤ 1 − γi +
γi

8N
+ C

( |Aa(M1 − 2−liε,R)|νw2

|QR|νw2

)1
3

≤ 1 − γi +
γi

8N
+

γ

8N

< 1 − γ +
i+ 1

4N
γ,
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where C = C(n, p, θ1, θ2, λ,m,M) is defined above and in the third inequality, we used
the fact that li ≥ l1 > k2. By taking k̄1 = k0 and li+1 = li + k̄1, we obtain

sup
t∈[ti,ti+1]

|BR ∩ {u(x, t) > M1 − 2−li+1ε}|µw1
≤
(

1 − γ +
(i+ 1)γ

4N

)
|BR|µw1

.

Then picking

l̄0 :=lN = l1 + (N − 1)k0

=(N + 1)k0 + +a
q

2−q γ
− 2

2−q

(
γ

8NC
3
√
Ĉ

)− 6θ1q
θ3(2−q)

, (4.22)

we obtain that Equation (4.14) holds.
Step 2. For 0 < a ≤ 1 and m ≤ k ≤M , let

Ãa(k,R) = (BR × [t0, t0 + aRθ1+θ2 ]) ∩ {u < k}.

Define ṽ = (u− (m1 + ε))−. A direct application of Lemma 4.2 gives that

sup
t∈(t0,t0+aRθ1+θ2)

∫
BR

(ṽ2 − C0ṽ
3)η2w1 dx

≤
∫
BR

ṽ2η2w1 dx
∣∣
t0

+ C0

∫
BR×[t0,t0+aRθ1+θ2 ]

ṽ2|∇η|2w2 dx dt,

where C0 = C0(n, p, λ,m,M) and η is defined in Equation (4.17). Pick a small constant
0 < ε̄1 ≤ (2C0)−1, which implies that 1 − C0ε̄1 ≥ 1

2 . Then we obtain that for t0 < t <
t0 + aRθ1+θ2 , 0 < ε ≤ ε̄0 and k1 > 1,∫

BR

(ṽ2 − C0ṽ
3)η2w1 dx

∣∣
t
≥ (1 − C0ε)ε

2(1 − 2−k1)2|BσR ∩ {u(x, t) < m1 + 2−k1ε}|µw1
,

and in view of Equation (4.15),∫
BR

ṽ2η2w1 dx
∣∣
t0

≤ε2|{x ∈ BR : u(x, t0) < m1 + ε}|µw1
≤ ε2(1 − γ)|BR|µw1

,

and∫
BR×[t0,t0+aRθ1+θ2 ]

ṽ2|∇η|2w2 dxdt ≤ Cε2

(1 − σ)2R2
|Ãa(m1 + ε,R)|νw2

≤Cε
2Rθ3+θ4−2

(1 − σ)2
|BR|µw1

|Ãa(m1 + ε,R)|νw2

|QR|νw2
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=
Cε2

(1 − σ)2
|BR|µw1

|Ãa(m1 + ε,R)|νw2

|QR|νw2

.

Therefore, we deduce that for t0 ≤ t ≤ t0 + aRθ1+θ2 ,

|BσR ∩ {u(x, t) < m1 + 2−k1ε}|µw1

≤ |BR|µw1

(
1 − γ

(1 − Cε)(1 − 2−k1)2
+

C

(1 − σ)2
|Ãa(m1 + ε,R)|νw2

|QR|νw2

)

≤ |BR|µw1

(
(1 + Cε)(1 − γ)

(1 − 2−k1)2
+

C

(1 − σ)2
|Ãa(m1 + ε,R)|νw2

|QR|νw2

)
,

and thus,

|BR ∩ {u(x, t) < m1 + 2−k1ε}|µw1

|BR|µw1

≤ (1 + Cε)(1 − γ)

(1 − 2−k1)2
+

C

(1 − σ)2

(
(1 − σ)3 +

|Ãa(m1 + ε,R)|νw2

|QR|νw2

)
.

Take σ such that

(1 − σ)3 =
|Ãa(m1 + ε,R)|νw2

|QR|νw2

.

Then we obtain that for t0 ≤ t ≤ t0 + aRθ1+θ2 ,

|BR ∩ {u(x, t) < m1 + 2−k1ε}|µw1

|BR|µw1

≤ (1 + Cε)(1 − γ)

(1 − 2−k1)2
+ C

( |Ãa(m1 + ε,R)|νw2

|QR|νw2

) 1
3

,

where C = C(n, p, θ1, θ2, λ,m,M). Consequently, by the same argument as in the left
proof of Equation (4.14) above, we deduce that Equation (4.16) holds. The proof is
complete. �

A consequence of Lemmas 4.3, 4.5 and 4.7 gives the improvement on oscillation of u
in a small region.

Corollary 4.9. Assume as in Theorem 1.6 or Theorem 1.9. Let 0 < γ < 1, 0 < R < 1
2 ,

− 1
4 < t0 ≤ 0 and m ≤ m ≤ inf

B2R×[t0−Rθ1+θ2 ,t0]

u ≤ sup
B2R×[t0−Rθ1+θ2 ,t0]

u ≤M ≤M . Then

there exist a small constant ε̃0 = ε̃0(n, p, θ1, θ2, λ, γ,m,M) > 0 and a large constant
l0 = l0(n, p, q, θ1, θ2, θ3, λ, γ,m,M) > 1 such that for any 0 < ε ≤ ε̃0,
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(i) if

|{x ∈ BR : u(x, t0 −Rθ1+θ2) > M − ε}|µw1

|BR|µw1

≤ 1 − γ,

then

sup
QR/2(0,t0)

u ≤M − ε

2l0
;

(ii) if

|{x ∈ BR : u(x, t0 −Rθ1+θ2) < m+ ε}|µw1

|BR|µw1

≤ 1 − γ,

then

inf
QR/2(0,t0)

u ≥ m+
ε

2l0
.

Proof. Applying Lemma 4.3, Lemma 4.5 with a = 1 and Lemma 4.7, we obtain
that Corollary 4.9 holds. In particular, we fix q = 3

2 under the assumed conditions in
Theorem 1.9. �

Based on these above facts, we now give the proofs of Theorems 1.6 and 1.9,
respectively.

Proof of Theorem 1.6. Pick a sufficiently large constant κ0 ≥ 2 such that

M −m

κ0
< ε̃0,

where ε̃0 is given by Corollary 4.9 with γ = 1
2 . For 0 < R ≤ 1

2 and −1
4 < t0 < 0, define

µ(R) = sup
(x,t)∈QR(0,t0)

u(x, t), µ(R) = inf
(x,t)∈QR(0,t0)

u(x, t), ω(R) = µ(R) − µ(R).

Observe that there is at least one inequality holding in terms of the following two
inequalities:

|{x ∈ BR/2 : u(x, t0 − (R/2)θ1+θ2) > µ(R) − κ−1
0 ω(R)}|µw1

≤ 1

2
|BR/2|µw1

, (4.23)

and

|{x ∈ BR/2 : u(x, t0 − (R/2)θ1+θ2) < µ(R) + κ−1
0 ω(R)}|µw1

≤ 1

2
|BR/2|µw1

. (4.24)
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From Corollary 4.9, it follows that there exists a large constant l0 > 1 such that

µ(R/4) ≤ µ(R) − ω(R)

κ02l0
if Equation (4.23) holds,

and

µ(R/4) ≥ µ(R) +
ω(R)

κ02l0
if Equation (4.24) holds.

In both cases, we have

ω(R/4) ≤
(

1 − 1

κ02l0

)
ω(R) =

1

4α
ω(R), with α = −

ln
(
1 − 1

κ02
l0

)
ln 4

.

Note that for any 0 < R ≤ 1
2 , there is an integer k such that 4−(k+1) ·2−1 < R ≤ 4−k ·2−1.

In light of the fact that ω(R) is non-decreasing in R, it follows that

ω(R) ≤ ω(4−k · 2−1) ≤ 4−kαω(2−1) = 8α(4−(k+1) · 2−1)αω(2−1) ≤ CRα,

where C = C(n, p, q, θ1, θ2, θ3, λ,m,M). Therefore, for any (x, t) ∈ B1/2 × (−1/4, t0), we
obtain that

(i) if |t− t0| ≤ 2−(θ1+θ2), then

|u(x, t) − u(0, t0)| ≤|u(x, t) − u(x, t0)| + |u(x, t0) − u(0, t0)|

≤ C

(
|t− t0|

α
θ1+θ2 + |x|α

)
≤C

(
|x| + |t− t0|

1
θ1+θ2

)α

;

(ii) if |t− t0| > 2−(θ1+θ2), there exists a set {ti}Ni=1 such that t < t1 ≤ · · · ≤ tN < t0,

|u(x, t) − u(0, t0)| ≤|u(x, t) − u(x, t1)| + |u(x, t1) − u(x, t0)| + |u(x, t0) − u(0, t0)|

≤C
(
|t− t1|

α
θ1+θ2 + |t1 − t0|

α
θ1+θ2 + |x|

α
θ1+θ2

)
≤C

(
|x| + |t− t0|

1
θ1+θ2

)α

if N = 1,

and

|u(x, t) − u(0, t0)|

≤ |u(x, t) − u(x, t1)| +
N−1∑
i=1

|u(x, ti) − u(x, ti+1)|
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+ |u(x, tN ) − u(x, t0)| + |u(x, t0) − u(0, t0)|

≤ C

(
|t− t1|

α
θ1+θ2 +

N−1∑
i=1

|ti − ti+1|
α

θ1+θ2 + |tN − t0|
α

θ1+θ2 + |x|
α

θ1+θ2

)

≤ C

(
|x| + |t− t0|

1
θ1+θ2

)α

if N ≥ 2.

The proof is complete.

�

Proof of Theorem 1.9. To begin with, applying the aforementioned proof of
Theorem 1.6 with minor modification, we also obtain that there exists a small constant
0 < α < 1 and a large constant C > 0, both depending only on n, p, θ2, λ,m,M, such
that for any t0 ∈ (−1/4, 0),

|u(x, t) − u(0, t0)| ≤ C
(
|x| + θ2

√
|t− t0|

)α
, ∀(x, t) ∈ B1/2 × (−1/4, t0]. (4.25)

For R ∈ (0, 1/2), (y, s) ∈ Q1/R, define

uR(y, s) = u(Ry,Rθ2s), AR(y) = A(Ry).

Therefore, uR verifies

|y|θ2∂suqR − div
(
AR|y|2∇uR

)
= 0 in Q1/R.

By the change of variables, we obtain that this equation keeps uniformly parabolic in
B1/2(ȳ) × (−R−θ2 , 0) for any ȳ ∈ ∂B1.

For any (x, t), (x̃, t̃) ∈ B1/2 × (−1/4, 0), let |x̃| ≤ |x| without loss of general-
ity. Write R = |x|. It then follows from the interior Hölder estimates for uniformly
parabolic equations that there exist two constants 0 < β = β(n, p, θ2, λ,m,M) < 1 and
0 < C = C(n, p, θ2, λ,m,M) such that for any ȳ ∈ ∂B1 and s̄ ∈ (−4−1R−θ2 , 0),

|uR(y, s) − uR(ȳ, s̄)| ≤ C(|y − ȳ| +
√
|s− s̄|)β , (4.26)

for any (y, s) satisfying that |y − ȳ| +
√
|s− s̄| < 1/2.

Observe that for any (x, t), (x̃, t̃) ∈ B1/2 × (−1/4, 0),

|u(x, t) − u(x̃, t̃)| ≤ |u(x, t) − u(x, t̃)| + |u(x, t̃) − u(x̃, t̃)|.

On the one hand, if |t− t̃| ≤ R2θ2 , then we deduce from Equation (4.26) that

|u(x, t) − u(x, t̃)| ≤
∣∣uR(x/R, t/Rθ2) − uR(x/R, t̃/Rθ2)

∣∣
≤C|(t− t̃)/Rθ2 |β/2 ≤ C|t− t̃|β/4,
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while, if |t− t̃| > R2θ2 , then we have from Equation (4.25) that

|u(x, t) − u(x, t̃)|
≤ |u(x, t) − u(0, t)| + |u(0, t) − u(0, t̃)| + |u(0, t̃) − u(x, t̃)|

≤ C
(
Rα + |t− t̃|

α
θ2
)
≤ C|t− t̃|

α
2θ2 .

On the other hand, if |x− x̃| ≤ R2, then it follows from Equation (4.26) that

|u(x, t̃) − u(x̃, t̃)| =
∣∣uR(x/R, t̃/Rθ2) − uR(x̃/R, t̃/Rθ2

)∣∣
≤C|(x− x̃)/R|β ≤ C|x− x̃|β/2,

while, if |x− x̃| > R2, then we see from Equation (4.25) that

|u(x, t̃) − u(x̃, t̃)| ≤|u(x, t̃) − u(0, t̃)| + |u(0, t̃) − u(x̃, t̃)|

≤C
(
Rα + |x̃|α

)
≤ CRα ≤ C|x− x̃|

α
2 .

Consequently, we complete the proof of Theorem 1.9. �
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