
J. Fluid Mech. (2023), vol. 972, A32, doi:10.1017/jfm.2023.712

Compressibility effects in supersonic and
hypersonic turbulent boundary layers subject to
wall disturbances

Ming Yu1,3,†, QingQing Zhou1, SiWei Dong1, XianXu Yuan1,3 and
ChunXiao Xu2

1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
2Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics,
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
3Beijing Fluid Dynamics Scientific Research Center, Beijing 100011, PR China

(Received 6 March 2023; revised 18 June 2023; accepted 24 August 2023)

In the present study, we investigate the compressibility effects in supersonic and
hypersonic turbulent boundary layers under the influence of wall disturbances by
exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall
disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline
curvature in rough wall turbulence that leads to the intensification of turbulent motions
in the outer region. The turbulent and fluctuating Mach numbers, the density and the
velocity divergence fluctuation intensities suggest that the compressibility effects are
enhanced by the increment of the free-stream Mach number and the implementation of
the wall disturbances. The differences between the Reynolds and Favre average due to
the density fluctuations constitute approximately 9 % of the mean velocity close to the
wall and 30 % of the Reynolds stress near the edge of the boundary layer, indicating their
non-negligibility in turbulent modelling strategies. The comparatively strong compressive
events behaving as eddy shocklets are observed at the free-stream Mach number of 6 only
in the cases with wall disturbances. By further splitting the velocity into the solenoidal and
dilatational components with the Helmholtz decomposition, we found that the dilatational
motions are organized as travelling wave packets in the wall-parallel planes close to the
wall and as forward inclined structures in the form of radiated waves in the vertical planes.
Despite their increased magnitudes and higher portion in the Reynolds normal and shear
stresses, the dilatational motions show no tendency of contributing significantly to the
skin friction and the production of turbulent kinetic energy due to their mitigation by the
cross-correlation between the solenoidal and dilatational velocity components.
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1. Introduction

Supersonic and hypersonic turbulent boundary layers are ubiquitous in aerospace
industries and have been widely investigated for decades due to our passion for flying
at higher speeds (Smits & Dussauge 2006; Gatski & Bonnet 2013; Zhu 2022). Over the
years, much has been learnt regarding the statistical properties and coherent structures
in such canonical wall-bounded turbulence as channels (Coleman, Kim & Moser 1995;
Morinishi, Tamano & Nakabayashi 2004; Modesti & Pirozzoli 2016), pipes (Modesti &
Pirozzoli 2019) and boundary layers over flat walls (Duan, Beekman & Martin 2010,
2011; Zhang, Duan & Choudhari 2018; Huang, Duan & Choudhari 2022) thanks to the
development of experimental instruments and apparatus and, in particular, computational
resources and high-fidelity numerical methods (Pirozzoli 2011). The abundant flow
databases established by direct numerical simulation (DNS) and large-eddy simulation
enable the exploration of theoretical hypotheses, not least the ‘Morkovin’s hypothesis’ that
dictates the insignificance of compressibility effects on the flow dynamics to the extent
that the variation of mean flow properties, such as density and viscosity, is taken into
consideration (Morkovin 1962). Indeed, that the transformation of velocity (Van Driest
1951; Patel, Boersma & Pecnik 2016; Trettel & Larsson 2016; Volpiani et al. 2020; Griffin,
Fu & Moin 2021) and the density-weighted velocity fluctuation variances (Bernardini &
Pirozzoli 2011; Pirozzoli & Bernardini 2011; Wenzel et al. 2018; Wenzel, Gibis & Kloker
2022) collapse the scattered data onto the profiles of the incompressible wall turbulence
points to the validity of Morkovin’s hypothesis for mean flow statistics, and our previous
studies (Yu, Xu & Pirozzoli 2019; Yu & Xu 2021) have shown quantitatively that the
genuine compressibility effects related to the dilatational motions and density fluctuations
contribute finitely to the skin friction by 5 % at a centreline Mach number higher than 6
in channel flows. This can also be inferred from the perspective of coherent structures, for
the wall-bounded turbulence is, in essence, constituted of all kinds of vortical structures
if no strong mean pressure gradients or extra dilatational body forces are involved (Wang
et al. 2012; Wang, Gotoh & Watanabe 2017; Watanabe, Tanaka & Nagata 2021), so it
is unlikely that strong compressive structures occupy such a non-trivial portion that the
flow dynamics could be significantly altered (Wang & Lu 2012; Wang et al. 2020), except,
perhaps, close to the wall where dilatational motions in the form of travelling wave packets
are gradually emerging and predominating, as observed by recent studies (Yu et al. 2019;
Yu & Xu 2021; Yu et al. 2022a,b).

Most of the studies only concern the high-speed flows over smooth walls. In practical
engineering applications, however, the fuselage of high-speed vehicles is inevitably
‘imperfect’, embedded with roughness caused by the machining defects or damage during
flight (Czarnecki 1966; Latin & Bowersox 2000; Ekoto et al. 2008; Sun et al. 2019;
Liu et al. 2023). In incompressible turbulence, the disturbances introduced by wall
roughness are responsible for the drag increment, the enhancement of turbulent intensities
(Flack & Schultz 2010, 2014; Ma et al. 2020; Chung et al. 2021) and vortex shedding
(Orlandi & Leonardi 2006; Leonardi, Orlandi & Antonia 2007). Efforts have been made
to obtain the relation between the roughness with different shapes and heights and the
sandgrain roughness, the drag increment caused by which can be predicted by the famous
Nikuradse experimental results in roughened pipes (Nikuradse 1933; Tao 2009). The
outer-layer similarity suggesting identical turbulent fluctuation intensities in rough wall
turbulence as for smooth wall flows proposed by Townsend (1976) has also been validated
experimentally (Flack, Schultz & Shapiro 2005) and numerically (Chan et al. 2015;
MacDonald et al. 2016; Chan et al. 2018). Remarks on the recent progress made on this
topic can be found in the latest reviews by Chung et al. (2021) and Kadivar, Tormey &
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Compressibility effects in high-speed turbulence over disturbed walls

McGranaghan (2021). In supersonic and hypersonic turbulence, previous experimental
and numerical studies suggest that the drag increment and the outer-layer similarity of the
mean profiles and Reynolds stresses follow approximately the same scaling laws as those
in incompressible flows if the mean flow properties are taken into consideration (Liepman
& Goddard 1957; Bowersox 2007; Alvarez 2017; Williams et al. 2021). The vortical
structures and turbulent kinetic energy transport are not significantly altered compared
with low-speed flows (Peltier, Humble & Bowersox 2016; Alvarez 2017; Jouybari et al.
2020). However, the presence of wall disturbances of all sorts leads to the curvature of
the mean streamlines and hence flow compression and expansion waves (Ekoto et al.
2009; Peltier 2013; Alvarez 2017; Di Giovanni & Stemmer 2018; Yuan et al. 2022), the
feature that lacks physical counterparts in low-speed flows. These flow structures related
to the compressibility effects in high-speed flows will probably lead to the enhancement
of density fluctuation intensities (Latin & Bowersox 2000; Modesti et al. 2022; Yu et al.
2023a), especially in high-Mach-number flows when the height of roughness exceeds the
sonic lines. The validity of Morkovin’s hypothesis under the influence of wall disturbances
is questioned but remains unclear so far. The possibly enhanced compressibility effects
and the flow dynamics thereof need further appreciation for a better understanding of the
underlying physical processes and more accurate turbulent models.

The purpose of the present study is to directly evaluate the compressibility effects
in supersonic and hypersonic turbulent boundary layers under the influences of wall
disturbances that are intended to emulate the effects of drag augmentation and mean
streamline curvature caused by rough walls (Flores & Jimenez 2006; Yu et al. 2023a). Our
previous companion investigations (Yu et al. 2023a,b) presented in detail the influences
of wall disturbances on the spatial evolution of the boundary layer, on the outer-layer
similarity of mean and fluctuating velocity, temperature, density and pressure and on
the coherent structures and acoustic radiations at the free-stream Mach number of 2.
In the present study, we consider flows at the higher Mach numbers of 4 and 6, with
special attention paid to the validity of Morkovin’s hypothesis regarding the significance
of density fluctuations for the flow statistics. We also explore the possible existence
of shocklets at the Mach number of 6 by means of structural identification. Moreover,
Helmholtz decomposition for velocity that separates the rotational and dilatational
components is utilized to evaluate the genuine compressibility effects on the turbulent
Reynolds stresses, skin friction and the production and dissipation of turbulent kinetic
energy, fulfilling the statistical depictions of compressibility effects on the flow dynamics.

The remainder of this paper is organized as follows. Section 2 depicts the physical
model, numerical method and validation of the DNS databases to be scrutinized, along
with some basic flow statistics. Section 3 discusses the significance of density fluctuations
in the mean velocity and Reynolds stresses. Section 4 investigates the contribution of the
solenoidal and dilatational motions to the instantaneous flow structures, Reynolds stresses,
skin friction and turbulent transport. Section 5 explores the existence of eddy shocklets.
Section 6 recapitulates the primary findings of the present study.

2. Physical model and numerical methods

We establish DNS databases for supersonic and hypersonic turbulent boundary layers
over flat walls and disturbed walls with sinuously distributed velocities, the latter of
which is intended to emulate the mean flow compression and expansion induced by the
imperfections on the wall, such as the roughness (Flores & Jimenez 2006; Yu et al. 2023a),
as has been proven in our recent study (Yu et al. 2023a). The details of the numerical and
parameter settings are introduced as follows.
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The supersonic and hypersonic flows under consideration are governed by the
three-dimensional Navier–Stokes equations for a perfect gas:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
, (2.2)

∂ρE
∂t

+ ∂ρEuj

∂xj
= −∂puj

∂xj
+ ∂τijui

∂xj
− ∂qj

∂xj
. (2.3)

Here, the velocity in the xi (i =1,2,3, also as x, y and z, representing the streamwise,
wall-normal and spanwise) direction is denoted by ui (also u, v and w), density by ρ,
pressure by p and total energy by E, related by the state equations of perfect gas as

p = ρRT, E = CVT + 1
2 uiui, (2.4a,b)

with T the temperature, CV the specific heat at constant volume and R the perfect gas
constant. The viscous stress τij and heat flux qj are determined by the constitutive equations
and Fourier’s law for Newtonian fluids:

τij = μ

(
∂ui

∂xj
+ ∂ui

∂xj

)
− 2

3
μ

∂uk

∂xk
δij, qj = −κ

∂T
∂xj

, (2.5a,b)

with μ the dynamic viscosity, determined by the Sutherland’s law, and κ the heat
conductivity.

The DNSs are performed utilizing a modified version of the open-source code
‘STREAMS’ originally developed by Bernardini et al. (2021), where the finite difference
method is adopted to solve the governing equations. The convective terms are cast as the
skew–symmetric forms according to the kinetic energy and entropy preserving scheme
proposed by Kuya, Totani & Kawai (2018) in the smooth region, with the pressure-related
terms in the energy equation also split into the skew–symmetrical form so as to alleviate
the pressure oscillations at high Mach numbers (Shima et al. 2021), and the derivatives are
approximated by the sixth-order central scheme. Within the flow discontinuity detected by
Ducro’s shock sensor (Ducros et al. 1999), the convective terms are approximated by the
fifth-order weighted-essentially non-oscillation (WENO) scheme. The viscous terms are
cast as the Laplacian forms and approximated by the sixth-order central scheme. Time
advancement is achieved by the third-order Runge–Kutta scheme.

The boundary conditions are implemented as follows. At the inlet of the boundary layer,
the velocity is given by the summation of the mean profiles described by the empirical law
according to Musker (1979) and the synthetic turbulent fluctuations based on the method
proposed by Klein, Sadiki & Janicka (2003) and Kempf, Wysocki & Pettit (2012). The
mean temperature is then given by the generalized Reynolds analogy (Zhang et al. 2014)
and the mean density by its reciprocal, with no fluctuations incorporated for numerical
stability considerations. Non-reflection conditions are enforced at the flow inlet, outlet and
the upper boundary, and periodic conditions are adopted in the spanwise direction. At the
lower wall, the isothermal condition is given for temperature and the velocity distributions
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are specified as the following functions (Yu et al. 2023a):

uw = vw = ww = 0 x < xs,⎧⎪⎨
⎪⎩

uw = AU∞ sin(2π(x − xs)/rx) cos(2πz/rz)

vw = −AU∞ sin(2π(x − xs)/rx) cos(2πz/rz)

ww = AU∞ cos(2π(x − xs)/rx) sin(2πz/rz)

x ≥ xs.
(2.6)

The coefficient A is set as 0.0 for the smooth wall cases and 0.1 for those with wall
disturbances. The starting points of the imposed wall disturbances are set as xs = 10δin.
Such a form of the imposed wall disturbances introduces non-zero streamwise but zero
spanwise Reynolds shear stress in the average sense, emulating the effects of drag
increment in rough wall turbulence.

Hereinafter, the flow quantities at the free stream are denoted by the subscript ∞. The
ensembled average of a generic flow quantity ϕ is represented by ϕ̄ and the corresponding
fluctuations by ϕ′. The Favre average, namely the density-weighted average, is expressed
as ϕ̃ and the corresponding fluctuations as ϕ′′. The viscous scales, namely the wall shear
stress, friction velocity and viscous length scales, are defined by the mean flow quantities
on the wall:

τw = μw
∂ ū
∂y

∣∣∣∣
w

− ρu′′v′′|w, uτ =
√

τw

ρw
, δν = μw

ρwuτ

, (2.7a–c)

and the friction Reynolds number Reτ is defined as

Reτ = ρwuτ δ

μw
, (2.8)

with δ the nominal boundary layer thickness, i.e. the off-wall distance where the mean
velocity reaches 99 % of the free-stream value. The flow quantities normalized by these
viscous scales are marked by the superscript +.

The flow parameters of the DNS databases are listed in table 1. Three free-stream
Mach numbers M∞ of 2.0, 4.0 and 6.0 are considered herein (also referred to as cases
M2, M4 and M6 in the subsequent discussions) and the wall temperatures Tw are all
set as the recovery temperature Tr at the given free-stream Mach number, defined as
Tr = T∞(1 + r(γ − 1)M2∞/2) with the recovery factor r = Pr1/3, the Prandtl number
Pr = 0.72 and γ = 1.4. For all the cases, the friction Reynolds numbers Reτ at the inlet of
the computational domain are 150, according to which the free-stream Reynolds numbers
Re∞, defined by the free-stream density ρ∞, velocity U∞, viscosity μ∞ and the nominal
thickness at the inlet δin, are estimated. The streamwise and spanwise wavelengths of the
wall disturbances are set as the same values (rx = rz) of δin and 2δin, hereinafter referred
to as cases R1 and cases R2, respectively, and for smooth wall cases, cases S.

For cases at the free-stream Mach number of M∞ = 2.0, the sizes of the computational
domain in the streamwise, vertical and spanwise directions are Lx = 106δin, Ly = 9δin and
Lz = 10δin, discretized by (2400, 320, 256) grids, respectively. The meshes are uniformly
distributed in the streamwise and spanwise directions, with intervals of 
x+ ≈ 5.3
and 
z+ ≈ 4.7, and stretched by the hyperbolic sine function in the vertical direction,
with the minimal grid interval at the wall 
y+

w = 0.7 and the maximal grid interval

y+ ≈ 7.0 at the edge of the boundary layer. For cases at M∞ = 4.0 and 6.0, the
sizes of the computational domain are larger for better statistical convergence in the
streamwise direction, with Lx = 150δin, Ly = 10δin and Lz = 10δin, and discretized by
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Case M∞ Tw/T∞ Re∞ Reθ Reτ H Hi A rx rz 
U+ k+
s Line type

M2-S 2.0 1.728 5570 1143 259 3.08 1.49 0.0 — — — —
M2-R1 2.0 1.728 5570 1738 419 3.35 1.66 0.1 1.0 1.0 6.4 53
M2-R2 2.0 1.728 5570 2124 545 3.45 1.73 0.1 2.0 2.0 8.5 126
M4-S 4.0 3.912 33 015 4772 332 7.08 1.43 0.0 — — — —
M4-R1 4.0 3.912 33 015 7709 588 7.69 1.63 0.1 1.0 1.0 6.8 63
M4-R2 4.0 3.912 33 015 9459 745 8.17 1.77 0.1 2.0 2.0 9.0 155
M6-S 6.0 7.552 129 947 11 014 287 12.64 1.43 0.0 — — — —
M6-R1 6.0 7.552 129 947 18 420 529 13.92 1.60 0.1 1.0 1.0 6.1 47
M6-R2 6.0 7.552 129 947 22 753 687 14.92 1.75 0.1 2.0 2.0 8.7 137

Table 1. Flow parameter settings. Here, Reθ = ρ∞U∞θ/μ∞, with θ the momentum thickness; H is the shape
factor and Hi its incompressible counterpart; 
U+ is the roughness function and k+

s is the equivalent roughness
height.

(3840, 360, 320) grids, respectively. The mesh intervals in the streamwise and spanwise
directions are 
x+ ≈ 5.9 and 
z+ ≈ 4.7. In the vertical direction, the first off-wall grid
point is located at 
y+

w = 0.7 and the grid intervals at the edge of the boundary layer are
estimated to be 
y+ ≈ 8.0. With the low-dissipative numerical methods utilized in the
present study, such grid settings are sufficient to resolve the small-scale turbulent motions
in wall turbulence (Pirozzoli 2010; Pirozzoli & Bernardini 2011; Poggie, Bisek & Gosse
2015).

We collected 200 data samples with the time interval of 1.0δin/U∞ to obtain the
flow statistics. After a preliminary examination, we found that the turbulence reaches a
quasi-equilibrium state that is free from the synthetic turbulent inlet downstream of x ≈
60δin, where the growth rate of the boundary layer thickness and the shape factors retain
approximately constant values (Lee, Sung & Krogstad 2011). Ceci et al. (2022) found that
it takes a streamwise extent of (10 ∼ 25)δin for supersonic and (55 ∼ 75)δin for hypersonic
turbulent boundary layers to achieve the mean momentum balance with the synthetic
turbulent inlet. Therefore, from hereon in, we only choose the subdomain of interest within
the streamwise region x = (70 ∼ 90)δin for the cases at M∞ = 2 and x = (100 ∼ 120)δin
for cases at M∞ = 4 and 6, a region sufficiently away from the synthetic turbulent inlet
and the outlet to reduce the possibly existing numerical errors that contaminate the results.
As we have demonstrated in our previous study, the statistics obtained in this way are not
much different from those obtained at any single streamwise station (Yu et al. 2023a). The
Reynolds numbers defined based on the momentum thickness θ and the shape factors H
within the subdomain under consideration are reported in table 1.

2.1. Validation of DNS databases
As a validation of the DNS database under scrutiny, in figure 1 we display the
wall-normal distributions of mean velocity and density-weighted root-mean-square of
velocity fluctuations for the smooth wall cases. The van Driest transformed mean
velocities, integrated as

u+
VD = 1

uτ

∫ ū

0

√
ρ̄

ρ̄w
dū, (2.9)
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Figure 1. (a) The van Driest transformed mean velocity u+
VD and the density-weighted root-mean-square

of velocity fluctuations (b) u∗
rms, (c) v∗

rms, (d) w∗
rms, normalized by viscous scales. Symbols: blue triangles,

M∞ = 2 (Pirozzoli & Bernardini 2011); red downward triangles, M∞ = 4 (Pirozzoli & Bernardini 2011); black
diamonds, M∞ = 5.86 (Zhang et al. 2018). Line legends refer to table 1.

are shown in figure 1(a), along with the results reported by Pirozzoli & Bernardini (2011)
and Zhang et al. (2018). The transformed mean velocities obey the linear law under the
viscous sublayer and the logarithmic law within y+ = 30 ∼ 60, the intercept of which is
the classical value 5.2. Due to the identical friction Reynolds numbers for case M2-S and
Pirozzoli & Bernardini (2011), their mean velocity profiles collapse well, from the wall
to the free stream. As for the other cases, the wakes slightly differ from the reference due
to their sensitivity to both the Reynolds numbers and the Mach numbers (Zhang et al.
2012). The density-weighted root-mean-square u∗

i,rms normalized by viscous scales are
shown in figure 1(b–d). The results of case M2-S agree reasonably well with the reference
data reported by Pirozzoli & Bernardini (2011). The velocity fluctuation intensities are
also weakly dependent on the Mach numbers, as suggested by the slight increment in the
near-wall region for the three velocity components. It is also noteworthy that the intensities
of v′′ in the free stream increase with the Mach number, which, as will be proved later, is
related to the enhanced radiation of acoustic waves due to the compressibility effects. In
general, the consistent statistical results with those reported by previous studies prove the
validity of the DNS databases established herein.

In figure 2 we plot the distributions of the van Driest transformed mean velocity for
cases R1 and R2. Due to the extra Reynolds shear stress imposed at the wall, the total wall
shear stress, namely the sum of the viscous and Reynolds stresses, is enhanced, leading
to the downward shift of the mean velocity profiles, a typical flow phenomenon observed
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Figure 2. The van Driest transformed mean velocity; (a) cases R1, (b) cases R2, grey lines in
(a) 
U+ = 6.4, (b) 
U+ = 8.5. Line legends refer to table 1.

in turbulence over rough walls. As is the protocol in rough walls, the quantitative drag
increment can be evaluated by the Hama function 
U+, obtained by curve fitting of the
mean velocity within the logarithmic region (Hama 1954)

u+
VD = 2.44 ln( y+) + 5.2 − 
U+, (2.10)

which is related to the equivalent sandgrain roughness height ks as Jiménez (2004)


U+ = 2.44 ln(k+
s ) − 3.3. (2.11)

The specific values of the obtained 
U+ and k+
s are listed in table 1. It is found that the

Hama roughness function 
U+ and the sandgrain roughness k+
s are significantly related

to the wavelengths of the wall disturbances, consistent with the results in incompressible
turbulence over sinuously distributed rough walls (Chan et al. 2015; Chung et al. 2015;
Ma et al. 2020), but weakly dependent on the Mach number. This is consistent with the
elucidations in the previous experimental results that the drag augments induced by the
uniformly distributed, sandgrain or sandgrain-like roughness in high-speed flows obey
roughly the same scaling laws as those in incompressible turbulence if the mean flow
properties are correctly incorporated (Bowersox 2007; Williams et al. 2021). Although
the viscous scales, such as Reτ and uτ , are slightly different, leading to the different values
of A, the results reported herein remain valid qualitatively.

The turbulent Mach numbers, defined as Mt = (u′′
i u′′

i )
1/2/ā (ā is the average sound

speed), and the fluctuating Mach numbers M′
rms, namely the root-mean-square of the local

Mach number fluctuations, are usually adopted to evaluate the effects of compressibility.
The results are shown in figure 3 for a first inspection of the significance of compressibility
effects. Both of these quantities are increased with the Mach number and the wall
disturbances, suggesting the enhancement of compressibility effects. The turbulent Mach
numbers Mt reach maxima close to the wall at y ≈ 0.05δ where the turbulence is the most
active. For cases at the free-stream Mach number higher than 4.0, the maxima exceed
0.3, the threshold beyond which the compressibility effects become significant (Gatski
& Bonnet 2013). The fluctuating Mach numbers M′

rms incline to manifest two peaks at
M∞ = 4 and 6, one in the near-wall region, similar to the turbulent Mach number Mt, and
the other near the edge of the boundary layer where the density fluctuations are intense (as
will be shown later). Under the influence of wall disturbances, the peaks close to the wall
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Figure 3. Wall-normal distribution of (a) turbulent Mach number Mt and (b) fluctuating Mach number M′
rms.

Line legends refer to table 1.

are abated whereas the ones near the edge of the boundary layer are highly enhanced, with
the highest value of approximately 0.85 in case M6-R2.

3. Density fluctuations, mean velocity and Reynolds stresses

The genuine compressibility effects refer to the influences caused by the expansion or
compression of the fluid elements, which are related to the density fluctuations. This leads
to the differences between the Favre- and Reynolds-averaged flow statistics. In this section,
we examine the genuine compressibility effects that are directly associated with the density
fluctuations, with the motivation of evaluating the commonly adopted hypothesis of their
smallness in establishing turbulent models.

In figure 4 we present the root-mean-square (r.m.s.) of density fluctuations ρ′
rms. The

density fluctuation intensities ρ′
rms are sensitive to both the Mach numbers and the wall

disturbances. For the smooth wall cases, there manifest two peaks in case M2-S, one
located at y ≈ 0.1δ close to the wall, the other near the edge of the boundary layer. At
higher Mach numbers of M∞ = 4 and M∞ = 6, the peaks near the edge of the boundary
layer at y ≈ 0.9δ escalate to higher values of approximately 0.08ρ∞, whereas the ones
close to the wall remain moderate so that they are no longer prominent in comparison.
Implementing the wall disturbances leads to the increment of ρ′

rms both close to the wall,
near the edge of the boundary layer and in the free stream. The peaks of cases R1 and
R2 are both located at y ≈ 0.9δ, and the values in cases R2 are higher than those in
cases R1, sensitive to the wavelengths of the wall disturbances. The intensification of the
density fluctuation intensity is not related to the more obvious turbulent–non-turbulent
interfaces, but merely the high density gradient in the outer region, as suggested by the
strong Reynolds analogy that relates the density and velocity fluctuation (Pirozzoli, Grasso
& Gatski 2004). In other words, the density is transported by the velocity as passive scalars
(Pirozzoli, Bernardini & Orlandi 2016). Notably, the intensities of density fluctuations are
approximately 15 %–20 % of the free-stream values. This suggests that the compressibility
effects on flow dynamics near the edge of the boundary layers are probably non-negligible,
which will be the primary topic of the next subsection.

In conclusion, the increment of the Mach numbers and the implement of the wall
disturbances both lead to the enhancement of compressibility effects. For cases M6-R1 and
M6-R2, evidence seems to indicate that the compressibility effects in hypersonic turbulent

972 A32-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.712


M. Yu, Q.Q. Zhou, S.W. Dong, X.X. Yuan and C.X. Xu

10–2 10–1 100
0

0.02

0.04

0.06

0.08

0.10

10–2 10–1 100
0

0.05

0.10

0.15

0.2.0

10–2 10–1 100

0.1

0.2

0.3

ρ
′ rm

s/
ρ

∞

ρ
′ rm

s/
ρ

∞

y/δ

y/δ y/δ

(a) (b)

(c)

Figure 4. The r.m.s. of density fluctuations ρ′
rms; (a) cases M2, (b) cases M4, (c) cases M6, line legends refer

to table 1.

boundary layers are enhanced by the wall disturbances. It is, therefore, crucial to directly
evaluate such effects in various aspects.

As we have stated in § 1, an important aspect of Morkovin’s hypothesis is that the
density fluctuations have little influence on the flow dynamics. This is crucial for turbulent
modelling, for the terms related to the density fluctuations are usually neglected in that the
Favre average and Reynolds average are considered interchangeable so that the strategies of
turbulent closure in incompressible turbulence can be readily adopted (Smits & Dussauge
2006; Gatski & Bonnet 2013).

Henceforth, we first consider the difference between the Reynolds and the Favre average
of the mean velocity, which can be related by the following formula:

ū = ũ + u′′, (3.1)

and, based on simple derivation, the second term u′′ can be also cast as

u′′ = −ρ′u′

ρ̄
= −ρ′u′′

ρ̄
, (3.2)

reflecting the streamwise fluctuating mass flux, the correlation between the streamwise
velocity and density fluctuations, simply referred to as the ‘mass flux’ (Huang, Coleman
& Bradshaw 1995). An ansatz provides a quantitative evaluation of this flow quantity.
Firstly, considering that the pressure fluctuations are mostly related to the velocity
fluctuations but are weakly correlated with the temperature T ′ and density fluctuations ρ′
(Pirozzoli et al. 2004; Gatski & Bonnet 2013), we have the following approximation
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Compressibility effects in high-speed turbulence over disturbed walls

between ρ′ and T ′:
ρ′

ρ̄
≈ −T ′

T̄
. (3.3)

Therefore, the ratio between u′′ and the mean velocity ũ can be estimated as

u′′

ũ
= −ρ′u′′

ρ̄ũ
≈ u′′T ′

ũT̄
. (3.4)

The strong Reynolds analogy refined by Huang et al. (1995) that relates the temperature
and velocity fluctuation intensities suggests the following approximate relation:

T ′
rms

T̄
≈ − (γ − 1)M2

l

Prt|∂T̄t/∂T̄ − 1|
u′′

rms

ũ
, (3.5)

with T̄t the total temperature, Ml the local Mach number defined by mean velocity and
temperature and Prt the turbulent Prandtl number, defined as

Prt = −ρu′′v′′

ρv′′T ′
∂yT̄
∂yũ

. (3.6)

Substituting (3.5) into the definition of the correlation coefficient between u′′ and T ′,
namely Ru′′T ′ , we have the following estimation:

u′′T ′

ũT̄
= Ru′′T ′

u′′
rmsT

′
rms

ũT̄
≈ −Ru′′T ′

γ − 1
Prt|∂T̄t/∂T̄ − 1|

u′′2

u′′
i u′′

i

M2
t . (3.7)

Henceforth, the mean mass flux u′′ can be evaluated as

u′′

ũ
≈ ΓTM2

t , (3.8)

with ΓT the coefficient expressed as

ΓT = −Ru′′T ′
γ − 1

Prt|∂T̄t/∂T̄ − 1|
u′′2

u′′
i u′′

i

. (3.9)

Considering that Prt is approximately 0.9 ∼ 1.0, the ratio u′′2/u′′
i u′′

i is approximately
0.5 ∼ 1.0 according to Patel et al. (2016) and the correlation coefficient Ru′′T ′ is
approximately 0.6 ∼ 0.8 (Zhang et al. 2014), the parameter ΓT can be estimated to be
0.1 ∼ 0.35, irrelevant to the Mach number.

In figure 5 we report the ratio between u′′ and the Favre-averaged mean velocity ũ.
For cases S with smooth walls, the ratios u′′/ũ reach minima at y = 0.04δ with the
absolute value no higher than 0.05, suggesting that the mass flux induced by density
fluctuations is no more than 5 % for the turbulence over quasi-adiabatic walls at a
free-stream Mach number lower than 6, consolidating Morkorvin’s hypothesis. For cases
R1 and R2, however, the ratios u′′/ũ are enhanced close to the wall by the imposed
wall disturbances, and in case M6-R2, the mass flux is approximately 9 % of the mean
velocity. In figure 5(d) we plot the ratio u′′/ũ against the turbulent Mach number Mt. This
ratio approximately increases following the M2

t power law and falls within the range of
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Figure 5. Ratio between the mass flux and mean velocity u′′/ũ for (a) cases S, (b) cases R1, (c) cases R2,
(d) plotted against the turbulent Mach number Mt. Line legends refer to table 1.

(0.1 ∼ 0.35)M2
t , consistent with our ansatz provided above, except very close to the wall

where the turbulent Prandtl number Prt is far from being unity (Duan et al. 2011; Yu & Xu
2021). In conclusion, the approximation given by formula (3.8) is capable of accurately
predicting the significance of the mass flux against the mean velocity. The constantly
adopted assumption ũ ≈ ū should be taken with caution when there are disturbances on
the wall, depending on the required accuracy of the turbulent models and simulations.

Another aspect of the difference between the incompressible and compressible
turbulence rests on the incorporation of density fluctuations in the Reynolds stresses.
Similar to the mean velocity, the relationship between the Reynolds- and Favre-averaged
Reynolds stresses can be cast as (Huang et al. 1995)

ρu′′
i u′′

j = ρ̄u′
iu

′
j − ρ̄u′′

i u′′
j + ρ′u′

iu
′
j. (3.10)

The first term on the right-hand side of the formula above is undoubtedly the most
significant. Therefore, we only evaluate the contribution of the second and the third terms
compared with the Favre-averaged Reynolds stresses by defining the ratios

RTM
K = ρ̄u′′

i u′′
i

ρu′′
j u′′

j

, RTF
K = ρ′u′

iu
′
i

ρu′′
j u′′

j

, (3.11a,b)

for the turbulent kinetic energy and

RTM
S = ρ̄u′′ v′′

ρu′′v′′ , RTF
S = ρ′u′v′

ρu′′v′′ , (3.12a,b)

for the Reynolds shear stress.
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Figure 6. Ratios between the density fluctuation induced Reynolds stress and total Reynolds stress,
(a–c) RTM

k , (d–f ) RTF
k , (g–i) RTM

s , (j–l) RTF
s , (a,d,g,j) cases S, (b,e,h,k) cases R1, (c, f,i,l) cases R2. Line legends

refer to table 1.

As shown in figure 6, the ratios RTM
K and RTM

S that incorporate the mass flux u′′
i are

less than 3 % across the boundary layer for all the cases considered. Imposing the wall
disturbances further reduces the significance of this term in the near-wall region. As for
the ratios RTF

K and RTF
S incorporating the density fluctuations, they are also increasing with

the free-stream Mach number with two local extreme values. The ones near the wall are
less than 10 % even at the highest Mach numbers and the wall disturbances also lead
to their abatement. The ones near the edge of the boundary layer, on the other hand,
are much more prominent due to the high level of density fluctuations (recall figure 4).

972 A32-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.712


M. Yu, Q.Q. Zhou, S.W. Dong, X.X. Yuan and C.X. Xu

10–2 10–1 100
0

0.01

0.02

θ′ r∗ m
s

0.03

0.04

10–2 10–1 100
0

0.1

0.2Θ

0.3

0.4

y/δ y/δ

(b)(a)

Figure 7. Wall-normal distribution of (a) r.m.s. of velocity divergence fluctuations, normalized by local
viscous scales, (b) ratio of divergence over vorticity Θ . Line legends refer to table 1.

Directly neglecting this term could lead to the over-estimation of the Reynolds shear stress
by 30 % in cases at M∞ = 6 with wall disturbances according to Morkovin’s hypothesis
that assumes ρu′′

i u′′
j ≈ ρ̄u′

iu
′
j and hence a possibly incorrect mean velocity in the wake

region. A recent study by Lee, Williams & Martin (2023) evaluated the significance of the
terms related to the density fluctuations in the mean momentum equation. It is concluded
that these terms exceed 20 % of the wall shear stress under hypersonic conditions. It
is, therefore, crucial to properly evaluate the validity of the existing turbulent models
for high-speed flows in the presence of high-density fluctuations which, in the presently
considered flows, are induced by the disturbances of the ‘imperfect’ boundaries.

4. Solenoidal and dilatational velocities

The divergence of velocity fluctuations θ ′ = ∂u′
i/∂xi reflects the volume expansion rate

of the fluid elements, serving as a better indicator of the compressibility effects than the
density fluctuations. In this section, we consider the influences of the wall disturbances
on the flow dilatation and the related flow dynamics, encompassing the Reynolds stresses,
skin friction and turbulent kinetic energy transport.

In figure 7(a) we present the r.m.s. of velocity divergence fluctuations, normalized by
local viscous scales τw/μ̄. The trend of variation in cases S with smooth walls resembles
those reported in previous studies (Yu et al. 2019; Yu & Xu 2021), in that the r.m.s. values
are the highest at the wall and decay monotonically as they approach the free stream.
In cases R1 and R2, the intensities are increased across the boundary layer by the wall
disturbances, especially for cases R2, in which there inclines to be a secondary peak at
y ≈ 0.04δ in cases M2-R2 and M4-R2 and at y ≈ 0.1δ in case M6-R2.

The significance of dilatational motions over the rotational (vortical) motions can be
evaluated by the following ratio Θ:

Θ = θ ′
rms√

θ ′2
rms + ω′2

i,rms

, (4.1)

with ωi the vorticity component in the xi direction. The results are displayed in figure 7(b).
For cases S with smooth walls, this ratio increases with the free-stream Mach number,
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Compressibility effects in high-speed turbulence over disturbed walls

but is lower than 0.08 for all the cases below y = 0.8δ, suggesting that the turbulence
is still dominated by the vortical motions in the boundary layer. In the presence of wall
disturbances, the ratios are lowered close to the wall due to the imposed streamwise
vorticity, while at higher locations off the wall, the ratios increase to values higher than
0.1, suggesting the more prominent dilatational motions related to local flow compression
and expansion compared with the vorticity and shear.

Regarding the velocity fluctuations themselves, the compressibility effects can be
evaluated by utilizing the Helmholtz decomposition to split the turbulent velocity
fluctuations u′′

i,t into the rotational, solenoidal and potential, dilatational components u′′s
i,t

and u′′d
i,t . Note that the velocity fluctuations considered in this subsection are the genuine

turbulent portion (as marked by the subscript t), in which their phase average, obtained
by averaging the flow quantities within the size of the box of the wavelengths of wall
disturbances, has been removed. Following the method of Pirozzoli, Bernardini & Grasso
(2010) and Yu et al. (2019), we first solve the Poisson equations for vorticity vector
potential Ai and the velocity potential ϕ as follows:

∂2Ai

∂xk∂xk
= −ω′

i,t,
∂2ϕ

∂xk∂xk
= θ ′

t , (4.2a,b)

with the boundary conditions of

Ax = 0,
∂Ay

∂y
= 0, Az = 0,

∂ϕ

∂y
= 0, (4.3a–d)

at the wall (Hirasaki & Hellums 1970). A highly efficient solver of the three-dimensional
Poisson equations is adopted to obtain the solutions of Ai and ϕ and the solenoidal and
dilatational portions of the velocity are thus calculated as

u′′s
i,t = εijk

∂Ak

∂xj
, u′′d

i,t = ∂ϕ

∂xi
. (4.4a,b)

The relative error between the summation of the solenoidal and dilatational portions
calculated above and the DNS is lower than 0.1 %, suggesting the accuracy of the presently
adopted Poisson solver.

In figure 8 we display the instantaneous distribution of the solenoidal streamwise
and wall-normal velocity fluctuations u′′s

t and v′′s
t in cases at the free-stream Mach

number of 6.0. For the case M6-S with a smooth wall, the streamwise velocity u′′s
t is

organized as low- and high-speed streaks elongated in the streamwise direction in the
wall-parallel plane. The wall-normal velocity v′′s

t manifests spotty structures induced by
the quasi-streamwise vortices near the wall. These are commonly observed structures in
both low- and high-speed flows (Duan et al. 2011; Pirozzoli & Bernardini 2011). For the
case M6-R1 under the influence of wall disturbances with short wavelengths and the lower
equivalent sandgrain roughness, the streamwise velocity u′′s

t still exhibits the feature of
streamwise elongated streaky structures, excepting the more prominent meandering feature
induced by the wall disturbances. Moreover, the imprints of the larger-scale motions in the
outer region, as implied by the spanwise positive–negative-alternating structures in the
cross-stream plane, are looming in the wall-parallel plane, insinuating the intensification
of large-scale motions in the outer region with the scale of boundary layer thickness,
several times greater than the wavelength of wall disturbances (Chan et al. 2018; Orlandi &
Pirozzoli 2021). For case M6-R2, the near-wall streaky structures are completely disrupted,
leaving merely the wakes of turbulent motions that pave the way from the sides and the top
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Figure 8. Instantaneous distribution of the solenoidal velocity, (a,c,e) u′′s
t , (b,d, f ) v′′s

t of case (a,b) M6-S,
(c,d) M6-R1, (e, f ) M6-R2, the lower wall: y+ = 10.

of the uprising mean streamlines and the imprints of the large-scale motions in the outer
region. Compared with the case M6-S, the coherence of the larger-scale motions in the
outer region is stronger with less prominent small-scale structures. This is also the case
with the wall-normal velocity v′′s

t , whose near-wall fluctuations are more susceptible to
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Compressibility effects in high-speed turbulence over disturbed walls

wall disturbances. For cases at the other two Mach numbers, the coherent structures are
generally the same, manifesting the Mach number independence of the solenoidal motions.

The dilatational components of the streamwise and wall-normal velocity fluctuations
are reported in figure 9. In case M6-S, the fluctuations of u′′d

t and v′′d
t in the wall-parallel

plane near the wall are organized in the form of streamwise positive–negative-alternating
structures lying primarily within the low-speed streaks, namely the ‘travelling wave
packets’ (TWPs), which were originally identified in hypersonic turbulent channel flows
(Yu et al. 2019; Yu & Xu 2021) and boundary layers. In the vertical planes, these
dilatational velocity fluctuations are fine structures inclined downstream. Although not
strong enough to be manifested as shocklets (as will be shown later in § 5), they are
indeed inherently small-scale motions compared with the solenoidal components. For this
smooth wall case, their magnitudes are a decade smaller than those of the solenoidal
components, suggesting their insignificant role in the flow dynamics, at least for the
presently considered high-speed flows over adiabatic walls. For cases M6-R1 and M6-R2,
the TWPs are also observed in the wall-parallel plane near the wall and are enhanced
compared with case M6-S. In the vertical planes, the structures are inclined forward
and bear a certain resemblance to those in case M6-S, but with stronger intensities and
comparatively larger length scales that are obviously associated with the wavelengths
of the imposed wall disturbances. Considering that the dispersive motions are already
removed, these structures are unsteady, probably caused by the nonlinear interactions
between the dispersive and turbulent motions.

4.1. Decomposition of Reynolds stresses
We further evaluate the contribution of the dilatational motions to the Reynolds stress.
With the Helmholtz decomposition, the turbulent portion of the Reynolds stress can be
decomposed as

R+
ui,t,uj,t

=
ρu′′s

i,tu
′′s
j,t

τw︸ ︷︷ ︸
R+

us
i,t,u

s
j,t

+
ρu′′s

i,tu
′′d
j,t

τw︸ ︷︷ ︸
R+

us
i,t,u

d
j,t

+
ρu′′d

i,t u′′s
j,t

τw︸ ︷︷ ︸
R+

ud
i,t,u

s
j,t

+
ρu′′d

i,t u′′d
j,t

τw︸ ︷︷ ︸
R+

ud
i,t,u

d
j,t

. (4.5)

The decomposed streamwise Reynolds normal stresses are shown in figure 10. For all
the cases considered, the solenoidal components are the most intense. In cases S with
smooth walls, neither the dilatational component nor the cross-correlations are significant,
with their maximal values being no more than 0.01 % of the solenoidal component. With
the wall disturbances, the intensities of the dilatational components are enhanced, but they
are still lower by at least two orders than the solenoidal component. The cross-correlations
between the solenoidal and dilatational components manifest a complex trend of variation,
showing multiple peaks and valleys, the values of which are also trivial. These conclusions
also apply to the spanwise component, therefore omitted here for brevity.

The decomposed wall-normal Reynolds normal stresses are shown in figure 11. For
the smooth wall cases S, the dilatational components are negligible compared with the
solenoidal components, but their cross-correlations constitute approximately 10 % of the
total turbulent stress R+

vv,t at the highest Mach number considered here. In cases R1 and
R2, the intensities of the dilatational component reach approximately 10 % of those in the
solenoidal component at M∞ = 6, with the maxima located at y ≈ 0.1δ in cases R1 and
y ≈ 0.2δ in cases R2. Such intensification of the dilatational Reynolds stress component is
mostly compensated by the negative cross-correlations, so the overall contribution related
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Figure 9. Instantaneous distribution of the dilatational velocity, (a,c,e) u′′d
t , (b,d, f ) v′′d

t of case (a,b) M6-S,
(c,d) M6-R1, (e, f ) M6-R2, the lower wall: y+ = 10.

to the dilatational components remains low level. In the free stream, however, only the
dilatational components contribute significantly to the velocity fluctuation intensities,
whereas the solenoidal components are trivial in comparison, proving that the fluctuations
in the free stream are primarily the dilatational motions related to the radiated acoustic
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Figure 10. Wall-normal distribution of the decomposed Reynolds stress R+
uu,t, (a–c) solenoidal components

R+
us

t us
t
, (d–f ) dilatational components R+

ud
t ud

t
, (g–i) correlations between the solenoidal and dilatational

components 2R+
us

t ud
t
, (a,d,g) cases S, (b,e,h) cases R1, (c,f,i) cases R2. Line legends refer to table 1.

waves from the boundary layer (Duan, Choudhari & Wu 2014; Duan, Choudhari & Zhang
2016) without significant vortices.

In figure 12 we present the components of the Reynolds shear stress. For the smooth
wall cases S, the contribution of the dilatational components to the Reynolds shear stress
is sufficiently small to be neglected, whereas the cross-correlation between the solenoidal
and dilatational components contributes negatively by approximately 10 % in the near-wall
region at M∞ = 6. This is consistent with our previous findings in turbulent channel flows
(Yu et al. 2019) at the centreline Mach number of 7. The wall disturbances enhance the
contribution of the dilatational component to approximately 5 % and in the meantime
reduce that of the cross-correlation between solenoidal and dilatational motions. We can
infer from this reduction in the cross-correlation that the physical processes of solenoidal
and dilatational motions in the presence of wall disturbances are probably different in
nature and their interactions are weak dynamically, at any rate where only the single-point
statistics are concerned.
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Figure 11. Wall-normal distribution of the decomposed Reynolds stress R+
vv,t, (a–c) solenoidal components

R+
vs

t v
s
t
, (d–f ) dilatational components R+

vd
t vd

t
, (g–i) correlations between the solenoidal and dilatational

components 2R+
vs

t v
d
t
, (a,d,g) cases S, (b,e,h) cases R1, (c,f,i) cases R2. Line legends refer to table 1.

Lastly, we consider the contribution of the dilatational-related Reynolds shear stress to
the skin friction. The most adopted method is the skin friction decomposition formula
proposed by Fukagata, Iwamoto & Kasagi (2002), known as the ‘FIK’ identity, which is
obtained by the trifold integration of the mean momentum equation, thereby decomposing
the skin friction into the terms related to the viscous stress, Reynolds stress and, in
boundary layers, the spatial development and mean flow convection. It is further applied to
compressible turbulent channel flows for the evaluation of compressibility effects caused
by flow property variation (Gomez, Flutet & Sagaut 2009) and dilatational motions (Yu
et al. 2019). However, the trifold integration adopted in deriving the FIK identity has
been criticized recently as lacking proper physical interpretation (Wenzel et al. 2022).
Therefore, in the present study, the twofold integration proposed in the study of Wenzel
et al. (2022) is used for better illustration of physical significance, written as

Cf = 2
ρ∞U2∞δ

∫ δ

0
τxy dy︸ ︷︷ ︸

CV

− 2
ρ∞U2∞δ

∫ δ

0
ρu′′v′′ dy︸ ︷︷ ︸

CR

+ 2
ρ∞U2∞δ

∫ δ

0
( y − δ)Ix dy︸ ︷︷ ︸

CG

, (4.6)
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Figure 12. Wall-normal distribution of the decomposed Reynolds stress −R+
uv,t, (a–c) solenoidal components

−R+
us

t v
s
t
, (d–f ) dilatational components −R+

ud
t vd

t
, (g–i) correlations between the solenoidal and dilatational

components −R+
us

t v
d
t

− R+
ud

t vs
t
, (a,d,g) cases S, (b,e,h) cases R1, (c, f,i) cases R2. Line legends refer to table 1.

with Ix expressed as

Ix = −∂ρ̄ũũ
∂x

− ∂ρu′′u′′

∂x
− ∂ρ̄ũṽ

∂y
− ∂ p̄

∂x
+ ∂τ̄xx

∂x
. (4.7)

The CV and CG terms represent the contribution of viscous stress and spatial development
and mean flow convection to the skin friction. The CR term originates from the
contribution of the Reynolds stress which, by splitting it into the dispersive and turbulent
stresses and the latter further into the solenoidal and dilatational components, can be
further decomposed as

CR = CR,d + CR,t, CR,t = CR,ts + CR,td + CR,tsd. (4.8a,b)

The terms CR,d and CR,t denote the contributions of the dispersive and turbulent portions
and CR,ts, CR,td and CR,tsd those of the solenoidal, dilatational components and their
cross-correlations. The expressions of these terms are similar to CR,t except that the
velocity fluctuations are substituted by the corresponding velocity components.

972 A32-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.712


M. Yu, Q.Q. Zhou, S.W. Dong, X.X. Yuan and C.X. Xu

0

2

4

6

8

10(a)

6.59

4.46 4.56

3.16
2.03 2.10 2.21

1.57 1.58

0

20

40

60

80

100(b)

54.91 59.56 61.84 60.45
69.75

76.85

61.55

74.42
81.94

0

1

2

3

4

5(c)

0 0 0

1.83 1.70 1.96

3.79 3.54
4.00

0

20

40

60

80

100(d )

54.91
59.56 61.84 58.62

68.05
74.91

55.76

70.88
77.94

0

20

40

60

80

100(e)

55.95 61.35 62.73 59.26

70.65
77.26

55.78

70.38
76.79

0

1

2

3

4

5( f )

0.10
0.59

1.42

0.40

1.74

3.11

0.63

2.50

3.61

–5

–4C
R,

ts
d/

C
f(

%
)

C
R,

ts
/C

f(
%

)
C

R,
d/

C
f(

%
)

C
V

/C
f(

%
)

C
G

/C
f(

%
)

C
R,

td
/C

f(
%

)
C

R,
t/

C
f(

%
)

C
R

/C
f(

%
)

–3

–2

–1

0(g)

–0.79

–2.40 –2.48

–0.93

–3.53 –3.35

–1.00

–3.67
–3.42

0

10

20

30

40

50(h)

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

M2–S M2–R1 M2–R2 M4–S M4–R1 M4–R2 M6–S M6–R1 M6–R2

39.69 37.57 36.22 37.27

30.00

23.70

37.05

25.87

18.65

Figure 13. Contribution of each term in (4.6) to the skin friction.

Figure 13 reports the contributions of the terms in (4.6) to skin friction. The viscous
stress and spatial development contribute to the skin friction by approximately 5 % and
38 % for cases with smooth walls and decrease slightly for cases with wall disturbances.
Their abatement is compensated by the rising percentage of the CR related to the Reynolds
stress, which increases with both the Mach number and the wavelength of the wall
disturbances. The dispersive portion of the Reynolds stress is only restricted close to
the wall within the height of approximately the sandgrain roughness ks, so their direct
contribution to the skin friction in terms of mean momentum is comparatively small at less
than 5 % for the presently considered cases. The turbulent portion of the Reynolds stress
is mostly constituted of the solenoidal component. The contribution of the dilatational
component is positive and increases with the Mach number but is mitigated by the negative
contribution of the cross-correlation between the solenoidal and dilatational velocities.
For most of the cases, the terms related to the cross-correlation CR,tsd are greater than
the genuine dilatational term CR,td, but this is reversed for case M6-R2 where the latter
surpasses the former in magnitude. In conclusion, in the integral sense of mean momentum
balance, the contribution of the dilatational motions to the skin friction can be disregarded
due to its insignificant value, despite their intensification in magnitude.
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4.2. Transport of turbulent kinetic energy
The intensification of the dilatational motions will also lead to the variation of turbulent
kinetic energy transport. As we have shown in our previous study (Yu et al. 2023a), the
dispersive portion of the fluctuations only have a strong impact on the budget terms in the
near-wall region and our preliminary examination also suggests their weak Mach number
dependence (not shown here for brevity). Henceforth, we only present the production and
dissipation terms of the turbulent portion in this subsection.

By substituting the Helmholtz decomposition into the expression of turbulent kinetic
energy (TKE) production, we have

PK,t = PK,ts + PK,td + PK,tsd

= −ρu′′s
t v′′s

t
∂ ũ
∂y

− ρu′′d
t v′′d

t
∂ ũ
∂y

− (ρu′′s
t v′′d

t + ρu′′d
t v′′s

t )
∂ ũ
∂y

. (4.9)

As shown in the left column of figure 14, the dilatational components PK,td are much
smaller than the solenoidal ones for all the cases considered. The cross-correlation
terms PK,tsd are approximately a decade smaller than the solenoidal component with the
inclination of decreasing the turbulent TKE production.

The dissipation term can be decomposed by reformulating it as vorticity and divergence
(Duan et al. 2011), i.e.

εt = εt,s + εt,d = −μω′
i,tω

′
i,t − 4

3μθ ′
t θ

′
t . (4.10)

As shown in the right column of figure 14, the viscous dissipation caused by the vorticity
εt,s is at least ten times greater than that by divergence εt,d within the boundary layer,
whereas in the free stream this trend is reversed. It has been estimated in compressible
isotropic turbulence that the ratio between them εt,d/εt,s increases with the turbulent Mach
number as a function of M4

t , i.e.

εd ≈ CεM4
t εs. (4.11)

In turbulent boundary layers, however, such patterns are difficult to find due to the
statistical inhomogeneity in the wall-normal direction, but as has been shown by Duan
et al. (2011), this estimation still holds at the locations where the turbulent Mach number
Mt reaches maxima. This is also validated with our presently obtained DNS databases,
as shown in figure 15, except that the coefficient Cε seems higher for cases with wall
disturbances, suggesting that the intensified dilatational motions by wall disturbances
enhance the viscous dissipation.

5. Strong compressive structures

Figure 9 shows that the dilatational velocity fluctuations are organized as sheet-like
structures, enhanced by the wall disturbances. These structures are reminiscent of the
shocklets in compressible isotropic (Lee, Lele & Moin 1991; Samtaney, Pullin & Kosović
2001; Wang et al. 2017, 2018) and homogeneous shear turbulence (Chen et al. 2018,
2019) at sufficiently high Mach numbers, namely the small-scale shock-like structures
gradually appearing and occupying higher volume fractions of the flow. In wall-bounded
turbulence, however, such structures are rarely observed, for the regions of high Mach
number (near the free stream) and high turbulent intensities (close to the wall) are
usually separated. The study of Duan et al. (2011) has shown, in hypersonic turbulence
at the free-stream Mach number of 12, possible evidence of the existence of eddy
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Figure 14. Budget terms of turbulent kinetic energy, turbulent portion of (a,c,e) production term,
(b,d, f ) dissipation term, (a,b) cases S, (c,d) cases R1, (e, f ) cases R2. Blue lines, cases M2; red lines, cases
M4; black lines, cases M6. Symbols: original solid lines, solenoidal components; dashed lines, dilatational
components; dash-dotted lines, cross-correlation.

shocklets with numerical Schlieren and velocity divergence but lacks strict proof thereof,
such as verifying whether the flow quantities on the two sides of the shocklets satisfy
the Rankine–Hugoniot relation. In supersonic turbulent channel flows with sinuously
distributed rough walls, it has been shown that the two-dimensional roughness is
more sufficient in compressing the flow and that the quasi-steady shock waves have
significant impacts on the flow statistics at the Mach number of 3.0 (Tyson & Sandham
2013; Sun et al. 2018), whereas the three-dimensional roughness inclines to generate
small-scale randomly oriented structures, which were assumed to be eddy shocklets
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Figure 15. Ratio between dilatational and solenoidal dissipation εt,d/εt,s. Line legends refer to table 1.

pl , ρ l pr , ρr

θ ′ < 0.1 (U∞/δ)

(∂p′/∂x) > (p∞/δ)

Figure 16. Illustration of the identification of compressive events.

(Jouybari et al. 2020). The cases with wall disturbances considered in the present study
are similar to such a kind of three-dimensional roughness that induces the mean streamline
curvature and hence the local flow compression and expansion. Since they are crucial to
the flow dynamics and turbulent modelling, as we have demonstrated previously, in this
section, we set out to identify the existence and nature of these shock-like structures and
their variation with the Mach number.

A direct method of detecting the flow compression is to search for the regions where
the velocity divergence θ ′ is strongly negative, but it lacks the capability of identifying
their nature, i.e. whether they are the real shocklets. The previous experimental studies
(Ekoto et al. 2009; Peltier et al. 2016) showed that the wall disturbances generally produce
forward-inclined structures through which the fluid suffers compression as it travels
downstream. Based on this feature, we only consider such the strong compressive events
under the condition of both the strongly negative velocity divergence θ ′

t < −0.1U∞/δ and
the positive streamwise pressure gradient ∂p′/∂x > p∞/δ (see figure 16), with the former
distinguishing the strong compression and the latter separating the shocklets from the rest
of the identified structures. The pressure and density on the right and left sides of these
structures are denoted as pr, ρr and pl, ρl, respectively.

In figure 17 we plot the probability density function (PDF) of pr/pl against ρr/ρl
across the strong flow compression events inside the boundary layer. Three auxiliary
lines highlighting the isothermal, shock and isentropic processes are shown. Note that,
for the presently considered flow configuration, the relation between the pressure and
density ratios in isentropic processes and shock waves show trivial deviations for the
lack of extremely strong flow compression. For cases S with smooth walls, they exhibit
no tendency of the strong compressive events falling on either curve, suggesting that
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Figure 17. Probability density function distribution of pr/pl against ρr/ρl, (a) case M2-S, (b) case M2-R1,
(c) case M2-R2, (d) case M4-S, (e) case M4-R1, ( f ) case M4-R2, (g) case M6-S, (h) case M6-R1, (i) case
M6-R2. Contour levels: 0.001 ∼ 1.0 with 7 equally distributed levels logarithmically. Blue lines, isothermal
relation; green lines, Rankine–Hugoniot shock relation; red lines, isentropic relation.

the probability of the occurrence of shocklets is extremely low and that the pressure
fluctuations are probably associated with vortical motions rather than thermodynamic
processes.

The wall disturbances significantly alter the identified flow structures, especially in the
relation between pr/pl and ρr/ρl. For the cases at the free-stream Mach number of 2.0,
there is an inclination of the ratios of pressure and density on the right and left sides of
the compressive events pr/pl and ρr/ρl falling on the curve of the isothermal relation.
This suggests that the introduced wall disturbances at M∞ = 2 are comparatively mild
without inducing strong fluctuations of internal energy. At higher Mach numbers of 4.0,
the tendency of the ratios pr/pl and ρr/ρl falling on the isothermal relation is still there,
but the probability of occurrence is higher for isentropic processes or shock waves which,
at the free-stream Mach of 6.0, are the dominant compressive events. Compared with
cases R1, cases R2 with larger wavelengths show a higher probability of the occurrence
of isothermal processes. This is justifiable because the compressive events are usually
fine structures (Samtaney et al. 2001; Wang et al. 2017), which are more likely to be
generated by wall disturbances with smaller wavelengths. In other words, the smaller
wavelengths affect the dilatational motions and thermodynamic processes that are related
to the fluctuations of internal energy more sufficiently. The wall disturbances with larger
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wavelengths, on the other hand, are prone to having stronger impacts on vortical and shear
motions, as suggested by the enhanced Reynolds stress in figure 10.

Figure 18 shows the pressure fluctuations (the left column) at the free-stream Mach
number of 6 along with the identified strong flow compressive events under the condition
of ρr/ρl > 1.1 and pr/pl > (ρr/ρl)

1.4 (lines in the left columns and isosurfaces in the
right column). The criterion of the density ratio is chosen via the percolation analysis as
the value when the volume of compressive events in the free stream, which is promised to
be the weak isentropic processes, decreases to an insignificant value. With this criterion,
the strong compressive events are barely observable in case M6-S, but in cases M6-R1
and M6-R2 with wall disturbances, the pressure fluctuations near the wall are intensified,
related to the flow compression due to the mean streamline curvature. These compressive
events generated on the wall travel to higher wall-normal locations and, due to the mean
flow convection, inclined towards the downstream direction and manifested in the shape
of sheets, as with those observed in isotropic turbulence (Samtaney et al. 2001; Wang
et al. 2017). Notably, although the pressure fluctuations inside the boundary layers are
stronger in case M6-R2 than those in case M6-R1, the induced compressive events
are less in volume and weaker in strength, which should probably be ascribed to the
larger wavelengths of the wall disturbances that alleviate the high pressure gradients
in the streamwise direction. The implication is that the wall disturbances with larger
wavelengths induce stronger vortex shedding but weaker flow compression, consistent with
our previous presumption observed from the PDF in figure 17.

With the aid of the PDF and the flow visualizations in the instantaneous fields, we
proved that there are barely any shocklets in the flow over smooth walls under the flow
parameters considered herein. Only when the wall disturbances are introduced will there
be comparatively strong compressive structures in the form of forward-inclined sheets
in hypersonic flows, the structures that resemble the eddy shocklets in the compressible
isotropic and homogeneous shear turbulence. However, they are not strong enough for us
to distinguish whether they follow the patterns of isentropic or shock waves.

6. Conclusions

In the present study, we investigate the effects of wall disturbances, designed to emulate
the imperfections of the fuselage of high-speed vehicles that induce the mean streamline
curvatures, on the compressibility effects in supersonic and hypersonic turbulent boundary
layers by exploiting DNS databases at Mach numbers up to 6. The turbulent and fluctuating
Mach numbers, the intensity of density fluctuations and the velocity divergence suggest
the more prominent compressibility effects in supersonic and hypersonic turbulence
in the presence of wall disturbances. The streamwise fluctuating mass flux, i.e. the
difference between the Favre and the Reynolds average of the velocity, is found to increase
approximately linearly with the square of the turbulent Mach number and reach maxima
of 9 % of the mean velocity close to the wall. The Favre- and Reynolds-averaged kinetic
energy and Reynolds shear stress differ by approximately 30 % near the edge of the
boundary layer at the free-stream Mach number of 6 with the wall disturbances, suggesting
the probable invalidation of Morkovin’s hypothesis that assumes the insignificance of the
density fluctuations in the flow dynamics.

We further split the velocity fluctuations into the solenoidal, rotational and potential,
dilatational portions using the Helmholtz decomposition. The instantaneous velocity
distribution of the former resembles those of the incompressible flows and that of the latter
is organized as TWPs in the wall-parallel plane and downstream-inclined radiated waves.
Although the dilatational fluctuations are stronger for the cases with wall disturbances at
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Figure 18. Instantaneous distribution of (a,c,e) pressure fluctuations (contours) and compressive events
with ρr/ρl > 1.1 and pr/pl = (ρr/ρl)

1.4 (lines). (b,d, f ) Compressive events, coloured by the wall-normal
coordinate (y/δ). (a,b) Case M6-S, (c,d) case M6-R1, (e, f ) case M6-R2.
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the Mach number of 6, their contributions to the Reynolds stress and the skin friction are
still negligible. So are their roles in the production of the turbulent kinetic energy, but the
viscous dissipation is enhanced, proportional to M4

t .
The PDF of the ratio of pressure and density on the two sides of the compressive

events shows that there are barely any shocklets in smooth wall turbulence, even at the
highest Mach number. With the presence of the wall disturbances, the strong compressive
events show more of a tendency of being isothermal processes at the Mach number of 2
where the wall disturbances are not strong enough to induce the fluctuation of the internal
energy, whereas at higher Mach numbers the strong compressive events incline to follow
either the isentropic or the Rankine–Hugoniot relation, the disparity between which is
not evident due to the comparatively weak intensity of flow compression. Moreover, the
wall disturbances with shorter wavelengths are prone to generating stronger compressive
events.

Lastly, we would like to point out that the Reynolds number effects are not considered
in the present study. The Reynolds numbers considered herein are comparatively low,
especially for the turbulence over smooth walls, so the slight difference in the friction
Reynolds number Reτ will probably lead to obvious deviations in the turbulent statistics.
Obtaining quantitative scaling laws regarding the mean and fluctuating velocities requires
more precise control of the flow parameters. However, the conclusions obtained herein
will not be altered, for most of them are based on the comparison between the dilatational
and solenoidal components or between the mean and fluctuating velocities in each case
without incorporating the effects of Reynolds numbers.

The evaluation of the compressibility effects under the influences of wall disturbances is
limited to quasi-adiabatic flows. As we have noticed in the paper, the dilatational motions
are fine-scale structures that are more likely to play a significant role in viscous dissipation
and increase the local temperature and hence the wall heat flux. Their contribution to the
wall heat transfer will be considered in our future work.
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