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Dispersive and Strichartz estimates for 3D
wave equation with a Laguerre potential
Haoran Wang
Abstract. Dispersive and Strichartz estimates are obtained for solutions to the wave equation
with a Laguerre potential in spatial dimension three. To obtain the desired dispersive estimate,
based on the spectral properties of the Schrödinger operator involved, we subsequently prove the
dispersive estimate for the corresponding Schrödinger semigroup, obtain a Gaussian-type upper
bound, establish Bernstein-type inequalities, and finally pass to the Müller–Seeger’s subordination
formula. The desired Strichartz estimates follow by the established dispersive estimate and the
standard argument of Keel–Tao.

1 Introduction

Consider the Cauchy problem for the wave equation
⎧⎪⎪⎨⎪⎪⎩

∂t tu − Δu + Vu = 0, (t, x) ∈ R ×R
3 ,

u(0, x) = f (x), ∂tu(0, x) = g(x),
(1.1)

where V(x) ∶ R3 → R is the Laguerre potential, a combination of the inverse square
potential and the Hermite potential, i.e.,

V(x) = a
∣x∣2 +

b
4
∣x∣2 , a, b ≥ 0, x ∈ R3/{0}.(1.2)

If we write Ha ,b for the operator in (1.1)

Ha ,b ∶= −Δ + a
∣x∣2 +

b
4
∣x∣2 ,(1.3)

then it is easy to verify that the quadratic form of the operator Ha ,b is positive definite,
i.e.,

∫
R3
(∣∇φ∣2 + a

∣x∣2 ∣φ∣
2 + b∣x∣2

4
∣φ∣2)dx > 0, ∀a, b ≥ 0, φ ∈ S(R3).

Hence, the operator Ha ,b is a symmetric semi-bounded operator on L2(R3;C),
which implies that Ha ,b admits a self-adjoint extension, particularly, the Friedrichs’
extension, with a formal domain D given by
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2 H. Wang

D(Ha ,b) = {φ ∈ L2(R3;C) ∶ Ha ,b φ ∈ L2(R3;C)} .

As a consequence of the Friedrichs’ extension, the unitary propagators like
e i tHa ,b , e i t

√
Ha ,b are well-defined on the domain of Ha ,b via the spectral theorem.

The unique solution u ∈ C(R; L2(R3)) of the problem (1.1) can be written as

u(t, x) = cos(t
√

Ha ,b) f (x) +
sin(t

√
Ha ,b)√

Ha ,b
g(x).(1.4)

If the inverse square potential is removed (i.e., a ≡ 0 in (1.3)), then the Hamiltonian
Ha ,b is reduced to the usual harmonic oscillator H0,b = −Δ + b

4 ∣x∣
2. If the Hermite

potential is removed (i.e., b = 0 in (1.3)), then one gets the Schrödinger operator
with an inverse square potential Ha ,0 = −Δ + a

∣x ∣2 , which is known to have the same
homogeneity as the free Laplacian −Δ. If the potential V in (1.1) vanishes, then we
recover the classical free wave equation, which is known to be scaling-invariant. The
scaling-invariance of dispersive equations (including the free Schrödinger and wave
equations) is critical for a large class of dispersive estimates, such as time-decay,
Strichartz and local-smoothing.

In particular, one has the classical dispersive estimate

∥ sin(t
√
−Δ)√

−Δ
g∥

L∞(R3)
≤ C
∣t∣ ∥g∥Ḃ1

1,1(R3) , ∀∣t∣ > 0,(1.5)

where ∥ ⋅ ∥Ḃ1
1,1

denotes the standard homogeneous Besov norm and C > 0 is a suitable
constant independent of t and g.

In the past decades, it turns out that such estimates as (1.5) play a fundamental
role in various mathematical fields, including scattering theory, harmonic analysis and
nonlinear dynamics (see, e.g., [7, 9, 31, 44]). By the standard TT∗ argument together
with the unitary property of the half-wave propagator e i t

√
−Δ

∥e i t
√
−Δ f ∥L2(R3) = ∥ f ∥L2(R3) ,

one can derive the Strichartz estimates

∥cos(t
√
−Δ) f + sin(t

√
−Δ)√

−Δ
g∥

Lq
t (R;Lr(R3))

≤ C (∥ f ∥Ḣs(R3) + ∥g∥Ḣs−1(R3))(1.6)

for some constant C > 0, where the pair (q, r) satisfies
1
q
+ 1

r
≤ 1

2
, 2 ≤ q, r < ∞(1.7)

and s is the gap index

s = 3( 1
2
− 1

r
) − 1

q
.(1.8)

We assume 0 ≤ s < 3
2 to guarantee a room for the pair (q, r). The Strichartz estimate

(1.6) was initially obtained by Segal [41] and then generalized by Strichartz [43]
in connection with Tomas’s restriction theorem [45]. Later, Ginibre and Velo [20]
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Dispersive and Strichartz estimates for 3D wave equation with a Laguerre potential 3

introduced a new viewpoint, which was extensively applied by Yajima [48] to obtain
a large class of inequalities for the Schrödinger equation. Finally, Keel and Tao [28]
settled the most challenging endpoint case q = 2, via bilinear techniques, for an
abstract propagator fulfilling the dispersive estimate as (1.5).

We stress that the above mentioned scaling-invariance is no longer valid for our
model (1.1) due to the appearance of the Hermite potential in (1.3). Therefore, it is not
trivial to verify the dispersive estimate (1.5) (and hence the Strichartz estimates (1.6))
for the wave equation (1.1), which is the main purpose of this work. Before stating the
main theorems, let us briefly review some relevant papers to better frame our results.
The dispersive estimate (1.5) has been obtained previously for the Schrödinger and
wave equations in, e.g., [4–6, 8, 11, 15, 19, 21–25, 27, 38, 40] when the potential V is
subcritical (i.e., decaying faster than the inverse square potential ∣x∣−2 near infinity).
In the earlier work [5], Beals and Strauss obtained the Lp − Lq decay estimates for the
solution to the wave equation (1.1) but not the dispersive estimate in the spirit of (1.5)
for potentials both smooth and small in a suitable sense. Later, Georgiev and Visciglia
[19] proved the dispersive estimate (1.5) for almost critical potentials, more precisely,
for potentials V ∈ Cδ(R3/{0}), δ ∈ (0, 1) satisfying

0 ≤ V(x) ≤ C
∣x∣2+ε + ∣x∣2−ε for some ε > 0.

For the critical inverse square potential a
∣x ∣2 , it turns out that the dispersive estimate

(1.5) is true when a ≥ 0 but may be false when a < 0 (see [38, 39]). The Strichartz
estimate (1.6) was proved by Burq, Planchon, Stalker, and Tahvildar-Zadeh [12, 13]
for both Schrödinger and wave equations with the potential a

∣x ∣2 in two and higher
dimensions; actually, they obtained suitable Morawetz-type estimates for the per-
turbed resolvent by the related multiplier results, which, together with the well-
known free counterparts, yields the desired Strichartz estimates for the perturbed
operator −Δ + V . Mizutani [33] studied the Strichartz estimates for the Schrödinger
equation with the critical inverse-square potential − (d−2)2

4∣x ∣2 in dimension d ≥ 3. It
turns out that the inverse-square potential represents a threshold for the validity of
the dispersive and Strichartz estimates, as shown in [25]. For the Schrödinger flow
e i t(Δ−V), a typical perturbation argument consists of expressing the action of the flow
e i t(Δ−V) by the spectral theorem and then reducing the matters of proving the desired
dispersive estimate to perform a suitable analysis on the resolvent of the perturbed
Laplacian −Δ + V , in the sense of Agmon–Hörmander. As a standard example of such
a method, we refer the interested reader to the paper of Goldberg and Schlag [24] (see
also Rodnianski and Schlag [40]), in which the dispersive estimate was obtained for
the Schrödinger equation with integrability or decaying conditions imposed on the
potential V. Another effective method is studying the mapping properties of the wave
operators of the perturbed Laplacian on Lp and then the dispersive estimate for the
Schrödinger flow e i t(Δ−V) follows from the dispersive estimate for the free Laplacian
(1.5) and the intertwining property. The wave operator argument was introduced and
applied by Yajima in his series of papers [49–52] to obtain a large class of inequalities
for dispersive equations. It turns out that this approach leads to a much stronger result
since many inequalities including the resolvent estimate follow as a consequence of
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the Lp-boundedness of the associated wave operators (see, e.g., [7, 14, 32, 47]). For
growing potentials, we only mention the interesting paper [16], in which the dispersive
estimates for the wave equation associated with the Hermite operator and the twisted
Laplacian were obtained.

In light of the above considerations, the main purpose of this paper is to prove
the dispersive and Strichartz estimates as (1.5) and (1.6) for the wave equation (1.1).
Different from the convention that the operator Ha ,b in (1.3) is often regarded as
the Laplacian perturbed by the potential (1.2), we may regard the operator Ha ,b as
the harmonic oscillator perturbed by an inverse square potential since the spectral
properties of Ha ,b possess more similarity to that of the harmonic oscillator−Δ + ∣x∣2.
Based on this observation, we will, without loss of generality, always take b = 1 in (1.3)
or let Ha ,1 take the place of Ha ,b throughout the paper.

The main effort will be devoted to prove the dispersive estimate (1.5) since the
Strichartz estimates can be derived from the dispersive estimate via the standard
argument of Keel–Tao [28]. To obtain the desired dispersive estimate, the steps we
shall follow in the sequel consists of proving a dispersive estimate for the Schrödinger
flow e i tHa ,1 , obtaining a Gaussian-type upper bound for the heat kernel e−tHa ,1(x , y),
establishing the Bernstein’s inequalities associated with Schrödinger operators and
finally passing to the classical subordination formula. In order to carry out these steps,
let us make some preparations. To obtain the dispersive estimate for the Schrödinger
propagator e i tHa ,1 , a natural way is to write down the Schrödinger kernel explicitly, for
which a crucial role is played by the spectrum of the Laplace–Beltrami operator −ΔS2

on the unit sphere S2 in R
3. It is well-known that −ΔS2 admits a purely discrete spec-

trum, consisting of real eigenvalues μk = k(k + 1), k ∈ N ∶= {0, 1, 2, . . . } with finite
multiplicity 2k + 1, and the set of the associated (L2-normalized) eigenfunctions forms
a complete orthonormal basis for L2(S2;C). In view of the symmetry of the wave
equation, we shall always require t > 0 for simplicity.

The Sobolev space associated with the Schrödinger operator Ha ,1 is defined by

Ḣs
a ,1(R3) ∶= H−s/2

a ,1 L2(R3)

and then the usual Sobolev space Ḣs(R3) (corresponding to the free Laplacian −Δ)
can be given by

Ḣs(R3) ∶= Ḣs
0,0(R3).

The homogeneous Besov norm ∥ ⋅ ∥Ḃs
p,r(R3) is defined by (see also Section 5.2)

∥ f ∥Ḃs
p,r(R3) =

⎛
⎝∑j∈Z

2s jr∥ψ j(
√

Ha ,1) f ∥r
Lp(R3)

⎞
⎠

1/r

,(1.9)

where s ∈ R, p, r ∈ [1,∞] and ψ j is a partition of unity

∑
j∈Z

ψ j(λ) = 1, ∀λ > 0.
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In particular, one has

∥ f ∥Ḣs
a ,1(R3) ∶= ∥Hs/2

a ,1 f ∥L2(R3) =
$$$$$$$$$$$$$

⎛
⎝∑j∈Z

22s j ∣ψ j(
√

Ha ,1) f ∣2
⎞
⎠

1/2$$$$$$$$$$$$$L2(R3)

= ∥ f ∥Ḃs
2,2(R3) .

Now, we state the first result concerning the dispersive estimate for the wave equa-
tion (1.1).

Theorem 1.1 (Dispersive estimate) Let T be a constant in (0, π), then, for any
t ∈ (0, T), there exists a positive constant C independent of t such that, for all
f ∈ Ḃ3/2

1,1 (R3) and g ∈ Ḃ1
1,1(R3)

∥cos(t
√

Ha ,1) f ∥
L∞(R3)

≲ 1
sin t

∥ f ∥
Ḃ

3/2
1,1 (R3),

$$$$$$$$$$$

sin(t
√

Ha ,1)√
Ha ,1

g
$$$$$$$$$$$L∞(R3)

≲ 1
sin t

∥g∥Ḃ1
1,1(R3) .(1.10)

Remark 1.2 Theorem 1.1 is an analog of the main result of [18], in which the dispersive
estimate (1.10) for the Aharonov–Bohm Hamiltonian (a Schrödinger operator with a
scaling-critical magnetic potential)

LA ∶= (i∇+ A(x/∣x∣)
∣x∣ )

2

, A ∈ W 1,∞(S1;R2)

was obtained by using a suitable representation of the fundamental solution of the
wave equation. Thanks to the appearance of the quadratic potential ∣x∣2 in (1.3),
we are allowed to obtain an explicit representation formula for the solution of the
Schrödinger and heat equations via the spectral theorem since the spectral properties
of the Hamiltonian Ha ,1 are already well-understood (see [17, Proposition 3.2]). This
is not surprising because one can regard the operator (1.3) as the harmonic oscillator
perturbed by an inverse square potential. In light of the argument of D’Ancona–
Pierfelice [15], the key ingredient to prove the desired dispersive estimate (1.10) is to
obtain a Gaussian-type upper bound for the kernel of the heat semigroup e−tHa ,1 in
the sense of Simon [42]. Similar results based on such a strategy can be found in the
previous works [15, 16, 37].

As a consequence of Theorem 1.1, we can obtain the Strichartz estimates for the
propagator e i t

√
Ha ,1 .

Theorem 1.3 (Strichartz estimate) Let Ha ,1 be the Hamiltonian given by (1.3) with
b = 1 and a ≥ 0, and let u be given by (1.4). If the pair (q, r) satisfies the condition
(1.7) and s given by (1.8) belongs to the interval [0, 3/2), then there exists some constant
C = Ca ,q ,r ,s > 0 independent of f , g such that

∥u∥Lq
t ((0,π);Lr

x(R3)) ≤ C (∥ f ∥Ḣs
a ,1(R3) + ∥g∥Ḣs−1

a ,1 (R3)) .(1.11)

Remark 1.4 Theorem 1.3 is new for the wave equation associated with the perturbed
harmonic oscillator, although the main result of [16] can standardly yield similar
Strichartz estimates for the wave equation associated with the standard harmonic
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oscillator −Δ + ∣x∣2. We point out that the Sobolev norm Ḣs
a ,1 at the right-hand side

of (1.11) can be replaced by the Sobolev norm Ḣs
osc associated with the harmonic

oscillator −Δ + ∣x∣2. Indeed, for dimension d ≥ 3, the Sobolev space Ḣs
a related to the

inverse square potential is equivalent to the usual Sobolev space Ḣs associated with
the free Laplacian −Δ (see [29, Theorem 1.2]). However, the Sobolev norm Ḣs

a ,1 at the
right-hand side of (1.11) cannot be replaced by the classical Sobolev space Ḣs since
Ḣs

osc is strictly contained in Ḣs (see [10, Theorem 3]).

2 Preliminaries

In this section, we discuss some analytical features of the operator Ha ,1, based on the
spectral properties in [17, Proposition 3.2]. Throughout the paper, we will always use
the notation C to denote a universal positive constant that may vary from line to line.

The operator Ha ,1, if expressed in the polar coordinates (r, ϑ), takes the form

Ha ,1 = −∂2
r −

2
r

∂r +
1
4

r2 + a − ΔS2

r2 .(2.1)

In the spherical coordinates (θ , ϕ), we can write ϑ ∶= (cos θ sin ϕ, sin θ sin ϕ, cos ϕ)
for ϑ ∈ S2 with (θ , ϕ) ∈ [0, 2π] × [0, π] and then ΔS2 , the Laplace–Beltrami operator
on the unit sphere S2, takes the form

ΔS2 = csc2 ϕ∂2
θ + cot ϕ∂ϕ + ∂2

ϕ .(2.2)

Let us consider the eigenvalue problem

csc2 ϕ∂2
θ Y + cot ϕ∂ϕY + ∂2

ϕY = −γY , λ ≥ 0(2.3)

and find solutions of the form Y(θ , ϕ) = Θ(θ)Φ(ϕ). By the method of separation of
variables, (2.3) reduces to the following two ODEs

Θ′′(θ) + βΘ(θ) = 0,(2.4)

Φ′′(ϕ) + cot ϕΦ′(ϕ) + (μ − β csc2 ϕ)Φ(ϕ) = 0.(2.5)

The first equation (2.4) is easy to handle, whose solution Θ ∈ L2([0, 2π];C) is given by
Θ(θ) = e imθ with the corresponding eigenvalue β = m2 , m ∈ Z. The second equation
(2.5) is thus reduced to

Φ′′(ϕ) + cot ϕΦ′(ϕ) + (μ − m2 csc2 ϕ)Φ(ϕ) = 0.(2.6)

If we make the change of variables

ξ = cos ϕ, ω(ξ) = Φ(cos ϕ),

then (2.6) is transformed into

(1 − ξ2)ω′′(ξ) − 2ξω′(ξ) + (μ − m2

1 − ξ2 )ω(ξ) = 0(2.7)
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or, equivalently, the self-adjoint form

[(1 − ξ2)ω′(ξ)]′ + (μ − m2

1 − ξ2 )ω(ξ) = 0.

Note that (2.7) is exactly the generalized Legendre equation, whose solution is given by
Φ(ϕ) = Pm

k (cos ϕ), the associated Legendre polynomial of degree k and order m with
∣m∣ ≤ k and the corresponding eigenvalue is μk = k(k + 1) with multiplicity 2k + 1.
Therefore, we obtain the desired (L2-normalized) eigenfunction of (2.3)

Y k
m(ϑ) ∶= Y k

m(θ , ϕ) = (2m + 1
4π

(k − m)!
(k + m)!

)
1/2

Pm
k (cos ϕ)e imθ , k, m ∈ Z, k ≥ 0,

(2.8)

which is the usual spherical harmonics on S
2. Associated the spherical harmonics in

(2.8), the zonal function Z(k)ϑ (ϑ′) is given by

Z(k)ϑ (ϑ′) ∶=
k
∑

m=−k
Y k

m(ϑ)Y k
m(ϑ′).(2.9)

It is well-known that the zonal function Z(k)ϑ (ϑ′) has a uniform upper bound (see,
e.g., [34])

∣Z(k)ϑ (ϑ′)∣ ≤ Z(k)ϑ (ϑ) = 2k + 1
4π

, ∀k ≥ 0, ϑ , ϑ′ ∈ S2 .(2.10)

Note that the family of eigenfunctions Y k
m(ϑ), k ∈ N, m ∈ Z given in (2.8) forms a

complete orthonormal basis for L2(S2). For a function φ ∈ L2(R3), one can expand
φ into Fourier series of the form

φ(x) ∶= φ(r, ϑ) =
∞
∑
k=0

k
∑

m=−k
Y k

m(θ , ϕ)∫
2π

0
∫

π

0
φ(r, θ′ , ϕ′)Y k

m(θ′ , ϕ′)dθ′ sin ϕ′dϕ′

=
∞
∑
k=0

∫
S2

φ(r, ϑ′)Z(k)ϑ (ϑ′)dσ(ϑ′),(2.11)

where Y k
m(θ , ϕ) is given in (2.8) and Z(k)ϑ (ϑ′) is given in (2.9). One can always expand

an L2 function into a Fourier series in terms of the spherical harmonics (2.8) or the
zonal function (2.9) as (2.11). In view of (2.1), the action of the operator Ha ,1 on each
eigenspace Hk ∶= span{Y k

m ∶ m ∈ Z, ∣m∣ ≤ k} (whose dimension is dimHk = 2k + 1)
can be given via

Ha ,1 = −∂2
r −

2
r

∂r +
1
4

r2 + μk + a
r2 , μk = k(k + 1).(2.12)

We are now in the right position to give the spectrum of Ha ,1. Let us consider the
eigenvalue problem for the operator Ha ,1

−Δe(x) + a
∣x∣2 e(x) + ∣x∣2

4
e(x) = λe(x).(2.13)
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In view of (2.11) and (2.12), one can obtain the eigenvalues and eigenfunctions of the
ODE (2.16) via a suitable transform (see the transform below (3.6) in the proof of
[17, Proposition 3.2]). Let

αk =
1
2
−
√

( 1
2
+ k)

2
+ a, and βk =

√
( 1

2
+ k)

2
+ a(2.14)

so that αk + βk = 1
2 for k ∈ N. Then the eigenvalue of the operator Ha ,1 in (2.13) can be

given in terms of (2.14) by

λm ,k = 2m + 3
2
− αk = 2m + 1 + βk , m, k ∈ N ∶= {0, 1, 2, . . . }(2.15)

with the corresponding (L2-normalized) eigenfunction

em ,k(x) = ( m!
2βk Γ(m + 1 + βk)

)
1/2

∣x∣−αk e−
∣x∣2

4 Lβk
m (∣x∣

2

2
)ψk (

x
∣x∣ ) ,(2.16)

where ψk is given via

ψk(ϑ)ψk(ϑ′) =
k
∑

n=−k
Y k

n (ϑ)Y k
n (ϑ′)(2.17)

and Lα
m(t) stands for the generalized Laguerre polynomials

Lα
m(t) = (1 + α)m

m!

m
∑
k=0

(−m)k

(1 + α)k

tk

k!
.(2.18)

Note that the zonal function Z(k)ϑ (ϑ′) in (2.9) can be expressed in terms of ψk in
(2.17) as

Z(k)ϑ (ϑ′) = ψk(ϑ)ψk(ϑ′).

In general, for a well-behaved function F, one can define the functional F(Ha ,1) via
the spectral theorem

(F(Ha ,1)φ) (x) = ∫
R3

∞
∑

m ,k=0
F(λm ,k)em ,k(x)em ,k(y)φ(y)dy,

where λm ,k is given in (2.15) and em ,k is given in (2.16). Before closing this section,
we shall give a useful lemma concerning the uniform boundedness of the sum of the
product of the zonal function in (2.9) and the modified Bessel functions of the first
kind.

Lemma 2.1 Let a > − 1
4 and βk be defined in (2.14). Define a function K ∶ R+ × S

2 ×
S

2 → C by

K(ρ, ϑ , ϑ′) = ρ−
1
2

∞
∑
k=0

i−βk Jβk(ρ)Z(k)ϑ (ϑ′),(2.19)
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where Z(k)ϑ (ϑ′) denotes the zonal function in (2.9). Then we have

sup
ρ≥0

ϑ ,ϑ′∈S2

∣K(ρ, ϑ , ϑ′)∣ < +∞ for a > 0,

sup
ρ≥0

ϑ ,ϑ′∈S2

∣K(ρ, ϑ , ϑ′)∣
1 + ρβ0− 1

2
< +∞, for − 1

4
< a < 0.

Remark 2.2 We remark that Lemma 2.1 is summarized from [17, Section 6]. The
series expression in (2.19) should be understood locally, i.e., in the sense that there
exists some k0 ≥ 1 such that the series

ρ−
1
2

∞
∑

k=k0+1
i−βk Jβk(ρ)Z(k)ϑ (ϑ), ∀ρ < R

is uniformly convergent for any fixed R and

K(ρ, ϑ , ϑ′) − ρ−
1
2

k0

∑
k=0

i−βk Jβk(ρ)Z(k)ϑ (ϑ) ∈ L∞l oc(R+ × S
2 × S

2 ,C).

Proof of Lemma 2.1 We give a proof for the benefits of the reader. We only present
the proof for the case a ≥ 0 since this is enough for the purpose of the present paper.
The proof of the other case − 1

4 < a < 0 is similar but a little more complicated, and we
may refer the interested readers to [17, Section 6].

Our goal is to show that the function K defined by (2.19) is uniformly bounded, i.e.,

∣ρ− 1
2

∞
∑
k=0

i−βk Jβk(ρ)Z(k)ϑ (ϑ′)∣ < +∞, ∀(ρ, ϑ , ϑ′) ∈ R+ × S
2 × S

2 .

To this end, we split K as

K = ρ−
1
2

∞
∑
k=0

i−βk Jβk(ρ)Z(k)ϑ (ϑ′)

= ρ−
1
2

∞
∑
k=0

ik+ 1
2 Jk+ 1

2
(ρ)Z(k)ϑ (ϑ′)

+ ρ−
1
2

∞
∑
k=0

(i−βk Jβk(ρ) − ik+ 1
2 Jk+ 1

2
(ρ))Z(k)ϑ (ϑ′)

∶ = Π1 + Π2 .(2.20)

In view of the Jacobi–Anger expansion for the plane waves (see, e.g., [34, 46])

e−ix ⋅y = (2π)3/2(∣x∣∣y∣)−1/2
∞
∑
k=0

ik Jk+ 1
2
(∣x∣∣y∣)Z(k)x/∣x ∣(y/∣y∣), x , y ∈ R3 ,

we get

(2π)−3/2e−i ρϑ ⋅ϑ′ = ρ−1/2
∞
∑
k=0

ik Jk+ 1
2
(ρ)Z(k)ϑ (ϑ′).(2.21)
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Hence, the first term Π1 in (2.20) is obviously bounded, in view of (2.21); actually, one
has Π1 = (2πi)−3/2e−i ρϑ ⋅ϑ′ i.

The second term Π2 in (2.20) is bounded for ρ ≤ ε with ε small enough. Indeed, in
view of the bound for the zonal function (2.10) and the bound for the Bessel function
(see, e.g., [46])

∣Jν(r)∣ ≤ (r/2)ν

Γ(1 + ν) er2/4 ∀ν > 0, r ≥ 0,

we have, for ρ ≤ ε with ε small enough,

∣Π2∣ = ∣ρ−
1
2

∞
∑
k=0

i−βk Jβk(ρ)Z(k)ϑ (ϑ′)∣

≤ ρ−
1
2

∞
∑
k=0

2k + 1
4πΓ(1 + βk)

(ρ/2)βk eρ2/4

≤ eε2/4

4
√

2π

∞
∑
k=0

2k + 1
Γ(1 + βk)

(ρ/2)βk− 1
2

≤ (ρ/2)β0− 1
2 eε2/4

4
√

2π

∞
∑
k=0

2k + 1
Γ(1 + βk)

≤ Cρβ0− 1
2 ,

where C = C(ε) > 0 is a constant independent of ρ, ϑ , ϑ′.
For ρ > ε, we use the contour integral representation for the Bessel function

Jν(r) = 1
2πi ∫Γ

e
r
2 (z−

1
z ) dz

z1+ν

to express the second term Π2 in (2.20)

Π2 = ρ−
1
2

∞
∑
k=0

(i−βk Jβk(ρ) − ik+ 1
2 Jk+ 1

2
(ρ))Z(k)ϑ (ϑ′)(2.22)

= ρ−1/2

2πi ∫
Γ

e
ρ
2 (z−

1
z )
⎛
⎝
∞
∑
k=0

((iz)k+ 1
2−βk − 1)

Z(k)ϑ (ϑ′)
(iz)k+ 1

2

⎞
⎠

dz
z

,

where Γ ⊂ C denotes the positive oriented contour running along the straight line
from negative infinity to z = −1 below the negative real axis, the counterclockwise
oriented unit circle from z = −1 to itself and the straight line from z = −1 to negative
infinity above the negative real axis. For convenience of statements, we denote by Γ1 the
counterclockwise oriented circumference of radius 1 and by Γ2 the two straight lines
running between z = −∞ and z = −1, and we split the integral in (2.22) accordingly, i.e.,

∫
Γ
= ∫

Γ1
+∫

Γ2
∶= I1 + I2 .
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Dispersive and Strichartz estimates for 3D wave equation with a Laguerre potential 11

In view of the analyticity of the integrand of (2.22) outside z = R− + i0±, we can write
the integral in (2.22) more rigorously

∫
Γ
= ∫

Γ1
+∫

Γ2
= lim

ε→0+
(∫

Γε
1

+∫
Γε

2

) ,

where Γε
1 denotes the circumference of radius 1 + ε centered at the origin and Γε

2
denotes the lines running along (−∞,−1 − ε) + i0±. Note that we have exchanged the
order of sum and integral in (2.22), which is permitted for any ρ, ϑ , ϑ′. Indeed, since
∣z∣ > 1 for all z ∈ Γε

1 ∪ Γε
2 , one has the absolute convergence of the contour integral along

Γε
1 ∪ Γε

2 for any ρ, ϑ , ϑ′ and hence the exchange of the order of sum and integral in
(2.22) is permitted by Fubini’s theorem.

Let us consider I1 (i.e., the integral along Γ1) firstly. In view of

βk − (k + 1
2
) =

√
(k + 1

2
)

2
+ a − (k + 1

2
) = a

2k + 1
+ O(k−3),

we have

(iz)k+ 1
2−βk − 1 = − a

2k + 1
log(iz) + a2

2
(log(iz))2

(2k + 1)2 + O(1)
k3

∶= I11(z, k) + I12(z, k) + I13(z, k) as k → +∞(2.23)

uniformly in z ∈ Γ1. Note that z−βk and zk+ 1
2 admit a branch-cut at the negative real

axis of the complex plane (i.e., at z ∈ R−), then the function log(iz) (and
√

iz, etc.) will
admit a branch-cut at z ∈ R− as well. Hence, we can, taking (2.23) into consideration,
write I1 (i.e., the integral over Γ1 in (2.22)) as

I1 =
ρ−1/2

2πi ∫
Γ1

e
ρ
2 (z−

1
z )
⎛
⎝
∞
∑
k=0

(I11(z, k) + I12(z, k) + I13(z, k))
Z(k)ϑ (ϑ′)
(iz)k+ 1

2

⎞
⎠

dz
z

∶= I11 + I12 + I13 ,(2.24)

where every summand I1 j , j = 1, 2, 3 corresponds to the integrand with the corre-
sponding I1 j , j = 1, 2, 3. Since ∣z∣ ≡ 1 for all z ∈ Γ1, we have ∣e

ρ
2 (z−

1
z )∣ = 1 and thus, in

view of (2.10) again, we obtain

∣I13∣ ≲ ρ−1/2
∞
∑
k=0

2k + 1
k3 ≲ ε−1/2 , for ρ > ε,

which indicates that ∣I13∣ is bounded uniformly in ρ, ϑ , ϑ′. From the definitions of
the spherical harmonics (2.8) and the zonal functions (2.9), one can recover the well-
known identity (see [34])

Z(k)ϑ (ϑ′) = 2k + 1
4π

Pk(ϑ ⋅ ϑ′),(2.25)

where Pk is the Legendre polynomial of degree k (a solution of the Legendre equation
(2.7)). In view of the identity (2.25) and the generating function formula for the
Legendre polynomials (see, e.g., [2, equation (22.9.12)])
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∞
∑
k=0

Pk(s)rk = (1 − 2rs + r2)−1/2 , ∣r∣ < 1,(2.26)

we have, for I11,

− a log(iz)
∞
∑
k=0

Z(k)ϑ (ϑ′)
2k + 1

(iz)−(k+ 1
2 )

= − a log(iz)
4π

∞
∑
k=0

Pk(ϑ ⋅ ϑ′)(iz)−(k+ 1
2 )

= − a(iz)−1/2 log(iz)
4π
√

1 + 2iz−1 ϑ ⋅ ϑ′ − z−2

= − a(−iz)1/2 log(iz)
4π
√

z2 + 2iz(ϑ ⋅ ϑ′) − 1
, ∣z∣ > 1,(2.27)

and hence

I11 = −
aρ−1/2

8π2 i
lim

ε→0+∫Γε
1

e
ρ
2 (z−

1
z ) (−iz)1/2 log(iz)√

z2 + 2iz(ϑ ⋅ ϑ′) − 1
dz
z

.(2.28)

Note that ∣e
ρ
2 (z−

1
z )∣ ≡ 1 for all ρ > 0 and z ∈ Γ1. If ϑ ⋅ ϑ′ stays far away from ±1, then

1 − (ϑ ⋅ ϑ′)2 > ε and the term I11 in (2.28) is uniformly bounded with respect to
ε → 0+, ρ > ε, due to the integrability of the two singularities of square root type
of the integrand at z± = −i(ϑ ⋅ ϑ′) ±

√
1 − (ϑ ⋅ ϑ′)2. If ϑ ⋅ ϑ′ = ±1, one sees that these

two singularities at z± collapse into a stronger singularity at z = ±i. Let us assume
ϑ ⋅ ϑ′ = −1 (the other case ϑ ⋅ ϑ′ = 1 can be similarly treated) for concreteness, then we
obtain

lim
ε→0+∫Γε

1

e
ρ
2 (z−

1
z ) (−iz)1/2 log(iz)

z − i
dz
z

(2.29)

= iπ2e i ρ + P.V.∫
Γ1

e
ρ
2 (z−

1
z ) (−iz)1/2 log(iz)

z − i
dz
z

,(2.30)

which is simply the Plemelj–Sokhotskyi formula (see, e.g., [1]) for the limit of Cauchy
integrals when tending to a singular point. The second term at the right-hand side of
(2.29) is a singular integral of the function e

ρ
2 (z−

1
z )(iz)−1/2 log(iz), which is differen-

tiable with respect to z = e iθ for θ varying in some neighborhood of π
2 (remember

that the discontinuity of the argument of z is along the negative real axis of the
complex plane). Due to the boundedness of the principal value of a Cauchy integral of
a differentiable function (see [1]), we conclude the boundedness of the term I11 for all
ρ > ε. We stress that it is still possible for the principal value integral to be divergent
as ρ →∞ despite its boundedness for any ρ > ε. To exclude this undesired possibility,
let us consider the neighborhood of z = i in Γ1

Γη
1 ∶= {z = ie iθ ∶ ∣θ∣ < η ≪ 1}.
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Dispersive and Strichartz estimates for 3D wave equation with a Laguerre potential 13

In view of the fact
(π + θ)e iθ/2

i(e iθ − 1) = −π
θ
+ O(1) as θ → 0,

we compute the integral over Γη
1 for any ρ ≫ 1

P.V.∫
η

−η
e i ρ cos θ (π + θ)e iθ/2

i(e iθ − 1) dθ = P.V.∫
η

−η
e i ρ cos θ (−π

θ
+ O(1))dθ

= O(1)P.V.∫
η

−η
e i ρ cos θ dθ − πP.V.∫

η

−η

e i ρ cos θ

θ
dθ .

The second principal value integral obviously vanishes (due to the parity of the
integrand), i.e.,

P.V.∫
η

−η

e i ρ cos θ

θ
dθ ≡ 0,

it thus follows (note that the first principal value integral is finite) that

P.V.∫
η

−η
e i ρ cos θ (π + θ)e iθ/2

i(e iθ − 1) dθ = O(1).

Therefore, the integral along Γη
1 is uniformly bounded for all ρ. The integral over Γ1/Γη

1
is uniformly bounded as well since ∣e

ρ
2 (z−

1
z )∣ ≡ 1 for all z ∈ Γ1. Hence, the principal

value integral over Γ1 is bounded uniformly in ρ, ϑ , ϑ′. If the singularities z± = −i(ϑ ⋅
ϑ′) ±

√
1 − (ϑ ⋅ ϑ′)2 are very close to each other (i.e., ∣ϑ ⋅ ϑ′∣ > 1 − ε), then, similarly as

(2.29), one can split the integral over Γ1 into two parts

∫
Γ1
= ∫�

z− ,z+
+∫

Γ1/
�
z− ,z+

,(2.31)

where
3
z− , z+ denotes the small arc of Γ1 between z− and z+. The second integral at the

right-hand side of (2.31) can be easily bounded just like the principal value integral
above and yields the same uniform boundedness with respect to ϑ , ϑ′. It is easy to see
that there exists some θ̂ ∈ R such that

z± = −i(ϑ ⋅ ϑ′) ±
√

1 − (ϑ ⋅ ϑ′)2 = ie±i θ̂ ,

then the first term at the right-hand side of (2.31) becomes the integral of

(π + θ)e i(ρ cos θ+ θ
2 )

√
(ie iθ − ie−i θ̂)(ie iθ − ie i θ̂)

= πe i ρ cos θ
√
∣θ + θ̂∣∣θ − θ̂∣

(1 + O(∣θ − θ̂∣) + O(∣θ + θ̂∣)) ×
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1, if θ < −θ̂ ,
1, if θ > θ̂ ,
−i , if − θ̂ < θ < θ̂ ,

= πe i ρ cos θ φ(θ)√
∣θ + θ̂∣∣θ − θ̂∣

+ O(∣θ − θ̂∣−1/2) + O(∣θ + θ̂∣−1/2),
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where φ is a suitable function satisfying ∣φ(θ)∣ ≡ 1. Hence, we have

∣∫�
z− ,z+

∣ =
66666666666
π∫

θ̂

−θ̂

e i ρ cos θ
√

θ̂2 − θ2
dθ + O(1)

66666666666

=
66666666666
π∫

1

−1

e i ρ cos(θ̂ s)
√

1 − s2
ds + O(1)

66666666666
≲ 1 uniformly with respect to ρ, θ̂ .

Therefore, the integral over Γ1 is bounded uniformly in ρ and ε.
Finally, it remains to treat the term I12 in (2.24)

a2ρ−1/2

4πi ∫
Γ1

e
ρ
2 (z−

1
z )
⎛
⎝
∞
∑
k=0

Z(k)ϑ (ϑ′)
(2k + 1)2 (iz)−(k+ 1

2 )
⎞
⎠
(log(iz))2 dz

z
.

Let

G(z, ϑ , ϑ′) ∶ =
∞
∑
k=0

Z(k)ϑ (ϑ′)
(2k + 1)2 (iz)−(k+ 1

2 ) ,

g(z, ϑ , ϑ′) ∶ = 1
2i

∞
∑
k=0

Z(k)ϑ (ϑ′)
2k + 1

(iz)−(k+ 3
2 ) ,

then one easily verifies

G′z(z, ϑ , ϑ′) = g(z, ϑ , ϑ′).

In view of the formulas (2.25) and (2.26), we have

g(z, ϑ , ϑ′) = (iz)−3/2

8πi
√

1 + 2iz−1(ϑ ⋅ ϑ′) − z−2
.

Since g(z, ϑ , ϑ′) has a square root-type singularity when ϑ ⋅ ϑ′ ≠ −1 or has a (z − i)−1-
type singularity at z = i when ϑ ⋅ ϑ′ = −1 (we only consider this case here, the other
case ϑ ⋅ ϑ′ = 1 is similar as before), we conclude that G(z, ϑ , ϑ′) has at most a log-type
singularity, which is integrable, and hence the corresponding integral is uniformly
bounded. Therefore, the term I1 (i.e., the integral (2.22) over Γ1) is uniformly bounded.

We proceed to consider the term I2

I2 =
ρ−1/2

2πi ∫
Γ2

e
ρ
2 (z−

1
z )
⎛
⎝
∞
∑
k=0

((iz)k+ 1
2−βk − 1)

Z(k)ϑ (ϑ′)
(iz)k+ 1

2

⎞
⎠

dz
z

.(2.32)

After changing variables z = −es , exchanging the order of sum and integral and
rearranging terms subsequently, we can rewrite I2 of (2.32) (similar to I1) as

I2 =
ρ−1/2

2πi

∞
∑
k=0

Z(k)ϑ (ϑ′) (Φk(ρ) + Ψk(ρ))

∶= I21 + I22 ,(2.33)
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where

Φk(ρ) = 2i−(1+βk) sin(πβk)∫
∞

0
e−ρ sinh s(e−sβk − e−(k+

1
2 )s)ds,

Ψk(ρ) = −2i ∫
∞

0
e−ρ sinh s−(k+ 1

2 )s(i−βk sin(πβk) − i−(k+
1
2 ) sin π(k + 1

2
))ds.

In view of (2.10) again, we obtain

∣I21∣ = ∣
ρ−1/2

2πi

∞
∑
k=0

Z(k)ϑ (ϑ′)Φk(ρ)∣

≲ ρ−1/2
∞
∑
k=0
(2k + 1)∫

∞

0
e−ρ sinh s ∣e−sβk − e−(k+

1
2 )s ∣ds

≲ ρ−1/2
∞
∑
k=0
(2k + 1) ∣ 1

βk
− 1

k + 1
2
∣ ≲ ρ−1/2 .

To address I22 in (2.33), we use the fact

i−βk sin(πβk) − i−(k+
1
2 ) sin π(k + 1

2
)

= (i−βk − i−(k+
1
2 )) sin(πβk) + i−(k+

1
2 ) (sin(πβk) − sin π(k + 1

2
))

= i−(k+
1
2 )(−1)k+1 ( aπi

2(2k + 1) +
(aπ)2

8(2k + 1)2 ) + i−(k+
1
2 )(−1)k+1 (aπ)2

2(2k + 1)2 + O(k−3)

= ik+ 5
2

aπ
2(2k + 1) + ik+ 3

2
5π2a2

8(2k + 1)2 + O(k−3) as k → +∞

and the formula (2.26) to obtain

∣I22∣ = ∣
ρ−1/2

2πi

∞
∑
k=0

Z(k)ϑ (ϑ′)Ψk(ρ)∣ ≤
66666666666
ρ−1/2 ∫

∞

0
e−ρ sinh s− s

2

×
⎡⎢⎢⎢⎢⎣

aπ
4i3/2

√
1 − ie−s(ϑ ⋅ ϑ′) − e−2s

+
∞
∑
k=0

5π2a2Z(k)ϑ (ϑ′)
16i−(k+ 3

2 )eks
((2k + 1)−2 + O(k−3))

⎤⎥⎥⎥⎥⎦

66666666666
.

By (2.10) and
1√

1 − ie−s(ϑ ⋅ ϑ′) − e−2s
≲ 1 + s−1/2 ,

we see
66666666666

∞
∑
k=0

ik e−ks Z(k)ϑ (ϑ′) ((2k + 1)−2 + O(k−3))
66666666666

≲
∞
∑
k=0
(keks)−1≲ log ∣s∣ uniformly in ϑ , ϑ′ .
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Hence, we can bound I22 in (2.33) by

∣I22∣ ≲ ρ−1/2 ∫
∞

0
e−ρ sinh s− s

2 (1 + s−1/2 + log ∣s∣)ds ≲ ρ−1/2 .

Remember that we have ρ > ε for some ε > 0 in this case, the uniform boundedness of
I2 follows.

Therefore, we obtain the desired bound

sup
ρ≥0

ϑ ,ϑ′∈S2

∣K(ρ, ϑ , ϑ′)∣ < +∞

and the proof of Lemma 2.1 is finished. ∎

3 Dispersive estimate for Schrödinger flow

In this section, we will construct a representation formula for the kernel of the
Schrödinger propagator e−i tHa ,1 and then prove a dispersive inequality for this kernel.
Such a dispersive inequality will be used to prove the main theorem (Theorem 1.1) of
this paper, as mentioned in the introduction.

Proposition 3.1 (Schrödinger kernel) Let Ha ,1 be the operator given by (1.3), and let u
be the unique solution to the Schrödinger equation

⎧⎪⎪⎨⎪⎪⎩

i∂tu(t, x) = Ha ,1u(t, x),
u(0, x) = f (x) ∈ L2(R3),

then the solution u can be represented as

u(t, x) = (e−i tHa ,1 f ) (x) ∶= ∫
R3

KS(x , y) f (y)dy,(3.1)

where KS(x , y) corresponds to the kernel of the Schrödinger propagator e−i tHa ,1 .
Moreover, if we write KS

t (r1 , ϑ1; r2 , ϑ2) for the kernel KS(x , y) in polar coordinates
(r, ϑ), then we have

KS
t (r1 , ϑ1; r2 , ϑ2) =

e−
r2
1 +r2

2
4i tan t

2i√r1r2 sin t

∞
∑
k=0

Iβk

⎛
⎝

r1r2

2i sin t
⎞
⎠

Z(k)ϑ1
(ϑ2),(3.2)

where Z(k)ϑ (ϑ′) is given in (2.9) and βk in (2.14).

Remark 3.2 The integral at the right-hand side of (3.1) should be understood in the
sense of improper integrals, i.e.,

u(t, x) = lim
R→+∞∫BR(0)

KS(x , y) f (y)dy, where BR(0) ∶= {y ∈ R3 ∶ ∣y∣ < R},

which is consistent with the statement of Remark 2.2.
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Proof of Proposition 3.1 Since the spectrum of the operator Ha ,1 consists of pure
points, we have, by the spectral theorem,

e−i tHa ,1(x , y) = ∑
m ,k∈N

e−i tλm ,k em ,k(x)em ,k(y).(3.3)

Substituting the eigenvalues (2.15) and eigenfunctions (2.16) into (3.3), one gets

KS
t (r1 , ϑ1; r2 , ϑ2) = (r1r2)−1/2e−

r2
1 +r2

2
4

∞
∑
k=0

(r1r2)βk e−i t(1+βk)

2βk
ψk(ϑ1)ψk(ϑ2)

×
∞
∑
m=0

e−2imt
m!Lβk

m ( r2
1

2 ) Lβk
m ( r2

2
2 )

Γ(m + 1 + βk)
,(3.4)

where ψk is defined in (2.17). From the Poisson kernel formula for the generalized
Laguerre polynomials (see, e.g., [3, equation (6.2.25)]): for ∣r∣ < 1, α > −1

∞
∑
m=0

m!Lα
m(x)Lα

m(y)rm

Γ(1 + α + m) = e− r
1−r (x+y)

(1 − r)(x yr)α/2 Iα (
2√x yr

1 − r
) ,(3.5)

we obtain

KS
t (r1 , ϑ1; r2 , ϑ2) =

(r1r2)−1/2e−
r2
1 +r2

2
4i tan t

2i sin t

∞
∑
k=0

ψk(ϑ1)ψk(ϑ2)Iβk

⎛
⎝

r1r2

2i sin t
⎞
⎠

.(3.6)

Finally, in view of (2.17) and (2.9), the desired formula (3.2) follows. ∎

Remark 3.3 Note that in the representation formula of the Schrödinger kernel (3.2)
in Proposition 3.1, there appears a sine factor sin t, which implies that the time
points t = kπ with k ∈ Z have to be excluded. This phenomenon is natural due to the
introduction of the Hermite potential ∣x∣2, which implies that the effect of the Hermite
potential on the Laplacian is stronger than that of the inverse square potential ∣x∣−2,
or in other words, the effect of the inverse square potential ∣x∣−2 can be viewed as
a “small” perturbation of the harmonic oscillator (in the sense that the discreteness
of the spectrum is preserved). Hence, the dispersive bound for the kernel (3.2) will
be of the form ∣ sin t∣− 3

2 (see Proposition 3.4) with t ≠ kπ, k ∈ Z, which is different
from that for the free Schrödinger kernel case ∣t∣− 3

2 , but consistent with that for the
(unperturbed) harmonic oscillator (see, e.g., [30]).

In the following, we prove a dispersive bound for the Schrödinger kernel obtained
in Proposition 3.1.

Proposition 3.4 Let Ha ,1 be the operator in (1.3), then there exists some constant C > 0
such that

∥e−i tHa ,1∥L1(R3)→L∞(R3) ≤ C∣ sin t∣− 3
2 , ∀t ≠ kπ, k ∈ Z.(3.7)

Remark 3.5 Interpolating between the dispersive estimate (3.7) and the unitary
property of the Schrödinger propagator e−i tHa ,1

∥e−i tHa ,1 f ∥L2(R3) = ∥ f ∥L2(R3),
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one immediately gets the time-decay estimate

∥e−i tHa ,1 f ∥Lp′(R3) ≲ ∣ sin t∣−3( 1
2−

1
p′ )∥ f ∥Lp(R3), p ∈ [1, 2], 1

p
+ 1

p′
= 1,

which is an analog of [17, Theorem 1.11(i)] for e−i tHa ,0 .

Proof of Proposition 3.4 The proof follows immediately from Lemma 2.1 and we
sketch it here for completeness. Since the sine function is periodic, we may, without
loss of generality, assume t ∈ (0, π) for simplicity. Note that the Schrödinger kernel
e−i tHa ,1(x , y) in (3.2) can be rewritten as

e−i tHa ,1(x , y) = −i(2 sin t)− 3
2 e−

∣x∣2+∣y∣2
4i tan t K ( ∣x y∣

2 sin t
, x
∣x∣ ,

y
∣y∣ ) ,

where K(⋅, ⋅, ⋅) is the function defined in Lemma 2.1. Then, the desired dispersive
bound (3.7) follows by Lemma 2.1. Indeed, let us verify (3.7) according to a = 0 or
a > 0. If a = 0, then we are done since in this case the result reduces to the dispersive
estimate for the standard harmonic oscillator (see [30]). If a > 0, we have

∥e−i tHa ,1∥L1(R3)→L∞(R3) ≤ ∣e−i tHa ,1(x , y)∣

≤ ∣ sin t∣− 3
2 ∣K ( ∣x y∣

2 sin t
, x
∣x∣ ,

y
∣y∣ )∣

≤ C∣ sin t∣− 3
2 ,

where we use Lemma 2.1 in the last inequality. Hence, the proof of the dispersive
inequality (3.7) is completed. ∎

Remark 3.6 The parameter a in the inverse square potential a
∣x ∣2 is usually assumed

to satisfy a ≥ − 1
4 (a ≥ − (d−2)2

4 for general dimension d ≥ 2) due to the sharp Hardy
inequality (see, e.g., [26])

∫
Rd

∣u(x)∣2
∣x∣2 dx ≤ 4

(d − 2)2 ∫
Rd
∣∇u(x)∣2dx , d ≥ 3.

However, we require a ≥ 0 throughout the paper. We do not consider the case
− 1

4 ≤ a < 0 in the present paper, in light of the result of [17, Theorem 1.11], which says
that, for 1

p +
1
p′ = 1, p ∈ [1, 2], we have

∥e i t(Δ−a∣x ∣−2) f ∥Lp′(R3) ≲ ∣t∣
−3( 1

2−
1

p′ )∥ f ∥Lp(R3) , when a ≥ 0(3.8)

and

∥e i t(Δ−a∣x ∣−2) f ∥Lp′ ,α1 (R3) ≲
(1 + ∣t∣α1)1− 2

p′

∣t∣3(
1
2−

1
p′ )

∥ f ∥Lp,α1 (R3) , when − 1
4
< a < 0,(3.9)
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where α1 = 1
2 −

√
1
4 + a is a strictly positive number and ∥ ⋅ ∥Lp,α1 (R3) denotes the

weighted Lp norm defined by

∥u∥Lp,α1 (R3) ∶= (∫
R3
(1 + ∣x∣−α1)2−p ∣u(x)∣pdx)

1/p
, ∀p ≥ 1.

It is easy to see that the (short time) dispersive estimate (3.7) for the Schrödinger
propagator e−i tHa ,1 is an analog of the time-decay estimate (3.8) for a ≥ 0 (note that
Ha ,0 = −Δ + a∣x∣−2). Analogous to (3.9), it should hold the following weighted-decay
estimate for − 1

4 < a < 0 ∶

∥e−i tHa ,1∥Lp,α1 (R3)→Lp′ ,α1 (R3) ≲
(1 + ∣ sin t∣α1)1− 2

p′

∣ sin t∣3(
1
2−

1
p′ )

, t ≠ kπ, k ∈ Z.(3.10)

Since α1 > 0 when − 1
4 < a < 0, the decay estimate (3.9) is weaker than the usual one

(3.8) and so is (3.10). We cannot recover the dispersive estimate (3.7) for the regime
− 1

4 < a < 0 since the weight function in (3.9) seems to be indispensable (actually, the
weighted estimate (3.9) seems to be best possible, in view of [17, Remark 1.12]) and this
is exactly the reason why we restrict to consider the case a ≥ 0 in the present paper. In
addition, it is not known whether the weighted estimate (3.9) (or (3.10)) holds for the
critical case a = − 1

4 . Nevertheless, these unsolved problems may be left as the main
objects of further investigations.

4 Heat kernel

In this section, we construct a representation formula for the kernel of the heat
flow e−tHa ,1 and then prove the Gaussian boundedness. The study of heat kernels for
Schrödinger operators with potentials on Euclidean spaces Rd or manifolds has its
own interest.

Proposition 4.1 (Heat kernel) Let Ha ,1 be the operator (1.3), and let u be the unique
solution to the Schrödinger equation

⎧⎪⎪⎨⎪⎪⎩

∂tu(t, x) + Ha ,1u(t, x) = 0,
u(0, x) = f (x) ∈ L2(R3),

then the solution u can be represented as

u(t, x) = (e−tHa ,1 f ) (x) ∶= ∫
R3

KH(x , y) f (y)dy,(4.1)

where KH(x , y) corresponds to the kernel of the heat flow e−tHa ,1 .
Moreover, if we write KH

t (r1 , ϑ1; r2 , ϑ2) for the kernel KH(x , y) in polar coordinates
(r, ϑ), then we have

KH
t (r1 , ϑ1; r2 , ϑ2) =

e−
r2
1 +r2

2
4 coth t

2√r1r2 sinh t

∞
∑
k=0

Iβk

⎛
⎝

r1r2

2 sinh t
⎞
⎠

Z(k)ϑ (ϑ′),(4.2)

where βk is defined in (2.14) and Z(k)ϑ (ϑ′) is the zonal function in (2.9).
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Remark 4.2 The integral at the right-hand side of (4.1) should be understood in the
sense of improper integrals as the Schrödinger counterpart, i.e.,

u(t, x) = lim
R→+∞∫BR(0)

KH(x , y) f (y)dy, where BR(0) ∶= {y ∈ R3 ∶ ∣y∣ < R}.

Proof of Proposition 4.1 The proof is similar to Proposition 3.1 for the Schrödinger
case. Since the spectrum of the operator Ha ,1 consists of pure points, we have, by the
spectral theorem,

e−tHa ,1(x , y) = ∑
m ,k∈N

e−tλm ,k em ,k(x)em ,k(y).(4.3)

Substituting the eigenvalues (2.15) and eigenfunctions (2.16) into (4.3), one gets

KH
t (r1 , ϑ1; r2 , ϑ2) = (r1r2)−1/2e−

r2
1 +r2

2
4

∞
∑
k=0

(r1r2)βk e−t(1+βk)

2βk
ψk(ϑ1)ψk(ϑ2)

×
∞
∑
m=0

e−2mt
m!Lβk

m ( r2
1

2 ) Lβk
m ( r2

2
2 )

Γ(m + 1 + βk)
.(4.4)

By the formula (3.5), we obtain

KH
t (r1 , ϑ1; r2 , ϑ2) =

(r1r2)−1/2e−
r2
1 +r2

2
4 tan t

2 sinh t

∞
∑
k=0

ψk(ϑ1)ψk(ϑ2)Iβk

⎛
⎝

r1r2

2 sinh t
⎞
⎠

.(4.5)

Finally, in view of (2.17) and (2.9), the desired formula (4.2) follows. ∎

In the following, we prove a Gaussian-type upper bound for the heat kernel in
Proposition 4.1.

Proposition 4.3 Let Ha ,1 be the operator (1.3), then there exists some constant C > 0
such that

∣e−tHa ,1(x , y)∣ ≤ C∣ sinh t∣− 3
2 e−

∣x−y∣2
4 tanh t , ∀t > 0.(4.6)

Proof By using the function K(⋅, ⋅, ⋅) defined in Lemma 2.1, the heat kernel (4.2) can
be rewritten as

e−tHa ,1(x , y) = e−
∣x∣2+∣y∣2
4 tanh t (2 sinh t)− 3

2 K ( ρ
2 sinh t

, x
∣x∣ ,

y
∣y∣ ) , t > 0.

Then the desired bound (4.6) follows by Lemma 2.1. ∎

Remark 4.4 Note that for small time t (for example, t ∈ (0, 1)), the bound (4.6) can
be regarded as the usual Gaussian upper bound t−3/2e−

∣x−y∣2
4t for heat kernels due

to the simple facts sinh t ∼ t ∼ tanh t as t → 0. However, for large time t ≫ 1, one
can see a exponential decay e− 3

2 t for the heat kernel, which is faster than the usual
polynomial decay t−3/2, due to the fact sinh t ∼ e t as t → +∞. The Gaussian bound in
(4.6) is known to play an essential role in proving the corresponding Bernstein-type
inequalities, which will be used to obtain the dispersive estimate for the half-wave
propagator.
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5 Bernstein inequalities, Besov spaces and subordination formula

In this section, we prove the Bernstein inequalities, define the Besov spaces and give
the subordination formula adapted to the present setting.

5.1 Bernstein inequalities

In this subsection, we prove the Lp Bernstein inequalities concerning the frequency
truncations of the Schrödinger operator Ha ,1 given by (1.3). In the following lemma, we
prove the Bernstein inequalities for more general cases 1 ≤ p ≤ q ≤ ∞, s ∈ R, although
only the case (p, q, s) = (1,∞, 0) is used to prove the main theorem (Theorem 1.1).

Lemma 5.1 (Bernstein inequalities) Let ψ ∈ C∞c (R) with ψ ∈ [0, 1] and suppψ ⊂
[1/2, 2]. Then, for any f ∈ Lp(R3), s ∈ R and j ∈ Z, it holds

∥ψ(2− j√Ha ,1)Hs
a ,1 f ∥Lq(R3) ≤ C22s j+3 j( 1

p−
1
q )∥ f ∥Lp(R3) , 1 ≤ p ≤ q ≤ ∞(5.1)

for some constant C > 0.

Proof The proof is rather standard as in the theory of function spaces associated
with Schrödinger operators with potentials and we sketch it here for completeness.

From Proposition 4.3, it is known that the heat kernel of the operator Ha ,1 has a
Gaussian upper bound, i.e.,

∣e−tHa ,1(x , y)∣ ≤ Ct−
3
2 e−

∣x−y∣2
c t , for some c, C > 0.

By [36, Proposition 5.1], we conclude that the integral kernel of the truncated operator
ψ(2− j√Ha ,1) satisfies

∣ψ(2− j√Ha ,1)(x , y)∣ ≤ CN 23 j

(1 + 2 j ∣x − y∣)N ,(5.2)

for all N > 0, where CN > 0 is a constant independent of j. The bound can be extended
by scaling to a slightly more general case, i.e.,

∣Hs
a ,1ψ(2− j√Ha ,1)(x , y)∣ ≤ CN 22s j+3 j

(1 + 2 j ∣x − y∣)N .

Then the desired inequality (5.1) follows by applying Young’s inequality:

∥Hs
a ,1ψ(2− j√Ha ,1) f ∥Lq(R3) = ∥∫

R3
Hs

a ,1ψ(2− j√Ha ,1)(x , y) f (y)dy∥
Lq(R3)

≤ CN 22s j+3 j ∥∫
R3

∣ f (y)∣dy
(1 + 2 j ∣x − y∣)N ∥

Lq(R3)

≤ CN 22s j+3 j∥(1 + 2 j ∣ ⋅ ∣)−N∥Lr(R3)∥ f ∥Lp(R3)

≤ CN 22s j+3 j( 1
p−

1
q )∥ f ∥Lp(R3),

where 1 + 1
q =

1
r +

1
p . ∎
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5.2 Besov spaces

In this subsection, we define the Besov spaces in the present setting for general cases
1 ≤ p ≤ q ≤ ∞, s ∈ R, although only the case (p, q, s) = (1, 1, 1) is needed in the main
theorem (Theorem 1.1). Take a partition of unity

1 = ∑
j∈Z

ψ(2− j λ) ∶= ∑
j∈Z

ψ j(λ), λ ∈ (0,+∞),

where ψ ∈ C∞c with 0 ≤ ψ ≤ 1 and suppψ ⊂ [1/2, 2]. For 1 ≤ p, q < ∞ and s ∈ R, the
Besov space Ḃs ,ψ

p,q associated with the operator Ha ,1 is defined by

Ḃ
s ,ψ
p,q(R3) ∶=

⎧⎪⎪⎨⎪⎪⎩
f ∈ L2(R3) ∶ ∥ f ∥q

Ḃ
s ,ψ
p,q
= ∑

j∈Z
2 jqs∥ψ j(

√
Ha ,1) f ∥q

Lp(R3) < +∞
⎫⎪⎪⎬⎪⎪⎭

.(5.3)

As the classical Besov norm, the distorted Besov norm in (5.3) is independent of the
choice of a partition of unity in the following sense.

Proposition 5.2 Let φ, ψ ∈ C∞c (R) be two different partitions of unity with supports
in [1/2, 2]. Then, for 1 ≤ p, q < ∞ and s ∈ R, we have

∥ f ∥Ḃs ,ψ
p,q(R3) ∼ ∥ f ∥Ḃs ,φ

p,q(R3) .(5.4)

Proof To prove the equivalence (5.4), we claim that for any m ∈ N, there exists a
constant Cm > 0 such that

∥ψ j(
√

Ha ,1)φk(
√

Ha ,1) f ∥Lp(R3) ≤ Cm2−2m∣ j−k∣∥ f ∥Lp(R3) , ∀ j, k ∈ Z.(5.5)

We only consider the case j ≥ k in (5.5) and the other case can be treated similarly. For
m ∈ N, we write

ψ j(
√

Ha ,1)φk(
√

Ha ,1) f = H−m
a ,1 ψ j(

√
Ha ,1)Hm

a ,1φk(
√

Ha ,1) f

which, together with Bernstein inequalities (5.1), implies that

∥ψ j(
√

Ha ,1)φk(
√

Ha ,1) f ∥Lp(R3) ≤ Cm2−2 jm∥Hm
a ,1φk(

√
Ha ,1) f ∥Lp(R3)

≤ Cm2−2( j−k)m∥ f ∥Lp(R3).

Then the claimed estimate (5.5) follows. To prove (5.4), since the roles of φ and ψ are
equivalent, it is sufficient to show that

∥ f ∥Ḃs ,ψ
p,q(R3) ≤ C∥ f ∥Ḃs ,φ

p,q(R3) , f ∈ Ḃs ,φ
p,q(R3).

Since φ is a partition of unity, it holds

ψ j(
√

Ha ,1) f = ∑
k∈Z

ψ j(
√

Ha ,1)φk(
√

Ha ,1) f , j ∈ Z.

On the other hand, one has φk = (φk−1 + φk + φk+1)φk in view of the support property
of φ. Hence, we have

ψ j(
√

Ha ,1) f = ∑
k∈Z

ψ j(
√

Ha ,1)(φk−1(
√

Ha ,1) + φk(
√

Ha ,1) + φk+1(
√

Ha ,1))φk(
√

Ha ,1) f ,
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which implies

∥ψ j(
√

Ha ,1) f ∥Lp(R3)

≤ ∑
k∈Z
∥ψ j(
√

Ha ,1)(φk−1(
√

Ha ,1) + φk(
√

Ha ,1) + φk+1(
√

Ha ,1))φk(
√

Ha ,1) f ∥Lp(R3) .

We now apply (5.5) to deduce that for m > ∣s∣/2

∥ψ j(
√

Ha ,1) f ∥Lp(R3) ≤ ∑
k∈Z

2−2∣ j−k∣m∥φk(
√

Ha ,1) f ∥Lp(R3).(5.6)

Inserting (5.6) into the expression of the Besov norm in (5.3) gives

∥ f ∥q
Ḃ

s ,ψ
p,q(R3) = ∑

j∈Z
2 jsq∥ψ j(

√
Ha ,1) f ∥q

Lp(R3)

≤ C ∑
j∈Z

2 jsq (∑
k∈Z

2−2∣ j−k∣m∥φk(
√

Ha ,1) f ∥Lp(R3))
q

≤ C ∑
j∈Z
(∑

k∈Z
2−2∣ j−k∣m+ js∥φk(

√
Ha ,1) f ∥Lp(R3))

q

which, together with Young’s inequality, implies

∥ f ∥Ḃs ,ψ
p,q(R3) ≤ C (∑

k∈Z
2sqk∥φk(

√
Ha ,1) f ∥q

Lp(R3))
1/q

= ∥ f ∥Ḃs ,φ
p,q(R3)

as desired. ∎

In view of Proposition 5.2, for 1 ≤ p, q < ∞ and s ∈ R, we may briefly write ∥ ⋅ ∥Ḃs
p,q

for ∥ ⋅ ∥Ḃs ,ψ
p,q(R3) if there is no confusion, where ψ ∈ C∞c (R) is a partition of unity with

0 ≤ ψ ≤ 1 and suppψ ⊂ [1/2, 2].

5.3 Subordination formula

In this subsection, we give a simplified version of the classical subordination formula
introduced by Müller and Seeger [35].

Proposition 5.3 (Subordination formula) Let η ∈ C∞c (R)with suppη ⊂ [1/2, 2]. Then
there exist a symbol function a ∈ C∞(R ×R) with suppa(⋅, σ) ⊂ [1/16, 4] for every σ ∈
R fulfilling

∣∂ j
s ∂k

σ a(s, σ)∣ ≤ C j,k(1 + ∣s∣)−k , ∀ j, k ≥ 0

and a Schwartz function ρ(s, σ) ∈ S(R ×R) such that

η(
√

x/2 j)e i t
√

x = ρ(t
√

x/2 j , 2 j t) + η(
√

x/2 j)2 j/2√t∫
∞

0
a(s, 2 j t)e i2 j−2 t/s e i stx/2 j

ds,

(5.7)

for every x ≥ 0 and t ≥ 2− j with j ∈ Z.
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The proof of Proposition 5.3 can be found in the paper of Müller and Seeger [35]
(see also D’Ancona, Pierfelice, and Ricci [16] in Appendix); we omit the details here.

6 Proof of Theorem 1.1

With all the required ingredients in hand, we are now in the right position to prove
the dispersive estimate for the wave equation (Theorem 1.1). For the convenience of the
reader, we list these ingredients again: dispersive estimate for Schrödinger flow (3.7) in
Proposition 3.4 of Section 3, Gaussian bound for heat kernel (4.6) in Proposition 4.3
of Section 4, Bernstein inequalities (5.1) in Proposition 5.1, and subordination formula
(5.7) in Proposition 5.3 of Section 5.

To prove Theorem 1.1, a crucial ingredient is the following frequency-localized
decay estimate for the half-wave propagator e i t

√
Ha ,1 since the desired dispersive

estimate (1.10) then follows from the definition of the distorted Besov space Ḃ1
1,1(R3)

by summing all the frequencies.

Lemma 6.1 Let 0 < T < π and ψ ∈ C∞c (R) with 0 ≤ ψ(λ) ≤ 1 and suppψ ⊂ [1/2, 2].
Then, for all j ∈ Z, ∣t∣ < T and f ∈ L1(R3), there exists a constant C > 0 independent of
t such that

∥ψ j(
√

Ha ,1)e i t
√

Ha ,1 f ∥L∞(R3) ≤ C2−3 j⟨2 j t⟩−1∥ f ∥L1(R3) ,(6.1)

where ψ j(λ) ∶= ψ(2− j λ) and ⟨⋅⟩ ∶= (1 + ∣ ⋅ ∣2)1/2.

Proof It suffices to consider the case t > 0 since the case t < 0 can be treated similarly.
We follow the proof of the main result of [16]. Note that ψ j = ψ j(ψ j−1 + ψ j + ψ j+1),
then we have for t < 2− j

∥ψ j(
√

Ha ,1)e i t
√

Ha ,1 f ∥L∞(R3) ≤
2
∑
k=0

∥ψ j(
√

Ha ,1)e i t
√

Ha ,1 ψ j+k−1(
√

Ha ,1) f ∥L∞(R3).

By Lemma 5.1, we obtain

∥ψ j(
√

Ha ,1)e i t
√

Ha ,1 f ∥L∞(R3) ≤ C
2
∑
k=0
∥ψ j(
√

Ha ,1)∥L2(R3)→L∞(R3)∥e i t
√

Ha ,1∥L2(R3)→L2(R3)

× ∥ψ j+k−1(
√

Ha ,1)∥L1(R3)→L2(R3)∥ f ∥L1(R3)

≤ C23 j∥ f ∥L1(R3) ∼
23 j

1 + 2 j ∣t∣ ∥ f ∥L1(R3) .

For t ≥ 2− j , we apply Proposition 5.3 to write

ψ j(
√

Ha ,1)e i t
√

Ha ,1 f = ρ(2− j t
√

Ha ,1 , 2 j t) f

+ ψ j(
√

Ha ,1)2
j
2
√

t∫
∞

0
a(s, 2 j t)e i2 j−2 t/s e i2− j stHa ,1 f ds

∶= S1 + S2 .
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For the first term S1, by applying Lemma 5.1 and noting the fact ρ ∈ S(R ×R), we have

∣S1∣ ≤ C∥ψ̃ j(
√

Ha ,1)∥L2(R3)→L∞(R3)∥ρ(2− j t
√

Ha ,1 , 2 j t)∥L2(R3)→L2(R3)

× ∥ψ̃ j(
√

Ha ,1)∥L1(R3)→L2(R3)∥ f ∥L1(R3)

≤ C23 j∥ρ(2− j t
√

x , 2 j t)∥L∞x (R)∥ f ∥L1(R3)

≤ C23 j(2 j t)−1∥ f ∥L1(R3)

≤ C22 j t−1∥ f ∥L1(R3)

∼ 23 j

1 + 2 j ∣t∣ ∥ f ∥L1(R3),

where ψ̃ j = ψ j−1 + ψ j + ψ j+1.
For the second term S2, by (3.7) (dispersive estimate for e−i tHa ,1 ) and Lemma 5.1,

we obtain

∣S2∣ ≤ C2
j
2
√

t∫
∞

0
∣a(s, 2 j t)∣(2− jst)−3/2∥ f ∥L1(R3)ds

≤ C22 j t−1∥ f ∥L1(R3) ∼
23 j

1 + 2 j ∣t∣ ∥ f ∥L1(R3) .

Therefore, the proof of (6.1) is completed. ∎
Remark 6.2 Theorem 1.1 can be derived from Lemma 6.1 by the definition of the
distorted Besov space Ḃ1

1,1 in (1.9). Indeed, let ψ̃ j = ψ̃(2− j√Ha ,1) and ψ̃(λ) = λ−1ψ(λ)
with ψ as in Lemma 6.1. Note that from (6.1), we have

∥e i t
√

Ha ,1 ψ̃ j f ∥L∞(R3) ≤ C22 j ∣t∣−1∥ f ∥L1(R3),

which implies
$$$$$$$$$$$

e i t
√

Ha ,1

√
Ha ,1

f
$$$$$$$$$$$L∞(R3)

≤ ∑
j∈Z

$$$$$$$$$$$

e i t
√

Ha ,1

√
Ha ,1

ψ j(
√

Ha ,1) f
$$$$$$$$$$$L∞(R3)

≤ C∣t∣−1 ∑
j∈Z

22 j∥H−1/2
a ,1 ψ j(

√
Ha ,1) f ∥L1(R3)

= C∣t∣−1 ∑
j∈Z

2 j∥ψ̃ j(
√

Ha ,1) f ∥L1(R3)

= C∣t∣−1∥ f ∥
Ḃ

1,ψ̃
1,1 (R3)

∼ ∣t∣−1∥ f ∥Ḃ1
1,1(R3) .

Remark 6.3 In view of Remark 3.6, we point out that the argument of obtaining the
dispersive estimate for the wave equation in Theorem 1.1 fails if− 1

4 ≤ a < 0. A weighted
version of the dispersive estimate (1.10) should be valid for this case − 1

4 ≤ a < 0, but
this is open question. Nevertheless, motivated by [18, Remark 1.2], it is interesting
to conjecture that the corresponding Strichartz estimates as in Theorem 1.3 should
be true for the case − 1

4 < a < 0 or even the critical case a = − 1
4 as Mizutani [33]

for the Schrödinger equation; these problems may be the main objects of future
investigations.
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7 Proof of Theorem 1.3

In this section, we prove Strichartz estimates in Theorem 1.3. It is sufficient to show
that for admissible q, r in (1.7) and s in (1.8), it holds

∥e i t
√

Ha ,1 f ∥Lq
t (I;Lr

x(R3)) ≤ C∥ f ∥Ḣs
osc(R3) ,(7.1)

where C > 0 is a constant independent of f ∈ Ḣs
osc(R3) and I = [a, b] ⊂ (0, π).

Proposition 7.1 Let ψ ∈ C∞c (R) and ψ j(λ) = ψ(2− j λ)with 0 ≤ ψ(λ) ≤ 1 and suppψ ⊂
[1/2, 2]. Then, for all j ∈ Z and f ∈ L2(R3), there exists some constant C > 0 such that

∥ψ j(
√

Ha ,1)e i t
√

Ha ,1 f ∥Lq
t (I;Lr

x(R3)) ≤ C22s j∥ f ∥L2(R3),(7.2)

with I = [a, b] ⊂ (0, π) and (q, r), s in (1.7), (1.8), respectively.

Proof First, we prove that
$$$$$$$$$$$$$

⎛
⎝∑j∈Z

∣ψ j(
√

Ha ,1)e i t
√

Ha ,1 f ∣2
⎞
⎠

1/2$$$$$$$$$$$$$Lq
t (I;Lr

x(R3))

≤ C
$$$$$$$$$$$$$

⎛
⎝∑j∈Z

∣H
s
2
a ,1ψ j(

√
Ha ,1)e i t

√
Ha ,1 f ∣2

⎞
⎠

1/2$$$$$$$$$$$$$L2(R3)

.(7.3)

Indeed, by Lemma 6.1, we obtain

∥ψ j(
√

Ha ,1)e i t
√

Ha ,1 f ∥L∞(R3) = ∥e i t
√

Ha ,1 ψ̃ j(
√

Ha ,1)ψ j(
√

Ha ,1) f ∥L∞(R3)

≤ C 23 j

1 + 2 j ∣t∣ ∥ψ j(
√

Ha ,1) f ∥L1(R3) ,

where ψ̃ j = ψ j−1 + ψ j + ψ j+1. Moreover, by the unitary property of the propagator
e i t
√

Ha ,1

∥e i t
√

Ha ,1 ψ j(
√

Ha ,1) f ∥L2(R3) = ∥ψ j(
√

Ha ,1) f ∥L2(R3) ,

we can conclude, by following the argument of Keel–Tao [28, Corollary 1.3], that

∥e i t
√

Ha ,1 ψ j(
√

Ha ,1) f ∥Lq
t (I;Lr

x(R3)) ≤ C∥H
s
2
a ,1ψ j(

√
Ha ,1) f ∥L2(R3) .

Thus, the desired estimate (7.3) follows by Minkowski’s inequality since q, r ≥ 2.
Next, by the almost orthogonality

$$$$$$$$$$$$$

⎛
⎝∑j∈Z

∣ψ j(
√

Ha ,1) f ∣2
⎞
⎠

1/2$$$$$$$$$$$$$Lr(R3)

∼ ∥ f ∥Lr(R3) , ∀1 < r < ∞,(7.4)

we obtain

∥e i t
√

Ha ,1 f ∥Lq
t (I;Lr

x(R3)) ≤ C∥H
s
2
a ,1 f ∥L2(R3).
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Therefore, we have
$$$$$$$$$$$

cos(t
√

Ha ,1) f + sin(t
√

Ha , 1)√
Ha ,1

g
$$$$$$$$$$$Lq

t (I;Lr
x(R3))

≤ C∥ f ∥Ḣs
osc(R3) + ∥g∥Ḣs−1

osc (R3)

as desired. ∎
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