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Abstract

We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed
category, and investigate it in the context of homological categories and of semi-abelian categories. In
the presence of functorial fiberwise localization, analogous results to those obtained in the category of
groups hold, and we provide existence theorems for certain localization functors in specific semi-abelian
categories. We prove that a Birkhoff subcategory of an ideal determined category yields a conditionally
flat localization, and explain how conditional flatness corresponds to the property of admissibility of
an adjunction from the point of view of categorical Galois theory. Under the assumption of fiberwise
localization, we give a simple criterion to determine when a (normal epi)-reflection is a torsion-free
reflection. This is shown to apply, in particular, to nullification functors in any semi-abelian variety of
universal algebras. We also relate semi-left-exactness for a localization functor L with what is called right
properness for the L-local model structure.
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1. Introduction

In [18] the notion of conditionally flat functor was introduced by the second author and
Farjoun in order to investigate pullback preservation properties related to homotopical
localization functors. This was first done in the category of topological spaces, and
then it was interpreted in the context of the category of groups, where short exact
sequences replace fibration sequences. Given a fibration sequence

F �� E �� B (1-1)
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[2] Conditional flatness, fiberwise localizations, and admissible reflections 201

of topological spaces and a morphism X → B, a natural question is to study the
properties of the original fibration (1-1) that are inherited by the pullback fibration
along X → B. Given a functor L, a fibration sequence (1-1) over a connected space B
is called L-flat in analogy with the algebraic notion if the sequence

L(F) �� L(E) �� L(B)

is again a homotopy fibration sequence. There are several examples of such preserva-
tion in the literature on localizations in homotopy theory (see, for instance, [9, 13]). A
functor L is then a conditionally flat functor when any pullback of an L-flat fibration is
again L-flat. In the topological context, the property of conditional flatness was shown
to characterize nullification functors among localization functors: for this, see [18,
Theorem 2.1]), which follows from Berrick and Farjoun’s work in [1] and relies on the
existence of fiberwise localization. The latter is a construction which was already in
use before 1980, but which May brought forward in [31], after noticing the key role it
played in Sullivan’s paper on the Adams conjecture [36].

When moving from the category of topological spaces to the category Grp of
groups, fibration sequences were replaced by short exact sequences

0 �� K �� A �� B �� 0,

and the ‘flatness property’ of such exact sequences was then considered with respect
to pullbacks along group homomorphisms C → B. In the case of groups, a major
difference with the case of topological spaces is that conditional flatness of a functor
no longer characterizes nullification functors. These are conditionally flat, but so are
all localization functors associated to a variety of groups in the sense of [33].

The aim of the present paper is then twofold. On the one hand, we widely extend
the context from the category of groups to the abstract semi-abelian category (in
the sense of Janelidze et al. [27]), and thus we include many algebraic examples
such as the categories of rings, Lie algebras, crossed modules, compact groups [3]
and cocommutative Hopf algebras [22]. We show in Proposition 4.4 that conditional
flatness is characterized, in a general context, including any semi-abelian category, by
the same properties as in the category of groups, as long as a fiberwise version of
the localization functor is available. On the other hand, we establish a more useful
criterion that implies conditional flatness, namely, that pullbacks of ηC : C → L(C)
along any regular epimorphism in C between L-local objects (that is, objects lying in
the reflective subcategory) should be inverted by L. This property is well known in cat-
egory theory, and it has been used to investigate several adjunctions between algebraic
categories. Indeed, the latter is exactly the property of admissibility of a reflection from
the point of view of categorical Galois theory [25], as shown by Janelidze and Kelly
[26] (see also [16] and the references therein). It is always true that a conditionally flat
reflector induces an admissible reflection in the sense of categorical Galois theory.

Moreover, this condition actually turns out to be equivalent to the one of admissi-
bility under the assumption of functorial fiberwise localization (see Proposition 5.5).
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202 M. Gran and J. Scherer [3]

We also offer one result which does not depend on the existence of fiberwise
localization in the case of a reflection onto a Birkhoff subcategory (that is, when the
reflective subcategory is closed under regular quotients and subobjects).

THEOREM 6.1. When X is a Birkhoff subcategory of an ideal determined category C,
the corresponding pointed endofunctor L = UF : C → C is conditionally flat.

This result then applies to many interesting examples, since any subvariety of a
semi-abelian variety [7] provides an example of Birkhoff subcategory.

Under the assumption of fiberwise localization, we then characterize torsion-free
reflections F : C → X in any homological category C among (normal epi)-reflections
in terms of the property of stability under extensions of X in C (Proposition 7.1). This
result applies, in particular, to any nullification functor in a semi-abelian variety of
universal algebras (see [7] and Corollary 8.2). Note that, unlike in the abelian case, in
the semi-abelian context a (normal epi)-reflective subcategory stable under extensions
is not necessarily a torsion-free subcategory, as Janelidze and Tholen observed in [29].

In the final section of the paper, we adopt a homotopical viewpoint and revisit
the results in terms of model categorical properties. Preservation of L-flatness under
pullbacks is related here to semi-left-exactness, also known as right properness. This
is already present in the pioneering work by Cassidy et al. [12], as explained by
Rosický and Tholen in [34]. We mention also the article [37] by Wendt, where
right properness of the L-local model structure is explicitly related to the work
of Berrick and Farjoun [1]. It is also interesting to remark that the ∞-analogs
of semi-left-exact-localizations studied by Gepner and Kock in [19] correspond to
so-called locally cartesian localizations. In this setting, fiberwise methods (localization
in slice categories) are always at hand and are heavily used.

The article is written for a readership of both category theorists and topologists.

2. Regular, homological and semi-abelian categories

2.1. Regular categories. Recall that a finitely complete category C is a regular
category if the following two properties are satisfied.

• Any morphism can be factored into a regular epimorphism (that is, a coequalizer
of a pair of parallel morphisms) followed by a monomorphism.

• Regular epimorphisms in C are stable under pullbacks: this means that the arrow
π1 in a pullback

E ×B A
π2 ��

π1
����

A

f
����

E p
�� B

is a regular epimorphism whenever f is a regular epimorphism.
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[4] Conditional flatness, fiberwise localizations, and admissible reflections 203

Recall that, in a regular category, regular epimorphisms compose and, moreover, if a
composite g ◦ f is a regular epimorphism, then so is g.

2.2. Homological categories. When a regular category C is pointed (that is, it has
a zero object, denoted by 0) one says that it is homological [2] if the split short five
lemma holds in C: given a commutative diagram

0 �� K
ker( f ) ��

u

��

A

v

��

f �� B
s

��

w

��
0 �� K′

ker( f ′)
�� A′

f ′ �� B′
s′

��

in C, where f ◦ s = 1B and f ′ ◦ s′ = 1B′ , and ker( f ) is the kernel of f and ker( f ′) is
the kernel of f ′, then v is an isomorphism whenever u and w are isomorphisms. It is
well known that this assumption implies, in particular, that any regular epimorphism
is a cokernel (so that regular epimorphisms coincide with normal epimorphisms), and
then the classical short five lemma holds in a homological category. This implies, in
particular, the validity of the following useful proposition.

PROPOSITION 2.1 [2]. Given a commutative diagram of short exact sequences in a
homological category C,

0 �� K
ker( f ) ��

u

��

A

v

��

f �� B

w

��

�� 0

0 �� K′
ker( f ′)

�� A′
f ′

�� B′ �� 0

u is an isomorphism if and only if the right-hand commutative square is a pullback.

2.3. Semi-abelian categories. A semi-abelian category [27] is a finitely cocomplete
homological category such that every (internal) equivalence relation in C is a kernel
pair. This means that C is an exact category (in the sense of Barr). Among the many
examples of semi-abelian categories there are, for example, the categories of groups,
Lie algebras, crossed modules [27], compact Hausdorff groups [3], nonunital rings,
loops [3], cocommutative Hopf algebras over a field [22], nonunital C∗-algebras [21]
and Heyting semi-lattices [30].

3. Localization and factorization systems

In this section, we work with a semi-abelian category C as defined above, even
though many of the facts that we recall are valid in a more general setting. The main
references here are Bousfield [8] for the homotopy theory viewpoint and the article
[12] by Cassidy et al. for the categorical side.
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204 M. Gran and J. Scherer [5]

3.1. Factorization systems. A prefactorization system in C consists of classes of
maps E and M determining each other by unique lifting properties or orthogonality
properties. Thus, a morphism f belongs to E if and only if there is a unique filler in
any commutative square

A ��

f
��

X

p

��
B ��

��

Y

where p belongs toM. We write E = ⊥M. Dually,M = E⊥. A factorization system is
a prefactorization system in which every map can be factored into a morphism in E
followed by a morphism inM.

3.2. Localization and reflectors. A pointed endofunctor (L : C → C, η : 1C ⇒ L) is
called idempotent if Lη : L→ LL is an isomorphism and Lη = ηL. It is common in
algebraic topology to call localization an idempotent pointed endofunctor (L, η), and
we adopt this terminology. Note, however, that in category theory the meaning of the
term ‘localization’ is quite different; it means a reflective subcategory in which the
reflector preserves (finite) limits. In this context, our localization functors are usually
called idempotent monads since the inverse of ηL = Lη defines a monad multiplication.

A factorization system (E,M) gives rise to a localization functor L : C → C by
factoring the morphism X → 0, as explained in [8, 2.5]. This is a coaugmented and
idempotent functor, and any object X comes with a natural morphism ηX : X → L(X)
to an object L(X) having the property that L(X)→ 0 belongs toM. Such an object is
called L-local.

Conversely, when C is finitely well-complete, a localization functor L yields a
factorization system with E(L) consisting of all L-equivalences, that is, morphisms
turned into isomorphisms by L, andM(L) = E(L)⊥. This is due to Cassidy et al. in [12,
Corollary 3.4] (see also the more recent article by Salch, [35, Theorem 3.4], where the
author has already rephrased the original results).

REMARK 3.1. There is a well-known one-to-one correspondence between idempo-
tent monads and full reflective subcategories. However, there is no correspondence
between localization functors and factorization systems, as shown in [12]. If one
associates to a factorization system its canonical localization functor, and then applies
the above construction to get a factorization system back, one does not, in general,
recover the original factorization system, but gets its reflective interior.

3.3. Birkhoff subcategories. In our work, we are interested in the situation where
X is a Birkhoff subcategory of a category C

X
U
⊥ �� C
F��
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[6] Conditional flatness, fiberwise localizations, and admissible reflections 205

where U is the inclusion functor and F is its left adjoint. Being a Birkhoff subcategory
means that X is a full (replete) and (regular epi)-reflective subcategory of C with the
additional property that it is closed in C under regular quotients. Accordingly, each
component ηA : A→ UF(A) of the unit of the adjunction is a regular epimorphism
and, moreover, X is also stable in C under regular quotients: if A �� �� B is a regular
epimorphism in C with A in X, then B also belongs to X.

EXAMPLE 3.2. Any subvariety X of a variety C of universal algebras is a Birkhoff
subcategory by the classical Birkhoff theorem. This applies to many situations: by
adding any identity to the ones of a given algebraic theory one always determines
a Birkhoff subcategory. This includes, of course, the classical examples of abelian
groups or, more generally, of nilpotent or of solvable groups of a fixed class ≤ c in the
category Grp of groups.

4. Conditional flatness

Our aim in this section is to study the notions of flatness and conditional flatness
associated with a localization functor in a semi-abelian category. By analogy with the
algebraic notion of flatness (tensoring by a flat ring preserves exactness), flatness for
homotopy functors was defined by Farjoun and the second author in [18] in terms of
preservation of fibration sequences. The same was done in the category of groups in
terms of preservation of extensions.

In a pointed category C one can translate this definition as follows.

DEFINITION 4.1. An extension 0→ K → E → Q→ 0 is called L-flat if the functor
L : C → C sends it again to an extension: 0→ L(K)→ L(E)→ L(Q)→ 0.

The definition of conditional flatness from [18] still makes sense in any pointed
category.

DEFINITION 4.2. A functor L : C → C in a pointed category C is called conditionally
flat if any pullback of an L-flat extension is again L-flat.

4.1. Fiberwise localization

DEFINITION 4.3. Given a functor L : C → C in a pointed category C, we say that
an extension 0→ K → E → Q→ 0 in C admits a fiberwise localization if there is a
commutative diagram of horizontal extensions

0 �� K ��

ηK

��

E ��

e
��

Q �� 0

0 �� L(K) �� E �� Q �� 0

(4-1)

where e : E → E is inverted by L. If the assignment E → E is functorial (in the obvious
sense), one says that it forms a functorial fiberwise localization for L.
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206 M. Gran and J. Scherer [7]

Any localization in the category Grp of groups enjoys fiberwise localization as
shown by Casacuberta and Descheemaeker [10]. Other interesting examples will be
considered at the end of this section, but there are also localization functors in certain
homological categories that do not admit fiberwise versions (see [32]).

4.2. Pullbacks along reflections. We are now going to show that, in any homo-
logical category, the existence of a functorial fiberwise localization has an interesting
consequence. The following result refines and generalizes [18, Proposition 4.1] from
the category of groups to any homological category. The second, more amenable,
condition describes admissible reflections in the sense of Janelidze–Kelly [26], as we
discuss in the next section.

PROPOSITION 4.4. Let X be a full reflective subcategory of a homological category C

X
U
⊥ �� C
F��

that admits a functorial fiberwise localization. Then the following conditions are
equivalent.

(1) The corresponding localization (L = UF, η) is conditionally flat.
(2) The pullback of ηC : C → L(C) along any regular epimorphism in C between

L-local objects is inverted by L.

PROOF. Condition (1) clearly implies (2), and we prove that (2) implies conditional
flatness of L. Let 0→ K → E → Q→ 0 be an L-flat extension and let f : X → Q
be any arrow. First, we observe that, by applying fiberwise localization, there is no
restriction in assuming that K is L-local. In order to see this, consider the right-hand
pullback along f and the kernel κ of p2

P
p2 �� ��

p1

��

X

f
��

�� 0

0 �� K
k

��

κ

��

E p
�� �� Q �� 0

By using the functorial fiberwise localization of L, one gets the following commutative
diagram of short exact sequences (here we use the same notation as in Definition 4.3).

P �� ��

��

X

f

��

�� 0

0 �� L(K) ��

�����������
E �� �� Q �� 0

In any homological category, the right-hand square in the above diagram is then again
a pullback (this follows from Proposition 2.1, since C is assumed to be a homological
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[8] Conditional flatness, fiberwise localizations, and admissible reflections 207

category). If we write π : P→ P for the L-equivalence in the construction (4-1) of the
exact sequence 0→ L(K) −→ P −→ X → 0 by fiberwise localization, we obviously
have that ηP � ηP ◦ π, and this implies that the latter exact sequence is L-flat if and
only if the sequence 0→ K −→ P −→ X → 0 is so as well.

The next step is to reduce the proof to the case of an extension of L-local objects.
This is done by noticing that, in the L-flat exact sequence 0→ K −→ E −→ Q→ 0,
the kernel K can already be assumed to be L-local, so that the square

E �� ��

��

Q

��
L(E) �� �� L(Q)

is a pullback (we again use Proposition 2.1). Finally, we use the universal property of
the localization and factor any map X → L(Q) through ηX : X → L(X) to decompose
the pullback P of L(E)→ L(Q) and X → L(Q) as the composite of two pullbacks:

P ��

��

X

��
P′ �� ��

��

L(X)

��
L(E) �� �� L(Q)

Here P′ is a limit of L-local objects, and hence is L-local, and therefore yields, by
regularity of C, another regular epimorphism P′ → L(X) of L-local objects. The upper
square is of the form required in order to apply assumption (2). �

4.3. Existence of functorial fiberwise localization. In addition to the example of
the category Grp of groups, there are many other examples of categories admitting
functorial fiberwise localizations in certain circumstances. We focus from now on
on localization functors for which the coaugmentation morphisms ηX : X → L(X) are
always normal epimorphisms. In that case, we write tX : T(X)→ X for the kernel of ηX

and identify the latter with the quotient map X → X/T(X).

PROPOSITION 4.5. Let C be a homological category and let L : C → C be a local-
ization functor such that any coaugmentation morphism ηX : X → L(X) is a normal
epimorphism. Then C admits functorial fiberwise localization (with respect to L) if
and only if one of the following conditions holds.
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(1) For any normal monomorphism k : K → E in C, the pushout of k along ηK exists

K k ��

ηK

��

E

��
L(K)

k
�� E

(4-2)

and the square (4-2) is a pullback.
(2) For any normal monomorphism k : K → E in C, the pushout (4-2) of k along ηK

exists and the morphism k is a monomorphism.

PROOF. First, let us assume that fiberwise localization exists. Given any extension

0 �� K k �� E
f �� B �� 0

a commutative diagram

0 �� K k ��

ηK

��

E

e

��

f �� B �� 0

0 �� L(K)
k

�� Ē
g �� B �� 0

exists by the assumption of fiberwise localization. The left-hand square is clearly a
pullback, and the middle vertical morphism e is a regular epimorphism since the base
category C is homological (see Proposition 8 in [5]). In this context, any pullback of
a regular epimorphism along any morphism is a pushout (see [4]), and this proves
that (1) holds. It is clear that (1) implies (2) since pullbacks reflect monomorphisms
in C [4].

Now assume that (2) holds. In particular, one has the lower left-hand pushout in the
commutative diagram

0 �� K k ��

ηK

��

E

π

��

f �� B �� 0

0 �� K/T(K)
k

�� E
f

�� B �� 0

(4-3)

where k is a monomorphism, by assumption. Since f ◦ k ◦ tK = 0, the universal
properties of the cokernel ηK , and then of the left-hand pushout, yield a unique
arrow f : E → B making the right-hand square above commute. The canonical
factorization φ from K/T(K) to the kernel Ker( f ) of f such that ker( f ) ◦ φ = k is then a
monomorphism (since k is a monomorphism). It is also a regular epimorphism, since
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[10] Conditional flatness, fiberwise localizations, and admissible reflections 209

so is φ ◦ ηK , the latter being the pullback of π along ker( f ). It follows that φ is an
isomorphism, and the lower sequence in diagram (4-3) is then exact.

The proof will be then complete if we show that π is inverted by L. For this, consider
the commutative diagram

T(K)

T(k)

��
0 �� T(E)

tE ��

q

��

E

π

��

ηE �� L(E) �� 0

0 �� T(E)/T(K)
j

�� E p
�� L(E) �� 0

where:

• T(k) is a normal monomorphism since so is tE ◦ T(k) : T(K)→ E (the assumption
that k is a monomorphism implies that T(K) is the intersection T(E) ∩ Ker(π) of
two normal monomorphisms) and tE is a monomorphism;

• q is the quotient of T(E) by T(K);
• j is the unique morphism such that j ◦ q = π ◦ tE; and
• p is the unique morphism such that p ◦ π = ηE.

Now, if f : E → A is any morphism with A a local object, then there is a unique
morphism ψ : L(E)→ A such that ψ ◦ ηE = f ◦ π. This morphism ψ is also the unique
one such that ψ ◦ p = f (since π is an epimorphism), which proves that p = ηE
(and L(E) = L(E)), so that π is indeed inverted by L. One can easily check that this
construction is functorial, and this completes the proof. �

REMARK 4.6. In any homological category, a property equivalent to properties (1)
and (2) used in Proposition 4.5 consists of requiring that the monomorphism

k ◦ tK : T(K)→ K → E

is normal. This was called condition (N) in [15]. The fact that (N) is equivalent to
condition (1) easily follows from Proposition 2.1 by choosing the quotient E/T(K) as
E in diagram (4-2). We used condition (N) in a previous version of the article, and we
thank the referee for suggesting to also consider condition (2) in the above proposition.
The equivalent property (N) will now be useful in the following examples.

EXAMPLE 4.7. Proposition 4.5 can be applied to any homological category, and
hence, in particular, to the category Grp(Top) of topological groups [3] which
has the property that any regular epimorphism is normal. Consider a localization
functor L : Grp(Top)→ Grp(Top) for which each coaugmentation morphism ηX of
the localization is a normal epimorphism (= open surjective group homomorphism).
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Given any short exact sequence

0 �� K �� E �� B �� 0 (4-4)

in Grp(Top), by taking the kernel tK : T(K)→ K of the unit ηK of any localization,
one obtains a characteristic subgroup T(K) of K (see, for instance, Example 2.2 in
[15]). Accordingly, the subgroup T(K) is also normal in E, and hence condition (N)
in Remark 4.6 holds, as desired. The same observation also applies to the category
Grp(Haus) of Hausdorff groups.

EXAMPLE 4.8. Now let HopfA,coc be the category of cocommutative Hopf algebras
over a field A, which was shown to be semi-abelian in [22]. Given an extension (4-4),
by using the same notation as above, the Hopf subalgebra T(K)→ K → E induced by
any localization functor L : HopfA,coc → HopfA,coc is also a normal Hopf subalgebra
of E. Indeed, denote by S : K → K the antipode of E and denote by φe : K → K
the map defined, for any e ∈ E, by φe(t) = e1tS(e2) for any t ∈ K. Here we use the
usual Sweedler convention for Hopf algebras, so that we write Δ(e) = e1 ⊗ e2, with
Δ : E → E ⊗ E being the comultiplication. This map φe : K → K is seen to
be a Hopf algebra morphism. By functoriality of the natural transformation t : T ⇒
idC, it follows that φe restricts to T(K), which yields a morphism T(K)→ T(K).
This means that, for any t ∈ T(K), φe(t) ∈ T(K), and hence T(K) is normal in E,
and condition (N) then holds. We conclude that, whenever we have a localization
functor L : HopfA,coc → HopfA,coc with the property that the coaugmentation morphism
ηX : X → L(X) is a normal epimorphism, the category HopfA,coc admits fiberwise
localization. For instance, the ‘abelianization functor’ ab : HopfA,coc → Hopfcomm

A,coc , as
described in Section 4 in [22], necessarily yields a functorial fiberwise localization,
with L = U ab : HopfA,coc → HopfA,coc (here U : Hopfcomm

A,coc → HopfA,coc is the forgetful
functor).

REMARK 4.9. One might hope that similar results hold whenever one is dealing with
a category of internal groups in a finitely complete category, since the examples
mentioned above, such as groups, topological groups, Hausdorff groups and cocom-
mutative Hopf algebras, are of this type (the category HopfA,coc can also be seen as the
category of internal groups in the category of cocommutative coalgebras). However,
this is not the case, as follows from the results in [32], where some counterexamples
are given in the semi-abelian category XMod of crossed modules, which can be seen
also (up to a category equivalence) as the category Grp(Cat) of internal groups in the
category Cat of (small) categories (see, for instance, [27] and the references therein).

5. Admissible reflectors with respect to Galois theory

The type of pullbacks that appear in Proposition 4.4 are the ones appearing in
categorical Galois theory, in the form presented in the article [26] by Janelidze and
Kelly. In the whole section, we work in a homological category C, where we fix a full
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reflective subcategory X as in

X
U
⊥ �� C
F��

and the corresponding localization functor L = UF : C → C.

DEFINITION 5.1 [26]. The reflector F : C → X is admissible for the class of regular
epimorphisms if it preserves any pullback of the form

P ��

��

U(E)

U(x)
����

X ηX
�� UF(X)

(5-1)

where x : E → FX is a regular epimorphism in X.

One could also require F to preserve pullbacks as above for any morphism x in X,
in which case we are looking at semi-left-exact reflections as introduced by Cassidy
et al. in [12]. We come back to this in Section 7.

DEFINITION 5.2 [12]. Let X be a (normal epi)-reflective subcategory of C. Then F is
semi-left-exact, that is, F preserves all pullbacks of the form

P
p2 �� ��

p1

��

U(E)

x
��

X ηC
�� �� UF(X)

where x is any morphism in X.

In other words, the morphism P→ U(E) coincides with the P-component of the
unit ηP : P→ UF(P) of the adjunction (up to unique isomorphism). There are several
equivalent ways to characterize admissibility, as we recall in the next proposition. They
hold, in particular, for all the examples of semi-localizations of semi-abelian categories
given in [20].

PROPOSITION 5.3. Let C be a homological category, let F : C → X be a reflector and
let (L = UF, η) be the corresponding localization. The following conditions are then
equivalent.

(1) The reflector F is admissible for the class of regular epimorphisms.
(2) The pullback of ηC : C → L(C) along any regular epimorphism in C between

L-local objects is inverted by L.
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(3) The functor L = UF : C → C preserves any pullback of the form

C ×L(C) X
p2 �� ��

p1

��

X

g
����

C ηC
�� �� UF(C)

where g is a regular epimorphism in C between objects in X.

PROOF. The equivalence (2)⇔ (3) is obvious, while the equivalence between (3) and
(1) follows easily from the fact that the functor U : X → C reflects limits, since it is a
fully faithful right adjoint. �

PROPOSITION 5.4. If L = UF : C → C is a conditionally flat functor, then the reflector
F : C → X is admissible for the class of regular epimorphisms.

PROOF. Let K be the object part of the kernel of the vertical morphism U(x) in (5-1).
This is the object part of a limit of a diagram lying in X, and hence it lies itself in X.
The extension

0 �� K �� U(E) Ux �� UF(X) �� 0

is thus L-flat. If L is conditionally flat, then the (induced) pullback extension

0 �� K �� P �� X �� 0

must be L-flat as well. This means that L = UF takes it to an extension

0 �� K �� UF(P) �� UF(X) �� 0

where K � UF(K) remains unchanged since it lies in X. This extension comes with a
natural transformation to the original extension.

0 �� K �� UF(P) ��

��

UF(X) �� 0

0 �� K �� U(E) �� UF(X) �� 0

We conclude by the short five lemma (see [2]) that the middle dotted arrow is an
isomorphism, and the arrow P→ U(E) in the pullback (5-1) is then isomorphic to the
unit ηP : P→ UF(P). This means that the reflector is admissible with respect to the
class of regular epimorphisms, as desired. �

We can also reinterpret Proposition 4.4 as follows.

PROPOSITION 5.5. Let C be a homological category and assume that the localization
functor L admits a functorial fiberwise localization. Then the functor L is conditionally
flat if and only if it is admissible with respect to regular epimorphisms.
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EXAMPLE 5.6. It is well known that any Birkhoff subcategory of a semi-abelian
category induces an admissible reflector with respect to regular epimorphisms [14, 26].
Together with the remarks in Section 4.3, this implies, in particular, that any Birkhoff
subcategory of the category HopfA,coc of cocommutative Hopf algebras over a field A
induces a conditionally flat functor L. In the semi-abelian category Grp(Comp), its
Birkhoff subcategory Grp(Prof) of profinite groups also induces a conditionally flat
functor, since the adjunction is admissible [16].

6. The case of Birkhoff subcategories

We restrict our attention to a Birkhoff subcategory X of a regular category C, as
in Section 3.3. The suitable context in which to obtain the result of this section is the
one of ideal determined categories, as introduced in [28] by Janelidze et al. These are
regular categories C with binary coproducts such that:

(1) any regular epimorphism in C is normal (that is, a cokernel); and
(2) normal monomorphisms are stable under images; in any commutative square

A

f
����

�� a �� A′

f ′
����

B ��
b

�� B′

in C where f and f ′ are normal epimorphisms, a is a normal monomorphism and
b is a monomorphism, b is also a normal monomorphism.

As explained in [28] any semi-abelian category is ideal determined. In particular,
all the examples mentioned before (groups, loops, rings, commutative algebras,
associative algebras, cocommutative Hopf algebras, crossed modules, compact groups,
C�-algebras, and so on) are ideal determined. There are also some examples of ideal
determined varieties that are not semi-abelian, for instance, the variety of implication
algebras [23].

The following theorem gives a natural condition that guarantees the conditional
flatness of the pointed endofunctor L, without the toolkit of fiberwise localization.

THEOREM 6.1. When X is a Birkhoff subcategory of an ideal determined category C,
the corresponding pointed endofunctor L = UF : C → C is conditionally flat.

PROOF. We prove that L : C → C is conditionally flat. We consider an L-flat extension

0 �� K k �� E
f �� X �� 0 (6-1)

and a morphism g : A→ X in C. We construct the pullback of the original extension
along g and need to prove that this extension 0→ K −→ P

p2−−→ A→ 0 is again L-flat.
We know that the induced arrow L(p2) : L(P)→ L(A) is a normal epimorphism,

since the arrow ηA ◦ p2 : P→ L(A) is a normal epimorphism as it is a composite of two
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normal epimorphisms (see Section 2.1). We now prove that the arrow L(K)→ L(P)
is the kernel of L(p2) : L(P)→ L(A). First, observe that the arrow L(K)→ L(P) is a
monomorphism, since the arrow

L(K)→ L(P)→ L(E) = L(K)
L(k) �� L(E)

is a monomorphism (the original extension (6-1) being L-flat). Since the category C is
ideal determined and the square

K

��

ηK �� �� L(K)

��
P ηP

�� �� L(P)

is commutative with K → P, which is a normal monomorphism, and L(K)→ L(P),
which is a monomorphism, it follows that the arrow L(K)→ L(P) is a normal
monomorphism as well. Consequently, L(K)→ L(P) is the kernel of its cokernel
q : L(P)→ Q in C. However, this latter is isomorphic to L(p2) : L(P)→ L(A). Indeed,
this follows from the fact that the functor F : C → X preserves cokernels (as it is a
left adjoint) while U : X → C preserves them since X is closed in C under (regular)
quotients, by the Birkhoff assumption. �

7. Fiberwise localizations and stability under extensions

In this section, we show that, when C is homological, torsion-free reflections
F : C → X can be characterized among (normal epi)-reflections admitting fiberwise
localization in terms of the property of stability under extensions of X in C. We recall
that a torsion-free reflection is associated to a torsion theory (see, for example, [20,
Definition 1.1]). In particular, the only morphism from a torsion object to a local object
is the zero morphism.

Recall that a full (replete) subcategory X of a pointed category C is stable under
extensions (in C) if, given any short exact sequence

0 �� K �� X �� Y �� 0 (7-1)

in C with K and Y in X, we have that X is also in X.

PROPOSITION 7.1. Let C be a homological category and let X be a (normal
epi)-reflective subcategory of C with the property that the reflector F : C → X admits
fiberwise localization. We write T(X) for the kernel of the X-reflection ηX : X → F(X)
of any X in C. Then the following conditions are equivalent.

(1) X is stable in C under extensions.
(2) F(T(X)) = 0 for any object X in C.
(3) F is semi-left-exact.
(4) X is a torsion-free subcategory in C.
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PROOF. (1)⇒ (2) We consider the short exact sequence

0 �� T(X)
tX �� X

ηX �� F(X) �� 0 (7-2)

and the associated exact sequence 0→ F(T(X))→ X → F(X)→ 0 that exists by
the assumption of fiberwise localization. Since the subcategory X is closed in C
under extensions, X is in X and the fiberwise morphism X → X is, therefore, an
F-equivalence to an object in X. Thus, it must be ηX : X → F(X) (up to isomorphism).
This implies that the kernel F(T(X)) of the morphism X → F(X) is zero.

(2)⇒ (3) and (3)⇒ (4) both follow from Theorem 4.12 in [6].
(4)⇒ (1) We briefly recall the known argument showing that a torsion-free

subcategory X is closed under extensions in C. Given a short exact sequence (7-1)
with K and Y in X, consider the canonical short exact sequence (7-2), where T(X)
is torsion and F(X) is torsion-free. Clearly, T(X)→ X → Y is the zero morphism, and
hence tX factors through K. Since T(X) is a subobject of K, T(X) ∈ X (X is closed under
subobjects). Since it is also in the torsion subcategory, T(X) � 0 and X � F(X) ∈ X, as
desired. �

Unlike in the abelian case, in homological categories, the property of stability under
extensions of a (normal epi)-reflective subcategoryX is not strong enough to guarantee
that F : C → X is a reflector to a torsion-free subcategory, as observed in [29]. The
lemma above shows that, under the assumption of fiberwise localization, this is indeed
the case.

REMARK 7.2. From Propositions 4.4 and 7.1 above we deduce that, under the assump-
tion of functorial fiberwise localization, any semi-left-exact reflector F : C → X gives
rise to a corresponding conditionally flat localization L = UF : C → C. The converse
does not hold however, even in the case of a (normal epi)-reflection associated to a
Birkhoff subcategory, as illustrated in the following classical example in the category
of groups.

EXAMPLE 7.3. We write Lab for the abelianization functor. The dihedral group D8 of
order eight abelianizes to Z/2Z × Z/2Z, an elementary abelian 2-group of rank two.
Consider the following pullback in the category of groups.

Z/2Z ��

��

0

��
D8 �� Z/2Z × Z/2Z

The vertical morphism on the right-hand side is a homomorphism of abelian groups
and the bottom morphism is the abelianization morphism of D8. Its pullback, however,
is the map Z/2Z→ 0, which is not the abelianization morphism for Z/2Z. Since
fiberwise localization always exists in the category Grp of groups, Proposition 7.1
applies and tells us that the above problem reflects the fact that the subcategory Ab of
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abelian groups is not closed under extensions in Grp and it is not torsion-free (in the
categorical sense).

The fact that the abelianization functor is not semi-left-exact is well known. The
‘relative version’ of the Galois theory, which was developed by Janelidze in [25] and
later in collaboration with Kelly in [26], where the class of morphisms to be classified
by the Galois theorem is the one of regular epimorphisms, was partly motivated by the
possibility of applying their approach to any Birkhoff subcategory of a ‘sufficiently
good’ algebraic category. Here ‘sufficiently good’ could mean being a semi-abelian
variety of universal algebras [7], for instance, yielding many examples of interest in
algebra.

8. The case of nullifications

The results of the previous section apply to nullification functors. Let C be a semi-
abelian category, let A be an object in C and define X ⊂ C to be the (replete) reflective
subcategory of A-null objects, that is, of those objects Z such that Hom(A, Z) = 0.

When it exists, the associated localization functor is written PA and is called
A-nullification (or A-periodization). The construction is due to Bousfield in a homo-
topical setting and can be found, for example, in Hirschhorn’s [24]. A reference in
an algebraic context is Casacuberta et al. [11, Theorem 1.4]. In all cases, PA(X) is
constructed as a transfinite filtered colimit of iterated quotients of all morphisms
from A. A cardinality argument is invoked to explain when one can stop the iteration.

In the recent preprint [32], Monjon et al. gave, in Proposition 2.7, an explicit
construction of the nullification functor in the (semi-abelian) category of crossed
modules. By looking at the arguments in their proof, one realizes that these still apply
to any semi-abelian variety of universal algebras [7]. These are precisely those varieties
(= finitary equational classes) whose algebraic theories have a unique constant 0, n ≥ 1
binary terms αi(x, y) and one (n + 1)ary term β satisfying the identities αi(x, x) = 0 (for
i ∈ {1, . . . , n}), β(α1(x, y), . . . ,αn(x, y), y) = x. For example, in the case of the variety of
groups, by using the multiplicative notation for the group operation, one can choose
0 = 1, α1(x, y) = x · y−1 and β(x, y) = x · y. Note that, for a variety of universal algebras,
being homological or being semi-abelian are equivalent properties, since a variety is
always Barr-exact and cocomplete. We work here with sets equipped with finitary
operations satisfying a set of identities, so set-theoretic arguments are available.
Moreover, any variety of universal algebras is cocomplete. Hence, the proof of
[32, Proposition 2.7] applies.

PROPOSITION 8.1. Let C be a semi-abelian variety of universal algebras and let A
be an object of C. Then the A-nullification functor PA exists and the coaugmentation
morphism ηX : X → PA(X) is a normal epimorphism, for any object X.

PROOF. We only need to note that the construction yields a surjective coaugmentation
morphism, which is thus a regular epimorphism. The semi-abelian assumption on C
then implies that ηX : X → PA(X) is actually a normal epimorphism. �
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We now show that, in the presence of fiberwise localization, nullification
functors are conditonally flat, in fact, even semi-left-exact. We write PA(X) for the
kernel of the A-nullification ηX : X → PA(X). The equivalent characterization from
Proposition 7.1(2) that PA(PA(X)) = 0 for any object X in C is an algebraic analog of
Farjoun’s [17, Theorem 1.H.2].

COROLLARY 8.2. Consider a nullification functor PA on a semi-abelian variety of
universal algebras C and assume that PA admits a functorial fiberwise localization.
Then PA is semi-left-exact. In particular, PA is conditionally flat.

PROOF. In view of Proposition 7.1, it is sufficient to verify one of the equivalent
conditions. By definition of A-local objects, it is easy to see that they are closed under
extensions. Hence, PA, which exists by Proposition 8.1, is semi-left-exact, a property
which is stronger than admissibility for all regular epimorphisms. We conclude by
Proposition 5.5 that PA is conditionally flat. �

9. A model categorical interpretation

In this article, we study how pullbacks of exact sequences behave and, in the pre-
vious sections, we relate this to semi-left-exactness, which is a stronger admissibility
property (preservation of pullbacks along any morphism between local objects versus
preservation of pullbacks along any regular epimorphism between local objects). From
a model theoretic perspective, this corresponds to right properness, as we explain next.

Any category with finite limits and colimits admits a discrete model struc-
ture where weak equivalences are isomorphisms and all morphisms are fibrations
and cofibrations. This easy observation has been previously made by Bousfield
[8, Examples 2.3], who also constructed new model structures where the class of weak
equivalences is E(L) that is all morphisms inverted by a localization functor L, that is,
L-equivalences. Cofibrations do not change and the class of fibrations coincides now
with M(L) (using the notation from Section 3). This is not immediately obvious as
we require the lift to be unique in a factorization system, but not in a model category.
This is because the model categorical lift is unique up to homotopy in the associated
homotopy factorization system and, in the discrete setting, ‘unique up to homotopy’
means unique.

This process is called left Bousfield localization; we cite Salch [35, Proposition
3.5] for a statement in line with the present work. Our final propositions are just
reformulations of the fact that a semi-left-exact reflection is also characterized by the
property that, for the induced factorization system (E,M), the morphisms in E are
stable under pullback along morphisms inM.

PROPOSITION 9.1 [Salch]. Let C be a finitely cocomplete, finitely well-complete
category and let L be a localization functor. There is an L-local model structure on C
where weak equivalences are the L-equivalences E(L), all morphisms are cofibrations
and the class of fibrations isM(L).
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In a model category, it is a direct consequence of the axioms that the pullback of
a fibration is a fibration. But weak equivalences need not be preserved by pullbacks,
not even by homotopy pullbacks. A model category is right proper if the pullback of
any weak equivalence X → B along any fibration E � B is a weak equivalence. The
discrete model structure is right proper since the pullback of an isomorphism along
any map is an isomorphism.

Now, given a localization functor L on C, it is then a natural question to ask when
the left Bousfield localized model structure described in Proposition 9.1 is again right
proper. Rosický and Tholen noticed in [34, 3.6] that a result by Cassidy et al. [12,
Theorem 4.3] allows one to characterize right proper localized model structures as
those corresponding to semi-left-exact reflections.

PROPOSITION 9.2 [Rosický–Tholen]. Let C be a finitely complete category and let L
be a localization functor. The L-local model structure is right proper if and only if L is
semi-left-exact.

Therefore, Corollary 8.2 tells us that the PA-local model structure is right proper,
which is an analog of the well-known fact that nullification functors in spaces yield a
right proper left Bousfield localized model structure [1] (see also Wendt [37, Corollary
6.1] for simplicial sheaves on a site). However, in an algebraic setting, conditional
flatness is different from right properness because pulling back an L-equivalence along
a regular epimorphism is not as general as pulling back along an arbitrary fibration,
that is, an arbitrary morphism in the localized model structure.
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