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A BETTER COMPARISON OF cdh- AND
ldh-COHOMOLOGIES

SHANE KELLY

Warmly dedicated to Shuji Saito on his 60th birthday

Abstract. In order to work with non-Nagata rings which are Nagata “up-

to-completely-decomposed-universal-homeomorphism,” specifically finite rank

Hensel valuation rings, we introduce the notions of pseudo-integral closure,

pseudo-normalization, and pseudo-Hensel valuation ring. We use this notion

to give a shorter and more direct proof that Hn
cdh(X, Fcdh) =Hn

ldh(X, Fldh)

for homotopy sheaves F of modules over the Z(l)-linear motivic Eilenberg–

Maclane spectrum. This comparison is an alternative to the first half of the

author’s volume Astérisque 391 whose main theorem is a cdh-descent result

for Voevodsky motives. The motivating new insight is really accepting that

Voevodsky’s motivic cohomology (with Z[ 1
p
]-coefficients) is invariant not just

for nilpotent thickenings, but for all universal homeomorphisms.

§1. Introduction

Context—motives of singular schemes (with compact support).

In [Voe00], Voevodsky constructed a triangulated category of motives

DM eff
gm(k) using smooth schemes. In order to

• extend the motive functor M : Smk→DM eff
gm(k) from smooth k-schemes

to all separated finite type k-schemes, and

• have access to a well-defined theory of motives with compact support

M c : Schprop
k →DM eff

gm(k),

he proves a cdh-descent result. However, his proof only works in the presence

of strong resolution of singularities (for example, in characteristic zero). In

[Kel17], the resolution of singularities assumption was removed, at least if

one works with Z[1
p ]-coefficients, where p is the exponential characteristic

of the base field. The proof in [Kel17] has two main steps, namely [Kel17,

Corollary 2.5.4] and [Kel17, Theorem 3.2.12]. This present article provides
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184 S. KELLY

a shortcut to the first one. For more details about the strategy of [Kel17]

we recommend consulting [Kel17, Chapter 1] and/or [Kel17, Chapter 4].

Main result. The main theorem of this article is:

Theorem 1. (cf. Theorem 30) Suppose S is a finite dimensional

Noetherian separated scheme of positive characteristic p 6= l, SchS the

category of separated finite type S-schemes, and F a presheaf of Z(l)-modules

on SchS satisfying all of:

(uh-invariance) F (X)∼= F (Y ) for any universal homeomorphism Y →X.

(Traces) F has covariant “trace” morphisms associated to finite flat sur-

jective morphisms, see Definition 13.

(G1) F (R)⊆ F (Frac(R)) for every finite rank Hensel valuation ring1 R.

(G2) F (R)→ F (R/p) is surjective for every finite rank Hensel valuation

ring R and prime p⊂R.

Then the canonical comparison morphism is an isomorphism:

Hn
cdh(S, Fcdh)

∼→Hn
ldh(S, Fldh).

However, the main result of this article is its proof. The proof of [Kel17,

Corollary 2.5.4] is a poorly structured collection of lemmas, which are

difficult to arrange into some kind global narrative, and the hypotheses

of [Kel17, Corollary 2.5.4] are an awkward list of very special properties

that do not give much insight into why the cohomologies should agree.

The proof of Theorem 30 on the other hand, is short2 and linear, and one

can mostly explain how its hypotheses are used in the proof: Z(l)-linearity

and traces are to give descent for finite-flat-surjective-prime-to-l morphisms

(cf. Lemma 2), universal homeomorphism invariance is to correct non-

Nagataness of Hensel valuation rings (cf. Lemma 3), and (G2) is to control

H1
ldhF (cf. Equation (2) on page 204). Unfortunately, (G1) remains a little

1We implicitly extend F to all quasi-compact separated S-schemes using left Kan
extension. See also Conventions on page 188.

2Even though the proof “finishes” on page 205, of course this introductory section does
not form part of the proof, most if not all of Sections 2 and 4 is background scheme theory
included for the convenience of the reader, and most of Section 5 is routine checking that
pseudo-integral closures have the properties that we want. If one was writing in the more
concise style preferred by some authors, one could fit the proof in 10 pages, probably less.
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mysterious. It is easy to say how it is used in the proof (it produces inclusions

F (X)⊆ Fldh(X)⊆
∏
x∈X F (x), cf. Lemma 28, Proposition 29), but not why

it should be a necessary ingredient. See also Remark 23 for more on this.

The class of presheaves covered by the hypotheses of Theorem 30 is

reasonably large. Any cohomology theory representable in the motivic stable

homotopy category is invariant under universal homeomorphisms (at least

with Z[1
p ]-coefficients), [EK18], [CD15, Lemma 3.15]. It is quite common

for cohomology theories in algebraic geometry to have some kind of trace or

transfer morphisms, see Example 14 for a list of examples. Many cohomology

theories in algebraic geometry satisfy (G1), see also Gersten’s Conjecture

for algebraic K-theory [Qui73, Theorem 7.5.11], or Cousin complexes in

the Bloch–Ogus–Gabber theorem [CTHK]. In particular, the cohomology

theories representable in the motivic stable homotopy category that we are

interested in satisfy (G1), [KM18, Remark 3.2], [Kel17, Theorem 3.3.1].

Condition (G2) seems newer. It is true for algebraic K-theory, or more

generally, for nilpotent invariant theories commuting with filtered colimits

which satisfy “Milnor” excision, [KM18, Lemma 3.5]. The author is currently

working with Elmanto, Hoyois, and Iwasa to prove “Milnor” excision for

SH with Z[1
p ]-coefficients. See also Bhatt and Mathew’s newly minted arc-

topology [BM18, Theorem 1.6].

The problem—non-Nagataness. One of the first things one might try

when comparing the cohomology of a finer topology λ with a coarser one σ

is the change of topology spectral sequence

Hp
σ(X, (Hq

λF )σ)⇒Hp+q
λ (X, Fλ).

If one can show that Hp
λ(P, Fλ) = 0 (for p > 0 and Fλ(P ) = F (P )) for

schemes P in a family inducing a conservative family of fiber functors

of the σ-topos, it follows that (Hq
λF )σ = 0 (for p > 0 and Fσ = Fλ), the

spectral sequence collapses, and one is done. If (σ, λ) = (Zariski, étale) then

this would be to show that Hp
et(−, Fet) vanishes on all local rings. In our

setting where (σ, λ) = (cdh, ldh) it amounts to showing that Hp
ldh(−, Fldh)

vanishes on finite rank Hensel valuation rings, (Appendix B).

To prove this vanishing, one would like to use a structure of trace

morphisms on F (as formalized in Definition 13) and the well-known fact

that every ldh-covering of (the spectrum of) a Hensel valuation ring is

refinable by a finite flat surjective morphism of degree prime to l, via

something like the following well-known lemma:
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186 S. KELLY

Lemma 2. (Lemma 15, [Kel17, Lemma 2.1.8]) Suppose that F is a Z(l)-

linear presheaf with traces in the sense of Definition 13, and f : Y →X a

finite flat surjective morphism of degree prime to l. Then the complex

0→ F (X)→ F (Y )→ F (Y ×X Y )→ F (Y ×X Y ×X Y )→ · · ·

is exact.

The problem is that finite flat algebras over Hensel valuation rings are

not necessarily products of Hensel valuation rings. We can try to return to

Hensel valuation rings by normalizing (cf. Lemma 16), but then this takes

us out of the category of finite algebras. To summarize:

Problem. Given a Hensel valuation ring R and a finite faithfully flat

R-algebra R→A, in general, there is no A-algebra A′ such that R→A′ is

finite faithfully flat and A′ is a product of Hensel valuation rings.

The normalization R→ Ã is a product of Hensel valuation rings, and

faithfully flat, but unless Frac(Ã)/ Frac(R) is finite separable and R is

discrete [Bou64, Chapter 6, Section 8, No. 5, Theorem 2, Corollary 1], the

morphism R→ Ã is in general no longer finite, not even for a general discrete

valuation ring R (cf. Example 18).

The solution—pseudo-normalizations. The observation which res-

cues us is that Z[1
p ]-motivic cohomology, and more generally the sheaves

we are interested in, are invariant under universal homeomorphism. Since

we can restrict our attention to finite rank Hensel valuation rings (cf.

Corollary A.3), and all residue field extensions of a finite extension of

valuation rings are finite, we do not have to normalize to catch all the

information in the normalization that we need.

Lemma 3. (See Lemma 20) Suppose R is a finite rank Hensel valuation

ring and R→A a finite faithfully flat algebra. Then there exists an A-algebra

A′ such that R→A′ is finite faithfully flat and Spec(Ã′)→ Spec(A′) induces

an isomorphism on underlying topological spaces and all residue fields.

Since our sheaves do not distinguish between A′ and the (product of)

valuation ring(s) Ã′, we can use A′ as though it were a valuation ring. To

work with this lemma we introduce the notion of pseudo-normalization.
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Definition 4. (See Definition 19) Let A be a ring and A→B an A-

algebra. Define a pseudo-integral closure3 of A in B to be a finite sub-A-

algebra

A→Bpic ⊆Bic ⊆B

of the integral closure Bic of A in B such that Spec(Bpic)→ Spec(Bic)

induces an isomorphism on topological spaces and residue fields. A pseudo-

normalization of A is a pseudo-integral closure of A in its normalization

A→ Ă⊆ (Ared)∼.

So the lemma above now becomes:

Lemma 5. (See Lemma 20) Every finite faithfully flat algebra A over a

finite rank Hensel valuation ring admits a pseudo-normalization A→ Ă.

Outline. In Section 2 (resp. 3, resp. 4), we recall some well-known mate-

rial on universal homeomorphisms (resp. presheaves with traces, resp. Hensel

valuation rings). An interesting observation is that a morphism of schemes

becomes an isomorphism of ldh-sheaves under Yoneda if and only if it is

a universal homeomorphism, Corollary 9, Remark 10, (valid for any l 6= p).

The h-version of this statement is well-known and due to Voevodsky [Voe96]

for excellent Noetherian schemes and Rydh [Ryd10] in general.

In Section 5, we introduce the notion of pseudo-integral closure and

pseudo-normalization, and develop some basic properties.

Sections 6–8 (pages 199–205) contain our proof.

In Section 6, the condition (G1) appears, and we use it to show that for

Hensel valuation rings R we have F (R)∼= Fldh(R), Proposition 24.

In Section 7, we continue using (G1) to show that traces on F induce

traces on Fldh, Proposition 29.

Section 8 (pages 203–205) contains our main theorem (Theorem 30) and

the rest of its proof.

In Appendix A, we recall the definitions of the cdh- and ldh-topologies,

and observe that for finite dimensional Noetherian schemes, the class of

finite dimensional Hensel valuation rings induces a conservative family of

fiber functors.

3If one prefers names that explain the meaning, we find finite cduh-local integral closure
and finite cduh-local normalization to be the most accurate.
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In Appendix B, we confirm that everything we need passes from finite

type separated S-schemes to all quasi-compact separated S-schemes just as

one would expect.

Convention. We work with a base scheme S which will almost always

be separated and Noetherian, and often of finite dimension. We write:

SchS for the category of separated finite type S-schemes. Unless otherwise

indicated, presheaf means a presheaf on SchS which is extended to the

category

SCHS of all quasi-compact separated S-schemes by left Kan extension.

That is F (T ) = lim−→T→X→SF (X) where the colimit is over factorizations

through X ∈ SchS . Another way of saying this, (when S is quasi-

compact and quasi-separated), is that

presheaf means an additive functor F : SCHop
S →Ab that commutes with

filtered colimits. For more on this see Appendix B.

We use

h− : C→ PreShv(C);X 7→ hX for the Yoneda functor, and

(−)τ : PreShv(C)→ Shvτ (C); F 7→ Fτ for the sheafification functor. We

write

Hn
τF for the presheaf Hn

τ (−, Fτ ) associated to a presheaf F . This paper’s

topologies (principally cdh, ldh, fpsl′) are classically defined on SchS
for S Noetherian. We extend them to SCHS in the canonical way (cf.

Appendix B).

Q(A) is the total ring of fractions of a ring A. We will only ever apply this

to reduced rings.

l and p are always distinct primes.

§2. Universal homeomorphisms

In this section, we recall some basic material on universal homeomor-

phisms (uh), and show that ldh-sheafification preserves uh-invariances. For

some background on the ldh-topology for Noetherian, and non-Noetherian

schemes, we direct the reader to appendices A and B, respectively.

Definition 6. A morphism of schemes f : Y →X is a universal home-

omorphism or uh if it satisfies the following equivalent conditions.

(1) For every X-scheme T →X, the morphism T ×X Y → T induces a

homeomorphism on the underlying topological spaces.

(2) [Stacks, Tag 01S4, Tag 01S3] f is a homeomorphism, and for every

y ∈ Y , the field extension k(y)/k(f(y)) is purely inseparable.
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(3) [EGAIV4, Corollary 18.12.11] f is integral, surjective and universally

injective.

(4) [Stacks, Tag 01WM] f is affine, surjective, and universally injective.

Note there are no finiteness conditions. There are universal homeomor-

phisms that are not of finite type, pertinently Example 18, and finite

universal homeomorphisms that are not finitely presented. For example,

A= lim−→n→∞Fp[x1, . . . , xn]/〈xixj : i 6= j〉 and the map φ :A→A; x1 7→xp1. To

generate the kernel of A[y]→A;
∑
amy

m 7→
∑
φ(am)xm1 , in addition to

yp − x1 one needs all the yxn for n > 1.

Lemma 7. Suppose that Y →X is a universal homeomorphism, and

A⊆OY is a sub-OX-algebra. Then both of Y → Spec(A)→X are universal

homeomorphisms.

Proof. By Definition 6(3) it suffices to prove that Y → Spec(A) is

surjective. But this follows from integrality and injectivity of A⊆OY ,

[Stacks, Tag 00GQ].

Recall that a morphism of schemes Y →X is completely decomposed if it

induces a surjection Y (K)→X(K) of K-points for every field K.

Lemma 8. Let S be a Noetherian separated scheme of positive char-

acteristic p. Every universal homeomorphism Y →X in SchS is refinable

by a composition Y1→ Y0→X such that Y0→X is proper and completely

decomposed, and Y1→ Y0 is finite flat surjective and locally of degree a power

of p.

Proof. We reproduce the standard proof using Raynaud–Gruson flatifica-

tion and induction on the dimension. The initial case is dimension −1, that

is, the empty scheme. Suppose that Y →X is a universal homeomorphism

with dimX = n> 0, and suppose that the statement is true for a target

scheme of dimension < n. Replacing X and Y with their reductions, we can

assume that Y →X is generically flat. In this case, by Raynaud–Gruson

flatification [RG71, Theorem 5.2.2], there exists a nowhere dense closed

subscheme Z ⊂X such that the strict transform Y ′→ BlZX is globally

flat. On the other hand, as Y →X is an integral morphism of finite type, it

is finite. Therefore, Y ′→ BlZX is flat and finite. Moreover, as Y →X is a

universal homeomorphism, for each generic point ξ ∈X with corresponding

point η ∈ Y , the finite field extension k(η)/k(ξ) is purely inseparable. In

particular, as Y ′ and BlZX are reduced, Y ′→ BlZX is locally of degree a
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power of p. Using the Noetherian inductive hypothesis to choose a refinement

W1→W0→ Z of the universal homeomorphism Y ×X Z→ Z, we have

produced the desired refinement W1 t Y ′→W0 t BlZX →X of Y →X.

Corollary 9. Let S be a Noetherian scheme of positive characteristic

p 6= l and f : Y →X a universal homeomorphism in SchS. Then the image

(hf )ldh ∈ Shvldh(SchS) of f is an isomorphism.

Remark 10. In fact, the converse is also true: [Voe96, Theorem 3.2.9]

and [Ryd10, Theorem 8.16] say that the image of (h)h : SchS → Shvh(SchS)

is equivalent to the localization of SchS at the class uh. As uh is a right

multiplicative system and satisfies the 2-out-of-6 property, it follows that

a morphism in SchS is in uh if and only if it becomes an isomorphism

in Schh(SchS), [KS06, 7.1.20]. Since SchS → Shvh(SchS) factors through

Shvldh(SchS), the converse of Corollary 9 follows.

Proof. Surjectivity is a result of f being (refinable by) an ldh-cover,

Lemma 8. For injectivity, consider some s, s′ ∈ (hY )ldh(T ) sent to the same

element of (hX)ldh(T ). Let T ′→ T be an ldh-cover such that s, s′ can be

represented by some morphisms t, t′ : T ′→ Y in SchS with T ′ reduced. Pos-

sibly refining T ′, we can assume that ft= ft′. Let η1, . . . , ηn be the generic

points of T ′. As f : Y →X is a universal homeomorphism, it is injective

on the underlying topological space, and all residue field extensions are

purely inseparable. Consequently, hom(qηi, Y )→ hom(qηi, X) is injective,

so t|qηi = t′|qηi . But Y →X is separated, and T ′ reduced, so t= t′.

Corollary 11. Let S be a Noetherian scheme of positive characteristic

p 6= l. For any presheaf F and n> 0, the associated presheaf (Hn
ldhF )(−) =

Hn
ldh(−, Fldh) is uh-invariant.

Proof. Let Fldh→ I• be an injective resolution in Shvldh(SchS). Then we

have (Hn
ldhF )(−) =Hn(homShvldh((h−)ldh, I

•)). But Corollary 9 says that

(h−)ldh sends universal homeomorphisms to isomorphisms. Hence, the same

is true of Hn
ldhF .

§3. Traces and fpsl′-descent

This section contains material on presheaves with traces from [Kel17]

included for the convenience of the reader.

Definition 12. We abbreviate finite flat surjective to fps, and finite

flat surjective of degree prime to l to fpsl′.
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Definition 13. [Kel17, Definition 2.1.3] Let S be a category of schemes

admitting fiber products. A structure of traces on a presheaf F : Sop→Ab

is a morphism Trf : F (Y )→ F (X) for every fps morphism f : Y →X,

satisfying the following axioms.

(1) (Add) We have Trfqf ′ = Trf ⊕ Trf ′ for every pair Y
f→X, Y ′

f ′→X ′ of

fps morphisms.

(2) (Fon) We have Trf ◦ Trg = Trf◦g for every composable pair W
g→Y f→X

of fps morphisms.

(3) (CdB) We have F (p) ◦ Trf = Trg ◦F (q) for every fps morphism f : Y →
X and every cartesian square

W ×X Y
q
//

g

��

Y

f
��

W
p

// X.

(4) (Deg) We have Trf ◦F (f) = d · idF (X) for every fps morphism f : Y →
X of constant degree d.

A presheaf equipped with a structure of traces is called a presheaf with

traces. A presheaf with traces taking values in the category of R-modules

for some ring R, is called a presheaf of R-modules with traces or an R-linear

presheaf with traces.

Example 14. (For these and more examples see [Kel17, Example 2.1.4])

(1) Every constant additive presheaf has a unique structure of traces

determined by the axioms (Add) and (Deg).

(2) The trace and determinant equip (O,+) and (O∗, ∗) respectively with

a structure of traces, [Kel17, Example 2.1.4(vii)].

(3) If F is a presheaf with traces, then the associated Nisnevich sheaf FNis

inherits a unique structure of traces compatible with the canonical mor-

phism F → FNis, [Kel17, Corollary 2.1.13]. This is essentially because a

finite algebra over a Hensel local ring is a product of Hensel local rings.

(4) Pushforward of vector bundles would induce a structure of traces on

higher K-theory Kn and homotopy invariant K-theory KHn for every

n ∈ Z, except (Deg) is only satisfied Zariski locally. The Nisnevich

sheafifications of these sheaves (Kn)Nis and (KHn)Nis have canonical

structures of traces (cf. [Kel14, Proof of Lemma 3.1]).
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Lemma 15. (cf. [Kel17, Lemma 2.1.8]) Suppose that F is a Z(l)-linear

presheaf with traces, and X•→X−1 is a simplicial X−1-scheme such that

each Xn+1→ (coskn X•)n+1 is an fpsl′-morphism of constant degree, for

example, Xn−1 = Y ×Xn for some fpsl′-morphism of constant degree Y →X.

Then the complex

0→ F (X−1)→ F (X0)→ F (X1)→ F (X2)→ · · ·

is exact. Here the morphisms are
∑

(−1)idi.

Consequently, F is a fpsl′-sheaf, and we have both Ȟn
fpsl′(−, F ) = 0, and

Hn
fpsl′(−, Ffpsl′) = 0 for n > 0.

Proof. For each 06 i < j 6 n we have the commutative diagram

Xn+1
a //

di
++

dj

,,
(coskn X•)n+1

b // Xn ×Xn−1 Xn

pr2 //

pr1
��

Xn

di
��

Xn
dj−1

// Xn−1.

All morphisms are fpsl′-morphisms of constant degree, [Stacks, Tag 01GN].

Setting, Dm = deg(Xm→X−1)/ deg(Xm−1→X−1) = deg(Xm
di→Xm−1),

the composition ba is of degree Dn+1/Dn. Now, it follows from the above

diagram, that

1

Dn+1
TrdiF (dj)

(Fon)
=

1

Dn+1
Trpr1TrbaF (ba)F (pr2)

(Deg)
=

1

Dn
Trpr1F (pr2)

(CdB)
=

1

Dn
F (dj−1)Trdi .

In particular, (1/D•)Trd0 is a chain homotopy between the zero morphism

and the identity morphism of the chain complex in the statement.

For the second statement, notice that any fpsl′-morphism is refinable

by an fpsl′-morphism of constant degree. Hence, the Čech cohomologies of

these two classes of morphisms are the same, and moreover, they generate

the same topology. Since the colimit over all hypercovers calculates sheaf

cohomology, [SGA42, Theorem 7.4.1(2)], vanishing of sheaf cohomology also

follows from exactness of the sequence.
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§4. Hensel valuation rings

Recall that an integral domain R is a valuation ring if for all nonzero

a ∈ Frac(R), we have a ∈R or a−1 ∈R. Equivalently, the set of ideals of R

is totally ordered by inclusion, [Bou64, Chapitre VI, §1.2, Théorème 1].

A valuation ring R is a Hensel valuation ring or hvr if it extends uniquely

to every finite field extension, [EP05, §4.1]. That is, for every finite field

extension L/ Frac(R), there exists a unique valuation ring R′ ⊆ L such that

L= Frac(R′) and R= L ∩R′. A valuation ring is a hvr if and only if it

satisfies Hensel’s Lemma, [EP05, Theorem 4.1.3].

We will frequently use the following lemma. Recall that Q(−) denotes the

total ring of fractions.

Lemma 16. Let R be a hvr, let R→A be a finite R-algebra, and let

Q(Ared)→ L be a finite morphism with L reduced. Then the integral closure

Aic of Ared in L is a product of valuation rings. If A and L are integral

domains the induced morphism Spec(Aic)→ Spec(A) is a homeomorphism.

Proof. The integral closure Aic is the product of the integral closures

of the images of Ared in the residue fields of L, so we can assume A is

an integral domain and L a field. Replacing R with its image4 in A, we

can assume R→A is injective. Note that since A is finite, the integral

closure of A in L is equal to the integral closure of R in L. Now the first

claim follows from the facts that the integral closure of a valuation ring is

the intersection of the extensions [EP05, Corollary 3.1.4], and since R is

Henselian, by definition there is a unique extension to L. Now, R⊆A⊆
Aic are integral extensions of rings so Spec(Aic)→ Spec(A)→ Spec(R) are

surjective [Stacks, Tag 00GQ]. Since R⊆A⊆Aic are integral extensions,

the incomparability property implies that Spec(Aic)→ Spec(A)→ Spec(R)

are injective. Finally, since the prime ideals of Aic and R are totally ordered,

the bijection Spec(Aic)→ Spec(A) is a homeomorphism.

Lemma 17. Suppose that R is a hvr of characteristic p with fraction

field K, and suppose that K→K ′ is a purely inseparable extension, and

R′ the integral closure of R in K ′. Then Spec(R′)→ Spec(R) is a universal

homeomorphism.

4The image is an integral domain because A is, and its ideals are the ideals of R
containing the kernel of R→A, so they are totally ordered. That is, the image of R in A
is certainly a valuation ring.
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Proof. The extension R→R′ is integral by definition, and Spec(R′)→
Spec(R) is surjective as it is dominant and satisfies the going up property.

So it remains to see that it is injective, and each extension of residue fields

is purely inseparable. As R is Henselian, R′ is a valuation ring, and so

its poset of primes is totally ordered. By the incomparability property, it

follows that there is exactly one prime of R′ lying over any prime of R. Let

p⊂R be a prime and p′ ⊂R′ the prime lying over it. Localizing at p we

can assume both are maximal ideals. Then a given a ∈ k(p′) =R′/p′, lifts to

some b ∈R′, and since K ′/K is purely inseparable, bp
i ∈K for some i. Now

R′ is the integral closure of R in K ′, so b satisfies some monic f(T ) ∈R[T ].

But then bp
i

satisfies the monic f(T )p
i
. Since valuation rings are normal, it

follows that bp
i ∈R. Consequently, ap

i ∈ k(p) =R/p. So k(p′)/k(p) is purely

inseparable.

§5. Pseudo-normalization

One of the obstacles to using valuation rings to study finite type

morphisms of Noetherian schemes is non-Nagataness: SupposeR is a hvr and

R⊂A a finite extension with A an integral domain. Then the normalization

Ã of A is a valuation ring, Lemma 16. If Frac(A)/ Frac(R) is finite separable

and R is discrete then the morphism R→ Ã is also finite [Bou64, Chapter 6,

Section 8, No. 5, Theorem 2, Corollary 1]. However, in general, the morphism

R→Ã may not be finite.

Example 18. [Bou64, Chapter 6, Section 8, Exercise 3b] Let k =

Fp(Xn)n∈N, and equip K = k(U, V ), with the (discrete) valuation induced

by φ : k(U, V )→ k((U)); V 7→
∑∞

i=0 X
p
i U

ip. Let K ′ =K(V 1/p). Then,

(exercise), the unique extension of valued fields K ′/K induces an

isomorphism on both value groups and residue fields. Consequently, the

corresponding morphism R→R′ of discrete valuation rings is not finite,

and so the normalization R′ of R[V 1/p] is not finite over R[V 1/p].

On the other hand, at least if the rank of R is finite, if we take a

large enough member Ă of the filtered poset of finitely generated sub-A-

algebras of Ã, the induced morphism Spec(Ã)→ Spec(Ă) will be a universal

homeomorphism (and even completely decomposed). Hence, as far as uh-

sheaves (and even cdh-sheaves, cf. [HK18, Lemma 2.9]) are concerned, the

normalization might as well be finite.

To formalize this phenomenon, we introduce the notions of pseudo-

integral closure, pseudo-normalization, and pseudo-hvr.
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Convention. [EGAII, Corollary 6.3.8], [Stacks, Tag. 035N, 035P] By

normalization Ã of a ring A with finitely many minimal primes, we mean

the integral closure of its associated reduced ring Ared in the total ring of

fractions of Q(Ared) of Ared.

Note, that usually one only talks of normalizations of reduced rings.

Definition 19. Let A be a ring and A→B an A-algebra. Define a

pseudo-integral closure of A in B to be a finite sub-A-algebra A→Bpic⊆Bic

of the integral closure Bic ⊆B of A in B such that Spec(Bpic)→ Spec(Bic)

is a completely decomposed universal homeomorphism.

A pseudo-normalization of a ring A with finitely many minimal primes is

a pseudo-integral closure of A in its normalization A→ Ă⊆ (Ared)∼. We will

write PseIntClo(B/A) and PseNor(A) for the set of pseudo-integral closures,

and pseudo-normalizations respectively.

A pseudo-hvr is an integral domain A such that Ã is an hvr, and A is

a pseudo-normalization of itself, A= Ă. That is, Spec(Ã)→ Spec(A) is a

completely decomposed universal homeomorphism.

Even if pseudo-integral closures and pseudo-normalizations exist they are

certainly not unique in general. If the normalization, respectively, integral

closure is finite, then it is the final pseudo-normalization, respectively,

pseudo-integral closure.

The following lemma contains the basic facts we need about pseudo-

normalizations Ă, at least for finite rings A over a finite rank hvr R: (3) they

exist, (2), (4) they are (ind-)functorial for dominant morphisms, and (5) they

preserve flat morphisms.

Lemma 20. Let R be a finite rank hvr.

(1) Let A→B be a ring homomorphism. If Bpic ⊆Bic is a pseudo-integral

closure, then any finitely generated subalgebra Bpic ⊆B′ ⊆Bic is also a

pseudo-integral closure.

(2) If the collection of pseudo-integral closures of a ring homomor-

phism A→B is nonempty, then it is a filtered poset and Bic =⋃
Bpic∈PseIntClo(B/A) B

pic.

(3) If A is a finite R-algebra, and Q(Ared)→K finite with K reduced,

the poset PseIntClo(K/A) of pseudo-integral closures is nonempty. In

particular, the conclusion of part (2) holds.
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(4) If φ :A→B is a morphism of finite R-algebras such that Spec(φ) sends

generic points to generic points, and

K // L

Q(Ared) //

OO

Q(Bred)

OO

a square of finite morphisms of reduced rings, then for any Apic ∈
PseIntClo(K/A) there is a Bpic ∈ PseIntClo(L/B) compatible with the

above square. In other words, the canonical morphism of integral

closures Aic→Bic of A→B in K→ L induces a morphism of ind-

objects

“ lim
−→

”
PseIntClo(K/A)

Apic→ “ lim
−→

”
PseIntClo(L/B)

Bpic.

(5) If φ :A→B is a finite flat morphism of finite R-algebras, then there

exists an inclusion Ă⊆ B̆ of pseudo-normalizations compatible with φ,

which is flat.

Proof.

(1) Since Bic⊇Bpic is integral so is Bic⊇B′, and consequently, Spec(Bic)→
Spec(B′) is surjective, [Stacks, Tag00GQ]. But Spec(Bic)→ Spec(Bpic)

is a homeomorphism, so Spec(Bic)→ Spec(B′) is also injective. Finally,

for any point x ∈ Spec(Bic) with images y, z in Spec(B′), Spec(Bpic),

The isomorphism k(x)∼= k(z) implies an isomorphism k(x)∼= k(y).

(2) Follows from part (1).

(3) Let Aic be the integral closure of Ared in K. Since Ared is reduced

with finitely many minimal primes, Q(Ared) is a finite product of fields,

[Stacks, Tag 02LV], so K is also a finite product of fields. Hence Aic is

the product of the integral closures in the residue fields of K, and there-

fore it suffices to consider the case A and K are both integral domains.

Replacing R with its image in A, we can also assume R→A is injective.

Now R⊆Aic is an extension of valuation rings, Lemma 16. As R⊆Aic

is generically finite, for every prime p⊂R, the extension k(p)⊂ k(q)

is finite, where q⊂Aic is the prime lying over p, [Stacks, Tag 0ASH].

For each prime of R, choose a set of generators of the corresponding

finite field extension, lift them to A, and let Apic be the sub-R-algebra

that they generate. Certainly, Apic is a finite R-algebra. The morphism

Apic ⊆Aic is an integral ring extension so Spec(Aic)→ Spec(Apic) is
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surjective, [Stacks, Tag00GQ]. As R is Henselian, Spec(Aic)→ Spec(R)

is a homeomorphism, and we conclude that Spec(Aic)→ Spec(Apic) is

also a homeomorphism. By construction it induces isomorphisms on

all field extensions. Hence, it is a completely decomposed universal

homeomorphism. So PseIntClo(K/A) is nonempty.

(4) This follows from Part (3)—Existence, and Part (1)—Closure under

subextension: Choose any Bpic
0 ∈ PseIntClo(B) and take Bpic to be the

sub-B-algebra of L generated by the image of Apic and Bpic
0 .

(5) We will construct the following diagram. Note all morphisms except

possibly the ones with source A and B are inclusions.

B // B̆1
))

B̆2
// B̆3

// B′ //
=〈B̆1,(Ared)∼〉

(Bred)∼

A

OO

// Ă1
//

f.t., not
necessarily

flat

OO

Ă2
//

f.t.flat

OO

�

Ă3
//

f.t.flat

OO

�

(Ared)∼
f.t.flat

OO ::

Given some Ă1→ B̆1 extending A→B, consider the sub-(Ared)∼-

algebra B̆1 ⊆B′ ⊆ (Bred)∼ generated by the image of B̆1. As (Bred)∼ is

(Ared)∼-torsion-free, so is B′, and as (Ared)∼ is a (product of) valuation

rings, Lemma 16, we deduce that B′ is (Ared)∼-flat. As Ă1→ B̆1 is

finite type, (Ared)∼→B′ is also finite type. Since (Ared)∼ is a product

of local rings, the finitely generated flat module B′ is a free module

(Noetherianness is not needed, [Mat89, Theorem 7.10]). As (Ared)∼ =⋃
PseNor(A) Ă, we have5 B′ ∼= (Ared)∼ ⊗Ă2

B̆2 for some finite free Ă2→
B̆2 with Ă2 in PseNor(A) (the ring B̆2 is not necessarily in PseNor(B)

yet). Since (
⋃
Ă⊇Ă2∈PseNor(A) Ă)⊗Ă2

B̆2
∼=B′ ⊇ B̆1, tensoring with some

large enough Ă3 ⊇ Ă2 in PseNor(A), we get our B̆3
∼= Ă3 ⊗Ă2

B̆2 ⊇ B̆1 ⊇
B̆0, with Ă3→ B̆3 in PseNor(φ).

5This is true for any globally free finite flat morphism A := lim←−Aλ→B from the
colimit of a filtered system: Choose an A-basis 1 = e1, . . . , en for B whose first element
is the unit. Then the multiplication of B is determined by the n(n− 1)2 coefficients
of the products eiej =

∑
k a

ij
k ek ∈B ∼=An for 26 i, j 6 n, 16 k 6 n subject to linear and

quadratic conditions imposed by the commutativity and associativity axioms. These n(n−
1)2 elements are in the image of some Aλ, and the conditions become satisfied in some,
possibly higher, Aλ′ . They then define a finite free Aλ′ -algebra of rank n whose pullback
to A is B.
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Lemma 21. Let R be a hvr of characteristic p 6= l. Then any fpsl′-

morphism R→A is corefinable by the composition of a generically étale

fpsl′-morphism R→A′ and a uh-morphism A′→A′′ such that R→A′′ is

also fpsl′.

Proof. First consider the case when A is an integral domain. Consider

the separable closure L of Frac(R) in Frac(A), and choose pseudo-integral

closures A′, A′′ of R, A in L, Frac(A) respectively, Lemma 20(4).

Frac(R)
sep.

// L
purely insep.

//
Frac(A)

R
finite //

OO

++

A′
finite //

OO

A′′

OO

A

OO

By definition, A′→ Ã′ and A′′→ Ã′′ induce completely decomposed uh-

morphisms, and Ã′→ Ã′′ induces a universal homeomorphism by Lemma 17.

Hence A′→A′′ is a universal homeomorphism.

So now it suffices to show that every fpsl′-morphism R→A is corefinable

by an fpsl′-morphism R→A′′ with A′′ an integral domain. Suppose first that

R is a field K =R. Then one of the residue fields of A is of degree prime to

l: Indeed, write A=
∏
Api as the product of its local rings. As l - dimK A

we have l - dimK Api for some i. As dimK Api =
∑

j dimK pji/p
j+1
i and each

pji/p
j+1
i is a k(pj)-vector space, we see that l - [k(pi) :K]. For a general R,

the previous case applied to Frac(R)→ Frac(R)⊗R A produces a minimal

prime p of A such that l - [Ared
p : Frac(R)]. But then since flat = torsion-free

over valuation rings, R→A/p is fpsl′.

Lemma 22. If R is a finite rank hvr and R→A a finite R-algebra, then

every ldh-cover of Spec(A) is refinable by a finite one.

Proof. Since every ldh-covering is refinable by the composition of an

fpsl′-covering and a cdh-covering (see the proof of B.5(4)) it suffices to

prove the statement for cdh-coverings. Replacing A with
∏

p⊂A
pprime

(A/p)`

we can assume that A is a pseudo-hvr. That is, Ã is a hvr and

Spec(Ã)→ Spec(A) is a completely decomposed universal homeomorphism.

Let Spec(B)→ Spec(A) be the cdh-covering in question, which we assume

is affine, and since our cdh-topology is pulled back from a Noetherian
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scheme (cf. Proposition B.4), we also assume its of finite presentation B ∼=
A[x1, . . . , xn]/〈f1, . . . , fm〉. Every cdh-covering of a hvr admits a section, so

there is a factorization A→B→ Ã. As A→ Ã is an integral extension, the

images of the xi in Ã satisfy some monic polynomials gi(T ) ∈A[T ]. Then the

composition A→B→B′ :=A[x1, . . . , xn]〈f1, . . . , fm, g1(x1), . . . , gn(xn)〉
is a finite morphism, and its Spec is completely decomposed because Spec

of the composition A→B′→ Ã is completely decomposed.

§6. ldh-descent for pseudo-hvrs

From this point we start working with the following “Gestern” condition.

A presheaf F satisfies (G1) if:

(G1) For every hvr R, the canonical morphism F (R)→ F (Frac(R)) is a

monomorphism.

Remark 23. We find it disappointing that we do not know a proof

avoiding this condition, as its not really clear heuristically why it should be

involved in passing traces from F to Fldh.

Voevodsky shows in [Voe00b, Corollary 4.18] that for a homotopy

invariant presheaf with transfers F and a smooth semilocal k-scheme X,

the morphism F (X)→ F (η) to the generic scheme η is a monomorphism.

So, at least in the homotopy invariant setting over a field, traces imply

a version of (G1). However, in our setting we do not have this: if S is a

Noetherian base scheme of dimension > 0, s a nongeneric point, and F the

constant additive sheaf of some nontrivial abelian group A, then F (−×S s)
is clearly uh-invariant, and has traces by Example 14(1), however, will not

satisfy (G1).

Proposition 24. Suppose that F is a uh-invariant Z(l)-linear presheaf

with traces satisfying (G1). Then for any pseudo-hvr R of positive charac-

teristic p 6= l, we have F (R) = Fldh(R).

Proof. Since F is uh-invariant, so is Fldh, Corollary 11, so we can assume

R is a hvr.

Injectivity: s ∈ ker
(
F (R)→Fldh(R)

)
if and only if there is some ldh-

covering f : Y → Spec(R) such that F (f)s= 0. Since R is a hvr we can

assume that f is an fpsl′-morphism, Proposition B.5(4). But then s
(Deg)

=

(1/ deg f) Trf F (f)s= 0.

Surjectivity: For every s ∈ Fldh(R) there is an ldh-covering f : Y →
Spec(R) =:X such that s|Y ∈ im(F (Y )→Fldh(Y )). Since R is a hvr we
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can assume that f is an fpsl′-morphism, Proposition B.5(4). In fact, we

can assume f factors as Z0
f1→ Y0

f0→X with f1 a uh-morphism, and f0

a generically étale fpsl′-morphism, Lemma 21. Since F is uh-invariant,

so is Fldh, Corollary 11, so we can forget f1 and just work with f0.

Since f0 is generically étale, Y0 ×X Y0 is generically reduced. Choose Y1 =

(Y0 ×X Y0)` such that the composition π1 : Y1→ Y0 ×X Y0
pr1→ Y0 is still flat,

Lemma 20(5), and therefore fpsl′. We claim that

0→ F (X)
F (f0)−→ F (Y0)

F (π1)−F (π2)−→ F (Y1)

is exact where π2 is the composition Y1→ Y0 ×X Y0
pr2→ Y0. Indeed, by id

(Deg)
=

(1/ deg f0) Trf0 F (f0) it is exact at F (X). For exactness at F (Y0), we claim

that Trπ1 F (π2) = F (f0) Trf0 . Indeed, since Y1 is Spec of a (product of)

pseudo-hvrs, and F is uh-invariant, by (G1) it suffices to check this after

pulling back to the generic points of Y1. But by (CdB), it suffices to show

Trπ1 F (π2) = F (f0) Trf0 holds generically, that is, over the generic point η

of X. But

η ×X Y1
//

��

η ×X Y0

��
η ×X Y0

// η

is cartesian, so the claim follows from (CdB). Hence, the above

sequence is exact at F (Y0) since if F (π2)s′ = F (π1)s′, then

s′
(Deg)

= (1/ deg π1) Trπ1 F (π1)s′
cycle
= (1/ deg π1) Trπ1 F (π2)s′

(“CdB”)
=

(1/ deg π1)F (f0) Trf0 s
′.

So we have established that the top row in the following diagram is exact.

Injectivity for pseudo-hvrs says the right vertical morphism is injective.

Hence, by diagram chase, we find a preimage of s in F (X).

0 // F (X) //

��

F (Y0) //

��

F (Y1)

��
0 // Fldh(X) // Fldh(Y0) // Fldh(Y1)

§7. Traces on Fldh

In this section, we show that for a nice presheaf with traces F , the

associated ldh-sheaf also has traces. We essentially transplant the method
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of [Kel12, Theorem 3.5.5], which becomes much easier in the context of this

paper. For another approach to putting trace morphisms on Fldh (with more

restrictive hypotheses than we use here) see [Kel17].

Recall that in [Kel12, § 3.5] we defined

Fcdd(X) =
∏
x∈X

F (x)

for F a presheaf and X a scheme.

Remark 25. One sees directly that Fcdd is a cdh-sheaf. More specifi-

cally, for any completely decomposed morphism Y →X, the sequence

0→ Fcdd(X)→ Fcdd(Y )→ Fcdd(Y ×X Y )

is exact (showing this by hand using a splitting of qy∈Y y→qx∈Xx is an

easy exercise).

What takes a little bit more work is the following theorem.

Proposition 26. [Kel12, Theorem 3.5.5, Lemma 3.3.6(2), Defini-

tion 3.3.4, Proposition 3.5.7] Let F be a uh-invariant Z(l)-linear presheaf

with traces, where l 6= char s for all points s ∈ S of the base scheme. Then

there is a unique structure of traces on Fcdd such that F → Fcdd is a

morphism of presheaves with traces. Moreover, the trace morphisms on Fcdd

satisfy:

(Tr) If A is a pseudo-hvr, φ :A→B an fps morphism, p1, . . . , pn are the

minimal ideals of B, and ηi :B→ (B/pi)
` the canonical morphisms,

then

F (B)

∑
F (ηi)

//

Trφ ##

⊕F ((B/pi)
`)

∑
mi Trηi◦φxx

Trφ =
∑
mi Trηi◦φ F (ηi)

F (A)

where mi = length Bpi, and of course, (B/pi)
` are chosen to be flat over

A, (or some cduh-extension of it, and we implicitly use uh-invariance),

Lemma 20(5).

Remark 27. We do not need the following description, but in case the

reader is interested, we recall that the trace morphisms on Fcdd are defined
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as follows. Given an fps morphism f : Y →X, and y ∈ Y , the yth component

of the trace morphism Fcdd(Y ) =
∏
y∈Y F (y)→

∏
x∈X F (x) = Fcdd(X) is

given by (lengthOx×XY,y) Trf |y/x .

Lemma 28. Suppose that F is a uh-invariant Z(l)-linear presheaf with

traces satisfying (G1), and R a finite rank hvr of positive characteristic

p 6= l. Then on the category of finite R-algebras, there is a factorization

F → Fldh
ι
↪→ Fcdd with ι a monomorphism.

Proof. On hvrs, and in particular on fields, F ∼= Fldh, Proposition 24, so

Fcdd
∼= (Fldh)cdd. Our injection is ι : Fldh→ (Fldh)cdd

∼← Fcdd.

Let A be a finite R-algebra. Spec of the morphism A→
∏

p⊂A
p prime

(A/p)`

is a cdh-covering. Since Fldh is uh-invariant, Corollary 11, each of the

morphisms Fldh((A/p)`)→ Fldh((A/p)∼) is an isomorphism. But F ∼=
Fldh on the hvrs (A/p)∼ and k(p), Proposition 29, and F satisfies

(G1), so each Fldh((A/p)∼)→ Fldh(k(p)) is injective. Hence, Fldh(A)→∏
p⊂A

p prime
Fldh(k(p)) = (Fldh)cdd(A)∼= Fcdd(A) is injective.

Proposition 29. Suppose that F is a uh-invariant Z(l)-linear presheaf

with traces satisfying (G1), and R is a finite rank hvr of positive character-

istic p 6= l. Then on the category of finite R-algebras, the trace morphisms

on Fcdd descend to the subpresheaf Fldh. In particular, Fldh has a structure

of traces on the category of finite R-algebras.

Proof. Explicitly, we want to show that for every fps-morphism of

R-algebras φ :A→B, the trace morphism Trφ : Fcdd(B)→ Fcdd(A) sends

the image of Fldh(B) ↪→ Fcdd(B) inside the image of Fldh(A) ↪→ Fcdd(A).

First note that if A→A′ is a morphism whose Spec is a completely

decomposed proper (=finite) morphism, then a diagram chase using the

short exact sequences, Remark 25, associated to A→A′⇒A′ ⊗A A′ by

Fldh ↪→ Fcdd shows that Fldh(A) = Fldh(A′) ∩ Fcdd(A). So replacing A with

A′ =
∏

p⊂A
p prime

(A/p)` and using (Add) and (CdB), we can assume that A

is a pseudo-hvr. Now, using the morphism B→
∏

q⊂B
q prime

(B/q)` and the

property (Tr) stated in Proposition 26, we can assume that B is also a

pseudo-hvr. So now A→B is a fps-morphism between pseudo-hvrs. But

then F (A)
∼→ Fldh(A), F (B)

∼→ Fldh(B) are isomorphisms, Proposition 24.

So the result follows from the fact that F → Fcdd is a morphism of presheaves

with traces, Proposition 26.
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§8. Comparison of cdh- and ldh-descent

Theorem 30. Suppose S is a finite dimensional Noetherian separated

scheme of positive characteristic p 6= l and F is a uh-invariant Z(l)-linear

presheaf with traces satisfying both conditions:

(G1) F (R)→ F (Frac(R)) is injective for every finite rank hvr R.

(G2) F (R)→ F (R/p) is surjective for every finite rank hvr R and prime p

of codimension one.

Then the canonical comparison morphism is an isomorphism:

Hn
cdh(S, Fcdh)

∼→Hn
ldh(S, Fldh).

Proof. By the change of topology spectral sequence

H i
cdh(S, (Hj

ldhF )cdh)⇒H i+j
ldh (S, Fldh)

it suffices to show that Fcdh = Fldh, and (Hj
ldhF )cdh = 0 for j > 0. Since finite

rank hvrs form a conservative family of fiber functors for the cdh-site SchS ,

Corollary A.3, and cohomology commutes with filtered limits of schemes

with affine transition morphisms, Proposition B.5, it suffices to show that

for every finite rank hvr R we have F (R) = Fldh(R), and Hj
ldh(R, Fldh) = 0

for j > 0.

It was already shown in Proposition 24 that we have F (R) = Fldh(R). We

now show that for any finite R-algebra A, we have

(1) Hj
ldh(A, Fldh) = 0

for j > 0. We work by induction on (dim Spec(A), j) where N× N>0 has

the lexicographical ordering. Explicitly, we suppose that (1) is true for

dim Spec(A)< dim Spec(R), and all 0< j and suppose also that (1) is true

when dim Spec(A) = dim Spec(R) and 0< j < J . We will show that it is

true for dim Spec(A) = dim Spec(R) and j = J .

Here is a plan of what we will prove, where A′ =Apic is a pseudo-integral

closure of Ared in (Q(R)⊗R A)red, and R′ = Ã′:

HJ
ldh(A, Fldh)

(α)∼= HJ
ldh(A′, Fldh) blowup l.e.s, induction via (2),

uh-inv., (G2)

(β)∼= HJ
ldh(R′, Fldh) uh -inv., Corollary 11
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(γ)∼= ȞJ
ldh(R′, Fldh) induction via (7)

(δ)∼= ȞJ
fpsl′(R

′, Fldh) R′ is a product of hvrs,

Proposition 38(4)

= 0 traces, Lemma 15, Proposition 29

Step α. Let A′ =Apic be a pseudo-integral closure of Ared inside (Q(R)⊗R
A)red, let p⊂R be the prime of height one (if dim Spec(R) = 0 set p to be the

unit ideal p =R), and consider the blowup sequence, Proposition B.5(5),

· · · → Hj−1
ldh (A′/p, Fldh)

→ Hj
ldh(A, Fldh)→Hj

ldh(A′, Fldh)⊕Hj
ldh(A/p, Fldh)

→ Hj
ldh(A′/p, Fldh)→ · · ·(2)

By induction on dim Spec(A), (1) is true for A/p and A′/p, so we obtain an

isomorphism

(3) HJ
ldh(A, Fldh)∼=HJ

ldh(A′, Fldh).

Here, (G2) and uh-invariance of Fldh, Corollary 11, is used in the case J = 1

to obtain surjectivity of the morphism Fldh(A′)→ Fldh(A′/p).

Step β. Note Spec of A′→R′ := Ã′ is a uh. Since HJ
ldh(−, Fldh) is uh-

invariant, Corollary 11, we are reduced to showing that HJ
ldh(R′, Fldh)

vanishes.

Step γ. Consider the Čech spectral sequence

(4) Ei,j2 = Ȟ i
ldh(R′, Hj

ldhF )⇒H i+j
ldh (R′, Fldh).

Note that the i= 0, j > 0 part vanishes automatically, since Ȟ0
τ (−, Hj

τF ) =

0 vanishes for any topology τ and j > 0. In particular,

(5) E0,J
2 = Ȟ0

ldh(R′, HJ
ldhF )∼= 0.

Since every ldh-covering of R′ is refinable by a finite one, Lemma 22, and

Hj
ldhF (−) =Hj

ldh(−, Fldh) vanishes on finite R′-algebras for 0< j < J by

induction, it follows that

(6) EJ−j,j2 = ȞJ−j
ldh (R′, Hj

ldhF )∼= 0; for 0< j < J.
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The vanishing so far, (5) and (6), with the spectral sequence (4) shows that

(7) EJ,02 = ȞJ
ldh(R′, Fldh)∼=HJ

ldh(R′, Fldh).

Step δ. Since R′ is a product of hvrs, every ldh-covering is refinable by an

fpsl′′-covering, Proposition B.5(4). So it suffices to show that the isomorphic

groups

(8) ȞJ
ldh(R′, Fldh)∼= ȞJ

fpsl′(R
′, Fldh)

are zero.

Step ε. Since Fldh has a structure of traces, Proposition 29, this vanishing

follows directly from Z(l)-linearity and the structure of traces, Lemma 15.
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Appendix A. The cdh- and ldh-topologies

In [GK15] it was observed that Hensel valuation rings, or hvrs, form a

conservative family of fiber functors for the cdh-site of a Noetherian scheme

(see Section 4 for some facts about hvrs). Here, we observe that if dim S is

finite, then in fact, it suffices to consider hvrs of finite rank.

Definition A.1. Let S be a separated Noetherian scheme, SchS the

category of separated finite type S-schemes, and l ∈ Z a prime. We quickly

recall the following definitions.

(1) A morphism f : Y →X is completely decomposed if for all x ∈X there

exists y ∈ Y with f(y) = x and k(y) = k(x).

(2) The cdh-topology is generated by families of étale morphisms {Yi→
X}i∈I such that qYi→X is completely decomposed, and families

of proper morphisms {Yi→X}i∈I such that qYi→X is completely

decomposed.
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(3) The ldh-topology is generated by the cdh-topology, and finite flat

surjective morphisms of degree prime to l.

Lemma A.2. Let A be a Noetherian ring, R a hvr, and A→R a

morphism. Then R is a filtered colimit A-algebras which are finite rank

hvrs.

Proof. Note A→R factors through a localization of A, and local

Noetherian rings have finite Krull dimension, so we can assume A has

finite Krull dimension. Certainly, R is the filtered union of its finitely

generated sub-A-algebras. For each such A-algebra A→Aλ ⊆R, define

Rλ = Frac(Aλ) ∩R⊆ Frac(R) to be the valuation ring induced on the

fraction field of Aλ by R. This is finite rank: Certainly, Rλ is the union

of its finitely generated sub-Aλ-algebras Aλ ⊆Aλµ ⊆Rλ. By Aλ ⊆Aλµ ⊆
Frac(Aλ) we have Frac(Aλ) = Frac(Aλµ) so dimAλ > dimAλµ [EGAIV2,

Theorem 5.5.8], and therefore6 dim Spec(Aλ)> dim Spec(Rλ).

Consider the Henselizations Rhλ of the Rλ. Henselizations of valuation

rings are valuation rings of the same rank, [Stacks, Tag 0ASK], so the

Rhλ are also of finite rank. The inclusion Rλ ⊆R extends uniquely to an

inclusion7 Rhλ ⊆R as Rλ ⊆R local morphism of local rings (indeed R∗λ =R∗)

toward a Hensel local ring. Moreover, any inclusion of finitely generated sub-

A-algebras Aλ ⊆Aλ′ ⊆R induces a unique factorization Rhλ ⊆Rhλ′ ⊆R for

the same reason. For every a ∈R, there is a finitely generated sub-A-algebra

Aλ with a ∈Aλ. Clearly, this implies a ∈Rλ, so a ∈Rhλ, and it follows that

R is the union of the finite rank hvrs Rλ, and this is a filtered union because

the poset {Aλ} is filtered.

Corollary A.3. Let S be a Noetherian separated scheme, and SchS the

category of finite type separated S-schemes equipped with the cdh-topology.

6Suppose that p0 ) · · ·) pn is a sequence of prime ideals of Rλ with n > dimAλ.
For each i choose ai ∈ pi \ pi+1, and consider the finitely generated sub-Aλ-algebra
A′λ =Aλ[a0, . . . , an]⊆Rλ. Then pi ∩A′λ 6= pi+1 ∩A′λ for each i, but by [EGAIV2, The-
orem 5.5.8] we have dimA′λ 6 dimAλ, so there is a contradiction and we conclude that
p0 ) · · ·) pn cannot exist.

7The map Rhλ ⊆R is indeed injective: Henselizations of valuation rings are valuation
rings of the same rank, [Stacks, Tag 0ASK]. In particular, Rhλ is an integral domain, and
Spec(Rhλ)→ Spec(Rλ) is an isomorphism of topological spaces. As Spec(R)→ Spec(Rλ)
sends the generic point to the generic point, Spec(R)→ Spec(Rhλ) must also send the
generic point to the generic point. In other words, Rhλ→R is injective.
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For any S-scheme P → S define

F (P ) = lim−→
P→X→S

F (X),

where the colimit is over factorizations with X → S in SchS. Then the family

of functors{
Shvcdh(SchS) → Set

F 7→ F (P )

∣∣∣∣ Spec(R)→ S
R is a finite rank hvr

}
is a conservative family of fiber functors.

Proof. It was proven in [GK15, Theorems 2.3 and 2.6] that the family of

all hvrs induces a conservative family of fiber functors. But Lemma A.2 says

that any hvr is a filtered colimit of finite rank hvrs. So given a cdh-sheaf

F , if F (R) = 0 for every finite rank hvr, we have F (R) = 0 for all hvrs, and

therefore F = 0.

Appendix B. Sites of non-Noetherian schemes

Definition B.1. We write SCHS for the category of all8 quasi-compact

separated (and therefore quasi-separated) S-schemes.

Remark B.2. Since our base scheme S will always be a Noetherian

separated scheme, and in particular quasi-compact quasi-separated, SCHS
is nothing more than the category of those S-schemes T → S of the form

T = lim←−λ∈Λ
Tλ for some filtered system T− : Λ→ SchS with affine transition

morphisms, [Tem11, Theorem 1.1.2].

Remark B.3. Following Suslin and Voevodsky, we use the term covering

family in the sense of [SGA4, Exp. II. Definition 1.2]. That is, in addition

to satisfying the axioms of a pretopology, any family refinable by a covering

family is a covering family.

Proposition B.4. Let S be a Noetherian separated scheme, let τ be a

topology on SchS such that every covering family is refinable by one indexed

by a finite set, and let τ ′ be the coarsest topology on SCHS making SchS →
SCHS continuous (cf. [SGA4, Exp. III. Proposition 1.6]). Then the covering

8This is a bit of overkill, since we just really only want to enlarge SchS to include
schemes of the form Spec(A)→ Spec(R)→S with R a finite rank valuation ring and R→A
finite, but whatever.
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families for τ ′ are those families which are refinable by pullbacks of covering

families in SchS.

Proof. Certainly any τ -covering family in SchS must be a τ ′-covering

family in SCHS , and therefore the pullback of any τ -covering family in

SchS must also be a τ ′-covering family in SCHS , so it suffices to show

that the collection of such families (i) contains the identity family, (ii) is

closed under pullback, and (iii) is closed under “composition” in the

sense that if {U ′i →X ′}i∈I and {V ′ij → U ′i}j∈Ji are such families, then so

is {V ′ij →X ′}
i∈I,i∈Ji

. The first two are clear, so consider the third. By

hypothesis, without loss of generality we can assume that I is finite.

Suppose U ′i → Yi, and X ′→X are morphisms with Yi, X ∈ SchS , and

{Vij → Yi}, {Ui→X} are τ -coverings such that U ′i = Ui ×X X ′ and V ′ij =

Vij ×Yi U ′i .
V ′ij

//

��

U ′i
//

��

��

X ′

��

∈ SCHS

Ui // X ∈ SchS

Vij // Yi

Without loss of generality we can assume that X ′ is the limit

lim←−Λ
Xλ of a filtered system {Xλ} in SchS with affine transition mor-

phisms (cf. Remark B.2), and since hom(lim←−Xλ, X) = lim−→ hom(Xλ, X)

[EGAIV3, Corollary 8.13.2] that X =Xλ0 for some λ0 ∈ Λ. In particular,

now U ′i = lim←−λ6λ0(Xλ ×Xλ0 Ui). Now since hom(lim←−λ6λ0(Xλ ×Xλ0 Ui), Yi) =

lim−→λ6λ0
hom(Xλ ×Xλ0 Ui, Yi) [EGAIV3, Corollary 8.13.2], for each i we can

assume that Yi =Xλi ×Xλ0 Ui for some λi 6 λ0. Choosing a µ6 λi small

enough (this is where we use finiteness of I) and pulling back everything

to Xµ, we can assume that Yi = Ui. In this case, {V ′ij → U ′i →X ′} is the

pullback of the τ -covering family {Vij → Ui→Xµ} in SchS .

In light of Proposition B.4, the τ ′-covers in SchS are refinable by the τ -

covers, so for such topologies (e.g., cdh, ldh, fpsl′) we use the same symbol

to denote the induced topology on SCHS . Another consequence of this

observation is that the adjunction

ιs : Shvτ (SchS)� Shvτ (SCHS) : ιs

induced by the continuous functor SchS→SCHS satisfies ιsι
s = id. See

[SGA4, Exposé 3] for some material about this basic adjunction.
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We will write

ι∗ : PreShv(SchS)� PreShv(SCHS) : ι∗

for the presheaf adjunction.

Proposition B.5. Let S be a Noetherian separated scheme, and T→S
in SCHS. Write T as the limit

T = lim←−
λ∈Λ

Tλ

of some filtered system {Tλ} in SchS with affine transition morphisms

(cf. Remark B.2). Let τ be both a topology on SchS such that every covering

family is refinable by one indexed by a finite set, and also the induced

topology on SCHS, for example, τ = cdh, ldh, fpsl′.

(1) lim−→λ∈Λ
Ȟn
τ (Tλ, F )

∼→ Ȟn
τ (T, ι∗F ) for any presheaf F ∈ PreShv(SchS).

(2) Hn
τ (T, ιsF ) = lim−→λ∈Λ

Hn
τ (Tλ, F ) for any sheaf F ∈ Shvτ (SchS).

(3) Every ldh-cover of T is refinable by the composition of a cdh-cover

{Vi→ T}ni=1 and fpsl′ morphisms Wi→ Vi.

(4) Every ldh-cover of the spectrum of an hvr is refinable by an fpsl′-

morphism.

(5) If Z→ T a closed immersion, and Y → T a proper morphism, such that

Y \ Z ×T Y → T \ Z is an isomorphism, then

0→ Z(Z ×T Y )→ Z(Z)⊕ Z(Y )→ Z(T )→ 0

becomes a short exact sequence after cdh-sheafification, where Z(W ) :=

Z homSCHS (−, W ).

(6) If F ∈ PreShv(SchS) has a structure of traces, then ι∗F ∈ PreShv(SCHS)

inherits a canonical structure of traces extending that of F .

(7) If F ∈ PreShv(SchS) is uh-invariant, then ι∗F ∈ PreShv(SCHS) is

invariant for finitely presented uh-morphisms, and uh-morphisms

between affine schemes with finitely many points.

Remark B.6. In part (7) we can actually prove that ι∗F is invariant

for all uh-morphisms, assuming only that S is quasi-compact and quasi-

separated, but as we do not need this stronger more general statement

in this present work, we do not include its proof. In fact, David Rydh

explained to us that the proof below works more or less unchanged, with

quasi-compactness of the constructible topology in place of the hypothesis

that the schemes have finitely many points.
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Proof.

(1) Both surjectivity and injectivity follows directly from Proposition B.4

together with [EGAIV3, Theorem 8.8.2] saying that morphisms over T

lift through the filtered system {Tλ}.
(2) As is is exact, the functor is preserves injective resolutions.9 Then

any injective resolution of ιsF →I• restricts to an injective

resolution F = ιsι
sF → ιsI•, and we have Hn

τ (T, ιsF ) =

(HnI•)(T ) = (HnI•)(lim←− Tλ)
(∗)
= lim−→(HnI•)(Tλ) = lim−→(HnιsI•)(Tλ) =

lim−→Hn
τ (Tλ, F ). For (*) note for any injective sheaf I, hom(−, I) is

exact by definition, and Yoneda, and sheafification are both left exact.

(3) By Proposition B.4, this follows from the case where T ∈ SchS which is

well-known, [Kel17, Proposition 2.1.12(iii)]. This latter is proved using

Raynaud–Gruson flatification, see also the proof of Lemma 8.

(4) By part (3), every ldh-cover is refinable by a fpsl′′-cover followed by a

cdh-cover. But every cdh-cover of a hvr has a section: for completely

decomposed proper morphisms this follows from the valuative criterion

for properness, and for completely decomposed étale morphisms, this

follows from Hensel’s Lemma.

(5) To check exactness, it suffices to check exactness after evaluating the

sequence of presheaves on an hvr. But in this case one readily checks

exactness using the valuative criterion for properness.

(6) Given a finite flat surjective morphism f : Y →X in SCHS , there

is a filtered system (Xλ) in SchS with affine transition morphisms,

Remark B.2, such that X = lim←−Xλ, there is some λ and fα : Yα→Xα

in SchS such that f =X ×Xα fα, [EGAIV3, Theorem 8.8.2(ii)]. We

can assume fα is surjective and finite, [EGAIV3, Theorem 8.10.5].

By restricting to finitely many affine opens U ⊆Xα, and choosing

isomorphism inducing global sections OdX → f∗OY , we see that we can

also assume fα is flat. Note that Noetherianness was used here to kill

ker(OdX → f∗OY ).

9If the reader is worried SCHS is too big for injective resolutions, then just choose
some large enough regular cardinal κ and instead work with the category SCH6κ

S of quasi-
compact separated S-schemes which are filtered limits of filtered systems in SchS with
affine transition morphisms indexed by a category Λ with < κ morphisms. Then SCH6κ

S

will be essentially small.
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Now define trace morphisms on ι∗F by choosing such presentations and

define Trf to be lim−→ Trfλ . Note that this is well defined. Let a ∈ F (Y )

be represented by some aλ ∈ F (Xλ ×Xα Yα), and let (X ′λ), f ′α : Y ′α→
X ′α, a

′
λ′ ∈ F (X ′λ ×X′α′ Y

′
α′) be some other choice of representative. By

[EGAIV3, Proposition 8.13.1] the canonical morphism X →X ′λ′ factors

as some X →Xµ→X ′λ′ . Since X×XαYα ∼= Y ∼=X×X′
α′
Y ′α′ , there exists

some possibly smaller µ and an isomorphism Xµ ×Xα Yα ∼=Xµ×X′
α′
Y ′α′

compatible with the former [EGAIV3, Theorem 8.8.2(i)]. As aλ and

a′λ′ agree in the colimit F (Y ), possibly making µ smaller again, we can

assume aλ and a′λ′ already agree in F (Xµ ×Xα Yα)∼= F (Xµ×X′
α′
Y ′α′).

Then it follows from (CdB) that Trfλ(aλ) agrees with Trf ′
λ′

(a′λ′) in

F (Xµ), and therefore also in the colimit F (X).

(Add) Given f : Y →X and f ′ : Y ′→X ′, choose representatives for

Y →X tX ′ and Y →X tX ′ separately. Then (Add) follows.

(Fon) Given g :W → Y and f : Y →X choose a representative for f ,

and then use the system {Xλ ×Xα Yα} to choose a representative for g.

Then (Fon) follows.

(CdB) Choose a representative for f , then descend W to (Xλ) using

[EGAIV3, Theorem 8.8.2(ii)].

(Deg) is clear.

(7) If f : T ′→ T is a finitely presented universal homeomorphism in SCHS ,

then there exists some α ∈ Λ, and a universal homeomorphism fα :

T ′α→ Tα in SchS , such that f = T ×Tα fα, [EGAIV3, Theorem 8.8.2(ii),

Theorem 8.10.5(vi)(vii)(viii)], so ι∗F (f) = lim−→λ6α
F (T ×Tα fα) is an

isomorphism. Note that EGA’s “radiciel” is equivalent to universally

injective.

Suppose that f : T ′ = Spec(OT ′)→ Spec(OT ) = T is a universal home-

omorphism between affine schemes with finitely many points. Write

OT ′ = lim−→OT→A φ→OT ′
A as a filtered colimit of finitely presented OT -

algebras.

As T ′→ T is a universal homeomorphism each Spec(φ(A))→ T

is a finite universal homeomorphism, Lemma 7. Also, φ(A) =

lim−→I⊆ker(A→φ(A))
A/I is the filtered colimit of the quotients of A by

the finitely generated ideals of the kernel K = ker(A→ φ(A)). Since

Spec(A) has finitely many points, we can always find some finitely gen-

erated ideal J such that for each J ⊆ I ⊆K ⊆A the closed immersion

Spec(φ(A))→ Spec(A/J) is surjective. Hence, f : T ′→ T is a filtered
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limit of universal homeomorphisms of finite presentation. We have

already seen that ι∗F sends such morphisms to isomorphisms, so

ι∗F (f) = lim−→ F (Spec(A)→ T ) is an isomorphism.
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