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COLOUR SWITCHING AND HOMEOMORPHISM
OF MANIFOLDS

MASSIMO FERRI

1. Introduction and notation. Throughout this paper, we work in the PL
and pseudosimplicial categories, for which we refer to [17] and [10]
respectively. For the graph theory involved see [9].

An h-coloured graph (T, y) is a multigraph I' = (V(I'), E(I') ) regular of
degree h, endowed with an edge-coloration y by 4 colours. If % is the
colour set, for each Z C % we set

Ty =D,y (@)
Foreachc € € set¢ = ¢ — {c}. Forn € Z, n = 1, set
A, ={i€eZ0=i=n} and N, =A, — {0};

A, will be mostly used to denote the colour set for an (n + 1)-coloured
graph.

To every (n + 1)-coloured graph (I', ¥) an n-dimensional pseudocom-
plex K(I', y) is associated (often indicated simply as K(I')) whose
i-simplexes are in one to one correspondence with the connected
components of the subgroups Iy, with #% = n — i (for the notion of
pseudocomplex, which will be briefly called “complex” in the sequel, see
[10, p. 49]). (T, v) is said to represent |K(T', v) |. If T’ is connected for all
¢ € % then there are precisely n + 1 vertices (i.e., O-simplexes) in
K(T, v); in this case (T, y) and with it K(T', y) are said to be contracted. By
a theorem of Pezzana (see [15, 16, 1]) there exists, for every closed
connected n-manifold M, at least one contracted (n + 1)-coloured graph
(I, v) representing M; (I', y) is then called a crystallization of M and
K(T', v) a contracted triangulation of M.

The theory of representation of manifolds by (n + 1)-coloured graphs is
surveyed in [6]. Of particular interest for the present paper is [3]: its
central result is an equivalence theorem for crystallizations, which we
will state after having introduced the following notion. Given an
(n + 1)-coloured graph (T, y), a subgraph ® formed by two vertices, X and
Y say, joined by h edges is called a dipole of type h or h-dipole if, on setting
B = y(E(0®)), X and Y lie in distinct components of I'_ 4 an A-dipole is
said to be nondegenerate if 2 = h = n — 1. To cancel or to eliminate a
dipole ® means to form the graph I, where V(I") = V(') — {X, Y} and
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COLOUR SWITCHING 9

where E(I") is obtained from E(I') — E(®) by “pasting together” the
pairs of equally coloured edges coming to X and Y from outside ©; adding
or introducing a dipole is the inverse operation. A cut (resp. glueing) is the
adding (resp. cancelling) of a dipole of type 1. Given a dipole O in (T, y),
the colours of y(E(®) ) will be said to be involved in ® and in the moves
(defined below) concerning addition or cancellation of ®. A cut-and-glue
or move of type I is a cut followed by a glueing involving the same colour.
A move of type II is the adding or cancelling of a nondegenerate dipole. If
(T, v) is contracted, the graph obtained by a move of type I or Il is again
contracted. The main theorem of [3] states that two crystallizations
represent homeomorphic manifolds if and only if they are obtained from
each other by a finite sequence of moves of type I and/or II.

We now state the central proposition of the present paper:

SWITCHING LEMMA. Let (T, y) be a crystallization of a closed connected
n-manifold M. Further let r, s € A, r # s, and let n:A, — A, be the
permutation which interchanges r with s. Then (I', ny) can be obtained
from (T, y) by a finite sequence of moves involving colour r and not involving
colour s.

The Switching Lemma will be proved in Section 5: In Section 2 we
recall, with new proofs, some lemmas of [3] and Section 3 is dedicated to a
graph-theoretical proposition whose application, given in Section 4, will
be essential for the proof. The next theorem, which is a direct consequence
of the Switching Lemma, will be proved in Section 6.

THEOREM 1. Let | € A, be arbitrarily fixed, and let two crystallizations
(T, v) and (I'", ¥'), of manifolds M and M’ respectively, be given. The
following statements are then equivalent:

(1) M is homeomorphic to M’;

(2) (I, ¥') can be obtained from (T, ) by a sequence of moves involving the
colour [,

(3) (I, ¥') can be obtained from (T, v) by a sequence of moves not involving
the colour 1.

Theorem 1 strongly sharpens the equivalence theorem of [3] by allowing
the moves to be taken from restricted sets. This result assumes a particular
relevance in view of the increasing interest in this theory, recently shown
also by other schools (see [12, 13, 14, 18] ). Theorem 1 promises to be of
use in further research of which we now give samples. Firstly, a strong
form of equivalence is needed to prove the additivity of the “regular
genus” of manifolds (for this invariant see [7, 8, 4, 5]). Secondly, it can
also possibly shed some light in the (so long unsuccessful) search for link
moves of 2-fold branched coverings of s? ([11, Problem 3.25]), via the
construction of [2]. Finally, let us mention an ambitious project which
becomes more realistic, now that the type of invariance required can be
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considerably weakened, that is, we hope to find or construct graph-
theoretical invariants (e.g. of the type of the many existing recursive
polynomials) which agree on crystallizations of homeomorphic manifolds,
and give rise to new significant manifold invariants; some functions of this
type have already been found, but they reduce to classical topological
invariants.

From now on, all n-manifolds will be closed and connected, unless
otherwise stated, and with n = 2. Facet will mean an (n — 1)-simplex in
an n-dimensional complex. In an n-complex K = K(I', v), the subcomplex
2 corresponding to an h-dipole © will also be called an h-dipole; it is
formed by two n-simplexes having in common 4 facets (and all faces of
these facets), which we shall call meet-facets. The vertices opposite to the
meet-facets in both n-simplexes will be said to be involved in 2 as well as
(in the case of &# = 1 and before a cut or after a glueing) the vertex
obtained by identifying the two vertices involved in 2. In the sequel, the
terms dipole, meet-facet, involved vertex will apply to such a subcomplex 2
even if K is not associated to any graph. In a dipole 2, all faces not
contained in a meet-facet occur in pairs: such a pair of i-simplexes
s”, s”" (generated by the same vertices) reduces to one simplex s’ when 2 is
cancelled; we shall say that the adding of 9 doubles s' into s” and s”'. Two
complexes are said to be equal up to dipoles if they are obtained from each
other by a finite sequence of addings and/or cancellings of dipoles.

n=2 h=1

n=3 h=1

Figure 1
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Figure 1 illustrates “geometric” dipoles for n = 2, 3 and h = 1, 2.
An h-dipole in dimension n can be thought of as a join from an
(n — m — 1)-simplex over an A-dipole in a lower dimension m.

2. Cone-algorithms. Given a simplex s in an n-complex K, the disjoined
star of s in K, std(s, K), is defined to be the disjoint union of the
n-simplexes of K containing s, with re-identification of the facets
containing s, and of their faces. The disjoined link of s in K, lkd(s, K), is
the subcomplex of std(s, K) (actually of its boundary dstd(s, K))

consisting of simplexes disjoint from s. If K = K(I', y) for an
(n + 1)-coloured graph (T, y), an i-simplex s’ corresponds to a component
of a I'; with #% = n — i, as we have said; this component, as an

(n — i)-coloured graph, represents the complex 1kd(s’, K).

The following concepts have been introduced, in a slightly different
way, in [3]. Given a complex K, a vertex v € K is called a cone-vertex if
v € s for all n-simplexes s of K. Let M be a fixed n-manifold €' (with
i € A,)) denotes the class of pairs (K, {wy,...,w;_;}), where K is a
complex representing M, and has at least i cone-vertices wy, ..., w;_;. A
cone-algorithm o/ on (K, {wg, ...,w,_;}) € @' is the construction of a
pair

K, (o, . ..o w;_1}) = @K, (Wor - .., w;_p, w;}) € EF!

carried out as follows: Consider the disjoined stars of the (n — i)-
simplexes of K not containing any of wy, ..., w;_;, as disjoint n-balls;
attach them together through facets, to form an n-ball D in which any two
disjoined stars have at most one facet in common; pseudodissect |D| as the
join from an inner point w; over = = dD; re-identify the rwin facets of Z,
1e., the two facets of each pair coming from one facet of K. The
out-coming complex &7(K) still has M as its space, and has w; as a further
cone-vertex.

Obviously, there are different cone-algorithms.«Z on K, corresponding to
the different ways of forming D; %(K) is the set of all possible complexes

H(K).
We will not be very strict about the notation (K, {wy, ..., w;,_;}): If no
confusion arises about the set {wy, ..., w;_,}, we will speak of K itself as

an element of ©'.
We now recall some lemmas from [3] and give some alternative proofs
which will be used in the sequel.

LEmMMA 2. Let K € G, i € A, IfK', K" € A(K), then K" (resp. K') is
obtained from K’ (resp. from K”) by a finite sequence of cut-and-glue
moves.

Remark 1. Note that, in the preceding lemma, all cut-and-glues involve
the last cone-vertex introduced.
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Consider L € €', i € A,, and let K € (L) be the complex obtained
from the ball w; * = by identification of twin facets of 2. Let

piw;, * 2> K

be the canonical projection. Let 2 be a dipole of type h (1 = h=n — 1)
in 2, and 2’ be the complex obtained from = by cancelling 2.

LEMMA 3. If the two (n — 1)-simplexes forming 2 are twin, then p(w, * D)
is a dipole of type h + 1 in K. Moreover, the pseudocomplex K’ obtained from
K by cancelling p(w; * D) is p(w; * Z').

The next lemma is not contained in [3]. Let £, 2, ', p be as before, and
let a, b be the two (n — 1)-simplexes forming &, a’ # a, b' # b be the
(n — 1)-simplexes twin to a, b respectively, and e, f the (h — 1)-faces of
a, b respectively, opposite to all meet-facets of 2.

Lemma 3. If p(e) # p(f), then p(w, * D) is a dipole of type h in K.
Moreover, the pseudocomplex K’ obtained from K by cancelling p(w; * D) is
p'(w, * Z'), where p’ agrees with p on all of 3’ except on those a’, b’ for which
p'a) = p'b).

Proof. This is straightforward.

Remark 2. In both Lemmas 3 and 3’ the vertices involved in 2 are also
involved in p(w; * 2); in the case of Lemma 3, the vertex w, is
also involved.

LEMMA 4a. If K € G’V i € A, then there exist L € 6" and K' € (L)
such that K and K' are equal up to dipoles of type h = 2. In particular, if
i = n, then K, L, K’ coincide.

LEMMA 4b. If K, L € G°, then there exist K' € A(K), L’ € (L) which
are equal up to dipoles of type h = 2.

LEMMA 4c. If K, L € @', i € A, are equal up to dipoles of type h = 2,
then there exist K' € A(K) and L’ € A(L), which are equal up to dipoles of
type W = 2 if i < n, up to dipoles of type W', 2 = W = n — 1 (ie,
nondegenerate), if i = n.

Proof. Let us assume that K, L € ¢ ie A,, and that K is obtained
from L by cancelling a dipole £ of type h = 2 formed by two n-simplexes
x and y. Let a be the set of n — h + 1 vertices common to all meet-facets
of &, b be the set of the & remaining vertices of &, 3 be the set of
cone-vertices of L. We exclude the trivial case of K = 6, L = 9.

1) Case 3 € a. Let r, with0 = r = n — h + 1, be the cardinality of
a — 3; the set of non-cone-vertices of 2 is b U (a — 3), and generates
two (h + r — l)-simplexes s, and s,. All & meet-facets of & and the r
non-meet-facets of x not containing s, are on dstd(s,, L); analogously for
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s,. Build a cone-algorithm &7 in which () std(s;, L) and std(s,, L) are
attached together by one meet-facet of &, and (**) if i > 0, no other facet
is internal to the ball D of the cone-algorithm, whereas if i = 0 then just
one facet of Zis internal. (When i = 0, i.e., r = n — h + 1, at least one
facet f has to be made internal to the ball D of the cone-algorithm .7
Note that, if / C x, the facet of y with the same vertices substitutes, in 3",
the facet twin to f.) The corresponding sphere £ = 0D contains & — 1
dipoles of type 1 whose simplexes are twin (from the meet-facets).

The subcomplex of 2 formed by these dipoles fits in the following
description of a complex S,,,, with / = h, m = 1, and 5 generated by a.

For all / € N,, all m € N,_, let P, be an (/ — 1)-dimen-
sional m-dipole: Define the complex S, as the join of 9P,, with an
(n — I)-simplex 5.

Note that the j-th dipole cancellation (j € N, _,) transforms an S, ;
into an S, J+ 1 (here and after we intend N, = @) so that it raises the type
of the remaining dipoles by one. So, elimination of 4 — 1 dipoles, one for
each type j € N,_,, yields a 2”, in which the remaining facets from 2
form " dipoles of type h, where

J

¥ = min{r,n — h};

note that the facets of each of these dipoles are not twin. The subcom-
plex of X” formed by these dipoles is an S, ,, where, if ¥ = r, 5 is gen-
erated by 3 and the two intersections of non-meet-facets of P, ., , are
generated by b.

Again, the k-th dipole cancellation (k € N,_;) transforms an
S, hh+k—1 into an S, ,, 4, and hence raises the type of the remaining
dipoles. Thus, cancellation of ’ dipoles of type h + k — 1, one for each
k € N,, yields a 2’ which can be considered as the boundary of a ball D’
relative to a cone-algorithm &’ for K.

Note that, for each k € N, _,, the two (h + k — 2)-dimensional
intersections of non-meet-facets of F,,, ., come from two distinct
simplexes of L, which the first sequence of dipole eliminations has
not identified; the k-th dipole elimination of the second sequence does
identify them, but not the (A + k — 1)-dimensional intersections of
non-meet-facets of B, , . This grants that for each of these " dipoles
Lemma 3’ applies.

By repeated application of Lemmas 3 and 3’, K’ = &/'(K) is obtained
from L’ = o/(L) by cancelling # — 1 dipoles of increasing typesj + 1, one
for each j € N, _,, and 7 dipoles of increasing types # + k — 1, one for
each k € N,.. Note that, if 4 < n, all these dipoles are of type <n, since
we always have, by definition, » + v — 1 < n.

2)Case 3 La.Letg, r(with0=¢g=h—1,0=r=n—h+1,and
q + r = 1) be the cardinalities of b — 3 and a — 3 respectively. The union
of these two sets generates, in 2, a unique (¢ + r — 1)-simplex s, which is
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contained in & — g meet-facets and in 2(n — h — r + 1) non-meet facets.
Such facets become internal to std(s, L), while the remaining ones are on
dstd(s, L). Build a cone-algorithm o/ for L such that ($) if r <n — h + 1,
no facets of dstd(s, L) become internal to the corresponding ball D and, if
r =n — h + 1, just one does. Then, on £ = 3D there are g dipoles of type
h — g, whose simplexes are twin. Elimination of these dipoles, which
successively become of increasing types & — j, one for eachj € N o Yields
a 2” on which there are r’ (with ¥ = min{r, n — h} ) dipoles of type h,
consisting of non-twin simplexes. Cancellation of r* dipoles of increasing
types h + k — 1, one for each k € N,, finally yields a sphere X’
corresponding to the ball D’ of a cone-algorithm &’ for K. By Lemmas 3
and 3’, &'(K) is obtained from /(L) by cancelling g dipoles of increasing
types h — j + 1, one for each j € N, and r’ dipoles of increasing types
h + k — 1, one for each k € N,.. Note that the highest possible type, for a
dipole to be cancelled, is the maximum between hand h + (n — h) — 1 =
n — 1. Also observe that, forh = n,r =n — h + 1 = 1, g = 0 (which
corresponds to the case of &/ = n, i = n), no dipole has to be cancelled.

Remark 3. We shall later encounter Case 2 of the preceding proof, with
r = 1, g = 0. Note that o/’(K) and /(L) differ, in this situation, by just
one dipole of type A, which involves the same vertices as 9. Therefore, in
this case we can express Lemma 4c in the following special form: Let K be
obtained from L by cancelling a dipole of type A, and let &/ be any
cone-algorithm on L satisfying condition ($). Then there is a complex
K’ € A(K) which is obtained from /(L) by cancelling a dipole of type A,
involving the same vertices.

LEMMA 4d. Let L, L' (LSi, i € N,, be obtained from each other by a
cut-and-glue involving the i-th cone-vertex, and let H € (L), H € A(L).
Then H and H' are obtained from each other by a finite sequence of
cut-and-glues and of addings and cancellings of nondegenerate dipoles.

Proof. Let L be the pseudocomplex obtained from L (and, respectively,
from L’) by adding the dipole of type 1 @ (resp. 2’) with meet-facet
f (resp. f7). Let a, a’ be the sets of vertices of fand f” respectively. Let 3 be
the set of cone-vertices of L.

By hypothesis, a cone-vertex of L (and, respectively, one of L’ with the
same name) has been doubled into two non-cone-vertices w, w’ by the
introduction of @ (resp. of 2’). Set r = n — i: r is the cardinality both of
a — 3 and o’ — 3. The non-cone-vertices, different from w and w’, generate
(r — 1)-simplexes in L; two of them, s and s’ say, are in 2 and 9’
respectively. Consider the disjoined stars of all such (» — 1)-simplexes;
build, as in a cone-algorithm .7, an n-ball D by attaching such stars along
facets, but so that () if r < n (i.e., i > 0), no facets of 2 (and, respectively,
of 2') belonging to dstd(s, L) (resp. to dstd(s’, L) ) become internal to D,
and if r = n just one of either star boundary does. Take a point v inner to
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D, consider the join from v over £ = 3D, and identify the twin facets of =;
call K = &7 (L) the out-coming complex. The situation is now similar to
the one of Case 2 of the proof of the preceding lemma, with ¢ = 1. Then,
there is a cone-algorithm &/ on L (and, respectively, one &’ on L’) such
that /(L) (resp. «’(L’)) can be obtained from /(L) by cancelling
r = min{r, n — 1} dipoles of increasing types j, one for each j € N,
(where the first dipole involves w and w’, by Remark 2). This means
that &/(L’) and «/(L) are obtained from each other by ¥ — 1 addings of
nondegenerate dipoles, one cut-and-glue, and » — 1 cancellings of
nondegenerate dipoles.

In both Cases 1 and 2, application of Lemma 2 to H and /(L), and to
H’ and 2/'(L’), concludes the proof.

Remark 4. Note that the dipoles of type 1 of the preceding proof in-
volve w and w’, as 2 and 2’ did. We shall later meet this case, with r = 1;
in this situation, &’(L") and &/(L) are obtained from each other by just a
single cut-and-glue, which involves the same vertex as the one joining L
and L'

Remark 5. Again in the proof of Lemma 4d, one does not obtain, from
&/ (L), all possible cone-algorithms .o and &7’ for L and L’. This depends
on the condition (*) we have imposed. More precisely, if &7 is given with
condition (*) satisfied for 2’ in &/(L), then a single cut-and-glue takes
2/(L) to an &’(L’) such that o7’ satisfies the same condition for 2.

3. Clefts in graphs. The following definitions have been suggested by
concepts introduced in [18]. In this and in the next section the term
“graph” will stand for “pseudograph” (also loops are allowed).

Let = be a finite graph and, for j € N, % a family of disjoint cycles
of Z. We shall name a cycle along with its edge set, so that U% will
denote the set of edges belonging to at least one cycle of #. An edge
e € E = E(Z) is said to be F-belonging if there is a cycle ¢ € % such
that e € c. Let 4 be a subset of E; an edge e & A is said to be #-dependent
on A if thereis acyclec € #such thate € ¢ € 4 U {e} (so that e is also
Z-belonging). A cleft of = with respect to the given cycle sets is a sequence
of edges (e, - . ., e;) such that, for each i € N, and for some j € N, ¢, is
Z-belonging but not Z—dependent on E — {ey, ..., e} (i.e, there exists a
cycle ¢ € % such that ¢ contains e; and some of the edges e, ..., ¢,_)).

An example of a cleft is shown in Figure 2b of the next section; indeed,
the whole sense of a cleft is better understood through the application of
Section 4.

PROPOSITION 5. Let #, . . . , %, be families of cycles in a connected graph
= = (V, E), such that
(1) U(UF) = E, and

(ii) for all h-tuples of subsets ' < Z,
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@ # U(UZFE) # E) = ((U(UF) N (U(UCF)) # D).

Then, for any ey, € E there exists a cleft (ey,...,e.) such that
E — {ey, ..., e} generates a spanning tree of =.
Proof. Assume a cleft (e, . . ., e;) has already been built, such that =,

the subgraph generated by E;, = E — {e, . . ., ¢;}, is connected; note that
Z is necessarily 2-edge-connected, since E is covered by cycles, so that =,
is connected.

We are going to show that either Z; is a spanning tree, or it can be
reduced to a =, | satisfying the same assumption, by a cleft extension. By
virtue of the finiteness of =, we shall eventually get a spanning tree.

Either (1) for every ¢’ € E, and for allj € N, €’ is not #-dependent
on E; — {€’}, or (2) there is at least one e € E; which is .%-dependent on
E; — {e} for some / € N,.

In case (1), as Z; is connected, either it is a spanning tree, or there is an
e,y € E,; such that E; — {e;,,} generates a connected subgraph. By the
hypothesis (i), ¢;;, is #-belonging for some j, so (e, ..., €, €) 1s a
cleft.

In case (2), there are a priori two subcases: (2’) for all e € E,, and for
all, m € N,, | # m, if e is %#-dependent on E; — {e} and % -belong-
ing, then e is also %, -dependent on E; — {e}; (2”) at least one e; ;| is
Z-dependent on E; — {e,;,}, for some / € N,, but is %, -belonging for
some other m € N, without being %, -dependent on E;, — {e;;}-

In the latter subcase (2”), (ey, ...,e; €.4;) is a cleft and X, is
connected. We now assume the subcase (2’), and show that it cannot
subsist, so concluding the proof. Let A be the set of those e € E; for which
there exists an / € N, such that e is %-dependent on E; — {e}. Also
consider the families

F' ={ceFlenAd+0} (jE N,.

Note that 4 # @ since we are in (2”), and that 4 € E;, # E. Let
e € c € % for some m € N,; then there exists an e’ € ¢ N A4: ¢’ is then
Z-dependent on E; — {e’} for some / (since ¢ € A). If | = m, then also
e € A. Assuming that /| # m, ¢ is % -belonging (since ¢’ € ¢ € %),
hence ¢’ is %, -dependent on E; — {¢'}, i.e, ¢ € E,. Therefore, also e is
%,-dependent on E; — {e}, and e € A: this shows that

U(UF') © A.
Since the inverse inclusion is obvious, we have
Uj(U%') = A.
By construction, each UCZZ’ is disjoint from A, thus
! 74 _
(Uj(U/} )N (Uj(Ungﬁ- )) =0,

but this contradicts the hypothesis (ii).
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4. v;-centered cone-algorithms. Let (I', y) be a crystallization of an
n-manifold M; on setting K = K(T', y) and calling v, . . ., v, its vertices,
we have

(K, {vli € A,}) € 6"\,

Later we shall need to neglect two vertices of K, v, and v,, say, as
cone-vertices, so consider

(K, {vli € A, — {L,m}}) e @1

In order to define a cone-algorithm .o/ on

(K, {vli € A, = {L,m}}),

(T, y)

Vi

(3. y) std(m, K)

Figure2a. # = {a,b,c}, % ={d,e, [}, F = {a,d}, % = {¢, [}, T = {b. e}; cleft: (e, d, /. ]).

https://doi.org/10.4153/CJM-1987-002-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-002-5

18 MASSIMO FERRI

[z}

Figure 2b

and then pass to €”, one has to specify a set { of facets along which to
attach the disjoined stars of the l-simplexes of vertices v, and v,,. A
cone-algorithm 7 in which { is chosen to consist only of facets containing
v, will be said to be v,-centered. If o7 is v,-centered, then on the boundary of
the associated ball D there will be only one copy of v, Indeed, D can be
thought of as std(v,, K) “fissured” along the facets not in {. We shall call
incision along a facet f the operation inverse to that the identification of
two twin facets into f. Observe that the identification of two facets brings
the identification of their faces with it; so an incision has an effect also on
lower-dimensional simplexes.

We are going to show that a set of incisions exists, which (with the
obvious exception of the first) merely extends the “wound” opened by
the preceding ones.

Figure 2 illustrates the next proof by (a) a crystallization of L(3, 1),
with the corresponding I'5 and std(v,, K), (b) a cleft on the related =, and
(c) the incisions produced by the cleft. The choice of / = 2, m = 3, rather
than following the convention of the proof, has been made in view of a
later application.
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ProrosiTION 6. Let (T, v) be a crystallization of an n-manifold M, and

{vili € A,} be the vertex set of K = K(I', y). Let , m € A,, | # m, be
arbitrarily fixed, and let the complex K be called L after v, is renamed w.
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Then there exists a v;-centered cone-algorithm %/ on
(K. {vli €A, — {ILm}y}) e,
which yields a pair
A(K), {vli € A, = {L,m}} U {w}) € C,

such that /(K) is obtained from L by adding one n-dipole (which doubles an
arbitrarily chosen facet not containing v,) and a set of nondegenerate
dipoles, all involving w.

Proof. Without loss of generality, let / = n, m = n — 1. Form, as in the
proof of Lemma 4a (see [3] ), a graph =, whose vertices are the disjoined
stars of the 1-simplexes with vertices v, _,, v,, and whose edges are the
facets, on the star boundaries, which contain v,. In point of fact,
= is the graph obtained from I'j by contracting all edges not coloured
n— 1.

Now, if one attaches the disjoined stars along all the facets represented
in =, one gets std(v,, K), while the ball D of the desired cone-algorithm
corresponds to a spanning tree of Z. The incision of std(v,, K) along such
a facet, which yields a ball D, corresponds to the elimination of an edge ¢
of Z. The same incision also corresponds to introducing a dipole 2 of type
n — 1, formed by two twin simplexes, into the sphere

S = ostd(v,, K) = lkd(v,, K),

so getting a sphere 2, = 0D,; the complex K, = p(w * Z;) is obtained
from K = p(v, * Z) by adding p(w * @) which, by Lemma 3 and Remark
2, is a dipole of type n involving w.

If n = 2, K, is already the desired #/(K); therefore assume, from now
on, that n = 3.

Assume that we have incised Dy, i times into a ball D;, so that =, = 9D,
is obtained from =, by addings of nondegenerate dipoles; then, also

n’

K, =pw=*Z)
has been obtained from K|, by addings of nondegenerate dipoles involving
w; correspondingly, a set of edges e, ..., ¢ is cancelled from X, so

yielding a connected graph Z,.

Now, we ask when a further incision along a facet f gives rise to a
nondegenerate dipole, made of twin simplexes, in X, and hence also
to a nondegenerate dipole involving w in K. It is not hard to see that such
a possible f is one which has at least two of its (n — 2)-faces on Z;; to
ensure that this happens, choose f in the star of an (n — 2)-face s" *
“brought to the surface” by the preceding incisions, i.e., such that (with
slightly improper notation), v, € s" > € 3, Next, we characterize the
edges of =; corresponding to such facets.

For each colour j € A, _,, consider the family .9‘7]' of cycles into which

https://doi.org/10.4153/CJM-1987-002-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-002-5

COLOUR SWITCHING 21

I'(,—1,y splits; these families 5_5’ (J € A,_,) subsist also in I'j. After
contraction, these sets give rise to as many families Z of (possibly
nonelementary) cycles in =.

An 5" "2 € K containing v, corresponds, in I, to a bicoloured cycle ¢ of
I'j; since incisions can be carried out only along facets opposite to v, _,
we are interested only in edges coloured n — 1; then, colour n — 1 has to
be one of the two colours of t. This means that T & 3‘7 for some
J; therefore, the same s" “ corresponds, in =, to a cycle ¢ € Z.
Now, s" "% € 3, if and only if at least one edge e € {e,, ..., ¢} belongs
to c; if this is the case, f can be chosen to correspond to an edge

e € ¢ — {eg .- e,-}; by definition, e;,, is #-belonging, but not
Z-dependent on E(,_ — {eg, ..., €5 €41}

Lastly, a cone-algorithm .« of the desired type exists, if there is a cleft
(€g, - - -, ;) of =, with respect to {#}, which yields a spanning tree Z;. In
view of Proposition 5, this is the case if the families % (j € 4, _,) satisfy
conditions (i) and (ii) of that statement.

Condition (i) is satisfied by construction. We now give an indirect proof
of condition (ii).

Assume that there are subfamilies F' < 9‘; (j € A,_,) such that

YU = 4,
a proper nonvoid subset of E = E(Z), and that
U(UCsF") = Cpd,

so denying the condition. Now, the vertices of = can be put, in a natural
way, in bijection with the disjoined stars (which are (n — 1)-balls) of
the copies of v, , in 2; analogously, the edges of = correspond to
(n — 2)-balls (actually simplexes) of X, which do not contain copies of
v,_1. Then |Z| can also be seen as the space of an (n — 1)-dimensional
ball-complex, whose dual 1-skeleton is Z. Each cycle of U, % corresponds
to the set of (n — 1)-balls containing a well-determined (n — 3)-simplex of
3, which in turn does not contain copies of v,_,.

To a connected, proper, nonempty subgraph =’ of = there corresponds
an (n — 1)-dimensional, proper, nonempty sub-pseudomanifold P of 2,
possibly with boundary. P has nonempty boundary if and only if some of
its (n — 2)-simplexes have a noncyclic star in P, i.e., for somej € A, ,
and for some ¢ € 9"7,

B#*cnNE *c.

Now, consider the subgraph =’ of Z generated by U(UZ"); by
assumption, no cycle in Y% or in UC;?’ is in the condmon just
described. Thus the associated sub- pseudomamfold P has empty bounda-
ry and has the same dimension as X: which contradicts a standard
consequence of Alexander’s Duality Theorem.
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H = K, HA(Ky)

Figure 3b
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Figure 3b
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5. Proof of the switching lemma. The proof will be followed more easily
by checking it on Figure 3, relative to (a) a crystallization and the related
contracted triangulation of the nonorientable surface of genus 3, (b) the
whole process in 6?2 (left) and ¢? (right), and (c) the sequence of moves. Of
course, this example does not illustrate the part concerning nondegenerate
dipoles, therefore a further example of application of the lemma is given in
Figure 4, relative to a crystallization of L(3, 1); here the nondegenerate
dipoles come from the cleft of Figure 2, and from a similar cleft performed
on the graph obtained from I}.

Proof. Without loss of generality, let » = n — 1, s = n. The complex
K = K(T', v) has cone-vertices v, ..., v,, and so

(K’ {V,—Ii € An}) € @n+"
Consider, instead,
(K, {vli € A, 5}) € "\,

Further, K is called H after v,_, is renamed w,_; and this also is
considered to be a cone-vertex, 1.e.,

(H, {vli € A,_,} U {w,_,}) € ¢".
Analogously, K is called L after v, is renamed w,_, and
(L’ {vili = An—2} u {wn—l}) SO

By Proposition 6, there exists a v, _|-centered cone-algorithm /" and a
v,~centered one &/”, both on K, such that &’(K) and «/”(K) can be
obtained from H and L respectively by adding a dipole of type n, and a set
of nondegenerate dipoles, all involving w, . The two n-dipoles can be
arbitrarily placed; therefore choose an n-simplex s € K: the facet of s
opposite to v, is called f, and the facet of s opposite to v,_, is called g;
to f (resp. to g) there corresponds f” in H (resp. g” in L). Choose the
n-dipoles to be added in H and L, so that they double f’ and g”
respectively; note that f, f” are the same simplex, with differently named
vertices, and similarly g, g”.

By Remark 1, o#”(K) can be obtained from &’(K) be a sequence of
cut-and-glues involving w, _,. Each cut is made along a facet with vertices
Vg, - - -, V,_ and each glueing along a facet with vertices vy, . .., v, _,, V,.
Let D', D” be the n-balls associated with &', &/” respectively: By the
previous choice, f is on 3D’ and g is on dD”, so that no cut (resp. no
glueing) is made along f” (resp. g”).

To resume, there is a sequence

H=H,... .H =K)=K,...
K, —"(K) =Ly ....L, = L,

m
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in which H, (resp. L,,) is obtained from H,, (resp. from L,, ) by adding
(resp. cancelling) a dipole of type n, H;,, (resp. L,) from H; (resp. from
L, ) by adding (resp. cancelling) a nondegenerate dipole for alli € N,_,
(resp. i € N,,_}), and K is obtained from K; | by a cut-and-glue for all
i € N, all dipoles and cut-and-glues involving w,, .

Now, we want to pass to " "' by new cone-algorithms, which introduce
a new cone-vertex w,. Observe that there are only two non-cone-vertices,
namely v, _; and v,, so only two disjoined stars are required to be attached
together through a facet, when forming the balls of the cone-algorithms.

In order to define a cone-algorithm o4 on H; = K,,, choose the attaching
facet (necessarily with vertices w, |, v,,...,v,_,) to be that of the
n-simplex s’ = w, | * g’ (the facet in question takes the place of f’; e.g. in
Figure 3 it is p). But since g’ cannot be the meet-facet of the next glueing,
¥/ satisfies condition (*) of the proof of Lemma 4d (see Remark 4). Then a
single cut-and-glue, involving w,_ |, joins %(K,) to an ./ (K;), where
&7, satisfies the same condition. For the same reason, there is a
cone-algorithm .7, ,, for each i € N, such that =4, (K}) is obtained from
., ((K;_,) by a cut-and-glue involving w, .

The same choice of the attachment facet grants also that condition (§) of
Lemma 4c, Case 2 is satisfied for ./ and for the dipole whose cancellation
yields H, | out of H, Remark 3 then assures the existence of a
cone-algorithm .« _; on H,_, satisfying the same condition, and such that
&7 _(H,;_,) is obtained from .%(H,) by cancelling a nondegenerate dipole
involving w,,_, but not involving w,,.. The argument applies also for o7, ,
L,, L,; moreover, it can be repeated inductively. Then, having defined an
4y on Hjﬂ, withj € N, (resp. ans 4, on L, , withj € N, ),
there exists an Jag on H; (resp. an & 4 4 on L) such that (H;) (resp.
A i+/(L;) ) is obtained from 4 ((H, ;) (resp. from 41, 1(L; 1)) by
cancelling a nondegenerate dipole which involves w, ; but does not
involve w,.

All complexes of the last built sequence are contracted, and have
cone-vertices vy, ..., Vv, 5, W,_|, W,; to the complex yielded by %7, with
t € A4, 4, there corresponds a crystallization (I, ¥') of M, in which the
colours are chosen accordingly with the subscripts of the cone-vertices. Of
course, (I", ¥') is obtained from (I" "', y'~") (for each t € N, ) either
by no moves, or by moves of type I involving colour n — 1, or by moves of
type II involving colour » — 1 and not involving colour ».

Observe, now, that &%(H,) is isomorphic with K by an isomorphism in
which w, | corresponds to v, ; and w, to v,; also %, ,(L,,) is
necessarily isomorphic with K, but by an isomorphism which maps w
to v, and w, to v, _,. But then

n—1

(%Y%) = (T, y) and (D/HEFm y/HEEmy — (T, qy),
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Figure 4
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and this proves the statement.

Remark 6. Note that exactly one edge coloured n — 1 (in the notation of
the preceding proof) is preserved during the process, i.e., neither of its
end-points is part of an added or cancelled dipole. This is the edge which
corresponds to the facet of the first incision of std(w,,_,, L), i.e., the one
doubled by the introduction of an n-dipole (at level €", and so without
generation of dipoles at level €”1).

In fact, all other facets, corresponding to edges coloured n — 1, are
affected either by the incisions necessary to the formation of the
v,-centered cone-algorithm &7”, or by the cut-and-glues. Since all dipoles
of the sequence involve colour » — 1, none of them may contain an
end-point of that edge.

Finally, note that the edge to be preserved can be arbitrarily chosen
before starting the process.

6. Proof of theorem 1.

Proof. If (T, v) and (I", ¥’) are joined by a sequence of moves (no matter
whether involving colour / or not) they obviously represent the same
manifold; so (2) = (1) and (3) = (1). Now, in order to reverse these
implications, recall that the homeomorphism of M and M’ always implies
that (I”, ¥’) 1s obtained from (T, y) by a finite sequence of moves of type I
and II, from the already quoted theorem of [3].

To prove that (1) = (2) (resp. (1) = (3) ) it suffices to consider a (I”, ¥’)
obtained from (I', y) by a single move not involving (resp. involving)
colour /. The move in question involves (resp. does not involve) at least
one colour m # [. Then, if 7 is the permutation of A, which interchanges /
with m, (I", 9y’) is obtained from (I, ny) by the same move, which now
involves (resp. does not involve) colour /. By the Switching Lemma,
applied to the pairs (I, y), (T, ny) and (I, ny’), (I", ¥) withr = [, s = m
(resp.r = m, s = [), (I", ¥’) is obtained from (T, y) by a sequence of moves
involving (resp. not involving) colour /.

Remark 7. A generalization (in fact a trivial consequence) of the
equivalence theorem of [3] is that, if two (n + 1)-coloured graphs (T, y),
(I, ¥’) represent n-manifolds M, M’ respectively, then M and M’ are
homeomorphic if and only if (T, y) and (I”, ¥’) are obtained from each
other by a finite sequence of addings and/or cancellings of dipoles of type
h=n-—1

For if one or either graph is not contracted, a finite sequence of
eliminations of 1-dipoles makes it into a crystallization; therefore the
equivalence theorem applies. This suggests a similar extension of Theorem
1 to noncontracted graphs; but the 1-dipoles to be cancelled may involve
different (hence even all) colours, and, on the other hand, the techniques
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developed here are specific for crystallizations. So it is an open problem,
whether such an extension holds.
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