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COLOUR SWITCHING AND HOMEOMORPHISM 
OF MANIFOLDS 

MASSIMO FERRI 

1. Introduction and notation. Throughout this paper, we work in the PL 
and pseudosimplicial categories, for which we refer to [17] and [10] 
respectively. For the graph theory involved see [9]. 

An h-coloured graph (T, y) is a multigraph T = (V(T), E(T) ) regular of 
degree h, endowed with an edge-coloration y by h colours. If # is the 
colour set, for each ^ c ^ w e set 

For each c e % set c = ^ — {c}. For n e Z, n ^ 1, set 

A„ = {/ e Z|0 ^ i ^ n) and N„ = A„ - {0}; 

Aw will be mostly used to denote the colour set for an (n -f- l)-coloured 
graph. 

To every (n 4- l)-coloured graph (T, y) an «-dimensional pseudocom-
plex K(T, y) is associated (often indicated simply as K(T) ) whose 
/-simplexes are in one to one correspondence with the connected 
components of the subgroups 1^, with #38 = n — i (for the notion of 
pseudocomplex, which will be briefly called "complex" in the sequel, see 
[10, p. 49] ). (T, y) is said to represent \K(T, y) |. If TA is connected for all 
c G % then there are precisely n -f 1 vertices (i.e., 0-simplexes) in 
K(T, y); in this case (T, y) and with it K(T, y) are said to be contracted. By 
a theorem of Pezzana (see [15, 16, 1] ) there exists, for every closed 
connected w-manifold M, at least one contracted (n 4- l)-coloured graph 
(T, y) representing M\ (T, y) is then called a crystallization of M and 
A^(r, y) a contracted triangulation of M. 

The theory of representation of manifolds by (n + l)-coloured graphs is 
surveyed in [6]. Of particular interest for the present paper is [3]: its 
central result is an equivalence theorem for crystallizations, which we 
will state after having introduced the following notion. Given an 
(n + l)-coloured graph (T, y), a subgraph © formed by two vertices, Xand 
Y say, joined by h edges is called a dipole of type h or h-dipole if, on setting 
^ = y(E(&) ), X and y lie in distinct components of r<^_^; an /z-dipole is 
said to be nondegenerate if 2 = h = n — 1. To cancel or to eliminate a 
dipole © means to form the graph F , where V(T') = V(T) — {X, Y} and 
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COLOUR SWITCHING 9 

where E(T') is obtained from E(T) — E(@) by "pasting together" the 
pairs of equally coloured edges coming to X and Y from outside 0 ; adding 
or introducing a dipole is the inverse operation. A cut (resp. glueing) is the 
adding (resp. cancelling) of a dipole of type 1. Given a dipole 0 in (T, y), 
the colours of y(£(0) ) will be said to be involved in 0 and in the moves 
(defined below) concerning addition or cancellation of 0 . A cut-and-glue 
or move of type I is a cut followed by a glueing involving the same colour. 
A move of type II is the adding or cancelling of a nondegenerate dipole. If 
(r , y) is contracted, the graph obtained by a move of type I or II is again 
contracted. The main theorem of [3] states that two crystallizations 
represent homeomorphic manifolds if and only if they are obtained from 
each other by a finite sequence of moves of type I and/ or II. 

We now state the central proposition of the present paper: 

SWITCHING LEMMA. Let (T, y) be a crystallization of a closed connected 
n-manifold M. Further let r, s e Aw, r ¥= s, and let rj:àn —> An be the 
permutation which interchanges r with s. Then (T, rjy) can be obtained 
from (T, y) by a finite sequence of moves involving colour r and not involving 
colour s. 

The Switching Lemma will be proved in Section 5: In Section 2 we 
recall, with new proofs, some lemmas of [3] and Section 3 is dedicated to a 
graph-theoretical proposition whose application, given in Section 4, will 
be essential for the proof. The next theorem, which is a direct consequence 
of the Switching Lemma, will be proved in Section 6. 

THEOREM 1. Let I e Aw be arbitrarily fixed, and let two crystallizations 
(T, y) and (T', y'), of manifolds M and M' respectively, be given. The 
following statements are then equivalent: 

(1) M is homeomorphic to M'\ 
(2) (T', y') can be obtained from (T, y) by a sequence of moves involving the 

colour /; 
(3) ( F , y') can be obtained from (T, y) by a sequence of moves not involving 

the colour I. 

Theorem 1 strongly sharpens the equivalence theorem of [3] by allowing 
the moves to be taken from restricted sets. This result assumes a particular 
relevance in view of the increasing interest in this theory, recently shown 
also by other schools (see [12, 13, 14, 18] ). Theorem 1 promises to be of 
use in further research of which we now give samples. Firstly, a strong 
form of equivalence is needed to prove the additivity of the "regular 
genus" of manifolds (for this invariant see [7, 8, 4, 5] ). Secondly, it can 
also possibly shed some light in the (so long unsuccessful) search for link 
moves of 2-fold branched coverings of S ( [11, Problem 3.25] ), via the 
construction of [2]. Finally, let us mention an ambitious project which 
becomes more realistic, now that the type of invariance required can be 
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10 MASSIMO FERRI 

considerably weakened, that is, we hope to find or construct graph-
theoretical invariants (e.g. of the type of the many existing recursive 
polynomials) which agree on crystallizations of homeomorphic manifolds, 
and give rise to new significant manifold invariants; some functions of this 
type have already been found, but they reduce to classical topological 
invariants. 

From now on, all «-manifolds will be closed and connected, unless 
otherwise stated, and with n ^ 2. Facet will mean an (n — l)-simplex in 
an «-dimensional complex. In an «-complex K = K(T, y), the subcomplex 
S& corresponding to an /z-dipole 0 will also be called an h-dipole; it is 
formed by two «-simplexes having in common h facets (and all faces of 
these facets), which we shall call meet-facets. The vertices opposite to the 
meet-facets in both «-simplexes will be said to be involved in 3) as well as 
(in the case of h = 1 and before a cut or after a glueing) the vertex 
obtained by identifying the two vertices involved in 3. In the sequel, the 
terms dipole, meet-facet, involved vertex will apply to such a subcomplex 3 
even if K is not associated to any graph. In a dipole S, all faces not 
contained in a meet-facet occur in pairs: such a pair of z-simplexes 
s", s"1 (generated by the same vertices) reduces to one simplex s1 when S i s 
cancelled; we shall say that the adding of 3> doubles sl into s'1 and s"1. Two 
complexes are said to be equal up to dipoles if they are obtained from each 
other by a finite sequence of addings and/or cancellings of dipoles. 

Figure 1 

https://doi.org/10.4153/CJM-1987-002-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-002-5


COLOUR SWITCHING 11 

Figure 1 illustrates "geometric" dipoles for « = 2, 3 and h = 1, 2. 
An «-dipole in dimension « can be thought of as a join from an 
(n — m — l)-simplex over an «-dipole in a lower dimension m. 

2. Cone-algorithms. Given a simplex s in an «-complex K, the disjoined 
star of .s in iC, std(s, K), is defined to be the disjoint union of the 
«-simplexes of K containing s, with re-identification of the facets 
containing s, and of their faces. The disjoined link of s in K, lkd(s, K), is 
the subcomplex of std(s, K) (actually of its boundary 9std(5', K) ) 
consisting of simplexes disjoint from s. If K = K(T, y) for an 
(n + l)-coloured graph (T, y), an /-simplex sl corresponds to a component 
of a Tg# with # ^ = « — z, as we have said; this component, as an 
(n — /)-coloured graph, represents the complex lkd(V, K). 

The following concepts have been introduced, in a slightly different 
way, in [3]. Given a complex K, a vertex v e K is called a cone-vertex if 
v e 5 for all «-simplexes s of AT. Let M be a fixed «-manifold & (with 
/ e Aw) denotes the class of pairs (AT, {w0,. . . , wt_}} ), where K is a 
complex representing M, and has at least i cone-vertices w0, . . . , wi_l. A 
cone-algorithm stf on (̂ T, {w0, . . . , Wy_j} ) e ©* is the construction of a 
pair 

J*(tf, {W0, . . . , * , . _ ! } ) = (J*(tf), {W0, . . . , * . _ „ W,} ) €= 6 ' + 1 

carried out as follows: Consider the disjoined stars of the (n — /')-
simplexes of K not containing any of w0,. . . , wé_l9 as disjoint «-balls; 
attach them together through facets, to form an «-ball D in which any two 
disjoined stars have at most one facet in common; pseudodissect \D\ as the 
join from an inner point wt over 2 = 3D; re-identify the twin facets of 2 , 
i.e., the two facets of each pair coming from one facet of K. The 
out-coming complex s/(K) still has M as its space, and has wt as a further 
cone-vertex. 

Obviously, there are different cone-algorithms s/ on K, corresponding to 
the different ways of forming D; %{K) is the set of all possible complexes 

We will not be very strict about the notation (K, {w0, . . . , wz_ j} ): If no 
confusion arises about the set {w0,. . . , vv^j}, we will speak of K itself as 
an element of &. 

We now recall some lemmas from [3] and give some alternative proofs 
which will be used in the sequel. 

LEMMA 2. Let K G &, i G A„. If K\ K" e %{K\ then K" (resp. K) is 
obtained from K {resp. from K" ) by a finite sequence of cut-and-glue 
moves. 

Remark 1. Note that, in the preceding lemma, all cut-and-glues involve 
the last cone-vertex introduced. 
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Consider L e gz, i e A„, and let AT <= 2t(L) be the complex obtained 
from the ball wt * 2 by identification of twin facets of 2 . Let 

p\wi * 2 —» ^ 

be the canonical projection. Let i^be a dipole of type h (I ^ h ^ n — 1) 
in 2, and 2 ' be the complex obtained from 2 by cancelling S. 

LEMMA 3. If the two (n — X)-simplexes forming 3) are twin, thenp(wt * S) 
is a dipole of type h + 1 in K. Moreover, the pseudocomplex Kf obtained from 
K by cancelling p(wt * S) is p(wt * 2'). 

The next lemma is not contained in [3]. Let S, 2 , 2',/? be as before, and 
let a, b be the two (n — l)-simplexes forming S, a' =£ a, b' ¥= b be the 
(n — l)-simplexes twin to a, b respectively, and e,/the (h — l)-faces of 
a, b respectively, opposite to all meet-facets of S. 

LEMMA 3'. If p(e) =£ p(f), then p(wt * S) is a dipole of type h in K. 
Moreover, the pseudocomplex K! obtained from K by cancelling p(wt * S) is 
p\wt * 2'), wherep' agrees with p on all oj"2' except on those a!, b' for which 
p'(a') = p'(b'). 

Proof. This is straightforward. 

Remark 2. In both Lemmas 3 and 3' the vertices involved in S are also 
involved in p(wt * S); in the case of Lemma 3, the vertex wt is 
also involved. 

LEMMA 4a. IfK <= ©, + 1, J <E AW, then there exist L <= & and K! e 2l(L) 
such that K and K' are equal up to dipoles of type h ^ 2. In particular, if 
i = n, then K, L, K' coincide. 

LEMMA 4b. If K, L e S°, //zerc //zere exist K e 2t(X), L' G 3t(L) w/zzc/z 
are egt/a/ up to dipoles of type h = 2. 

LEMMA 4C. If K, L e (£z, / G AW, are equal up to dipoles of type h = 2, 
then there exist K! e %{K) and I! e 3t(L), w/zzc/z are egw#/ up to dipoles of 
type hf = 2 if i < n, up to dipoles of type h', 2 ta h' = n — 1 (i.e., 
nondegenerate), if i = «. 

Proof. Let us assume that K, L e S1, / G AW, and that AT is obtained 
from L by cancelling a dipole ^ of type h ^ 2 formed by two «-simplexes 
JC and y. Let a be the set of n — /z + 1 vertices common to all meet-facets 
of S, b be the set of the h remaining vertices of S, 3 be the set of 
cone-vertices of L. We exclude the trivial case of K = 0, L — S. 

1) Case 3 Q a. Let r, with 0 t^ r ta n — h + 1, be the cardinality of 
a — 3; the set of non-cone-vertices of S is b U (a — 3), and generates 
two (h + r — l)-simplexes s} and s2. All /z meet-facets of S and the r 
non-meet-facets of x not containing ^ are on 9std(51? L); analogously for 
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s2. Build a cone-algorithm J ^ in which (*) s t d ^ , L) and std(^2, L) are 
attached together by one meet-facet of % and (**) if / > 0, no other facet 
is internal to the ball D of the cone-algorithm, whereas if / = 0 then just 
one facet of ^ i s internal. (When / = 0, i.e., r = n — /i + 1, at least one 
facet / has to be made internal to the ball D of the cone-algorithm s#. 
Note that, if/ c x, the facet of y with the same vertices substitutes, in 2" , 
the facet twin to / . ) The corresponding sphere 2 = dD contains h — \ 
dipoles of type 1 whose simplexes are twin (from the meet-facets). 

The subcomplex of Q) formed by these dipoles fits in the following 
description of a complex Slm, with I = h, m = 1, and y generated by a. 

For all / e Nw, all m e N , ^ let Plm be an (/ - ^-dimen­
sional ra-dipole: Define the complex Slm as the join of dPim with an 
(n — /)-simplex J. 

Note that they-th dipole cancellation (j e N^_2) transforms an Shj-
into an Shj+X, (here and after we intend N0 = 0) so that it raises the type 
of the remaining dipoles by one. So, elimination of h — 1 dipoles, one for 
each type j e Nh__x, yields a 2" , in which the remaining facets from 3) 
form / dipoles of type h, where 

/ = min{r, n — h}; 

note that the facets of each of these dipoles are not twin. The subcom­
plex of 2 " formed by these dipoles is an S/+hh, where, if rf = r, J is gen­
erated by g and the two intersections of non-meet-facets of Pr,+hh are 
generated by b. 

Again, the /c-th dipole cancellation (k e N / _ 1 ) transforms an 
Sr,jrhh+k_x into an Sr,±hh+k, and hence raises the type of the remaining 
dipoles. Thus, cancellation of rf dipoles of type h + k — 1, one for each 
k e N / 5 yields a 2 ' which can be considered as the boundary of a ball D' 
relative to a cone-algorithm stf' for K. 

Note that, for each k G NA./_1, the two (h + k — 2)-dimensional 
intersections of non-meet-facets of Prj+hh+k_x come from two distinct 
simplexes of L, which the first sequence of dipole eliminations has 
not identified; the k-th dipole elimination of the second sequence does 
identify them, but not the (h 4- k — l)-dimensional intersections of 
non-meet-facets of Prf+hhjtk. This grants that for each of these rf dipoles 
Lemma 3' applies. 

By repeated application of Lemmas 3 and 3', K = sé\K) is obtained 
from L' = stf(L) by cancelling h — 1 dipoles of increasing typesy + 1, one 
for each j e Nh_x, and r' dipoles of increasing types h 4- k — 1, one for 
each k e N^. Note that, if h < n, all these dipoles are of type < « , since 
we always have, by definition, h 4- r' — 1 < n. 

2) Case 3 2 a. Let q, r (with O ë ^ r ë / i - l , 0 ë r ë / i - / i 4 - l , and 
q + r ^ 1) be the cardinalities of b — 3 and a — 3 respectively. The union 
of these two sets generates, in 3, a unique (q + r — l)-simplex s, which is 
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contained in h — q meet-facets and in 2(n — h — r 4- 1) non-meet facets. 
Such facets become internal to std(s, L), while the remaining ones are on 
8std(s, L). Build a cone-algorithms/for L such that ($) if r < n — h 4 l, 
no facets of 8std(s, L) become internal to the corresponding ball D and, if 
r = n — h 4- 1, just one does. Then, on 2 = dD there are q dipoles of type 
h — q, whose simplexes are twin. Elimination of these dipoles, which 
successively become of increasing types h — j , one for each j e N yields 
a 2 " on which there are r' (with r' = min{r, n — h}) dipoles of type h, 
consisting of non-twin simplexes. Cancellation of rf dipoles of increasing 
types h 4 k — 1, one for each k e N / ? finally yields a sphere 2 ' 
corresponding to the ball U of a cone-algorithm srf' for K. By Lemmas 3 
and 3', srf\K) is obtained from stf(L) by cancelling q dipoles of increasing 
types h ~ j 4- 1, one for each y e N^, and rf dipoles of increasing types 
h 4 k — 1, one for each k e Nr,. Note that the highest possible type, for a 
dipole to be cancelled, is the maximum between h and h 4- (n — h) — 1 = 
n — 1. Also observe that, îor h = n, r = n — h + 1 = 1, # = 0 (which 
corresponds to the case of h = n9 i = n), no dipole has to be cancelled. 

Remark 3. We shall later encounter Case 2 of the preceding proof, with 
r = 1, q = 0. Note that J ^ ' ( ^ 0 a n d ^ ( L ) differ, in this situation, by just 
one dipole of type /z, which involves the same vertices as £è. Therefore, in 
this case we can express Lemma 4c in the following special form: Let K be 
obtained from L by cancelling a dipole of type h, and let s/ be any 
cone-algorithm on L satisfying condition ($). Then there is a complex 
K e %{K) which is obtained from stf(L) by cancelling a dipole of type /z, 
involving the same vertices. 

LEMMA 4d. Let L, L! e (£', / G Nn, be obtained from each other by a 
cut-and-glue involving the i-th cone-vertex, and let H e 2ï(L), H' e 2ï(L'). 
77z£H 7/ and H' are obtained from each other by a finite sequence of 
cut-and-glues and of addings and cancellings of nondegenerate dipoles. 

Proof Let L be the pseudocomplex obtained from L (and, respectively, 
from Z/) by adding the dipole of type 1 Sf (resp. < '̂) with meet-facet 
/ ( r e sp . / 7 ) . Let a, a' be the sets of vertices o f / a n d / ' respectively. Let 5" be 
the set of cone-vertices of L. 

By hypothesis, a cone-vertex of L (and, respectively, one of L with the 
same name) has been doubled into two non-cone-vertices w, wf by the 
introduction of 2 (resp. of &). Set r = n — i: r is the cardinality both of 
a — J and a' — J, The non-cone-vertices, different from w and w\ generate 
(r — l)-simplexes in L\ two of them, s and s' say, are in @) and i^' 
respectively. Consider the disjoined stars of all such (r — l)-simplexes; 
build, as in a cone-algorithm J / , an «-ball D by attaching such stars along 
facets, but so that (*) if r < n (i.e., / > 0), no facets of Si (and, respectively, 
of S') belonging to 8std(^, L) (resp. to Bstd^', L) ) become internal to D, 
and if r = « just one of either star boundary does. Take a point v inner to 
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Z>, consider the join from v over 2 = 82), and identify the twin facets of 2 ; 
call K = stf(L) the out-coming complex. The situation is now similar to 
the one of Case 2 of the proof of the preceding lemma, with q = 1. Then, 
there is a cone-algorithm j / o n L (and, respectively, one stf' on L) such 
that s/(L) (resp. s/'(L')) can be obtained from s/(L) by cancelling 
/ = min{r, n — 1} dipoles of increasing types y, one for each j e Nr, 
(where the first dipole involves w and w', by Remark 2). This means 
that s/'(L') and stf{L) are obtained from each other by / — 1 addings of 
nondegenerate dipoles, one cut-and-glue, and r' — 1 cancellings of 
nondegenerate dipoles. 

In both Cases 1 and 2, application of Lemma 2 to H and stf{L), and to 
Hr and stf'(L), concludes the proof. 

Remark 4. Note that the dipoles of type 1 of the preceding proof in­
volve w and w', as Q) and Q)f did. We shall later meet this case, with r = 1 ; 
in this situation, s/'(L') and s/(L) are obtained from each other by just a 
single cut-and-glue, which involves the same vertex as the one joining L 
and L'. 

Remark 5. Again in the proof of Lemma 4d, one does not obtain, from 
stf(L), all possible cone-algorithms stf and s#f for L and L'. This depends 
on the condition (*) we have imposed. More precisely, if se is given with 
condition (*) satisfied for 2' in s#(L), then a single cut-and-glue takes 
s#(L) to an s?\L') such that srf' satisfies the same condition for Q). 

3. Clefts in graphs. The following definitions have been suggested by 
concepts introduced in [18]. In this and in the next section the term 
"graph" will stand for "pseudograph" (also loops are allowed). 

Let H be a finite graph and, for j e Nh, ^ a family of disjoint cycles 
of S. We shall name a cycle along with its edge set, so that UJ^ will 
denote the set of edges belonging to at least one cycle of J£". An edge 
e G E = EÇE) is said to be ^-belonging if there is a cycle c e J^ such 
that e e c. Let A be a subset of E; an edge e £ A is said to be ^-dependent 
on A if there is a cycle e e l such that e e c c A U {e} (so that e is also 
^"-belonging). A cleft of S with respect to the given cycle sets is a sequence 
of edges (e0,.. . , ek) such that, for each / e N^ and for some j e NA, ^ is 
J^-belonging but not J^-dependent on E — {e0,. . . , et} (i.e., there exists a 
cycle c G J^ such that c contains ez and some of the edges e0, . . . , ^-_i). 

An example of a cleft is shown in Figure 2b of the next section; indeed, 
the whole sense of a cleft is better understood through the application of 
Section 4. 

PROPOSITION 5. Let^\,.. . , J^ be families of cycles in a connected graph 
H = (F, E), such that 

(i) Uj(U^) = E, and 
(ii) for all h- tup les of subsets SFf Q J^, 
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(0 * u /uJf ) # £) =* ( (u /uJ f ) n ( u / u C ^ ' ) ) * «). 
77ie«, /or any e0 ^ E there exists a cleft (e0, . . . , ek) such that 

E — {e0,. . . , ek} generates a spanning tree of A . 

Proof Assume a cleft (e0, . . . , et) has already been built, such that S/5 

the subgraph generated by Ei = E — {e0, . . . , et}, is connected; note that 
H is necessarily 2-edge-connected, since E is covered by cycles, so that H0 

is connected. 
We are going to show that either 'Ei is a spanning tree, or it can be 

reduced to a S / + ] satisfying the same assumption, by a cleft extension. By 
virtue of the finiteness of S, we shall eventually get a spanning tree. 

Either (1) for every ef e Ei9 and for ally e Nh, e' is not J^-dependent 
on Et — {e'}, or (2) there is at least one e e Et which is J^-dependent on 
Et — {e} for some / e Nh. 

In case (1), as S- is connected, either it is a spanning tree, or there is an 
ei + x G Et such that Et — {ei+x} generates a connected subgraph. By the 
hypothesis (i), ei+x is J^-belonging for some j , so (e0, . . . , eh ei+x) is a 
cleft. 

In case (2), there are a priori two subcases: (2') for all e e Ei9 and for 
all /, m e NA, / ^ ra, if e is J^-dependent on 2^ — {e} and ^ -be long ­
ing, then e is also J^-dependent on Ei — {e}\ (2") at least one ei+x is 
J^-dependent on Et — {ei + x), for some / e N A , but is J^-belonging for 
some other m ^ Nh without being ^ -dependen t on Ei — {ez + i}. 

In the latter subcase (2"), (e0, . . . , eh ei + x) is a cleft and 2 / + 1 is 
connected. We now assume the subcase (2'), and show that it cannot 
subsist, so concluding the proof. Let A be the set of those e <E Ei for which 
there exists an / <E Nh such that e is J^-dependent on Et — {e}. Also 
consider the families 

&f = {c e J^|c n A ^ 0} (7 <= Nh). 

Note that ^ ^ 0 since we are in (2"), and that A Q Et ¥= E. Let 
e <= c e J ^ for some m e NA; then there exists ane ' E c n ^ : e ' i s then 
J^-dependent on £, — {V} for some / (since é e ^4). If / = m, then also 
<? e ^4. Assuming that I ¥= m, e' is J^-belonging (since e' e c <E J ^ ) , 
hence £r is J^-dependent on Et — {e'}, i.e., c Q Et. Therefore, also e is 
J^-dependent on Et — {e}, and e e A: this shows that 

U , ( U ^ ' ) Ç ^ . 

Since the inverse inclusion is obvious, we have 

U / U J f ) = A 

By construction, each u C ^ J ^ ' is disjoint from A, thus 

(u7(ujp n (u/uÇ^f)) = 0, 

but this contradicts the hypothesis (ii). 
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4. V/'Centered cone-algorithms. Let (T, y) be a crystallization of an 
«-manifold M; on setting K = K(T, y) and calling v0, . . . , vn its vertices, 
we have 

(JUv,.|i e A„}) e e B + 1 . 

Later we shall need to neglect two vertices of K, v7 and vm say, as 
cone-vertices, so consider 

(K,{Vi\i e A„ - {/,/*}}) e S""1 . 

In order to define a cone-algorithm J / on 

<*, {v,.|/ e A„ - { / . m } } ) , 

( I \ y ) std(v:. A) 

Figure 2a. ^ = {A, 6, c}, ^ = {d, <?,/}, J^ = {a, J } , J^ = {c , /} , J^ = {/>, ?}; cleft: (e, </,/, />). 
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Figure 2b 

and then pass to (£", one has to specify a set f of facets along which to 
attach the disjoined stars of the 1-simplexes of vertices vz and vm. A 
cone-algorithm s/ in which f is chosen to consist only of facets containing 
V; will be said to be vrcentered. If j / i s vrcentered, then on the boundary of 
the associated ball D there will be only one copy of v7. Indeed, D can be 
thought of as std(v/? K) "fissured" along the facets not in f. We shall call 
incision along a facet f the operation inverse to that the identification of 
two twin facets in to / . Observe that the identification of two facets brings 
the identification of their faces with it; so an incision has an effect also on 
lower-dimensional simplexes. 

We are going to show that a set of incisions exists, which (with the 
obvious exception of the first) merely extends the "wound" opened by 
the preceding ones. 

Figure 2 illustrates the next proof by (a) a crystallization of L(3, 1), 
with the corresponding T§ and std(v2, K)9 (b) a cleft on the related 2 , and 
(c) the incisions produced by the cleft. The choice of / = 2, m = 3, rather 
than following the convention of the proof, has been made in view of a 
later application. 
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Figure 2c 

PROPOSITION 6. Let (T, y) be a crystallization of an n-manifold M, and 
{vt\i G An} be the vertex set of K = K(T, y). Let /, m e A„, / ¥= m, be 
arbitrarily fixed, and let the complex K be called L after V/ is renamed w. 
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Then there exists a Vj -centered cone-algorithm s# on 

(K,{v,\i e A„ - { / ,m}}) G e"" 1 , 

which yields a pair 

W(K), {v,.|i e A„ - {/, m) ) U {w} ) e 6", 

swc/z that s0(K) is obtained from L by adding one n-dipole {which doubles an 
arbitrarily chosen facet not containing vm) and a set of nondegenerate 
dipoles, all involving w. 

Proof Without loss of generality, let / = n, m = n — 1. Form, as in the 
proof of Lemma 4a (see [3] ), a graph 2, whose vertices are the disjoined 
stars of the 1-simplexes with vertices vw_l5 v„, and whose edges are the 
facets, on the star boundaries, which contain vn. In point of fact, 
z, is the graph obtained from T* by contracting all edges not coloured 
n - 1. 

Now, if one attaches the disjoined stars along all the facets represented 
in 2, one gets std(v„, K), while the ball D of the desired cone-algorithm 
corresponds to a spanning tree of 2 . The incision of std(v„, K) along such 
a facet, which yields a ball D0, corresponds to the elimination of an edge e0 

of 2. The same incision also corresponds to introducing a dipole Q) of type 
n — 1, formed by two twin simplexes, into the sphere 

2 = 3std(vw, K) = lkd(v„, K\ 

so getting a sphere 2 0 = 3Z>0; the complex K0 = p(w * 20) is obtained 
from T̂ = p(vn * 2) by addingp(w * @) which, by Lemma 3 and Remark 
2, is a dipole of type n involving w. 

If n = 2, K0 is already the desired s/(K); therefore assume, from now 
on, that n ^ 3. 

Assume that we have incised D0 / times into a ball Dt, so that 2, = 8Z), 
is obtained from 2 0 by addings of nondegenerate dipoles; then, also 

K, = p(w * 2,) 

has been obtained from K0 by addings of nondegenerate dipoles involving 
w; correspondingly, a set of edges e,, . . . , et is cancelled from S0, so 
yielding a connected graph St. 

Now, we ask when a further incision along a facet / gives rise to a 
nondegenerate dipole, made of twin simplexes, in 2,, and hence also 
to a nondegenerate dipole involving w in Kt. It is not hard to see that such 
a possible / is one which has at least two of its (n — 2)-faces on 2Z; to 
ensure that this happens, choose / in the star of an (n — 2)-f ace sn ~ 
"brought to the surface" by the preceding incisions, i.e., such that (with 
slightly improper notation), vn G sn~2 e 2,. Next, we characterize the 
edges of H, corresponding to such facets. 

For each colour y e A„_2, consider the family J^ of cycles into which 

https://doi.org/10.4153/CJM-1987-002-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-002-5


COLOUR SWITCHING 21 

r^7_j yj splits; these families J^ (j e A„_2) subsist also in TA. After 
contraction, these sets give rise to as many families J^ of (possibly 
nonelementary) cycles in S. 

An sn~ e K containing vn corresponds, in T, to a bicoloured cycle c~ of 
TA; since incisions can be carried out only along facets opposite to vw_l5 

we are interested only in edges coloured n — 1 ; then, colour n — 1 has to 
be one of the two colours of c". This means that c" e ^ for some 

j ; therefore, the same s A corresponds, in S, to a cycle c e &.. 
Now, sn~2 e 27- if and only if at least one edge e e {e0, . . . , e,} belongs 
to c; if this is the case, / can be chosen to correspond to an edge 
ei + x e c — {e0, . . . , e z } ; by definition, ei + x is ^-belonging, but not 
^-dependent on EÇE) — {e0,. . . , ei9 e / + 1 } . 

Lastly, a cone-algorithm J ^ of the desired type exists, if there is a cleft 
(e0, . . . , ek) of S, with respect to {^}, which yields a spanning tree Sk. In 
view of Proposition 5, this is the case if the families J^ (j e A^_2) satisfy 
conditions (i) and (ii) of that statement. 

Condition (i) is satisfied by construction. We now give an indirect proof 
of condition (ii). 

Assume that there are subfamilies J^' Q J^ (j e A„_2) such that 

U / U J f ) =A, 

a proper nonvoid subset of E = E(Z), and that 

u / u C ^ ' ) = CEA, 

so denying the condition. Now, the vertices of H can be put, in a natural 
way, in bijection with the disjoined stars (which are (n — l)-balls) of 
the copies of vn_x in 2 ; analogously, the edges of S correspond to 
(n — 2)-balls (actually simplexes) of 2 , which do not contain copies of 
vw_!. Then |2 | can also be seen as the space of an (n — l)-dimensional 
ball-complex, whose dual 1-skeleton is 2 . Each cycle of U J J corresponds 
to the set of (n — l)-balls containing a well-determined (n — 3)-simplex of 
2 , which in turn does not contain copies of vn_x. 

To a connected, proper, nonempty subgraph £ ' of H there corresponds 
an (n — l)-dimensional, proper, nonempty sub-pseudomanifold P of 2 , 
possibly with boundary. P has nonempty boundary if and only if some of 
its (n — 2)-simplexes have a noncyclic star in P, i.e., for some j e &n-2 
and for some c G J^, 

0 ^ c n 2 r ^ c. 

Now, consider the subgraph £ ' of £ generated by U(UJ^ ' ) ; by 
assumption, no cycle in U-^ or in UC^^-' is in the condition just 
described. Thus the associated sub-pseudomanifold P has empty bounda­
ry and has the same dimension as 2 : which contradicts a standard 
consequence of Alexander's Duality Theorem. 

https://doi.org/10.4153/CJM-1987-002-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-002-5


22 MASSIMO FERRI 

0 

0\Y) 

VI F 

K(Y, y) 

( I \ ? J Y ) 

Figure 3 a 
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H = //,, •*oW 

* i / v0 

Figure 3b 

https://doi.org/10.4153/CJM-1987-002-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-002-5


24 MASSIMO FERRI 

J*2(
K\) 

HK\) 

Figure 3b 
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1 Z V0 

^3(̂ 2) 

•*4(*3) 

Figure 3b 
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5. Proof of the switching lemma. The proof will be followed more easily 
by checking it on Figure 3, relative to (a) a crystallization and the related 
contracted triangulation of the nonorientable surface of genus 3, (b) the 
whole process in (£2 (left) and (£3 (right), and (c) the sequence of moves. Of 
course, this example does not illustrate the part concerning nondegenerate 
dipoles, therefore a further example of application of the lemma is given in 
Figure 4, relative to a crystallization of L(3, 1); here the nondegenerate 
dipoles come from the cleft of Figure 2, and from a similar cleft performed 
on the graph obtained from r§. 

Proof. Without loss of generality, let r = w — l, s = n. The complex 
K = K(T, y) has cone-vertices v0, . . . , vw, and so 

(K9{ve\i e A„}) e <£" + 1. 

Consider, instead, 

(K,{v,\i e A„_2}) e g " " 1 . 

Further, K is called H after v„_j is renamed wn_x and this also is 
considered to be a cone-vertex, i.e., 

(H, {v,.|« e A„_2} U {*„_,}) G 6". 

Analogously, AT is called Z, after vn is renamed w„_!, and 

(L, {v,.|i e A„_2} U K _ , } ) e © " . 

By Proposition 6, there exists a vn_x-centered cone-algorithm J ^ ' and a 
v^-centered one J ^ " , both on K, such that s/'(K) a n d <£^"(^) c a n t>e 

obtained from H and L respectively by adding a dipole of type «, and a set 
of nondegenerate dipoles, all involving wn_x. The two «-dipoles can be 
arbitrarily placed; therefore choose an «-simplex s e K: the facet of s 
opposite to vn is called/, and the facet of s opposite to vw_j is called g; 
t o / (resp. to g) there corresponds/ ' in H (resp. g" in L). Choose the 
«-dipoles to be added in H and L, so that they double f and g" 
respectively; note t h a t / , / ' are the same simplex, with differently named 
vertices, and similarly g, g". 

By Remark 1, s/"(K) can be obtained from j ^ r ( ^ ) be a sequence of 
cut-and-glues involving ww_j. Each cut is made along a facet with vertices 
v0, . . . , vn-\ and each glueing along a facet with vertices v0, . . . , v„_2> V 
Let Z>', Z)" be the «-balls associated with stf\ srf" respectively: By the 
previous choice, / is on dD' and g is on 9Z>", so that no cut (resp. no 
glueing) is made a long / ' (resp. g"). 

To resume, there is a sequence 

H = H0, . . . , Hl = s/\K) = KQ, . . . 

...,Kk= s/»{K) = L0, . . . , Lm = L, 
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i 
1 } (r. Y) = (I*. Y°) = ( f , y1) 
I 

- — h -

X 
y 

V 

<r2, y2) 

(I , Y ) 

(F4, y4) = (F 5 , ? 5 ) = (I \ rjy) 

(r1 ,?) 

<r2, Y2) 

(I , Y ) 

Figure 3c 
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in which Hx (resp. Lm) is obtained from H0 (resp. from Lm_l) by adding 
(resp. cancelling) a dipole of type n, Hi + X (resp. Lt) from Ht (resp. from 
Lt_x) by adding (resp. cancelling) a nondegenerate dipole for all / G N/_] 
(resp. i G Nm_j), and ATZ is obtained from Kt_x by a cut-and-glue for all 
/ G N^, all dipoles and cut-and-glues involving wn_x. 

Now, we want to pass to (£" + 1 by new cone-algorithms, which introduce 
a new cone-vertex w„. Observe that there are only two non-cone-vertices, 
namely vn__x and v„, so only two disjoined stars are required to be attached 
together through a facet, when forming the balls of the cone-algorithms. 

In order to define a cone-algorithm sé{ on Hl = K0, choose the attaching 
facet (necessarily with vertices wn_x, v0, . . . , vn_2) to be that of the 
«-simplex s' = wn_x * g' (the facet in question takes the place of/'; e.g. in 
Figure 3 it is/?). But since g cannot be the meet-facet of the next glueing, 
stft satisfies condition (*) of the proof of Lemma 4d (see Remark 4). Then a 
single cut-and-glue, involving wn_x, joins s#j(K0) to an s/I+x(Kx), where 
J ^ + 1 satisfies the same condition. For the same reason, there is a 
cone-algorithm J3^+/, for each / G N^, such that s/i+i(Kt) is obtained from 
s^l+i_x{Kt_{) by a cut-and-glue involving wn_x. 

The same choice of the attachment facet grants also that condition ($) of 
Lemma 4c, Case 2 is satisfied for J ^ a n d for the dipole whose cancellation 
yields Hl_x out of Ht. Remark 3 then assures the existence of a 
cone-algorithms0t_x on Hl_x satisfying the same condition, and such that 
j3*/_ x(Hj_x) is obtained from J ^ ( / / / ) by cancelling a nondegenerate dipole 
involving wn_x, but not involving wn. The argument applies also forsé^ k , 
L0, Lx ; moreover, it can be repeated inductively. Then, having defined an 
J ^ + 1 oni/7-+ l5 with/ G N/_! (resp. a n j ^ + ^ + 7 - _ 1 on Ly-_l9 withy G Nm_j) , 
there exists an M on H- (resp. an J ^ + ^ + 7 on Lj) such that rf(Hj) (resp. 
sf^k+jiLj) ) is obtained fromj^+ 1(i /y + 1) (resp. f r o m j ^ + ^ ^ L ^ ) ) by 
cancelling a nondegenerate dipole which involves wn_x but does not 
involve wn. 

All complexes of the last built sequence are contracted, and have 
cone-vertices v0, . . . , v„_2, ww_l9 w„; to the complex yielded by s/t, with 
t G A / + ^ + m , there corresponds a crystallization (T*, yr) of M, in which the 
colours are chosen accordingly with the subscripts of the cone-vertices. Of 
course, (Y\ yl) is obtained from (T / _ 1 , y ' - 1 ) (for each t G N / + A : + W ) either 
by no moves, or by moves of type I involving colour n — 1, or by moves of 
type II involving colour n — 1 and not involving colour n. 

Observe, now, that s/0(H0) is isomorphic with K by an isomorphism in 
which wn_x corresponds to vn_x and wn to vn\ also s/l+k^m(Lm) is 
necessarily isomorphic with K, but by an isomorphism which maps wfl _ x 

to vn and wnio vn_x. But then 

(T°, y0) - (I\ y) and (T /+ /c + m, y
/ + * + ™) = (T, rry), 
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( T 5 . y-) 

Figure 4 
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(f5,?) 

(r9, y9) = (r, î»y) 

Figure 4 
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and this proves the statement. 

Remark 6. Note that exactly one edge coloured n — 1 (in the notation of 
the preceding proof) is preserved during the process, i.e., neither of its 
end-points is part of an added or cancelled dipole. This is the edge which 
corresponds to the facet of the first incision of std(ww_l5 L), i.e., the one 
doubled by the introduction of an «-dipole (at level (£", and so without 
generation of dipoles at level ©w + 1). 

In fact, all other facets, corresponding to edges coloured n — 1, are 
affected either by the incisions necessary to the formation of the 
v^-centered cone-algorithm stf", or by the cut-and-glues. Since all dipoles 
of the sequence involve colour n — 1, none of them may contain an 
end-point of that edge. 

Finally, note that the edge to be preserved can be arbitrarily chosen 
before starting the process. 

6. Proof of theorem 1. 

Proof. If (r , y) and ( F , y') are joined by a sequence of moves (no matter 
whether involving colour / or not) they obviously represent the same 
manifold; so (2) =^> (1) and (3) =^ (1). Now, in order to reverse these 
implications, recall that the homeomorphism of M and M always implies 
that ( F , y') is obtained from (T, y) by a finite sequence of moves of type I 
and II, from the already quoted theorem of [3]. 

To prove that (1) => (2) (resp. (1) => (3) ) it suffices to consider a ( F , y') 
obtained from (T, y) by a single move not involving (resp. involving) 
colour /. The move in question involves (resp. does not involve) at least 
one colour m ¥= I. Then, if t] is the permutation of Aw which interchanges / 
with m, ( F , Tjyr) is obtained from (T, rçy) by the same move, which now 
involves (resp. does not involve) colour /. By the Switching Lemma, 
applied to the pairs (T, y), (T, rjy) and ( F , rjy'), ( F , y') with r = /, s = m 
(resp. r = m, s = /), ( F , y') is obtained from (T, y) by a sequence of moves 
involving (resp. not involving) colour /. 

Remark 7. A generalization (in fact a trivial consequence) of the 
equivalence theorem of [3] is that, if two (n + l)-coloured graphs (T, y), 
( F , yr) represent «-manifolds M, M respectively, then M and M are 
homeomorphic if and only if (T, y) and ( F , y') are obtained from each 
other by a finite sequence of addings and/or cancellings of dipoles of type 
h ^ n - 1. 

For if one or either graph is not contracted, a finite sequence of 
eliminations of 1-dipoles makes it into a crystallization; therefore the 
equivalence theorem applies. This suggests a similar extension of Theorem 
1 to noncontracted graphs; but the 1-dipoles to be cancelled may involve 
different (hence even all) colours, and, on the other hand, the techniques 
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developed here are specific for crystallizations. So it is an open problem, 
whether such an extension holds. 
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