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SUMMARY

The mathematical function for the horizontal transmission of a pathogen is a driving force of

epidemiological models. This paper aims at studying the influence of different transmission

functions on a simulated pathogen spread. These functions were chosen in the literature and their

biological relevance is discussed. A theoretical SIR (Susceptible–Infectious–Recovered) model

was used to study the effect of the function used on simulated results. With a constant total

population size, different equilibrium values for the number of infectious (NI) were reached,

depending on the transmission function used. With an increasing population size, the

transmission functions could be assimilated to either density-dependent (DD), where an

equilibrium was obtained, or frequency-dependent (FD), with an exponential increase in NI.

An analytical study corroborated the simulated results. As a conclusion, the choice between the

different transmission functions, particularly between DD and FD, must be carefully considered

for a varying population size.

INTRODUCTION

Modelling approaches,which allow, amongother uses,

the simulation of different scenarios of management

and control, are widely used in epidemiology, whether

applied to human or animal diseases [1–3]. Mathemat-

ical models representing the pathogen spread use a

function to represent the horizontal transmission of

this pathogen between the hosts of a population. This

transmission function can be considered the driving

force of many epidemiological models and great at-

tention must be paid to its mathematical formulation

[4, 5].

Despite the recognized influence of the transmission

function in models, many papers, even those dealing

with the same pathogen, use different mathematical

forms without eliciting the underlying assumptions or

detailing the reasons for their choice. Some papers

gather and study different transmission functions

encountered in models [5, 6]. However, no work has

been dedicated to the influence of the transmission

function on the results of an epidemiological model.

The objective of this paper was to assess the effect

of different transmission functions on the results of

pathogen-spread simulations in a population. First,

this paper will describe the different transmission

functions encountered in the literature in continuous-

time models. We examined more particularly the

assumptions underlying the choice of a given trans-

mission function, when available. Second, the influ-

ence of different transmission functions on simulation

results was investigated for a theoretical model,

through a well-known SIR (Susceptible–Infectious–

Recovered) type model. This influence was assessed

first thanks to a simulation study and then by ex-

ploring analytical results from the model.
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TRANSMISSION FUNCTIONS :

DEFINITION AND MATHEMATICAL

FORMS

The following sections are largely inspired by Begon

et al. [5].

Definition

The horizontal transmission of a pathogen is defined

as the spread of this pathogen between hosts after

birth. Only transmission by direct contact was con-

sidered here.

From Begon et al. [5], a convenient way to define

horizontal transmission is to consider a system

formed by the number of Susceptible (S) and

Infectious (I) hosts. Horizontal transmission is re-

presented by the interaction term between S and I and

may be formulated as follows in a continuous-time

model :

dI

dt
=Scpg, (1)

The rate of increase in the number of infectious hosts,

namely the force of infection, is represented by the

product cpg, where c is the contact rate (in tx1),

p represents the probability that this contact occurs

with an infectious host and g is the probability of

successful transmission. Usually, p is estimated by the

ratio I/N (N=population size) and g is considered

constant for a given host–pathogen system. The value

of the force of infection, and therefore of the trans-

mission function, is thus determined by the expression

of the contact rate c.

Mathematical forms

Continuous-time models

Depending on the mathematical formulation for the

contact rate c, different forms of the transmission

function may be deduced. Two main cases en-

countered in the literature are considered:

(1) c varies linearly with the density of hosts, c=
kN/A (A=area occupied by the population). With

b=kg, one obtains the following equation:

dI

dt
=bS

I

A
, (2)

This transmission function corresponds to the den-

sity-dependent (DD) form. When A is considered

constant, changing b to bk in equation (2) leads to the

following equation:

dI

dt
=b0SI: (3)

(2) c is constant, c=t, and considering bk=tg, equa-

tion (1) becomes:

dI

dt
=b00S

I

N
: (4)

This equation is often called the frequency-

dependent (FD) form, since I/N might be termed the

frequency of infectious hosts. As suggested by Begon

et al. [5], we chose to use further on in this paper

the terms ‘DD’ and ‘FD’, as representative of the

underlying biological processes, rather than other

terms found in the literature.

In the DD form, the assumption of a linear increase

in the contact rate with the density of hosts often

seems realistic, but when the density of organisms

becomes high, this increase may be limited by a satu-

ration phenomenon [7].

The FD form is usually applied to sexually trans-

mitted diseases [6], where the contact rate depends

more on the mating system of the species than on the

density of the population.

From Begon et al. [5], a DD form is often applied

to a homogeneous contact structure whereas a FD

form is often used when the contact structure is

heterogeneous. However, the respective associations

between the form of transmission function, either

DD or FD, and the homogeneous or heterogeneous

contact structure are not exclusive. More generally,

the transmission function must be adapted to a par-

ticular host–pathogen system.

Within the same model, the spread of a pathogen in

a population may be represented by these two forms

of transmission function. Fromont et al. [8], in a study

on the spread of a feline retrovirus, used different

definitions for the contact rate between domestic

cats, depending on their population density. In that

paper, the contact rate was constant at low densities

of hosts, on account of the infrequency of encounters

between hosts. For intermediate densities, the contact

rate was either proportionate to the density, or con-

stant for higher densities because of the reduction

in the size of the territory in rural or suburban

areas. When densities became high in urban areas,

the contact rate increased once again proportionately

to the host density, since animal territories over-

lapped. The formulation of the contact rate and of

the related transmission function depended in that
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case on the variable spatial structure of cat popu-

lations.

Apart from DD and FD transmission functions,

other mathematical forms have been developed and

used, either in theoretical or in applied studies.

As for theoretical approaches, which mainly focus

on model behaviour, Hochberg [9], inspired by the

initial DD form, introduced a nonlinear transmission

coefficient:

b̂b=b SpIq½ �SI, (5)

where p and q represent the way the density of sus-

ceptible and infected hosts may respectively affect

per capita transmission efficiency (x1fpf+1 and so

for q). Depending on the values for p and q, different

hypotheses underlying the model may be expressed

(acceleration or deceleration with densities, or even

a negative response type). Hethcote & van den

Driessche [10] studied the behaviour of epidemiologi-

cal models in a case of nonlinear transmission. The

force of infection uses the form bg(I), where g(I) is

a function of the type Ir/(1+aIs). Parameters r, s

and a represent the way infectious hosts influence

the force of infection. Different values for r, s and a

allow the representation of different forms for

the transmission function. For instance, with r=s=1,

a saturation effect may be taken into account. For

r=1 and a=0, the model is equivalent to the DD

equation (3).

On the contrary, other transmission functions have

been used in applied epidemiological models. For in-

stance, using equation (3), the ‘refuge effect ’ model

takes into account an aggregation parameter h which

decreases the number of susceptible hosts : bI(N – I/

h). The aggregation parameter h represents the pro-

portion of the population that is potentially suscep-

tible, on account of spatial heterogeneities. This

function equals zero when IohN. This model was

applied to the possum/bovine tuberculosis system in

New Zealand [11].

The same author, working on the same system,

used more recently a negative binomial type equation

for the transmission function: kS ln (1+bI/k), with k

a constant [12]. When k is low, the aggregation level is

high and this implies a decrease in the mean number

of infected animals per susceptible host. The choice of

this function lies in the analogy with a host–parasitoid

system. Such a model, termed ‘heterogeneous mixing’

by the author, reproduces more realistically the

observed characteristics of the considered pathogen

spread than a ‘homogeneous-mixing’-type model like

density-dependence. It allows the simulation of the

heterogeneity of risks related to the spatial patchiness

of host density.

A saturation effect on the contact rate has been

taken into account in different models [13–15]. For

Diekmann & Kretzschmar [13], an asymptotic form

of the transmission function may be used to account

for this effect : bSI/(l+N), where l is a constant asso-

ciated with this saturation effect.

INFLUENCE OF THE TRANSMISSION

FUNCTION ON THE RESULTS OF

A THEORETICAL SIMPLE MODEL

The model

To investigate the influence of different forms of the

transmission function on the simulated results of a

model, we first chose to use a classical theoretical

SIR-type model, as described by Anderson & May

[16]. In this first study, we focused on a continuous-

time deterministic model, which has been much

studied and is appropriate for theoretical and analyti-

cal approaches. This model had three state-variables:

the number of Susceptible (S), Infectious (I) and

Recovered (R) hosts. The area occupied by the hosts

was considered constant and these state variables

could be expressed either as numbers or as densities.

Horizontal transmission governed the flux from S

to I. The transitions between I and R, and R and S,

occurred respectively at rates u and c. The three types

of hosts gave birth to susceptible hosts S with the

same birth rate a. Two cases were considered in the

simulations: (i) when the population size N was con-

stant, (ii) when the population might increase. In

the former case, birth and mortality (b) rates were

identical for all the state-variables (a=b). In the

latter, a>b and an additional mortality rate m due to

the infection was applied to infectious hosts I. The

model was represented by the following system of

differential equations:

dS

dt
=a � (S+I+R)xbSxfT+cR

dI

dt
=fTx(b+m+�) � I

dR

dt
=�Ix(b+c) �R

9>>>>>>>=
>>>>>>>;

(6)

where fT represents the transmission function and

Table 1 describes the different forms of the
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transmission functions considered in this analysis.

These functions corresponded mostly to those de-

tailed in the first part of this article. However, we

chose to exclude the forms used in mathematical and

theoretical studies, like those of Hochberg [9] and

Hethcote & van den Driessche [10]. These functions

were also difficult to include in such a comparative

work, on account of their nonlinear forms, with too

many parameters involved.

Whatever the transmission function considered, the

parameters a, b, m, u and c had the same values : a=
0.01 dayx1, b=0.01 (N constant) or 0.005 dayx1 (N

variable), m=0 or 0.01 dayx1, u=0.05 dayx1 and c=
0.1 dayx1. Additional parameters were necessary for

models M3 (h=0.6, no unit), M4 (k=0.1 indx1 dayx1

where ind means individuals) and M5 (l=50 ind). The

spread of the infection was obtained by introducing

an infectious host into a population of 99 susceptibles.

The model was run using SciLabf software (http://

www.scilab.org).

In order to compare the five different models, the

same basic reproductive number (R0) was considered

for all of them. This number represents the number of

secondary infections caused by an infectious host

during its infectious period, in a totally susceptible

population. Following Lopez et al. [18] and Coutinho

et al. [19], it can be obtained by considering S=N and

I=R=0 in system (6) and by analysing the stability of

this trivial solution. By linearizing this system around

this solution, it becomes, with i deviating slightly from

zero:

di

dt
=fT(i)x(b+m+�) � i: (7)

Around zero, fT(i) can be approximated by:

fT(i)=fT(0)+i
dfT(0)

di
+o(i 2): (8)

For the considered transmission functions, fT(0)=0

and the condition for a spread of the infection

(di/dt>0) leads to the following expression for R0 :

R0=
dfT(0)=di

b+m+�
: (9)

In the case of the constant population size (N=100

ind), the following procedure was carried out. We

fixed b1, corresponding to model M1 (DD), at a value

of 0.001 dayx1 in order for the infection not to die

out. The corresponding R0 equals 1.667 with the given

parameter values. The other values for the trans-

mission coefficient b (for models M2–M5) were cal-

culated in order to have the same R0 between models.

Table 2 shows the different expressions in the b/R0

relationship with the resulting values used later in this

paper for the transmission coefficients.

In the case of an increasing population size, the

comparison was again based on the same value for R0,

calculated at the beginning of the simulation (i.e. with

N=100 ind once again). We chose to keep the same

Table 1. Transmission functions used in the different models

Model Formulation Name Ref.

M1 b1SI Density-dependence [16]
M2 b2SI/N Frequency-dependence [7]

M3 b3I(N–I/h)
0 if I<hN

Refuge effect : density-dependence
with an aggregation parameter, h

[11]

M4 kS ln(1+b4I/k) Negative binomial k, aggregation parameter [12, 17]

M5 b5SI/(l+N) Asymptotic with l a saturation constant [13]

The area was considered constant. S and I represented the respective numbers of
susceptible and infectious hosts and N the population size. The transmission co-
efficient bi corresponded to model Mi. Its unit varies according to the transmission
function considered.

Table 2. Value and corresponding unit for the

transmission coefficient bi used in the different models

(bi corresponded to model Mi)

Model b as a function of R0 Value for b

M1 b1=b3=b4=
eR0

N

with e=b+m+�

b1=b3=b4=0.001
ind dayx1M3

M4
M2 b2=eR0 b2=0.1 dayx1

M5 b5=
eR0(l+N)

N
b5=0.15 dayx1

ind, Number of individuals.
bi was calculated from R0, whose value was fixed at 5/3 in
the case of a constant population size. See text for par-
ameter signification and value.
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values for the transmission rates as in the former case,

which resulted in a slight decrease of R0 (=1.538), on

account of an increasing global mortality rate for the

infectious hosts.

The M1–M5 models were compared first through

the occurrence or the absence of equilibrium, by

simulation. When equilibrium was simulated, the time

to reach it, as well as the value then obtained for the

number of infectious hosts and their proportion in the

population, were also used to compare the different

models. The duration of the simulations was adapted

to the time required for equilibrium to be reached, in

each case (constant or variable population size).

Analytical studies were also carried out to complete

these comparisons and corroborate the simulated re-

sults.

Simulation results

Constant population size

The evolution in the number of infectious hosts for

the five transmission forms considered was plotted on

Figure 1. By construction, DD, FD and asymptotic

models (M1, M2 and M5) were identical. The value

for the parameter transmission derived from Table 2

gave similar values for the different forces of infection

in these cases. The shape of the curve was quite similar

among the different models. The number of infectious

hosts increased considerably at the beginning of the

simulation before reaching equilibrium. Since R0 was

always the same for the different models, the simu-

lated dynamics were identical at the beginning of the

simulation. They differentiated thereafter but their

equilibrium was reached at about the same time, i.e.

before day 150, for all models. The equilibrium values

reached by M3 and M4 (22.9 ind and 24.0 ind

respectively) were lower than the values obtained with

M1, M2 and M5 (27.5 ind). Due to the model type,

decimal numbers were obtained. With a constant

population size of 100 individuals, they were equiva-

lent to the corresponding percentages. Even with a

constant population size, differences in the behaviour

of the models were therefore encountered in some

cases, due solely to changing transmission functions.

Variable population size

More differences between the models were highlighted

when a population increase was simulated (Fig. 2). A

longer simulation duration than in the case of a con-

stant population (1000 vs. 250 days) was required in

order to distinguish models which led to equilibrium

and the others. More particularly, being diametrically

opposed, the number of infectious hosts reached

equilibrium for M1 whereas an exponential increase

in infectious hosts was obtained with M2. The be-

haviour of the other models could be assimilated to

one of these two cases : M3 and M4 reached equilib-

rium, but later than M1. With a longer simulation

duration, M5 would also exhibit an exponential in-

crease in the number of infectious hosts, although in

an attenuated manner compared to M2.

What was interesting was the evolution in the pro-

portion of infectious hosts for the different models

(Fig. 3). Whatever the transmission function and the

corresponding model considered, all the proportions

evolved to a stable value. This was due to an identical

evolution in the number of infectious hosts and in the

size of the population. The proportions of infectious

hosts obtained with M1 and M2 at the end of the

simulation were found on opposite ends from each

other, and results from the other models were dis-

tributed in the same order between M1 and M2 as in

Figure 2.
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Fig. 1. Evolution in the number of infectious hosts simu-
lated by the models M1–M5 corresponding to different
forms of transmission functions. The population size was

kept constant. By construction, M1, M2 and M5 were
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population size.
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Analytical studies, equilibrium analyses

Some of the previously described results may be

retrieved through an analytical study. Some have

already been reported in the literature. For instance,

Anderson & May [16] studied the same SIR model as

ours, with a DD transmission function. The simu-

lations presented in this paper for model M1 illustrate

some of their results. From the system of equations

(6), the evolution in the total population may be de-

duced from the following differential equation:

dN

dt
=(axb) �Nxm � I, (10)

This equation simply illustrates the fact that the

population size depends on the balance between birth

and mortality, either ‘natural ’ or due to the infection.

From Anderson & May [1], the system of equations

(6) evolves to an equilibrium when

mx(axb) � 1+
�

b+c

� �
>0, (11)

which is the case with our parameters. At equilibrium,

prevalence I/N obviously equals (a – b)/m, namely 0.5

in this paper with the considered parameter values.

In the case of a FDmodel (M2), we showed that the

equilibrium depended not only on the same condition

given by equation (11), but also on the value of the

transmission coefficient b2. By setting system (6) and

equation (10) to zero, a positive equilibrium was ob-

tained for the following value of the transmission co-

efficient:

b2*=
m+b+�

1x
axb

m
� 1+

�

b+c

� � : (12)

In our case, b2* equalled 0.248 dayx1. For this value,

I, N and the prevalence tended to reach a plateau, and

its value for prevalence also equalled (axb)/m. If b2

was higher than b2*, the population became extinct. If

the value for b2 was below the threshold value b2*,

which was the case in this paper, the population and

the number of infectious hosts increased exponen-

tially. Figure 4 illustrates different model behaviours

depending on the value of the transmission coefficient.

In our simulations, the prevalence simulated by the

FD model M2 tended to reach a plateau, but at a

lower value than the one reached by the DD model

M1. We calculated the value reached with M2 by

considering that equilibrium for prevalence was

reached when:

d(I=N)

dt
=0 ) I

N
=

dI=dt

dN=dt
: (13)

Similar equations to equation (13) were written for

the proportions for S and R in the population.

Moreover, the sum of the respective proportions for I,

S and R obviously equalled 1. Solving these equations

led to a second-degree equation for prevalence for

which the sole solution between 0 and 1 was 0.218

with our parameters, which corresponded to the

equilibrium prevalence for M2 (Fig. 3). Moreover,

this second-degree equation always had solutions for

a transmission coefficient value for which the infec-

tion spread, i.e. when b2<b2*, thus explaining the

stable prevalence obtained. In this general case, and

considering a constant prevalence ’=I/N <(a – b)/m,

the population size followed an exponential growth

given by the equation:

N=N0 exp ((axbxm’)t), (14)

where N0 was the initial population size.

For the ‘refuge effect ’ model (M3), the equilib-

rium was obtained if h>(a – b)/m, where (axb)/m
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corresponded to the prevalence at equilibrium. In any

cases, considering hf(axb)/m did not make sense

since NxI/h was bounded by 0 (see Table 1).

As for the negative binomial model (M4), a positive

equilibrium value I* was obtained for the number of

infectious (and for the other variables), on the con-

dition given by equation (11)

I*=
k

b
� exp

m

k

� �
x1

� �
with m=

m+b+�

m

axb
x 1+

�

b+c

� � :

(15)

The asymptotic model (M5) looked more like the

FD model M2. The conditions for equilibrium are

identical. However, in this case the threshold equilib-

rium value of the transmission coefficient (b5*=b2*)

represented the value above which all simulations

tended to equilibrium. No extinction was observed for

upper values of this coefficient. Figure 5 gives an ex-

ample of simulations with the number of infectious

tending clearly to equilibrium or not, and an inter-

mediate simulation obtained with the threshold

transmission coefficient. For the considered par-

ameter coefficient in the simulations (cf. Fig. 3),

b5<b5* and no equilibrium could be obtained.

We can also determine the classification for the

transmission functions as looking like DD or FD de-

pending on the mathematical form of the function

(Table 1). In the ‘refuge effect ’ (M3) or the negative

binomial (M4) models, the transmission functions

tended to reach a DD type respectively when h tended

to reach 1 or when k was high. On the contrary, the

asymptotic form (M5) looked more like the FD type

since its denominator term (l+N) was related to a

population size term.

DISCUSSION

This paper presents the analysis of the transmission

function’s effect on a simple epidemiological model.

The functions involved in this analysis were chosen on

account of their applicability and their biological rel-

evance. The chosen mathematical forms of the trans-

mission function cover a large variety of function

types, representing the diversity of host–pathogen

systems. Analytical studies on the theoretical ap-

proach completed the simulation results and helped in

their understanding. Together with the different

selected transmission functions, these studies allow us

to generalize the results.

The simulated results showed clear differences be-

tween the transmission functions, whether the popu-

lation size was considered constant or increasing. In

the former case, the differences concerned the number

of susceptible, infectious or recovered hosts when the

system reached equilibrium. Simulations with refuge-

effect (M3) and negative binomial (M4) models

showed lower equilibrium values than those obtained

with M1, M2 and M5. In the case of a variable

population size, a distinction could be made between

functions for which equilibrium was reached (DD

M1, M3 and M4), and those which resulted in an

exponential population growth (FD M2 and M5).

From the simulations with a variable size, the

mathematical forms of the horizontal transmission

function could be globally divided into either DD

or FD types, even though, as shown for instance

with frequency-dependence, the occurrence of equi-

librium might depend on the chosen parameter

values.

From this theoretical model, these results showed

evidence of an influence of the transmission function

form, whether a DD- or a FD-like form was used.

These two forms are both widely used in the litera-

ture. Several comparisons have been carried out to

find the function that best suits the corresponding

host–pathogen system and/or the available data. A

theoretical study [20] was dedicated to the comparison

between two spatial models, using either a fixed con-

tact area (FCA) or a fixed contact number (FCN) in a

cellular automaton, and their corresponding math-

ematical forms (DD or FD). Both mathematical

forms represented equally well FCA or FCN models

when the population size was constant, whereas FD

best suited both spatial models when this size in-

creased. Comparisons have also been carried out
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thanks to dedicated experiments [21] dealing with the

transmission of pseudorabies virus in pig populations.

These authors compared two forms of the trans-

mission functions (bSI and bSI/N) considering the

fitting on experimental data. They demonstrated the

best-case scenario with the FD form given their data.

However, in this experiment, the density of animals

was kept constant, as the area occupied increased with

the number of animals considered, with two groups of

respectively 10 and 40 pigs. This experiment could,

therefore, not assess the difference between DD and

FD functions [as defined by equations (2) and (4)],

which were equivalent in this case. Begon et al. [22]

demonstrated that the transmission dynamics of the

cowpox virus within two wildlife species was better

fitted with a FD than with a DD form. Another

comparison of results from an experiment and a

model for the study of a moth-virus interaction [23]

led to the conclusion that transmission did not follow

a DD function. A better adequacy between model

results and experimental data was obtained when the

transmission function was in the nonlinear form de-

scribed in equation (5), or with a negative binomial

model (M4). The best-case scenario was assessed with

a larger determination coefficient r2 in the latter cases

than with a DD form (respectively 0.97 and 0.96 vs

0.49). However, this best- case scenario was obtained

by estimating respectively three and two parameters,

whereas only one parameter was needed for a DD

function. Increasing the number of parameters to be

estimated may also lead to a concomitant increase in

the uncertainty associated and to a decrease in the

robustness of the model.

A future work could deal with the influence of dif-

ferent transmission functions to a model applied to

an actual pathogen spread. Recently, Wonham et al.

[24] showed that epidemiological models applied

to the spread of West Nile virus were not always

using the same transmission function. Three math-

ematical forms were identified in these host–vector

disease models : reservoir or susceptible frequency-

dependence, either considering the reservoir or the

vector population for the frequency term, and mass

action (equivalent to DD). They demonstrated that

different values for R0 could be obtained with these

functions, and that it could therefore lead to differing

conclusions concerning the control of disease dy-

namics. However, these authors stated that these dif-

ferent transmission functions applied biologically

only at certain population densities, thus justifying

their relevance. This kind of study could be carried out

for a pathogen that spreads through direct trans-

mission.

In epidemiological models, the relevance of the

transmission function used may be assessed on dif-

ferent grounds. First, whenever possible, this function

has to correspond to the hypotheses underlying the

biological phenomena, even though a direct relation

between a mathematical form and host–pathogen

interactions is sometimes difficult to establish. When-

ever experimental data are available, a statistical fitting

is also fruitful for the determination of the trans-

mission function and of the associated parameters. At

the very least, a global validation of the model and a

sensitivity analysis of the simulated results according

to the transmission function and related parameter

values should be performed. Even though in the stu-

dies quoted in this paper, the comparison between the

models and experimental data often showed evidence

of a best-case scenario with the FD form, this should

not become a general law and all the host–pathogen

systems have to be studied specifically.
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