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Abstract
Admittance control of the robot is an important method to improve human–robot collaborative performance.
However, it displays poor matching between admittance parameters and human–robot collaborative motion. This
results in poor motion performance when the robot interacts with the changeable environment (human). Therefore,
to improve the performance of human–robot collaboration, the human-like variable admittance parameter regula-
tor (HVAPR) based on the change rate of interaction force is proposed by studying the human arm’s static and
dynamic admittance parameters in human–human collaborative motion. HVAPR can generate admittance parame-
ters matching with human collaborative motion. To test the performance of the proposed HVAPR, the human–robot
collaborative motion experiment based on HVAPR is designed and compared with the variable admittance param-
eter regulator (VAPR). The satisfaction, recognition ratio, and recognition confidence of the two admittance
parameter regulators are statistically analyzed via questionnaire. Simultaneously, the trajectory and interaction force
of the robot are analyzed, and the performance of the human–robot collaborative motion is assessed and compared
using the trajectory smoothness index and average energy index. The results show that HVAPR is superior to VAPR
in human–robot collaborative satisfaction, robot trajectory smoothness, and average energy consumption.

1. Introduction
1.1. Context
With the rapid development of robot technology, robots have been gradually applied to education, indus-
try, entertainment, and other fields involving human contact [1, 2]. The interaction between humans
and robots has become increasingly frequent [3, 4]. Robots will inevitably collaborate with humans
to complete tasks. The human–robot collaboration can combine human–environmental cognition and
problem-solving abilities with robots’ advantages of high efficiency, lasting energy, and accuracy.
However, how to improve the performance of human–robot collaboration (to achieve safe, compliant,
and efficient human–robot collaboration) will be a challenge [5, 6].

To tackle the above-mentioned challenge within the human–robot collaborative scenario, this paper
proposes a human-like variable admittance parameter regulator (HVAPR) that imitates the admittance
parameter adjustment method of the human arm and applies it to human–robot collaboration. Firstly,
the adjustment method of human arm admittance parameters in human–human collaborative motion
is studied experimentally. The data fitting method determines the variation rules of followers’ static
and dynamic admittance parameters. Accordingly, a HVAPR is proposed. HVAPR enables the robot
to adjust the admittance parameters online and in real-time according to the human operator’s current
change rate of interaction force. The admittance controller outputs the motion matching the leader’s
behavior according to the current admittance parameter. Finally, the human–robot collaborative motion
experiment is performed. Based on the smoothness index of motion trajectory, average energy index, and
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the questionnaire survey results on participants’ experience in the human–robot collaborative motion,
the performance of the HVAPR is assessed and compared with the performance of general variable
admittance parameter regulator (VAPR).

In the following section, the state of the art achieving human–robot compliance collaborative motion
is addressed, to highlight the open issues in the field and the solutions provided by the proposed
approach.

1.2. Related work
Robots generally interact with the environment through position control or force control. Position control
modes are generally poor in compliance and security. Force control can be divided into force-position
hybrid control [7] and admittance control. Compared with force-position hybrid control, admittance
control does not need to control the position and force separately. In a simple task environment, the
parameters of the admittance control system are determined in advance according to the environment,
which can achieve better compliance [8]. However, imposing an admittance model with fixed parameters
on the robot is too conservative. This method requires prior knowledge of areas such as the environmental
dynamics to model the environment to more accurately obtain better admittance model parameters.
Such as many papers are estimating the properties of the environment online to determine the control
action guaranteeing stability or other performance [9, 10]. Considering human–robot interaction, some
papers are specifically estimating online the human–robot interaction dynamics to modulate the control
action [11], guaranteeing the stability of the controller [12]. Therefore, the admittance control with fixed
parameters is only applicable to the situation where the environment is fixed and the modeling is simple.

To address the changing environment and improve the robot’s interaction with the external environ-
ment, more researchers have studied variable admittance control of the robot. The common method
is to design the variable admittance parameters of the robot by establishing a cost function. Ref. [13]
proposed establishing the cost function of interaction force and motion trajectory and optimizing the
cost function through an iterative learning method to obtain the optimal admittance parameters. Ref.
[14] proposed policy improvement with a path integrals algorithm based on reinforcement learning to
implement variable admittance control, which focuses on optimizing cost functions designed for spe-
cific tasks. Ref. [15] studied the rule of damping change in the human–robot collaborative motion and
established the cost function, including damping and the damping change rate according to the rule of
damping change. The optimal damping parameters were obtained by optimizing the cost function and
applied to the human–robot collaborative motion [16].

In addition, there is also a method based on human motion intention estimation, which uses the
information of motion velocity, acceleration, interaction force, or an electromyography (EMG) signal
to estimate human motion intention and then designs the corresponding variable admittance param-
eters of the robot. Refs [17, 18] estimated human motion intention according to the velocity of
human motion and then adjusted the damping parameters of the robot. When the velocity of human
motion increased\decreased in the direction of motion, this indicated that human motion should be
accelerated\decelerated, and the damping parameters of the robot should be decreased\increased to
comply with human motion. Ref. [19] estimated human motion intention according to desired accel-
eration, and admittance parameters were designed as functions of expected acceleration. Ref. [20]
estimated human motion intention according to interaction force, and admittance controller parame-
ters were adjusted through the change of interaction force. In this method, when the interaction force
was small, the damping was increased to improve the motion accuracy; when the interaction force was
large, the damping was reduced to improve compliance. Ref. [21] estimated human arm stiffness by an
EMG signal, and an admittance parameter regulator with admittance parameters changing proportion-
ally with the human arm stiffness was subsequently designed. Ref. [22] adjusted the damping of the
robot according to the contraction of the operator’s muscles. When the human operator’s muscle acti-
vation exceeded a predefined threshold, the robot adopted high damping, and when it failed below the
predefined threshold, it adopted low damping. The high-low damping method adopted by the robot made
the damping parameter change discontinuous, resulting in poor human–robot collaborative performance
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[23]. Ref. [24] divided the human–robot collaborative motion into the starting phase, driving phase, and
parking phase according to the force, the change rate of the force, and velocity. The variation rule of
the admittance parameters in each phase of the robot was then designed. Ref. [25] designed a fuzzy
inference system, which adjusted the damping of robot admittance online by the measured velocity and
interaction force. When human intent was estimated to accelerate\decelerate, admittance damping will
decrease\increase. Ref. [26] used the Gaussian mixture model to learn the demonstration motion of the
human–robot collaborative motion offline. Then, the Gaussian mixture regression model reproduced the
human–robot collaborative motion online. The robot can collaborate with humans under the constraint
of a similar force. In these methods, the robot can adjust admittance parameters online according to the
leader’s intention, but the admittance parameter regulation rules are designed by the designer with their
intuition or heuristic way. Therefore, the disadvantage of these methods is that the admittance param-
eters are poorly matched with the collaborative motion of the leader (human). For example, when the
admittance parameter is low, the robot can obtain higher execution acceleration, which will also lead to
poor stopping ability and cause motion overshooting and oscillation. When the admittance parameter
is high, it can prevent the robot from producing motion overshooting and oscillation, but it limits the
robot’s acceleration.

1.3. Paper contribution
In the human–human collaborative motion, the follower can naturally and compliantly assist the leader
in completing the task with small motion overshooting and oscillation because the virtual admittance
parameters of the follower can match the leader’s motion. Therefore, this paper studies the change rule
of the admittance parameter of the follower in human–human collaborative motion and applies it to the
robot follower. Under the condition that the prior knowledge of the collaborative object is not obtained in
advance, the robot follower can adjust its own admittance parameters online by imitating the adjustment
way of human arm admittance parameters so that the robot can automatically adapt to the control of
different collaborators. The main contributions of this work are as follows:

(1) The admittance parameter adjustment method (adjusting the change rate of admittance parameter
according to the change rate of interaction force and then changing admittance parameters) of the human
arm is obtained through the study of the change rule of the follower’s human arm admittance parameters
in human–human collaborative motion.

(2) A HVAPR is established based on the admittance parameter adjustment method of the human
arm.

The remainder of this paper is organized as follows: Section 2 introduces the background. Section 3
analyzes the admittance parameters of the human–human collaborative motion. Section 4 introduces the
human-like variable admittance control of the robot. Section 5 introduces the human–robot collaborative
motion experiment. Section 6 concludes this work.

2. Background
2.1. Admittance system model
The collaborative motion of human–robot contact and human–human contact can be equivalent to the
contact motion between two mass-damping-spring model systems. The equivalent model of the active
force applicator (leader) is the impedance system, which outputs the force according to the input position.
The equivalent model of the follower is the admittance system, which outputs the position according to
the input force. Both systems show the dynamic relationship between position and interaction force,
with equal parameters and the same formula [17, 28]:

C(Ẍd − Ẍr) + C(Ẋd−Ẋr) + K(Xd−Xr) = F (1)
where M ∈ R3×3, C ∈ R3×3, and K ∈ R3×3 are the virtual mass matrix, virtual damping matrix, and virtual
matrix, respectively; F = [fx, fy, fz]

T is the cartesian space interaction force vector; Xd = [xd, yd, zd]T is
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the desired position vector; and the current position of robot is set as the reference position vector
Xr = [xr, yr, zr]T .

For convenient applications in the control of industrial robots, Eq. (1) can be converted to its discrete
format to solve the desired trajectory of the robot [29, 30]:

Ẍd(t) = M−1(F − C ˙̃X − KX̃) + Ẍr(t) (2)

Ẋd(t) = Ẋr(t) + TẌd(t) (3)

Xd(t)=Xr(t)+TẊd(t) (4)

where Xd(t), Ẍd(t) are the desired position, desired velocity, and acceleration at moment t, respectively;
X̃ = Xr(t) − Xr(t − 1); X̃ = Xr(t) − Xr(t − 1); and T is the system communication cycle between the
robot controller and the servo driver.

In traditional robot admittance control, admittance parameters are fixed and pre-set according to the
environment. In the human–robot collaborative motion, the human is the dynamic system, and fixed
admittance parameters are insufficient to achieve natural and compliant human–robot collaborative
motion. To achieve better human–robot collaborative performance, the admittance parameters of the
robot should be changed according to the change of the collaborative behavior to ensure a high match-
ing degree between the admittance parameters of the robot and the collaborative motion of the human.
The best method to improve the matching degree between robot admittance parameters and human col-
laborative motion is to imitate the change rule of follower admittance parameters in the human–human
collaborative motion [9, 27]. Therefore, a human–human collaborative experiment is designed to study
the variation of follower admittance parameters in the human–human collaborative motion.

2.2. Human–human collaborative motion experiment
The cartesian space trajectory of humans and robots can be synthesized by the motion trajectory of
the X, Y, and Z axes. Therefore, the human–human collaborative motion experiments along the X, Y,
and Z axes were designed, as shown in Fig. 1(a)–(c). Figure 1(d) is the experimental scene diagram.
The average arm length of all participants is 57.2 cm. So, the maximum motion distance along the X-
axis is 114.4 cm. The maximum motion distance along the Y-axis is 57.2 cm, and the maximum motion
distance along the Z-axis is 114.4 cm. The combination with the common workspace of the human arm
in human engineering, the starting and target points along the X-axis, Y-axis, and Z-axis, is set. The
human–human collaborative motion experiment’s starting point and target point along the X, Y, and Z
axes are in the workspace that can be reached by the human arm. The distance between adjacent points
is marked in Fig. 1(a)–(c). The human–human collaborative motion experiments along the X-axis and
Y-axis are shown in Fig. 1(a) and (b), respectively. The starting point of the human–human collaborative
motion is the blue square in the figure, and the target is the red circle in the figure. The human–human
collaborative motion experiment along the X-axis has 3 starting points and 12 target points. The human–
human collaborative motion experiment along the Y-axis has 5 starting points and 10 target points. The
human–human collaborative motion experiment along the Z-axis is shown in Fig. 1(c). The starting
point of the human–human collaborative motion is the blue cuboid in the figure, with 15 starting points
in total, and the target point is the red cube in the figure. Three target point regions (C1, C2, and C3) are
set along the Z-axis, with 15 target points in each layer. The telescopic rod on the bracket in Fig. 1(c) is
used to mark the target point position of each human–human collaborative motion.

In the experiment, the Onrobot force sensor (HEX-E, Onrobot, Denmark) collects the interaction
force of the human–human collaborative motion. Both ends of the force sensor are connected with a han-
dle, and participants A and B hold one handle. The follower (participant B) completes the human–human
collaborative motion from the starting point to the target point under the leader’s guidance (participant
A). The red arrow in the figure indicates the motion direction. In point-to-point motion, the leader tries
to keep the guiding path straight. The follower does not need to know the exact motion path but only
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Figure 1. The human–human collaborative motion experiment scheme.

actively follows the motion of the leader by their sense of displacement, velocity, and force, leaving an
impression of obedience on the leader. During the experiment, the followers are required to wear motion
capture clothing (Perception Legacy, Noitom, China) to collect data such as motion position.

A total of five groups of participants (two in each group) participated in the human–human col-
laborative motion experiment along the X, Y, and Z axes. The participants (all males, with mean
age = 27 ± 3 years, height = 175 ± 6 mm, and weight = 71.4 ± 6.8 kg) are right handed and have no
physical problems. The same point-to-point motion experiment was repeated 20 times. Therefore, 1200
(5 × 20 × 12 = 1200), 1000 (5 × 20 × 10 = 1000), and 4500 (5 × 20 × 15 × 3 = 4500) instances of
motion data were collected along the X, Y, and Z axes, respectively. Both the force sensor and the motion-
capture clothing collect data at 100 Hz. Before the experiment, each group of participants performed a
preliminary experiment to familiarize themselves with the experiment’s content.

https://doi.org/10.1017/S0263574723000383 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000383


2160 Chengyun Wang and Jing Zhao

3. Admittance parameter analysis of human–human collaborative motion
3.1. Calculation method of admittance parameters of human arm
Studies show that the admittance parameters of the human arm do not change significantly in a brief time
(10 ms) during normal motion, that is, the admittance parameter values at adjacent moments are similar
[31]. Therefore, this paper calculates admittance parameters based on the interaction force and position
data of the follower at three adjacent moments in the human–human collaborative motion. According to
Eq. (1), admittance models at three adjacent moments can be obtained:⎡

⎢⎣
Ẍe(t − 1) Ẋe(t − 1) Xe(t − 1)

Ẍe(t) Ẋe(t) Xe(t)

Ẍe(t + 1) Ẋe(t + 1) Xe(t + 1)

⎤
⎥⎦

⎡
⎢⎣

M(t)

C(t)

K(t)

⎤
⎥⎦ =

⎡
⎢⎣

F(t − 1)

F(t)

F(t + 1)

⎤
⎥⎦ (5)

where Xe(t) = Xd(t) − Xr(t), Xd(t), and Xr(t) are the desired position and actual position at moment t,
respectively; M(t), C(t), and K(t) are virtual mass matrix, virtual damping matrix, and virtual stiffness
matrix at moment t, respectively, and F(t) is the interaction force at moment t.

According to Eq. (5), the admittance parameters M(t), C(t), and K(t), at moment t can be
obtained: ⎡

⎢⎣
M(t)

C(t)

K(t)

⎤
⎥⎦ =

⎡
⎢⎣

Ẍe(t − 1) Ẋe(t − 1) Xe(t − 1)

Ẍe(t) Ẋe(t) Xe(t)

Ẍe(t + 1) Ẋe(t + 1) Xe(t + 1)

⎤
⎥⎦

−1 ⎡
⎢⎣

F(t − 1)

F(t)

F(t + 1)

⎤
⎥⎦ (6)

By substituting the experimental data of the human–human collaborative motion from Section 2.2
into Eq. (6), the admittance parameters of the follower in the process of the human–human collaborative
motion can be obtained.

3.2. Fitting of admittance parameters of human arm
The admittance parameters of the human arm were divided into the static and dynamic admittance
parameters, which reflect the static and dynamic relationship between the end position and the interac-
tion force of the human arm when the arm is in the motion preparation phase and the motion phase,
respectively [32]. In the human–human collaborative motion, the follower undergoes a transition from
the state of preparation to the state of motion, so the admittance parameters of the follower change from
static to dynamic admittance parameters.

In the first three frames of the human–human collaborative motion, the position and velocity change
are small, so the human arm is in the motion preparation phase during this period. By substituting the
data of the first three frames of the human–human collaborative motion into Eq. (6), the static admittance
parameters of the human arm in the preparatory phase of motion can be obtained. The relationship
between the static admittance parameters and the interaction forces was obtained from all experimental
data, as shown in Fig. 2.

By substituting the experimental data of the human–human collaborative motion into Eq. (6), the
dynamic admittance parameters of the human arm in the motion phase can be obtained. Through the
analysis of the experimental data, it is found that the change rate of admittance parameter changes with
the change rate of interaction force, showing a certain regularity. Therefore, the relationship between
the admittance parameter’s change rate and the interactive force’s change rate of the X-axis, Y-axis, and
Z-axis was statistically analyzed. The relationship between the dynamic admittance parameter’s change
rate and the change rate of interaction force was obtained from all experimental data, as shown in Fig. 3.

Figures 2 and 3 show that the static and dynamic admittance parameters show certain regularity.
To apply the variation rule of admittance parameters to the robot admittance parameter regulator, the
relationship between the static admittance parameters and interaction force, as well as the relationship
between the change rate of dynamic admittance parameter and the change rate of interaction force,
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Figure 2. The relationship between the static admittance parameters and the interaction forces of the
human–human collaborative motion. fsx, fsy, and fsz are the interaction forces of the X, Y, and Z axes,
respectively; msx, msy, and msz are the static virtual masses of the X, Y, and Z axes, respectively; csx, csy,
and csz are the static virtual damping of the X, Y, and Z axes, respectively; and ksx, ksy, and ksz are the
static virtual stiffnesses of the X, Y, and Z axes, respectively.

was fitted by the data fitting method. According to the experiment in Section 2, the human–human
collaborative motion experiments along the X-axis, Y-axis, and Z-axis were performed 1200, 1000, and
4500 times, respectively. The average duration of each collaborative motion is 160 frames (1 s is equal
to 100 frames), so there are enough data for function fitting. According to observations derived from the
scatter diagram in Figs. 2 and 3, the data fitting function can choose the polynomial function. According
to the observation of the shape of the curve of the polynomial function and the observation of the shape
of the scatter plots in Figs. 2 and 3, it is known that the fitting times (the order of the polynomial) of
fitting functions do not exceed six times.

The polynomial function H of degree h is

H(x, p) =
h∑

j=0

pjx
j (7)

where x is the input and p is the parameter of the polynomial function with h + 1 parameters
and h ≤ 6.
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Figure 3. The relationship between the change rate of dynamic admittance parameter and the change
rate of interaction force of the human–human collaborative motion. ḟx, ḟy, and ḟz are the interaction
forces’ change rates of the X, Y, and Z axes, respectively; ṁx, ṁy, and ṁz are the dynamic virtual masses’
change rates of the X, Y, and Z axes, respectively; ċx, ċy, and ċz are the dynamic virtual damping’ change
rates of the X, Y, and Z axes, respectively; and k̇x, k̇y, and k̇z are the dynamic virtual stiffnesses’ change
rates of the X, Y, and Z axes, respectively.

To determine the complexity of the model, that is, to determine the number of polynomials and pre-
vent over-fitting, the regularization method is used to solve the polynomial parameters. The regularized
cost function L(p) is

L(p) = 1

N

N∑
i=1

(H(xi, p) − yi)
2 + λ

2
‖p‖2 (8)

where the first term is the average loss function, the second term is the regularization term, λ ≥ 0 is
the coefficient that adjusts the relationship between the two, N is the number of fitting data, xi is the
observed value of the input x, that is, the observed value of the interaction force or the observed value
of the interaction force’s change rate, yi is the observed value of the input y, that is, the observed value
of the admittance parameter or the observed value of the admittance parameter’s change rate, and ‖p‖2

represents the L2 norm of a polynomial function parameter vector.
By substituting the X-axis data in Fig. 2 into Eq. (8), the fitting function of each static admittance

parameter and interaction force when the human–human collaboration moves along the X-axes can be
obtained by minimizing the regularized cost function:

⎡
⎢⎣

msx

csx

ksx

⎤
⎥⎦ =

⎡
⎢⎣

pmsx1 pmsx2 pmsx3 pmsx4

pcsx1 pcsx2 pcsx3 pcsx4

pksx1 pksx2 pksx3 pksx4

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

fsx

f 2
sx

f 3
sx

f 4
sx

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎣

pmsx0

pcsx0

pksx0

⎤
⎥⎦ (9)
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Table I. Parameters of the fitting function of X-axes static virtual mass, static virtual
damping, and static virtual stiffness.

a pasx0 pasx1 pasx2 pasx3 pasx4

m −0.663 −13.36 46.84 −520.2 1476
c −0.1414 −0.6259 72.93 −245.4 0
k −0.08224 2.852 0.746 −111.9 238.8

Table II. Parameters of the fitting function of X-axes dynamic virtual mass change rates,
dynamic virtual damping change rates, and dynamic virtual stiffness change rates.

a pax0 pax1 pax2 pax3 pax4

m −0.717 −1.160 0.323 −0.352 0.093
c 0.01805 −1.005 6.115 −276.5 724.5
k −0.070 0.2544 −0.004 −0.008 0.015

where msx, csx, and ksx represent the virtual mass, virtual damping, and virtual stiffness of the static
admittance parameters, respectively, and fsx is the interaction force of X-axis.

Table I shows the parameters p of the fitting function of each static admittance parameter and interac-
tion force when the human–human collaborative moves along the X-axes. The fitting function between
the static admittance parameters of the Y-axis and Z-axis and the interaction forces of the Y-axis and
Z-axis is obtained by similar methods, which will not be described here.

By substituting the X-axis data in Fig. 3 into Eq. (8), the fitting function of the dynamic admittance
parameters’ change rate and the interaction forces’ change rate when human–human collaboration moves
along the X-axes can be obtained by minimizing the regularized cost function:

⎡
⎢⎣

ṁx

ċx

k̇x

⎤
⎥⎦ =

⎡
⎢⎣

pmx1 pmx2 pmx3 pmx4

pcx1 pcx2 pcx3 pcx4

pkx1 pkx2 pkx3 pkx4

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

ḟx

ḟ 2
x

ḟ 3
x

ḟ 4
x

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎣

pmx0

pcx0

pkx0

⎤
⎥⎦ (10)

where ṁx, ċx, and k̇x represent the virtual mass change rate, virtual damping change rate, and virtual
stiffness change rate of the dynamic admittance parameters, respectively, and ḟx is the change rate of
admittance parameter.

Table II shows the parameter p of the fitting function of the change rate of dynamic admittance
parameter and the change rate of the interaction force when the human–human collaborative moves
along the X-axes. The fitting function between the dynamic admittance parameters change rate of the
Y-axis and Z-axis, and the interaction forces change rate of the Y-axis and Z-axis is obtained by similar
methods, which will not be described here.

To assess the fitting effect of the fitting function, the goodness and root mean square error (RMSE) of
fit of these polynomial fitting functions were calculated. The expressions of the goodness R2 and RMSE
of fit are as follows:

R2 = 1 −

N∑
i=1

(ŷi − yi)
2

N∑
i=1

(ȳi − yi)
2

(11)

RMSE =
√√√√ 1

N

N∑
i=1

(ŷi − yi)
2 (12)
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Table III. Goodness and RMSE of fit of the fitting functions for X, Y, and Z axes static
admittance parameters.

Virtual mass Virtual damping Virtual stiffness

Axis R2 RMSE R2 RMSE R2 RMSE
X 0.9068 3.128 0.9166 4.138 0.9084 0.3866
Y 0.9191 3.109 0.9041 3.565 0.9394 0.5899
Z 0.9102 1.440 0.9316 1.466 0.9054 0.9388

Table IV. Goodness and RMSE of fit of the fitting function of change rates of X, Y, and
Z axes dynamic admittance parameters.

Virtual mass Virtual damping Virtual stiffness

Axis R2 RMSE R2 RMSE R2 RMSE
X 0.9213 2.794 0.9688 0.9537 0.9437 0.2794
Y 0.9924 2.082 0.9634 2.829 0.9958 0.8932
Z 0.9384 2.111 0.9639 1.394 0.9746 0.4452

where yi represents the actual value of the data, ŷi represents the fitted value of the data, ȳi represents the
mean value of the actual value of the data, and N represents the number of data. A value of R2 closer to
1 indicates a better fit, and a smaller RMSE indicates a smaller deviation between the fitted value and
the actual value.

The results of the goodness and RMSE of fit calculated for each fitting function are shown in Tables III
and IV. Tables III and IV show that the goodness of fit of the polynomial fitting function is all greater
than 0.9, and the maximum RMSE is 4.138, indicating that the fitting curve has a good fitting effect
and the degree of data dispersion is small. Therefore, the fitting curve can better represent the regularity
of data.

3.3. Determination of admittance parameters of the human arm
According to the definition of the static and dynamic admittance parameters, the dynamic admittance
parameter function can be obtained by adding the static admittance parameter function and change rate
function of the dynamic admittance parameters:

M(t) = Ms +
t∑
1

Ṁ(t) (13)

C(t) = Cs +
t∑
1

Ċ(t) (14)

K(t) = Ks +
t∑
1

K̇(t) (15)

where M(t) = diag[mx(t), my(t), mz(t)], Ms = diag[msx, msy, msz], C(t) = diag[cx(t), cy(t), cz(t)]; Cs =
diag[csx, csy, csz], K(t) = diag[kx(t), ky(t), kz(t)], Ks = diag[ksx, ksy, ksz], Ms, Cs, and Ks are functions of
interacting forces, which can be obtained from Eq. (9), Ṁ(t), Ċ(t), and functions of the change rate of
interaction force, which can be obtained from Eq. (10), and t is the motion time, in frames (1 s is equal
to 100 frames). In general, the three-axis admittance parameters of the human arm play a leading role
in the motion of the human arm [33]. Therefore, these admittance parameter matrices M, C, and K are
set as diagonal matrices [34].

https://doi.org/10.1017/S0263574723000383 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000383


Robotica 2165

Figure 4. Block diagram of human-like variable admittance control in the human–robot collaborative
motion system.

According to the expression of admittance parameters of the human arm, the human arm can adjust
the admittance parameters automatically and in real-time according to the change rate of interaction
force, thus ensuring compliance in the human–human collaborative motion.

4. Human-like variable admittance control of robot
4.1. Robot control architecture
Based on the analysis of the various rules of admittance parameters of the human–human collabora-
tive motion, the human–robot admittance control architecture is proposed, as shown in Fig. 4. In the
human–robot collaborative motion, the interaction force is measured by a force sensor, and the differ-
entiator obtains the change rate of interaction force. The human-like admittance parameter regulator
takes the interaction force and the change rate of interaction force as an input and outputs admittance
parameters matching the current human motion. The force measured by the force sensor and the admit-
tance parameter output by the human-like admittance parameter regulator serves as the input of the
human-like admittance controller. The human-like variable admittance controller can obtain the desired
position, desired velocity, and desired acceleration according to Eqs. (2), (3), and (4), respectively. The
robot’s current position, current velocity, and current acceleration are input into the robot together with
the desired position, desired velocity, and desired acceleration of the leader. The robot moves according
to the input information and returns the robot’s end position, velocity, and acceleration information in
real time.

4.2. Controllability and stability analysis
To facilitate the controllability and stability analysis of the system, Eq. (1) is written as a state-space
expression:

Ẋe = AXe + BF

Y = DXe

⎫⎬
⎭ (16)

where A =
[

0 I
−KM−1 −CM−1 − CM−1

]
, Xe = [Xe1 Xe2]

T , Xe1 = Xd−Xr, Xe2 = Ẋe1, B = [0 M−1]
T ,

D = [I 0]
T . For simplicity, M, C, K, and F are substituted for M(t), C(t), K(t), and F(t). The meanings

of M, C, K, and F are the same as those of M, C, K, and F in Eq. (1).
The controllability analysis. By the Popov–Belevitch–Hautus test [35], we have

Q = [
B AB

] =
[

0 M−1

M−1 −CM−1M−1

]
(17)

where Q is the controllability matrix.
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The necessary and sufficient condition for the system to be controllable is that Q is full rank.
Therefore, for Q to have full rank, M should satisfy:

rank(M) = 3 (18)

The stability analysis. Theorem 1: The condition of the system (14) BIBO (bounded input bounded
output) stability is the existence of a diagonal matrix W ∈ R6×6 (a positive definite matrix) and a real
constant γ ∈ R such that the following matrix inequality:

ATW + WA + 1

γ
WBBTW < 0 (19)

Let the Lyapunov function be:

V(t) = XT
e WXe (20)

The derivative with respect to V(t):

V̇(t) = ẊT

e WXe + XT
e WẊT

e

= (AXe + BF)TWXe + XT
e W(AXe + BF)

= XT
e (ATW + WA)Xe + FTBTWXe+XT

e WBF

= XT
e (ATW + WA)Xe + 2XT

e WBF (21)

According to Young inequality, there exists a positive constant γ , such that

V̇(t) ≤ XT
e (ATW + WA)Xe + 1

γ
XT

e WBBTWXe + γ FTF

= XT
e (ATW + WA + 1

γ
WBBTW)Xe + γ FTF (22)

Using above inequality conditions, we may find a small enough positive constant μ > 0, such that

V̇(t) ≤ −μXT
e WXe + γ FTF

≤ −μV(t) + γ FTF (23)

According to the comparison principle, we obtain

V(t) ≤ e−μtV(t0) + e−ut

∫ t

0

γ FTFeutdt

= e−μtV(t0) + e−ut( γ FTF
1

μ
eut

∣∣∣∣
t

0

)

= e−μt(V(t0) − 1

μ
γ FTF) + 1

μ
γ FTF

≤ e−μt(λmax(W) ‖Xe0‖ − 1

μ
γ FTF) + 1

μ
γ FTF (24)

From the definition of V(t), we have

λmin(W) ‖Xe‖ ≤ V(t) ≤ λmax(W) ‖Xe‖ (25)

where λmax(W) and λmin(W) are the largest and smallest eigenvalues of W , respectively.

‖Xe‖ ≤ e−μt

(
λmax(W)

λmin(W)
‖Xe0‖ − γ FTF

μλmin(W)

)
+ γ FTF

μλmin(W)
(26)

Since the interaction force exerted by humans on the robot cannot be increased infinitely, F(t) is
bounded. The boundness of ‖Xe‖ is obtained from the boundedness of F(t). Therefore, the stability
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Figure 5. The flow chart of automatic adjustment of human-like variable admittance parameter
regulator of the robot.

condition of the system (16) is that there exists positive definite W and normal γ for given M(t), C(t),
and K(t) at any time such that Eq. (19) holds. Therefore, the condition that the system (16) is controllable
and stable at every moment is that Eqs. (18) and (19) are both valid.

4.3. Human-like variable admittance parameter regulator
From the analysis in Section 3, it can be seen that the admittance parameters of followers in the human–
human collaborative motion change with interaction force and the change rate of interaction force. To
make robots collaborate with humans naturally and smoothly in human–robot collaborative motion, the
admittance parameter variation rule of the follower is applied to the admittance parameter regulator of
the robot. The flow chart of the automatic adjustment of the human-like variable admittance parameters
of the robot is shown in Fig. 5. The steps of the human-like variable admittance parameters adjustment
are as follows:

Step 1: Before the human–robot collaborative motion, the robot’s admittance parameters are static
when the robot is in standby state.

Step 2: When the end motion velocity of the robot is ∃i ∈ [1, 2, 3], Ẋr(i, 1) < 1 mm/s, this indicates
that the robot is in the motion preparation phase. According to the interaction force, the static admittance
parameters were obtained from Eq. (9), and the static admittance parameters were updated according to
the real-time change of the interaction force.

Step 3: When ∃i ∈ [1, 2, 3], Ẋr(i, 1) ≥ 1 mm/s, this indicates that the robot will be in a state of rapid
motion. The virtual mass, virtual damping, and virtual stiffness of the robot were updated according to
Eqs. (13), (14), and (15), respectively. Otherwise, return to step 2.
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Figure 6. Human–robot collaborative point-to-point motion experiment.

Step 4: To determine whether the updated admittance parameters meet the system stability conditions:
rank(M) = 3 and ATW + WA + 1

γ
WBBTW < 0.

Step 5: When the updated admittance parameters meet the stability conditions, the updated admit-
tance parameters are output to the human-like variable admittance controller. Otherwise, the admittance
parameter value of the last time (t − 1) is output to the human-like variable admittance controller.

Step 6: When ∃i ∈ [1, 2, 3], Ẋr(i, 1) < 1 mm/s indicates that the human–robot collaborative motion is
about to end. Otherwise, the admittance parameters are updated through steps 3−5.

5. Human–robot collaborative motion experiment
5.1. Experimental setup
A human–robot collaborative motion experimental system was designed to verify the effect of the
HVAPR, as shown in Fig. 6. The human–robot collaborative motion experimental system was mainly
composed of a epigynous machine (REN9000-28ICO, Lenovo, China), a 7-DOF (degree of freedom)
manipulator (robot LBR IIWA, KUKA, Germany), and a 6-dimensional force sensor (HEX-E, Onrobot,
Denmark) installed on the robot’s end-effector. The epigynous machine was mainly used to process the
data from the robot and the force sensor and output the robot motion command information. MATLAB
software was used to write data processing, control, communication programs, etc. The robot was mainly
used to execute motion commands from the epigynous machine and collaborate with humans to com-
plete tasks. Java language was used to write robot motion programs. Force sensor was mainly used to
measure the interaction force exerted by the human on the robot. The communication mode between
the epigynous machine and the force sensor was serial port communication. The communication mode
between the epigynous machine and the robot was TCP\IP communication. After 10,000 times of data
transfer time statistics, the average data transfer time between the epigynous machine and the robot and
the force sensor is 11.20 ms.
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The participant worked collaboratively with the robot by using a handle attached to a force sensor. The
force sensor collected the interaction force between the human and robot and transmitted the collected
force data to the robot. In Fig. 6, building blocks A and B are the starting point and target point of human–
robot collaborative point-to-point motion, and the blue cube is the position of the building block. The
starting point and target point of the human–robot collaborative motion can be changed by adjusting
the position and height of building blocks. The participant (leader) guided the robot (follower) from the
starting position along the desired path (the red dotted line in Fig. 6) to the vicinity of the target point
through interactive forces.

To assess the performance of the HVAPR, the HVAPR proposed in this paper and VAPR were applied
to the human–robot collaborative motion and the performance differences between the two admittance
parameter regulators were compared. The VAPR generally adjusts the admittance parameters according
to human arm EMG, motion velocity, or interaction force. This paper chose to adjust the admittance
parameters according to the human–robot collaborative motion velocity, and the equation is [17]⎡

⎢⎣
cx

cy

cz

⎤
⎥⎦ =

⎡
⎢⎣

Fs/|ẋ|
Fs/|ẏ|
Fs/|ż|

⎤
⎥⎦ (27)

where cx, cy, and cz are the virtual damping of the X-axis, Y-axis, and Z-axis, respectively; ẋ, ẏ, and ż are
the human–-robot collaborative actual motion velocities of the X-axis, Y-axis, and Z-axis, respectively.
According to Eq. (27), when the velocity is constant, the larger the Fs value, the greater the damping
and the greater the interaction force, so the human–robot collaborative motion is laborious. The smaller
the Fs value, the smaller the damping and the interaction force, but there are some problems, such as the
absence of large oscillation when the human–robot collaborative motion stops. Therefore, it is necessary
to perform the human–robot collaborative motion experiments under the condition of different values
of Fs and select the appropriate Fs values according to the feeling of the participants (the motion natu-
ralness, smoothness, stability, overall performance, etc.) and the quantitative evaluation of performance
(smoothness index and average energy). According to the experimental results, Fs = 3N.

5.2. Experiment task
To compare the performance differences of the two admittance parameter regulators, the human–robot
collaborative performance based on HVAPR and VAPR was assessed from the perspective of humans
and robots, respectively. This paper used a questionnaire to investigate participants’ feelings regarding
the human–robot collaborative motion to assess and compare the human–robot collaborative perfor-
mance qualitatively from the humans’ perspective. The smoothness of the robot’s trajectory, average
motion energy, and interaction force was analyzed, and the human–robot collaborative performance
was quantitatively assessed and compared from the robot’s perspective.

In the human–robot collaborative motion experiment, after completing a point-to-point motion,
each participant answered the questions in Table V according to the motion’s naturalness, smoothness,
stability, overall performance, etc. [12]. Questions 1–4 and 6 adopt 5-point Likert scale [36].

The possible responses of the participants to the different questions are shown in Table VI. The
semantic scale used for answering the six above questions was treated as a continuous scale since each
interval of the scale was of equal proportion. Therefore, the data collected from the first, second, third,
fourth, and sixth questions were treated as continuous measures [37].

Answers to the first question reflect how satisfied participants are with each human–robot collab-
orative motion. Questions 2–4 are a validation of the different dimensions of the answer to question
1. Answers to questions 1–4 showed a high level of internal consistency (each participant’s question
answered with a Cronbach’s α greater than 0.9).

Answers to the fifth question reflect whether participants can correctly distinguish between the two
admittance parameter regulators based on their feelings concerning the human–robot collaborative
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Table V. Questionnaire question table.

Questionnaire content
Question 1 According to the stationarity and path tracking ability of the human-robot

collaborative motion, the overall satisfaction degree of this human-robot
collaborative motion is obtained

Question 2 Do you think the human–robot collaborative motion is compliant?
Question 3 Are you satisfied with the human–robot collaborative motion path tracking?
Question 4 Do you think it’s a smooth stop?
Question 5 What admittance parameter regulators do you think the robot used in this

collaborative motion?
Question 6 How certain are you of the answer to question 5?

Table VI. Table of responses of participants to different questions.

1 2 3 4 5
Question 1 Very unsatisfied Unsatisfied General Satisfied Very satisfied
Question 2 Very uncompliant Uncompliant General Compliant Very compliant
Question 3 Very unsatisfied Unsatisfied General Satisfied Very satisfied
Question 4 Very unsmooth Unsmooth General Smooth Very smooth
Question 5 VAPR HVAPR
Question 6 Very uncertain Uncertain General Certain Very certain

motion. The high recognition ratio of admittance parameter regulators reflects that the two admittance
parameter regulators give different feelings to participants. Answers to the sixth question serve as a
confidence measure (recognition confidence) of responses to the fifth question, that is, the participants’
confidence in recognizing the robot admittance parameter regulator. The higher the recognition confi-
dence value is, the more confident the participants are in the admittance parameter regulator recognized
by themselves. The answers to questions 5 and 6 show the difference in the influence of these two
admittance parameter regulators on the human–robot collaborative motion.

Before the human–robot collaborative motion experiment, each participant underwent a prelim-
inary experiment to assess the difference between the two admittance parameter regulators. In the
human–robot collaborative motion experiment, the robot randomly selected one of the two admittance
parameter regulators to adjust the admittance parameters. The participants did not know which admit-
tance parameter regulator the robot adopted in each human–robot collaborative motion. To prevent
participants from excessively adapting to the robot motion state [38], participants’ correct assessment
of human–robot collaborative performance was affected. After completing a point-to-point motion
task, the robot’s current position was used as the starting point of the next point-to-point motion task.
The new target point was determined by randomly changing the placement position and height of the
building blocks, as shown in Fig. 6.

After each point-to-point motion experiment, each participant answered all the questions within 10 s.
Six participants participated in the human–robot collaborative motion experiment. The participants (all
males, with mean age = 27.5 ± 2.5 years, height = 174 ± 6 mm, and weight = 68.2 ± 4.8 kg) are right
handed and have no physical problems. Each participant performed 600 times of the human–robot col-
laborative point-to-point motion experiment, and the program was used to record the data of the robot’s
motion and interaction force. After each participant completed all the experiments, the overall satis-
faction of the human–robot collaborative motion experiment was assessed. Two volunteers counted all
participants’ answers to the questionnaire to ensure the accuracy of the data. The results showed that the
questionnaire data of six participants had a high level of internal consistency (Cronbach’s α = 0.915).

This paper selected the smoothness J of the motion trajectory and the average energy Pave as
the motion performance assessment indexes to quantitatively assess the human–robot collaborative
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Table VII. Satisfaction assessment results of the two admittance parameter regulators.

Very unsatisfied Unsatisfied General Satisfied Very satisfied
VAPR (%) 4.23 18.85 40.29 28.16 8.47
HVAPR (%) 2.37 12.39 20.32 49.08 15.85

performance. The smaller the J value, the better the motion stability. The lower the Pave value, the lower
the energy consumption, and the easier the motion. The smoothness index J and the average energy
Pave are, respectively, defined as [17, 24]:

J = 1

tf − t0

∫ tf

t0

...
x 2

r (t)dt (28)

Pave = 1

tf − t0

∫ tf

t0

|fx(t)ẋr(t)| dt (29)

where t0 and tf are the start time and end time, respectively.

5.3. Analysis of questionnaire survey results
The analysis of the questionnaire data shows that the answers to questions 1–4 have a high level of inter-
nal consistency. Questions 2–4 are responses to different dimensions of question 1. Therefore, only the
results of the answer to question 1 were shown. The satisfaction assessment results of all the participants
on the two admittance parameter regulators were obtained by statistical analysis of the answers to ques-
tion 1, as shown in Table VII. As shown in Table VII, the participants’ satisfaction with HVAPR is mainly
concentrated in the “general,” “satisfied,” and “very satisfied” categories, while satisfaction with VAPR
is mainly concentrated in the “unsatisfied,” “general,” and “satisfied” categories. Overall, participants
are more satisfied with HVAPR than with VAPR. HVAPR, which adjusts the admittance parameters
based on the change rate of interaction force, enables the robot to provide admittance parameters with a
good degree of matching to the current motion of the participant, thus resulting in better satisfaction in
the human–robot collaborative motion. Since HVAPR is extracted from the variation rules of the admit-
tance parameters in the human–human collaborative motion, the admittance parameters obtained cannot
fully match the motion of each participant, resulting in “unsatisfied” and “general” assessments.

The admittance parameters obtained by VAPR were poorly matched with participants’ current motion
state, resulting in poor overall satisfaction with the human–robot collaborative motion. According to the
participants’ assessment of the human–robot collaborative motion, when the admittance parameter regu-
lator was VAPR, if participants actively adjusted their motion state to adapt to the admittance parameter
regulation method, then the satisfaction regarding the human–robot collaborative motion was better.
Therefore, there are “satisfied” and “very satisfied” assessments in the human–robot collaborative satis-
faction survey. However, requiring participants to actively adjust their motion to adapt to VAPR is more
difficult.

The recognition ratio of participants regarding the two admittance parameter regulators was obtained
by statistical analysis of the answers to question 5, as shown in Table VIII. The ratio of the different
recognition confidence of the two admittance parameter regulators was obtained by statistical analy-
sis of the answers to question 6, as shown in Table IX. Table VIII shows that the recognition ratio of
each participant for the two admittance parameter regulators was between 70% and 90%. The recogni-
tion confidence in recognizing the two admittance parameter regulators was mainly concentrated in the
“certain” and “very certain” categories, as shown in Table IX. This indicates that the two admittance
parameter regulators gave participants different feelings, so the participants could confidently recognize
which admittance parameter regulator the robot used. Although the recognition ratio of the admittance
parameter regulator is relatively high, it is not close to 100%. The “uncertain” and “general” categories’
ratio in the recognition confidence survey is about 15%. This indicates that the two admittance parameter
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Table VIII. Recognition ratio of admittance parameter regulators for all participants.

Participant 1 2 3 4 5 6
VAPR (%) 76.15 69.19 89.26 90.25 89.09 82.14
HVAPR (%) 83.67 80.65 84.34 83.25 82.51 79.56

Table IX. Recognition confidence ratio of admittance parameter regulators.

Very uncertain Uncertain General Certain Very Certain
VAPR (%) 2.16 4.92 9.60 33.49 49.82
HVAPR (%) 2.32 4.20 13.50 40.01 39.96

Table X. Oscillation ratio, overshoot amount, and RMSE of human–robot collaborative motion.

Overshoot amount RMSE

Method Oscillation ratio (%) Mean (m) Std Mean (m/s) Std
VAPR 70.19 0.0589 0.0461 0.1100 0.0234
HVAPR 31.33 0.0275 0.0157 0.0582 0.0198

regulators gave participants similar feelings in some cases, so the robot admittance parameter regulator
could not be correctly recognized.

5.4. Analysis and assessment of human–robot collaborative motion performance
To evaluate the performance of the proposed HVAPR, the motion information of the X-axis of the robot
is taken as an example. The change curves of the robot’s end path (xr), the interaction force (fx), and the
actual velocity (ẋr) are shown in Fig. 7. For clarity and brevity, we show only representative experimental
results in Fig. 7. The oscillation ratio of the path near the target point and the RMSE between the actual
velocity and the minimum jerk model velocity (it is ideal velocity model of human arm terminal motion)
were calculated, and the results are shown in Table X.

When compared with the VAPR, the fx change curve of interaction force in Fig. 7 demonstrates that
the human–robot collaborative interaction force based on the HVAPR is smaller and changes stably.
According to the change curve of robot motion trajectory in Fig. 7(a), the robot motion trajectory
appears to obviously oscillate and overshoot when it is near the target point. The oscillation ratio of the
robot trajectory (the ratio of the experimental number of oscillations on the trajectory near the target
point to the total number of experiments) is 70.19%, and the average overshoot amount [the distance
between the maximum deviation value and the target point (Figs. 7a)] is 0.0589 m, as shown in Table X.
This led participants to view the robot as dangerous and thus to provide a “less satisfied” rating. This
is due to the poor degree of matching between the admittance parameters regulated by the VAPR and
the participant’s (leader) motion state. As shown in Fig. 7(a), the robot reached the target point in 4.5 s,
but the motion velocity remained high. According to Eq. (27), the damping was small at this time,
and the robot could not stop moving in time, resulting in the robot exceeding the target point (with
a large overshoot). To return to the vicinity of the target point, at 5 s, the participants applied a large
reverse interaction force to reverse the motion of the robot, resulting in an oscillating trajectory of the
robot. Although the human–robot collaborative motion trajectory based on a human-like admittance
parameter regulator also appears to oscillate, the oscillation ratio is only 31.33%, and the average
overshoot is 0.0275 m, as shown in Table X. This effectively improved the participants’ satisfaction
with the human–robot collaborative motion.
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Table XI. Average energy and smoothness of the human–robot collaborative motion.

Energy (Nm/s) Jerk (m/frame3)

Method Mean Std F p Mean Std F p
VAPR 4.59 1.06 F(1, 10) = 52.76 < 0.05 3.38E−5 1.13E−5 F(1, 10) = 22.03 < 0.05
HVAPR 2.79 0.86 2.27E−5 0.67E−5

Figure 7. Motion and interaction forces at the end of robots.

It can also be seen from Fig. 7 that the human–robot collaborative motion velocity curves based on
these two admittance parameter regulators show “bell-shaped” distribution rule, which conforms to the
characteristics of the minimum jerk model [39]. Therefore, the minimum jerk model was selected to
represent the ideal motion velocity curve. As shown in Table X, the human–robot collaborative motion
velocity of VAPR is significantly different from the minimum jerk model velocity, and the RMSE is
0.1100. The human–robot collaborative motion velocity of HVAPR has a small difference from the
minimum jerk model velocity and has a smaller RMSE (0.0582).

In conclusion, the velocity curve of the human–robot collaborative motion based on the HVAPR was
closer to that of the minimum jerk model than that of the VAPR. The HVAPR had a lower trajectory
oscillation ratio (31.33%), smaller average overshoot (0.0275 m), and smaller interaction force.

The motion performance of human–robot collaboration based on these two admittance parameter
regulators was quantitatively assessed using the aforementioned two motion performance assessment
indexes (Eqs. 28 and 29). The mean value and standard deviation of n (n = 3600) times the human–robot
collaborative motion assessment indexes were calculated, and the results are shown in Table XI.
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As seen in Table XI, HVAPR and VAPR have significant differences in average energy (F(1, 10) =
52.761 > 4.965, p < 0.05) and motion smoothness (F(1, 10) = 22.039 > 4.965, p < 0.05). HVAPR is
significantly superior to VAPR in average energy and smoothness, indicating that HVAPR can make
the robot move more smoothly and consume less energy in the human–robot collaborative motion.
Meanwhile, HVAPR has some advantages in terms of standard deviation (0.67E−5) of motion trajectory
smoothness and standard deviation (0.86) of average energy, indicating better repeatability of HVAPR.
Combined with the results of the previous questionnaire, it can be seen that in the human–robot collab-
orative motion, HVAPR can not only give participants a better collaborative experience but also make
the robot have better motion performance.

6. Conclusion
This paper proposes a human-like variable admittance control scheme, which applies the rules of human
followers’ admittance parameters. The study of the human–human collaborative motion shows that the
static admittance parameter of the follower is a function of the interaction force, and the change rate
of dynamic admittance parameter is a function of the change rate of interaction force. Based on this, a
HVAPR is designed so that the robot could adjust its admittance parameters by imitating the admittance
parameter adjustment method employed by the human’s arm. Human–robot collaborative point-to-
point motion experiments based on HVAPR and VAPR are designed. A questionnaire survey is used to
qualitatively assess and compare the human–robot collaborative performance from the participants’ per-
spectives. The human–robot collaborative performance is quantitatively assessed and compared using
the smoothness index and average energy index from the robot’s perspective. The experimental results
show that participants are more satisfied with the human–robot collaborative motion based on HVAPR
than with the human–robot collaborative motion based on VAPR. The interaction force, oscillation ratio,
overshoot, and average energy consumption of the human–robot collaborative motion based on HVAPR
are all smaller and the motion stability is better. Therefore, the admittance parameters generated by
the HVAPR match the human’s motion behavior more closely, thus ensuring the satisfaction of the
human–robot collaborative motion.

In future work, we will design a new experiment to study the variation rule of the follower’s admit-
tance parameter in human–human collaborative rotational motion. On this basis, a new human-like
admittance parameter regulator for rotational motion will be designed and applied together with a
human-like admittance parameter regulator for the translational motion to more complex human–robot
collaborative tasks. Meanwhile, more participants (including females) will participate in the change rule
research experiment of the admittance parameters and the verification experiment based on a HVAPR.
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