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On smooth perturbations of Chebyshëv
polynomials and ∂̄-Riemann–Hilbert
method
Maxim L. Yattselev

Abstract. ∂̄-extension of the matrix Riemann–Hilbert method is used to study asymptotics of the
polynomials Pn(z) satisfying orthogonality relations

∫
1

−1
x l Pn(x)

ρ(x)dx
√

1 − x2
= 0, l ∈ {0, . . . , n − 1},

where ρ(x) is a positive m times continuously differentiable function on [−1, 1], m ≥ 3.

1 Main results

In this note, we are interested in the asymptotic behavior of monic polynomials
Pn , i(x), deg(Pn , i) = n, dependent on a parameter i ∈ {1, 2, 3, 4}, satisfying orthog-
onality relations

∫
1

−1
x l Pn , i(x) ρ(x)∣v i (x)∣dx√

1 − x2
= 0, l ∈ {0, . . . , n − 1},(1.1)

where ρ(x) is a positive and smooth function on [−1, 1] and

v1(z) ≡ 1, v2(z) = z2 − 1, v3(z) = z + 1, and v4(z) = z − 1.

That is, Pn , i(z) are smooth perturbations of the Chebyshëv polynomials of the
ith kind. Besides polynomials themselves, we are also interested in the asymptotic
behavior of their recurrence coefficients. That is, numbers an , i ∈ [0, ∞) and bn , i ∈
(−∞, ∞) such that

xPn , i(x) = Pn+1, i(x) + bn , i Pn , i(x) + a2
n , i Pn−1, i (x).

To describe the results, let w(z) ∶=
√

z2 − 1 be the branch analytic inC/[−1, 1] such
that w(z)/z → 1 as z → ∞. The Szegő function of the weight ρ(x) is defined by

S(z) ∶= exp {w(z)
2πi ∫

1

−1

log ρ(x)
z − x

dx
w+(x)} , z ∈ C/[−1, 1],(1.2)
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On smooth perturbations of Chebyshëv polynomials 143

which is an analytic and nonvanishing function in the domain of its definition
satisfying

S+(x)S−(x) = ρ−1(x), x ∈ [−1, 1].(1.3)

Since ρ(x) is positive, it holds that S+(x) = S−(x) for x ∈ [−1, 1], and, utilizing the
full power of Plemelj–Sokhotski formulae, (1.3) can be strengthen to

√
ρ(x)S±(x) = e±iθ(x) , θ(x) ∶=

√
1 − x2

2π

⨏ 1

−1

log ρ(t)
t − x

dt√
1 − t2

,(1.4)

where
⨏

is the integral in the sense of the principal value. Further, let

φ(z) ∶= z + w(z)(1.5)

be the conformal map ofC/[−1, 1] ontoC/{z ∶ ∣z∣ ≥ 1} such that φ(z)/z → 2 as z → ∞.
One can readily verify that

φ±(x) = x ± i
√

1 − x2 = e±i arccos(x) , x ∈ [−1, 1].(1.6)

Finally, we explicitly define the Szegő functions of the weights ∣v i (x)∣. Namely, set

⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1(z) ∶≡ 1, S3(z) ∶= (φ(z)/(z + 1))1/2 ,

S2(z) ∶= φ(z)/w(z), S4(z) ∶= (φ(z)/(z − 1))1/2 ,
(1.7)

where the square roots are principal and one needs to notice that the images of
C/[−1, 1] under (z + 1)/φ(z) and (z − 1)/φ(z) are domains symmetric with respect
to conjugation whose intersections with the real line are equal to (0, 2) (so the square
roots are indeed well defined). These functions satisfy

S i+(x)S i−(x) = ∣S i±(x)∣2 = 1/∣v i (x)∣, x ∈ (−1, 1).(1.8)

Observe also that S1(∞) = 1, S2(∞) = 2, and S3(∞) = S4(∞) =
√

2. Moreover, one
can readily deduce from (1.6) and (1.8) that

S i±(x) = e±iθ i(x)
√

∣v i(x)∣
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ1(x) ∶≡ 0, θ2(x) ∶= arccos(x) − π
2 ,

θ3(x) ∶= 1
2 arccos(x), θ4(x) ∶= 1

2 arccos(x) − π
2 .

(1.9)

Recall that the modulus of continuity of a continuous function f (x) on [−1, 1] is
given by

ω( f ; h) ∶= max
∣x−y∣≤h , x , y∈[−1,1]

∣ f (x) − f (y)∣.

Theorem 1.1 Assume that ρ(x) is a strictly positive m times continuously differentiable
function on [−1, 1] for some m ≥ 3. Set

εn ∶= log n
nm ω ((1/ρ)(m); 1/n) .
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144 M. Yattselev

Then it holds for any i ∈ {1, 2, 3, 4} that

Pn , i(z) = (1 + O(εn)) (S i S)(z)
(S i S)(∞) ( φ(z)

2
)

n

uniformly on closed subsets of C/[−1, 1] and

Pn , i(x) =
cos (n arccos(x) + θ(x) + θ i (x)) + O(εn)

2n−1(S i S)(∞)
√

ρ(x)∣v i (x)∣

uniformly on [−1, 1]. Moreover, it also holds for any i ∈ {1, 2, 3, 4} that

an , i = 1/2 + O(εn) and bn , i = O(εn).

The above results are not entirely new. It is well known [18, Theorem 11.5] that per-
turbed first and second kind Chebyshëv polynomials can be expressed via orthogonal
polynomials on the unit circle with respect to the weight ρ( 1

2 (τ + 1/τ)). Then using
[17, Corollary 5.2.3], that in itself is an extension of ideas from [5], and Geronimus
relations, see [17, Theorem 13.1.7], one can show that

∑(n + 1)γ(∣an ,1 − 1/2∣ + ∣bn ,1∣) < ∞

for any γ ∈ (0, m − 1) and m ≥ 2, which is consistent with Theorem 1.1. What is novel
in this note is the method of proof. While the Baxter–Simon argument relies on
the machinery of Banach algebras, we follow the approach of Fokas et al. [11, 12]
connecting orthogonal polynomials to matrix Riemann–Hilbert problems and then
utilizing the nonlinear steepest descent method of Deift and Zhou [9]. The main
advantages of this approach are the ability to get full asymptotic expansions for
analytic weights of orthogonality [8, 15] and its indifference to positivity of such
weights [1, 2, 6]. However, here we deal with non-analytic densities by elaborating
on the idea of extensions with controlled ∂̄-derivative introduced by Miller and
McLaughlin [16] and adapted to the setting of Jacobi-type polynomials by Baratchart
and Yettselev [4].

2 Weight extension

Given r > 1, let Er ∶= {z ∶ ∣φ(z)∣ < r}. The boundary ∂Er is an ellipse with foci ±1.

Proposition 2.1 Let ρ(x) and εn be as in Theorem 1.1. For each r > 1 and n > 2m there
exists a continuous function �n ,r(z) = ln(z) + Ln ,r(z), z ∈ C, such that

�n ,r(x) = ρ−1(x), x ∈ [−1, 1],

where ln(z) is a polynomial of degree at most n satisfying

suppx∈[−1,1]∣ln(x)∣ ≤ C′ρ
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On smooth perturbations of Chebyshëv polynomials 145

for some constant C′ρ independent of n, while Ln ,r(z) and ∂̄Ln ,r(z) are continuous
functions in C supported by Er (in particular, Ln ,r(z) = 0 for z ∉ Er) and

∣∂̄Ln ,r(z)∣√
∣1 − z2∣

≤ C′′ρ
nεn

log n
, z ∈ Er

for some constant C′′ρ independent of n and r, where ∂̄ ∶= (∂x + i∂y)/2, z = x + iy.

Proof It follows from [14, Theorem 9] that for each n > 2m, there exists a polyno-
mial ln(z) of degree at most n such that

∣(ρ−1(x))(k) − l(k)
n (x)∣ ≤ Cm ,k(1 − x2) m−k

2 nk−m En−m ((ρ−1)(m))

for all x ∈ [−1, 1] and each k ∈ {0, . . . , m}, where Cm ,k is a constant that depends
only m and k and E j( f ) is the error of best uniform approximation on the interval
[−1, 1] of a continuous function f (x) by algebraic polynomials of degree at most j.
Furthermore, it was shown by Timan, see [14, Equation (3)], that

En−m( f ) ≤ C1ω ( f ;
√

1 − x2

n − m
+ 1

(n − m)2 ) ≤ C1ω ( f ; 2
n − m

)

≤ C1ω ( f ; 4
n

) ≤ 4C1ω ( f ; 1
n

)

for some absolute constant C1, where we used that n > 2m and ω( f ; 2h) ≤ 2ω( f ; h)
(in what follows, we understand that all constants C j might depend on ρ(x), but are
independent of n). Set

λn(x) ∶= ρ−1(x) − ln(x)√
1 − x2

, x ∈ [−1, 1].

It then holds that λn(x) is a continuous function on [−1, 1] that satisfies ∥λn∥ ≤
C3εn/ log n, where ∥ ⋅ ∥ is the uniform norm on [−1, 1]. Since m ≥ 3, it also holds that

λ′n(x) =
(ρ−1(x))′ − l ′n(x)

√
1 − x2

+ x ρ−1(x) − ln(x)√
(1 − x2)3

is a continuous function on [−1, 1] that satisfies ∥λ′n∥ ≤ C4nεn/ log n (this is exactly
the place where condition m ≥ 3 is used). Extend λn(x) by zero to the whole real
line. As the numerator of λn(x) together with its first and second derivatives vanishes
at ±1, λ′n(x) also extends continuously by zero to the whole real line. The following
construction is standard, see [10, Proof of Theorem 3.67]. Define

Λn(z) ∶= 1
∣y∣ ∫

∣y∣

0
λn(x + t)dt, z = x + iy,

which, due to continuity of λn(x), is a continuous function in C satisfying Λn(x) =
λn(x) on the real line and ∣Λn(z)∣ ≤ ∥λn∥ in the complex plane. Similarly,

∣∂x Λn(z)∣ = ∣ 1
∣y∣ ∫

∣y∣

0
λ′n(x + t)dt∣ ≤ ∥λ′n∥
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146 M. Yattselev

and the function ∂x Λn(z), which is given by the integral within the absolute value in
the above equation, is also continuous in C. Furthermore, we have that

∣∂y Λn(z)∣ = ∣ 1
y2 ∫

∣y∣

0
(λn(x + t) − λn(x + ∣y∣))dt∣

≤ ∥λ′n∥ ∫
∣y∣

0

∣y∣ − t
y2 dt = ∥λ′n∥

2
,

and is also a continuous function inC. Altogether, since ∂̄ = (∂x + i∂y)/2, it holds that
∂̄Λn(z) is a continuous function in C that satisfies ∣∂̄Λn(z)∣ ≤ ∥λ′n∥ in the complex
plane. Let ψr(z) be any real-valued continuous function with continuous partial
derivatives that is equal to one on [−1, 1] and is equal to zero in the complement of
Er . Define

Ln ,r(z) ∶= iw(z)Λn(z)ψr(z)
⎧⎪⎪⎨⎪⎪⎩

−1, Im(z) ≥ 0,
1, Im(z) < 0.

Since w±(x) = ±i
√

1 − x2 for x ∈ [−1, 1] and Λn(x) = 0 for x /∈ (−1, 1), it holds that
Ln ,r(z) is a continuous function in C that is supported by Er and is equal to
ρ−1(x) − ln(x) for x ∈ [−1, 1]. Furthermore, since ∂̄(Λn(z)ψn(z)) is continuous in
C and vanishes for z = x /∈ (−1, 1) while w+(x) = −w−(x) for x ∈ (−1, 1), ∂̄Ln ,r(z) is
also continuous in C. Moreover, it holds that

∣∂̄Ln ,r(z)∣ =
√

∣1 − z2∣ ∣∂̄(Λn(z)ψr(z))∣

≤ C5
√

∣1 − z2∣ (∣Λn(z)∣ + ∣∂̄Λn(z)∣)

≤ C6
√

∣1 − z2∣ nεn

log n
, z ∈ Er .

Finally, observe that polynomials ln(x) approximate ρ−1(x) on [−1, 1] and therefore
have uniformly bounded above uniform norms. The claim of the proposition now
follows by setting �n ,r(z) ∶= ln(z) + Ln ,r(z) for ln(z) and Ln ,r(z) as above. ∎

3 Proof of Theorem 1.1

3.1 Initial Riemann–Hilbert problem

Notice that the functions v i (x) and ∣v i (x)∣ are either equal to each other or differ
by a sign when x ∈ [−1, 1]. So, we can equally use v i(x) in (1.1) without changing the
polynomials Pn , i(x).

Denote by Rn , i(z) the function of the second kind associated with Pn , i(z). That is,

Rn , i(z) ∶= 1
2πi ∫

1

−1

Pn , i(x)
x − z

ρ(x)v i (x)dx
w+(x) ,(3.1)
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On smooth perturbations of Chebyshëv polynomials 147

which is a holomorphic function in C/[−1, 1]. It follows from Plemelj–Sokhotski
formulae, [13, Chapter I.4.2], that

Rn , i+(x) − Rn , i−(x) = Pn , i(x) ρ(x)v i (x)
w+(x) , x ∈ (−1, 1),

and, see [13, Chapter I.8.4], that

Rn , i(z) = O (∣z − a∣αa , i ) as C/[−1, 1] ∋ z → a ∈ {−1, 1},

where αa , i = 0 if v i(a) = 0 and αa , i = −1/2 otherwise. Moreover, we get from (1.1) that

Rn , i(z) = 1
mn , i zn + O ( 1

zn+1 ) as z → ∞

for some finite constant mn , i . Consider the following Riemann–Hilbert problem for
2 × 2 matrix functions (RHP-Y):
(a) Y(z) is analytic in C/[−1, 1] and lim

z→∞
Y(z)z−nσ3 = I;

(b) Y(z) has continuous traces on (−1, 1) that satisfy

Y+(x) = Y−(x)
⎛
⎝

1 ρ(x)v i(x)
w+(x)

0 1

⎞
⎠

; and

(c) Y(z) behaves like

Y(z) = O
⎛
⎝

1 ∣z − a∣αa , i

1 ∣z − a∣αa , i

⎞
⎠

as C/[−1, 1] ∋ z → a ∈ {−1, 1}.

The following lemma is well known [15, Theorem 2.4].

Lemma 3.1 RHP-Y is uniquely solvable by

Y(z) =
⎛
⎝

Pn , i(z) Rn , i(z)
mn−1, i Pn−1, i(z) mn−1, i Rn−1, i(z)

⎞
⎠

.(3.2)

3.2 Opening of the lens

Fix 1 < r < R and orient ∂ER clockwise. Set

X(z) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Y(z)
⎛
⎜
⎝

1 0

− w(z)�n ,r(z)
v i(z) 1

⎞
⎟
⎠

, in ER/[−1, 1],

Y(z), in C/ER ,

(3.3)

where �n ,r(z) is the extension of ρ−1(x) constructed in Proposition 2.1. Observe that

�n ,r(s) = ln(s), s ∈ ∂ER , and ∂̄�n ,r(z) = ∂̄Ln ,r(z), z ∈ Er ,

since Ln ,r(z) is supported by Er and ln(z) is analytic (in fact, is a polynomial).
It is trivial to verify that X(z) solves the following ∂̄-Riemann–Hilbert problem
(∂̄RHP-X):
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148 M. Yattselev

(a) X(z) is continuous in C/([−1, 1] ∪ ∂ER) and limz→∞ X(z)z−nσ3 = I;
(b) X(z) has continuous traces on (−1, 1) ∪ ∂ER that satisfy

X+(s) = X−(s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎝

0 ρ(s)v i(s)
w+(s)

− w+(s)
ρ(s)v i(s) 0

⎞
⎟
⎠

on s ∈ (−1, 1),

⎛
⎜
⎝

1 0
w(s)ln(s)

v i(s) 1

⎞
⎟
⎠

on s ∈ ∂ER ;

(c) X(z) has the same behavior near ±1 as Y(z), see RHP-Y(c); and
(d) X(z) deviates from an analytic matrix function according to

∂̄X(z) = X(z)
⎛
⎜
⎝

0 0

− w(z)∂̄Ln ,r(z)
v i(z) 0

⎞
⎟
⎠

.

One can readily verified that the following lemma holds, see [4, Lemma 6.4].

Lemma 3.2 ∂̄RHP-X and RHP-Y are simultaneously solvable and the solutions are
connected by (3.3).

3.3 Model Riemann–Hilbert problem

In this subsection we present the solution of the following Riemann–Hilbert problem
(RHP-N):
(a) N(z) is analytic in C/[−1, 1] and limz→∞ N(z)z−nσ3 = I;
(b) N(z) has continuous traces on (−1, 1) that satisfy

N+(x) = N−(s)
⎛
⎜
⎝

0 ρ(x)v i(x)
w+(x)

− w+(x)
ρ(x)v i(x) 0

⎞
⎟
⎠

; and

(c) N(z) has the same behavior near ±1 as Y(z), see RHP-Y(c).
Recall the definition of the functions S i (z) in (1.7). Define S∗(z) ∶= S i (z) when

i ∈ {1, 3} and S∗(z) ∶= iS i (z) when i ∈ {2, 4}. Then it follows from (1.8) that

S∗+(x)S∗−(x) = 1/v i (x), x ∈ (−1, 1).

Let S(z) and φ(z) be given by (1.2) and (1.5), respectively. It follows from (1.3) and
(1.6) that

(S∗Sφn)σ3
− (x)

⎛
⎜
⎝

0 ρ(x)v i(x)
w+(x)

− w+(x)
ρ(x)v i(x) 0

⎞
⎟
⎠

(S∗Sφn)−σ3
+ (x) =

⎛
⎝

0 1/w+(x)
−w+(x) 0

⎞
⎠
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On smooth perturbations of Chebyshëv polynomials 149

for x ∈ (−1, 1). It also can be readily verified with the help of (1.6) that

⎛
⎜
⎝

1 1
w+(x)

1
2φ+(x)

φ+(x)
2w+(x)

⎞
⎟
⎠

=
⎛
⎜
⎝

1 1
w−(x)

1
2φ−(x)

φ−(x)
2w−(x)

⎞
⎟
⎠

⎛
⎝

0 1/w+(x)
−w+(x) 0

⎞
⎠

for x ∈ (−1, 1). Therefore, RHP-N is solved by N(z) = CM(z), where

C ∶= (2n S∗S)−σ3 (∞) and M(z) ∶=
⎛
⎜
⎝

1 1
w(z)

1
2φ(z)

φ(z)
2w(z)

⎞
⎟
⎠

(S∗Sφn)σ3 (z).(3.4)

3.4 Analytic approximation

To solve ∂̄RHP-X, we first solve its analytic version. That is, consider the following
Riemann–Hilbert problem (RHP-A):
(a) A(z) is analytic in C/([−1, 1] ∪ ∂ER) and limz→∞ A(z)z−nσ3 = I and
(b,c) A(z) satisfies ∂̄RHP-X(b,c).

Lemma 3.3 For all n large enough there exists a matrix Z(z), analytic in C/∂ER and
satisfying

Z(z) = I + O (R−n
∗ )

uniformly in C for any r < R∗ < R, such that A(z) = CZ(z)M(z) solves RHP-A.

Proof Assume that there exists a matrix Z(z) that is analytic in C/∂ER , is equal to
I at infinity, and satisfies

Z+(s) = Z−(s)M(s)
⎛
⎜
⎝

1 0
w(s)ln(s)

v i(s) 1

⎞
⎟
⎠

M−1(s), s ∈ ∂ER .

It can be readily verified that A(z) = CZ(z)M(z) solves RHP-A. To show that such
Z(z) does indeed exist, observe that

det M(z) = φ(z)
2w(z) − 1

2φ(z)w(z) ≡ 1

in the entire complex plane and that

v i(z)S2
∗(z) = (−1)i−1φk i (z), z /∈ [−1, 1],

straight by the definition of S i (z) in (1.7), where k1 = 0, k2 = 2, and k3 = k4 = 1. Thus,

M(s)
⎛
⎜
⎝

1 0
w(s)ln(s)

v i(s) 1

⎞
⎟
⎠

M−1(s) = I + (−1)i−1 ln(s)
w(s)S2(s)φ2n+k i (s)

⎛
⎝

1
2 φ(s) −1

1
4 φ2(s) − 1

2 φ(s)
⎞
⎠

(3.5)

for s ∈ ∂ER . It follows from the very definition of ER that ∣φ(s)∣ = R for s ∈ ∂ER .
Moreover, since deg(ln) ≤ n and the uniform norms on [−1, 1] of these polynomials
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150 M. Yattselev

are bounded by C′ρ , see Proposition 2.1, it holds that

∣ln(s)∣ ≤ C′ρ ∣φ(s)∣n = C′ρ Rn , s ∈ ∂ER ,

by the Bernstein–Walsh inequality. Hence, we can conclude that the jump of Z(z)
on ∂ER can be estimated as I + O(R−n). It now follows from [7, Theorem 7.18 and
Corollary 7.108] that such Z(z) does exist, is unique, and has continuous traces on ∂ER
whose L2-norms with respect to the arclength measure are of size O(R−n). This yields
the desired pointwise estimate of Z(z) locally uniformly in C/∂ER . Next, observe
that the jump of Z(s) is analytic around ∂ER and therefore we can vary the value of
R. Since the solutions corresponding to different values of R are necessarily analytic
continuations of each other, the desired uniform estimate follows from the locally
uniform ones for any fixed R∗ < R and R′ > R. ∎

3.5 An auxiliary estimate

Denote by dA the area measure and by K the Cauchy area operator acting on
integrable functions on C, i.e.,

K f (z) = 1
π ∬

f (s)
z − s

dA.(3.6)

Lemma 3.4 Let u(z) be a bounded function supported on Er . Then

∥K(u∣φ∣−2n)∥ ≤ Cr
log n

n
∥u∥,

where ∥ ⋅ ∥ is the essential supremum norm and the constant Cr is independent of n.

Proof Observe that the integrand is a bounded compactly supported function and
therefore its Cauchy area integral is Hölder continuous in C with any index α < 1, see
[3, Theorem 4.3.13]. Moreover, since the integral is analytic in C/Er , the maximum of
its modulus is achieved on Er . Notice also that it is enough to prove the claim of the
lemma only for u(z) = χEr (z), the indicator function of Er .

Let z ∈ Er . Observe that φ(s) = τ when s = 1
2 (τ + 1/τ). Write z = 1

2 (ξ + 1/ξ). Then

∣K( χEr

∣φ∣2n ) (z)∣ ≤ 1
π ∬

Er

1
∣z − s∣

dA
∣φ(s)∣2n

= 1
π ∬

1<∣τ∣<r

∣τ2 − 1∣2
∣(ξ − τ)(1 − 1/(τξ))∣

dA
∣τ∣2n+4 .

Partial fraction decomposition now yields

∣K( χEr

∣φ∣2n ) (z)∣ ≤ 1
π ∬

1<∣τ∣<r
∣ ξ
τ − ξ

+ τ
τ − 1/ξ

∣ ∣τ2 − 1∣
∣τ∣2n+4 dA

≤ 2r3

π ∬
1<∣τ∣<r

( 1
∣τ − ξ∣ + 1

∣τ − 1/ξ∣ )
dA

∣τ∣2n+4 .
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Write τ = ρe iθ and ξ = ρ∗e iθ∗ . Then

∣τ − ξ∣ =
√

(ρ − ρ∗)2 + 4ρρ∗ sin2 ( θ − θ∗
2

)

≥ 1√
2

(∣ρ − ρ∗∣ + √ρρ∗ ∣2 sin ( θ − θ∗
2

)∣)

≥ C(∣ρ − ρ∗∣ + ∣θ − θ∗∣)

for some constant C < 1/
√

2, where on the last step we used inequalities ρρ∗ ≥ 1 and
min[−π/2,π/2] ∣ sin x/x∣ > 0. Since ρ/ρ∗ ≥ 1/r, the constant C can be adjusted so that

∣τ − 1/ξ∣ ≥ C(∣ρ − 1/ρ∗∣ + ∣θ + θ∗∣) ≥ C(∣ρ − ρ∗∣ + ∣θ + θ∗∣)

is true as well. By going to polar coordinates and applying the above estimates we get
that

∣K( χEr

∣φ∣2n ) (z)∣ ≤ 4r3

πC ∫
r

1
(∫

π

0

dθ
∣ρ − ρ∗∣ + θ

) dρ
ρ2n+3

= 4r3

πC
(∫

I1
+ ∫

I2
) log (1 + π

∣ρ − ρ∗∣ )
dρ

ρ2n+3 =∶ S1 + S2 ,

where I1 = (1, r) ∩ {ρ ∶ ∣ρ − ρ∗∣ < π/n} and I2 = (1, r)/I1. Then

S1 ≤ 8r3

πC ∫
π/n

0
log (1 + π

ρ
) dρ = 8r3

C ∫
∞

n+1

log tdt
(t − 1)2

= 8r3

C
( log(n + 1)

n
+ ∫

∞

n+1

dt
t(t − 1) ) ≤ 8r3

C
log(n + 1) + 1

n
.

Finally, it holds that

S2 ≤ 8r3 log(n + 1)
πC ∫

∞

1

dρ
ρ2n+3 = 4r3

πC
log(n + 1)

n + 1
,

which finishes the proof of the lemma. ∎

3.6 ∂̄-Problem

Consider the following ∂̄-problem (∂̄P-D):
(a) D(z) is a continuous matrix function on C and D(∞) = I and
(b) D(z) satisfies ∂̄D(z) = D(z)W(z), where

W(z) ∶= Z(z)M(z)
⎛
⎝

0 0

−w(z)∂̄Ln ,r(z)/v i(z) 0
⎞
⎠

M−1(z)Z−1(z).

Notice that W(z) is supported by Er and therefore D(z) is necessarily analytic in
the complement of Er .
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Lemma 3.5 The solution of ∂̄P-D exists for all n large enough and it holds uniformly
in C that

D(z) = I + O(εn).

Proof As explained in [4, Lemma 8.1], solving ∂̄P-D is equivalent to solving an
integral equation

I = (I − KW )D(z)

in the space of bounded matrix functions on C, where I is the identity operator
and KW is the Cauchy area operator (3.6) acting component-wise on the product
m(s)W(s) for a bounded matrix function m(z). If ∣∣∣KW ∣∣∣, the operator norm of KW ,
is less than 1 − ε, ε ∈ (0, 1), then (I − KW )−1 exists as a Neumann series and

D(z) = (I − KW )−1I = I + Oε(∣∣∣KW ∣∣∣)

uniformly in C (it also holds that D(z) is Hölder continuous in C). It follows from
Lemma 3.4 that to estimate ∣∣∣KW ∣∣∣, we need to estimate L∞-norms of the entries of
W(z). To this end, similarly to (3.5), we get that

W(z) = (−1)i ∂̄Ln ,r(z)
w(z)S2(z)φ2n+k i (z) Z(z)

⎛
⎝

1
2 φ(z) −1

1
4 φ2(z) − 1

2 φ(z)
⎞
⎠

Z−1(z), z ∈ Er .

Using Proposition 2.1 and Lemma 3.3 we can conclude that entries of W(z) are
continuous functions on C supported by Er with absolute values bounded above by
Cρ ∣φ(z)∣−2n nεn/ log n for some constant Cρ independent of n. Hence, ∣∣∣KW ∣∣∣ = O(εn)
as claimed. ∎

3.7 Asymptotic formulae

It readily follows from RHP-A and ∂̄P-D as well as Lemmas 3.3 and 3.5 that ∂̄RHP-X
is solved by

X(z) = CD(z)Z(z)M(z).

Given a closed set B ⊂ C/[−1, 1], we can choose r and R so that ER ∩ B = ∅. Then it
holds that Y(z) = X(z) for z ∈ B by (3.3). Write

D(z)Z(z) = I +
⎛
⎝

υn1(z) υn2(z)
υn3(z) υn4(z)

⎞
⎠

.

It follows from Lemmas 3.3 and 3.5 that ∣υn j(z)∣ = O(εn) uniformly in C and that
υn j(∞) = 0. Then we get from (3.2) and (3.4) that

Pn(z) = (1 + υn1(z) + υn2(z)
2φ(z) ) (S∗S)(z)

(S∗S)(∞) ( φ(z)
2

)
n

, z ∈ B.
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Since S∗(z)/S∗(∞) = S i (z)/S i (∞), the first claim of the theorem follows. Next,
notice that the first column of Y(z) is entire and is equal to the first column of

X+(x)
⎛
⎝

1 0

w+(x)/(ρ(x)v i (x)) 1
⎞
⎠

for x ∈ [−1, 1] by (3.3) and Proposition 2.1. Since the functions υni(z) are continuous
across [−1, 1] and S∗±(x)/S∗(∞) = S i±(x)/S i (∞), we deuce from (1.3), (1.6), (1.8),
and (3.4) that

Pn(x) = (1 + υn1(x)) (S i Sφn)+(x) + (S i Sφn)−(x)
2n(S i S)(∞) +

υn2(x) (S i Sφn−1)+(x) + (S i Sφn−1)−(x)
2n+1(S i S)(∞)

for any x ∈ [−1, 1]. It now follows from (1.4), (1.6), and (1.8) that

(S i Sφk)+(x) + (S i Sφk)−(x) =
2 cos (k arccos(x) + θ(x) + θ i (x))

√
ρ(x)∣v i (x)∣

, x ∈ [−1, 1].

The last two formulae now yield the second claim of the theorem. Finally, it is known,
see [15, Equations (9.6) and (9.7)], that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a2
n , i = lim

z→∞
z2[Y(z)]12[Y(z)]21 ,

bn , i = lim
z→∞

(z − Pn+1, i(z)[Y(z)]22),

where Y(z) corresponds to the index n. As in the first part of the proof, we get that

[Y(z)]12 = [X(z)]12 = 1
w(z)

1 + υn1(z) + υn2(z)φ(z)/2
2n(S∗S)(∞)(S∗S)(z)φn(z)

and

[Y(z)]21 = [X(z)]21 = (υn3(z) + 1 + υn4(z)
2φ(z) ) 2n(S∗S)(∞)(S∗S)(z)φn(z)

for all z large. Since υn j(∞) = 0, it holds that

a2
n , i = 1

4
+ lim

z→∞
zυn3(z)(1 + zυn2(z)) = 1

4
+ O(εn)

by the maximum modulus principle for holomorphic functions. Similarly, we have
that

[Y(z)]22 = [X(z)]22 = (υn3(z) + 1
2

(1 + υn4(z))φ(z)) 1
w(z)

2n(S∗S)(∞)
(S∗S)(z)φn(z)
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for all z large. Hence,

Pn+1, i(z)[Y(z)]22 = φ2(z)
4w(z) (1 + υn+11(z) + υn+12(z)

2φ(z) ) (1 + υn4(z) + 2 υn3(z)
φ(z) )

in this case. It can be readily verified that

φ2(z)
4w(z) = z + z

2w(z)(z + w(z)) − 1
4w(z) = z + O ( 1

z
) ,

as z → ∞. Therefore,

bn , i = − lim
z→∞

z(υn+11(z) + υn4(z)) = O(εn)

again, by the maximum modulus principle for holomorphic functions. This finishes
the proof of the theorem.
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