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Abstract
We show that for every n ∈N and log n≤ d < n, if a graphG hasN = �(dn) vertices and minimum degree
(1+ o(1)) N

2 , then it contains a spanning subdivision of every n-vertex d-regular graph.
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1. Introduction
One of the central questions in extremal graph theory consists of determining degree conditions
forcing the containment of rich substructures. One of the most notable examples here is Dirac’s
theorem [5] from 1952, which states that every graph on n≥ 3 vertices and minimum degree at
least n

2 contains a Hamilton cycle. This result has been highly influential in extremal graph theory
for more than 70 years, leading to a large collection of results usually referred to as Dirac-type
results. Roughly speaking, the Dirac problem for a family of graphs F asks for the minimum
degree threshold which forces the containment of all members of F .

Definition 1.1. For an n-vertex host graph G and a family F of graphs on at most n vertices, the
minimum degree threshold for containing F is

δ(n,F)=min{m : δ(G)≥m implies F ⊆G for every F ∈F}.
Due to the emergence of sophisticated embedding techniques in the last few decades, the Dirac
problem is nowadays well-understood for a large class of graphs. For instance, the family of
n-vertex trees with maximum degree o(n/ log n) has minimum degree threshold (1+ o(1))n2
(see [14, 17]), as conjectured by Bollobás [2] in the late 70s. For n divisible by d, the threshold
for containing a Kd-factor is (1− 1/d)n as shown by Hajnal and Szemerédi [11]. For a general
graphH, the minimum degree threshold for the containment of a perfect H-tiling was determined
(up to a constant additive term) by Kühn and Osthus [22] (see [16, 30] for the threshold of almost
perfect tilings and [12] for a recent result onmixed tilings). The threshold for powers of Hamilton
cycles was determined by Komlós et al. [18, 19], proving the celebrated Pósa–Seymour conjecture
for large graphs (see [29] for example). A breakthrough in the area was the proof of the Bollobás–
Komlós bandwidth conjecture [15] by Böttcher et al. [4], which asymptotically establishes the
minimum degree threshold for the class of bounded degree n-vertex graphs with bounded chro-
matic number and sublinear bandwidth. For a more extensive revision of Dirac-type problems,
we recommend looking at the excellent surveys [21, 31].
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In this paper, we investigate Dirac-type problems for subdivisions of graphs. Given a graph H,
say a graph H′ is an H-subdivision if H′ is obtained from H by replacing one or more edges from
H with vertex-disjoint paths. Very recently, Lee [23] determined the minimum degree threshold
for the containment of a perfect H-subdivision tiling, that is, a collection of vertex-disjoint subdi-
visions of H covering every vertex in the host graph. In this article, we will continue this study by
investigating the minimum degree threshold of certain spanning graph subdivisions.

Problems regarding degree conditions forcing the containment of subdivisions have been
extensively studied since the 60s, when Mader [27] proved that graphs with large average degree
contain clique subdivisions. Independently, Mader [27] and Erdős andHajnal [7] conjectured that
graphs with average degree �(k2) contain a subdivision of the clique on k vertices, which is opti-
mal as the complete bipartite graph with parts of size k2

16 cannot contain a subdivision of Kk, the
complete graph on k vertices. This conjecture was solved in the 90s by Bollobás and Thomason
[3] and by Komlós and Szemerédi [20]. Two variations of this conjecture have been proposed:

• Thomassen’s conjecture [32]: For each k ∈N, there exists some d = d(k) such that every
graph with average degree at least d contains a balanced1 subdivision of Kk.

• Verstraëte’s conjecture [33]: If G is a graph with average degree at least �(k2), then G
contains a pair of disjoint isomorphic subdivisions of Kk.

These two conjectures have been recently solved. Firstly, Thomassen’s conjecture was solved
by Liu and Montgomery [25] in their recent solution of the Erdős–Hajnal odd cycle problem [8].
Secondly, Luan et al. [26] and Gil Fernández et al. [9] showed that graphs with average degree
�(k2) contain two pairwise disjoint isomorphic balanced subdivisions of Kk, settling Verstraëte’s
conjecture and also giving optimal bounds for Thomassen’s conjecture. Note that for dense
graphs, the above-mentioned results imply that every n-vertex graph with �(n2) edges contains
a balanced subdivision of a clique on �(

√
n) vertices. Answering an old question of Erdős [6],

Alon et al. [1] (see also [10]) showed that every n-vertex graph with at least εn2 edges contains a
1-subdivision2 of the clique on ε

√
n/4 vertices. In particular, if an n-vertex graph G has minimum

degree δ(G)≥ n
2 , then it has at least 1

4n
2 edges and thus contains a 1-subdivision of the clique of

size
√
n/16.

Our first result is that we can embed a spanning subdivision of a clique in graphs withminimum
degree slightly above Dirac’s condition.

Theorem 1.2. For every ε > 0, there exists a positive constant C0 such that for all C ≥ C0 and
n≥ 2 the following holds. Let G be a graph on N = C(n− 1)n vertices and minimum degree δ(G)≥
(1+ ε)N2 . Then, G contains a spanning subdivision of Kn.

The constant 1
2 in the minimum degree condition in Theorem 1.2 is essentially best possible,

as shown by considering the graph consisting of two disjoint cliques of size C
(n
2
)
. Moreover,

Theorem 1.2 is a direct consequence of the following more general result about subdivisions of
d-regular graphs.

Theorem 1.3. For every ε > 0, there exists a positive constant C0 such that for all C ≥ C0 and n≥ 2
the following holds. Let log n≤ d < n and let G be a graph onN = Cdn vertices andminimum degree
δ(G)≥ (1+ ε)N2 . Then, G contains a spanning subdivision of every n-vertex d-regular graph.

1A balanced subdivision of a graph H is an H-subdivision where all the edges of H are replaced with paths of the same
length.

2For � ∈N, an �-subdivision of a graph H is an H-subdivision where each edge of H is replaced with a path with exactly �

interior vertices.
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The proof of Theorem 1.3 is probabilistic in nature and avoids any use of the regularity lemma. In
particular, we can pick the constant C0 in Theorem 1.3 to be of order C0 =O(ε−4) instead of being
of tower-type. Also, from the proof of Theorem 1.3, we can embed a balanced subdivision covering
all but a linear proportion of the vertices of the host graph. Thus, by randomly partitioning the
vertex set into k ∈N subsets of roughly the same size, one can find k vertex-disjoint isomorphic
balanced subdivisions covering all but a linear proportion of the vertices.

2. Proof
2.1. Notation
For a graph G, we let V(G) and E(G) denote its vertex set and edge set, respectively, and we write
|G| = |V(G)|. The neighbourhood of a vertex x, denotedN(x), is the set of vertices that are adjacent
to x, and we write d(x)= |N(x)| for the degree of x. The minimum degree of G is denoted δ(G).
Also, for a vertex x ∈V(G) and a subset U ⊂V(G), we write N(x,U) for the set of neighbours of
x in U and let d(x,U)= |N(x,U)| denote the degree of x into U. Given a set A⊂V(G), we denote
by G[A] the graph induced by A, and, for disjoint subsets A, B⊂V(G), we let G[A, B] denote the
bipartite graph induced by A and B. When working with more than one graph, we use subscripts
to explicit which graph are we working with, for instance, dH(x) denotes the degree of a vertex x
in the graph H.

A path P is an ordered sequence of distinct vertices P = u1 . . . ut+1 such that uiui+1 is an
edge for each i ∈ [t], in which case we say that P has length t, endpoints u1 and ut+1, and inte-
rior u2, . . . , ut . For vertices x and y, an x, y-path is a path with endpoints x and y. For a path
P = v1 . . . vt , we let P
 = vt . . . v1 denote the path P traversed in reverse order. For an H-
subdivision H′, we say that a vertex v ∈V(H′) is a branch vertex if it is the copy of some vertex
from H.

As usual, [n] denotes the set of the first n positive integers. Also, we use standard hierarchy
notation, that is, we write a� b to denote that given b one can choose a sufficiently small so that
all relevant statements hold.

2.2. Probabilistic tools
Let N,m, n ∈N satisfy m, n≤N, let J be a set of size N and let I ⊂ J be a subset of size m. If
a subset I′ ⊂ J is chosen uniformly at random amongst all subsets of size n, then the random
variable X = |I ∩ I′| is said to have a hypergeometric distribution with parameters N, n, andm. For
example, for a graph G and a vertex v ∈V(G), if we pick a random subsetU ⊂V(G) of size �, then
d(v,U) is a hypergeometric random variable with parameters N′ = |G|, n′ = � and m′ = d(v). We
will use the following standard concentration result for hypergeometric random variables.

Lemma 2.1 (Theorem 2.10 in [13]). Let X be a hypergeometric random variable with parameters
n,m, and N. Then, for every t > 0,

P
(∣∣X −E[X]

∣∣≥ t
)≤ 2e−2t2/n.

Definition 2.2. Let H be a graph with vertex set V(H)= [t]. An (H, α)-good partition of a graph G
is a vertex partition V(G)=V1 ∪ . . . ∪Vt which satisfies the following properties.

(i) m= |V1| = · · · = |Vt|.
(ii) δ(G[Vi])≥ αm for all i ∈ [t].
(iii) δ(G[Vi,Vj])≥ αm for all i, j ∈ [t] such that ij ∈ E(H).

We now show that a randomly chosen partition is likely to be good when the host graph has linear
minimum degree.
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Lemma 2.3. Let 1/C � δ < α and n≥ 2. Suppose log n≤ d < n and that G is a graph on N = Cdn
vertices and minimum degree δ(G)≥ αN. Then, for every d-regular graph H on n vertices, G admits
an (H, α − δ)-good partition.

Proof. LetV(G)=V1 ∪ . . . ∪Vn be a random partition ofV(G) into sets of size Cd. Then, for any
vertex v ∈V(G) and index i ∈ [n], d(v,Vi) follows a hypergeometric distribution with parameters
N′ =N, n′ = |Vi| andm′ = d(v), and has expectation

E[d(v,Vi)]= d(v) · |Vi|
N

≥ αCd.

Then, from Lemma 2.1, we have

P(d(v,Vi)≤ (α − δ)Cd)≤ 2e−2δ2Cd.

Therefore, using the union bound and that H is d-regular, we have

P((V1, . . . ,Vn) is not (H, α − δ)-good)≤ 2|G| · d · 4e−2δ2Cd ≤ 2Cn3e−2δ2C log n < 1. �
Lemma 2.4. Let 1/C � δ < α and d ∈N, and suppose G is a graph on N = Cd vertices and min-
imum degree δ(G)≥ αN. Then, for every set of distinct vertices v0, v1, . . . , vd ∈V(G), there is a
partition V(G) \ {v0, v1, . . . , vd} =V1 ∪ . . . ∪Vd such that

(i) |V1| = · · · = |Vd−1| = C − 1 and |Vd| = C − 2,
(ii) d(v0,Vi)≥ (α − δ)|Vi| and d(vi,Vi)≥ (α − δ)|Vi| for all i ∈ [n], and
(iii) δ(G[Vi])≥ (α − δ)C for all i ∈ [n].

Proof. Set m1 = · · · =md−1 = C − 1 and md = C − 2. We start by dividing [d] into a collection
of subintervals that we will use as a guide for constructing our partition. Let I0,1 = [d] and let s≥ 0
be minimal integer such that 2s−1 < d ≤ 2s. Iteratively, for 0≤ i< s and 1≤ j≤ 2i, we partition
Ii,j into intervals Ii+1,2j−1 and Ii+1,2j such that

∣∣|Ii+1,2j−1| − |Ii+1,2j|
∣∣≤ 1. Note that at each step

Ii,j is divided into two subintervals of length roughly |Ii,j|/2 and thus, after i steps, [d] is divided
into 2i subintervals of length approximately d/2i. Furthermore, as

∣∣|Ii+1,2j−1| − |Ii+1,2j|
∣∣≤ 1 for

all 0≤ i< s and 1≤ j≤ 2i, by definition of s each Is−1,�, for � ∈ [2s−1], is either a singleton or
contains exactly 2 elements.

Set V0,1 =V(G) \ {v0, v1, . . . , vd}. Iteratively, for 0≤ i< s and 1≤ j≤ 2i, partition Vi,j uni-
formly at random into sets Vi+1,2j−1 and Vi+1,2j such that

|Vi+1,2j−1| =
∑

�∈Ii+1,2j−1

m� and |Vi+1,2j| =
∑

�′∈Ii+1,2j

m�′ .

This is possible as Ii,j = Ii+1,2j−1 ∪ Ii+1,2j and |Vi,j| =∑
�∈Ii,j m�. Let J ⊂ [2s−1] be the set of

those indices j ∈ [2s−1] such that Is−1,j is a singleton. Let t = |J| and note that 0≤ t < 2s−1, as
2s−1 < d ≤ 2s. After relabelling the indices, we may assume that [2s−1] \ J = [2s−1 − t]. At step
s, for each 1≤ j≤ 2s−1 − t we partition Vs−1,j uniformly at random into sets Vs,2j−1 and Vs,2j
such that

∣∣|Vs,2j−1| − |Vs,2j|
∣∣≤ 1, and, noting that d = 2s − t, for each 2s−1 − t < j′ ≤ 2s−1 we set

Vs,2s−1−t+j′ =Vs−1,j′ . For 0≤ i< s and 1≤ j≤ 2i, let Yi,j denote the event where the following
three properties hold:

A1 δ(G[Vi,j])≥ (α − 2|Vi,j|−1/4)|Vi,j|.
A2 d(v0,Vi,j)≥ (α − 2|Vi,j|−1/4)|Vi,j|.
A3 d(v�,Vi,j)≥ (α − 2|Vi,j|−1/4)|Vi,j| for all � ∈ Ii,j.
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For j ∈ [d], let Ys,j denote the event where A1, A2 and the following hold:

A4 d(vj,Vs,j)≥ (α − 2|Vs,j|−1/4)|Vs,j|.
For 0≤ i≤ s, let Yi be the event where Yi,j holds for all 1≤ j≤min{2i, d}. �

Claim 2.5. For all 1≤ i≤ s, P(Yi |Yi−1)≥ exp (− 2i−1).

Before proving Claim 2.5, let us show how to conclude the proof. We observe that if Ys holds,
then we would have found the required partition. Indeed, after a relabelling of the indices, each set
Vs,j has size exactlymj and A1–A4 imply that (i)–(iii) hold, as 1/mj � δ. Therefore, it is enough to
show that Ys occurs with positive probability. Noting that Y0 holds with probability 1, as δ(G)≥
αN, from Claim 2.5 we have

P(Ys)≥
s∏

i=1
P(Yi |Yi−1)≥ exp

(
−

s∑
i=1

2i−1

)
≥ e−2d,

which finishes the proof. It is left only to prove Claim 2.5.

Proof of Claim 2.5. Let 1≤ i< s and suppose that we have chosen our partition V(G)=⋃
j∈[2i−1] Vi−1,j for which Yi−1 holds. In what follows, all probabilities and expectations are

conditioned on Yi−1. Let 1≤ j≤ 2i−1. For a vertex v ∈Vi−1,j, observe that d(v,Vi,2j) follows
a hypergeometric distribution with parameters N′ = |Vi−1,j|, n′ = |Vi,2j| and m′ = d(v,Vi−1,j).
Then, assuming Yi−1 and hence Yi−1,j, from A1 we deduce that

E[d(v,Vi,2j)]≥ (α − 2|Vi−1,j|−1/4)|Vi,2j|
and thus, from Lemma 2.1,

P
(
d(v,Vi,2j)≤ (α − 2|Vi−1,j|−1/4)|Vi,2j| − |Vi,2j|2/3

)≤ 2 exp (− 2|Vi,2j|1/3). (1)

On the other hand, using that |Vi,2j| ≤ 11
20 |Vi−1,j|, we have

2|Vi−1,j|−1/4 · |Vi,2j| + |Vi,2j|2/3 ≤ 2 · ( 1120)1/4 |Vi,2j|3/4 + 1
10 |Vi,2j|3/4 ≤ 2|Vi,2j|3/4, (2)

where we have used that |Vi,2j| ≥ C − 2 and 1/C � 1. Combining (1) and (2), we finally have

P
(
d(v,Vi,2j)≤ (α − 2|Vi,2j|−1/4)|Vi,2j|

)≤ 2 exp (− 2|Vi,2j|1/3).
Using the union bound over all v ∈Vi−1,j, it follows that A1 holds for i and 2j with probability at
least

1− 2|Vi−1,j| · exp (− 2|Vi,2j|1/3)≥ 1− 2|Vi−1,j| · exp (− |Vi−1,j|1/3), (3)

where we have used that 2|Vi,2j|1/3 ≥ 2 · ( 9
20
)1/3 |Vi−1,j|1/3 ≥ |Vi−1,j|1/3. Similar calculations show

that A2 and A3 hold with probability at least (3), and clearly the same conclusions hold for 2j− 1.
Therefore, the probability that Yi,2j−1 and Yi,2j hold, given a partition V(G)=⋃

j∈[2i−1] Vi−1,j for
which Yi−1,j holds, is at least

1− 12|Vi−1,j| · exp (− |Vi−1,j|1/3). (4)

Finally, using that the events (Yi,2j−1 ∧Yi,2j)1≤j≤2i−1 are mutually independent given a partition
V(G)=Vi−1,1 ∪ . . . ∪Vi−1,2i−1 for which Yi−1 holds, we can compute
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P(Yi |Yi−1)
(2.4)≥

2i−1∏
j=1

(1− 12|Vi−1,j| · exp (− |Vi−1,j|1/3)

≥
2i−1∏
j=1

exp (− 24|Vi−1,j| · exp (− |Vi−1,j|1/3))≥ exp (− 2i−1),

where we have used that e−2x ≤ 1− x holds for all 0< x≤ 1
2 and that |Vi−1,j| · exp

(− |Vi−1,j|1/3)� 1 as |Vi−1,j| ≥ C − 2 and 1/C � 1. Similar arguments show that P(Ys |Ys−1)≥
exp (− 2s−1). �

2.3. Proof of Theorem 1.3
We say that a graph G is Hamiltonian path-connected if for every pair of distinct vertices x, y ∈
V(G) there is a Hamiltonian x, y-path in G. The last ingredient that we need is the following
classical result due to Ore [28].

Lemma 2.6. Every graph G on n≥ 4 vertices and minimum degree δ(G)≥ n+1
2 is Hamiltonian

path-connected.

Proof of Theorem 1.3. We start by picking a constant 1/C0 � ε and let C ≥ C0 and n≥ 2. Let
log n≤ d < n and let H be a d-regular graph with vertex set V(H)= [n]. Given a graph G with
N = Cdn vertices andminimum degree δ(G)≥ (1+ ε)N/2, we now find a partition ofV(G) which
will be used as a template to embed the H-subdivision. �
Claim 2.7. There are distinct vertices v1, . . . , vn and pairs (Vi,j, vi,j), i ∈ [n] and j ∈NH(i), where
Vi,j ⊂V(G) is a subset and vi, vi,j ∈Vi,j, such that the following properties hold.

B1 V(G)=⋃
i∈[n],j∈NH(i) Vi,j.

B2 Vi,j and Vk,� are disjoint for all i �= k and j ∈NH(i), � ∈NH(k).
B3 Vi,j ∩Vi,k = {vi} for every i ∈ [n] and distinct j, k ∈NH(i).
B4 |Vi,j| ∈ {C, C + 1} for all i ∈ [n] and j ∈NH(i).

B5 δ(G[Vi,j])≥ |Vi,j|+1
2 for all i ∈ [n] and j ∈NH(i).

B6 For every i ∈ [n] and j ∈NH(i), vijvji ∈ E(G).

For now, let us assume Claim 2.7 in order to show Theorem 1.3. Firstly, we use the vertices
(vi)i∈[n] as the branch vertices of the H-subdivision. Secondly, for each i ∈ [n] and j ∈NH(i), find
a Hamilton vi, vi,j-path Pi,j inside Vi,j. This is possible since B5 and Lemma 2.6 imply that G[Vi,j]
is Hamiltonian path-connected. We claim that this gives the spanning H-subdivision. Indeed, for
all ij ∈ E(H), B6 implies that Qij = Pi,jP


j,i is a vivj-path (see Fig. 1) which, because of B2 and B3, is
internally disjoint from every other possible pathQk�. This gives anH-subdivision F ⊂G. Finally,
B1 clearly implies that F uses all vertices from G.

Proof of Claim 2.7. Use Lemma 2.3, with parameter δ = ε/2, to find an
(
H, 12 + ε

2
)
-good

partition V(G)=⋃
i∈[n] Vi such that

(i) |Vi| = Cd for all i ∈ [n],
(ii) δ(G[Vi])≥ (1+ ε

2 )
Cd
2 , and

(iii) δ(G[Vi,Vj])≥ (1+ ε
2 )

Cd
2 for all ij ∈ E(H).
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Figure 1. Creating the vi , vj-path Qij.

Then, for each ij ∈ E(H) pick vertices vi,j ∈Vi and vj,i ∈Vj such that vi,jvj,i ∈ E(G), and, for
i ∈ [n], pick an arbitrary vertex vi ∈Vi, choosing new vertices at each time. For each i ∈ [n], use
Lemma 2.4, with parameter δ = ε/4, to find a partition Vi = {vi} ∪ {vi,j:j ∈NH(i)} ∪⋃j∈NH(i) V

′
i,j

such that

• |V ′
i,j| ∈ {C − 2, C − 1} for all j ∈NH(i),

• d(vi,j,V ′
i,j), d(vi,V ′

i,j)≥ (1+ ε
4 )

|V ′
i,j|
2 , and

• δ(G[V ′
i,j])≥ (1+ ε

4 )
|V ′

i,j|
2 .

Finally, for each i ∈ [n] and j ∈NH(i), we set Vi,j =V ′
i,j ∪ {vi, vi,j}, which clearly satisfies

B1–B6. �

3. Concluding remarks
Let us observe that having a host graph on N = Cdn vertices in Theorem 1.3 is just an artificial
setup to make the subdivision as balanced as possible. However, by adjusting the length of the
connecting paths, the same arguments work if we put N = �(dn) or if we drop the condition
of being d-regular, that is, one can show that if the host graph G has N = �(m) vertices, where
m≤ (n2), and H is an n-vertex graph with m edges and minimum degree at least log n, then G
contains a spanningH-subdivision. Having said this, it is tentative to conjecture that the condition
d ≥ log n in Theorem 1.3 could be totally dropped.

Conjecture 3.1. For every ε > 0, there exists a positive constant C0 such that for all C ≥ C0 and m ∈
N the following holds. Let G be a graph on N = Cm vertices and minimum degree δ(G)≥ (1+ ε)N2 .
Then, G contains a spanning H-subdivision of every graph H with m edges and no isolated vertices.

After this article was submitted, Conjecture 3.1 was solved by Lee [24] using the absorption
method. The only drawback in Lee’s proof is that it requires one of the paths in the subdivision
to be very long compared with the other paths. So, it would be still interesting to find a spanning
subdivision where all the paths in the subdivision have nearly the same length.

Question 3.2. Is it possible to find a spanning H-subdivision in the context of Conjecture 3.1 where
all the paths in the subdivision have similar lengths?

Let us finish by mentioning that similar arguments as those in the proof of Theorem 1.3 can
be used to find a perfect H-subdivision tiling, where H is a graph whose size could even grow
depending on the size of the host graph. However, a more precise result was shown by Lee [23] in
this context. Indeed, the leading constant in the threshold for containing a perfect H-subdivision
tiling can be smaller than 1

2 in certain cases.

https://doi.org/10.1017/S0963548323000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000342


128 M. Pavez-Signé

Acknowledgements
This work was supported by the European Research Council (ERC) under the European Union
Horizon 2020 research and innovation programme (grant agreement No. 947978).

References
[1] Alon, N., Krivelevich, M. and Sudakov, B. (2003) Turán numbers of bipartite graphs and related Ramsey-type questions.

Comb. Probab. Comput. 12(5-6) 477–494.
[2] Bollobás, B. (1978) Extremal Graph Theory. London: Academic Press.
[3] Bollobás, B. and Thomason, A. (1998) Proof of a conjecture of Mader, Erdős and Hajnal on topological complete
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[25] Liu, H. andMontgomery, R. (2023) A solution to Erdős andHajnal’s odd cycle problem. J. Am.Math. Soc. 36 1191–1234.
[26] Luan, B., Tang, Y., Wang, G. and Yang, D. (in press) Balanced subdivisions of cliques in graphs. Combinatorica, 1–23.
[27] Mader, W. (1967) Homomorphieeigenschaften und mittlere kantendichte von graphen.Math. Ann. 174(4) 265–268.
[28] Ore, O. (1963) Hamilton connected graphs. J. Math. Pures Appl. 42(2127) 70.
[29] Seymour, P. D. (1974) Problem section, problem 3, combinatorics. In London Math. Soc. Lecture Note Ser. (Proc. British

Combinatorial Conf., Univ. Coll. Wales, Aberystwyth, 1973), Vol. 13, pp. 201–202.
[30] Shokoufandeh, A. and Zhao, Y. (2003) Proof of a tiling conjecture of Komlós. Random Struct. Algorithms 23(2) 180–205.
[31] Simonovits, M. and Szemerédi, E. (2019) Embedding graphs into larger graphs: results, methods, and problems. In

Building Bridges II: Mathematics of László Lovász, pp. 445–592.
[32] Thomassen, C. (1984) Subdivisions of graphs with large minimum degree. J. Graph Theory 8(1) 23–28.
[33] Verstraëte, J. (2002) A note on vertex-disjoint cycles. Comb. Probab. Comput. 11(1) 97–102.

Cite this article: Pavez-Signé M (2024). Spanning subdivisions in Dirac graphs. Combinatorics, Probability and Computing
33, 121–128. https://doi.org/10.1017/S0963548323000342

https://doi.org/10.1017/S0963548323000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000342
https://doi.org/10.1017/S0963548323000342

	Introduction
	Proof
	Notation
	Probabilistic tools
	Proof of Theorem 1.3

	Concluding remarks

