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Abstract

We provide sufficient conditions to factorise an equivariant spectral triple as a Kasparov product of
unbounded classes constructed from the group action on the algebra and from the fixed point spectral
triple. We show that if factorisation occurs, then the equivariant index of the spectral triple vanishes. Our
results are for the action of compact abelian Lie groups, and we demonstrate them with examples from
manifolds and θ-deformations. In particular, we show that equivariant Dirac-type spectral triples on the
total space of a torus principal bundle always factorise. Combining this with our index result yields a
special case of the Atiyah–Hirzebruch theorem. We also present an example that shows what goes wrong
in the absence of our sufficient conditions (and how we get around it for this example).
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1. Introduction

This paper is motivated by recent applications of the Kasparov product to gauge
theory [4, 7]. In particular, it becomes important to know to what degree an
equivariant spectral triple, regarded as encoding the geometry of the total space of
a noncommutative principal bundle, can be factored over the base space.

We provide sufficient conditions to factorise a G-equivariant spectral triple
(A,H ,D), for G compact abelian, as a Kasparov product of a ‘fixed point’ spectral
triple for the base space and a Kasparov module constructed solely from the action of
the group on the algebra. These two components of the product represent respectively
the ‘horizontal’ and ‘vertical’ parts of the noncommutative principal bundle. More
precisely, given our sufficient conditions, we construct unbounded cycles representing
classes in KKdim G

G (A, AG) and KK j+dim G
G (AG,C), with A the norm completion of A,

such that the Kasparov product [15] of these classes

KKdim G
G (A, AG) × KK j+dim G

G (AG,C)→ KK j
G(A,C)
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146 I. Forsyth and A. Rennie [2]

recovers the class of (A,H ,D) in KK j(A,C). The construction of these unbounded
Kasparov modules is new, although in the case G = T the cycle for KKdim G

G (A, AG)
agrees with the cycle constructed in [6, Section 2] up to sign.

In order to define the Kasparov module with class in KKdim G
G (A, AG), we require

that the action of G on A satisfies the spectral subspace assumption of [6]. To define
the unbounded Kasparov module with class in KK j+dim G

G (AG,C), we need a Clifford
action

η : Cl(TeG) � Cldim G → B(H)

satisfying a few compatibility conditions. Finally, the product of these classes
represents the class of (A,H ,D), provided that one positivity constraint is satisfied:
this constraint arises from Kucerovsky’s criteria [16].

Our factorisation results show that the class of our equivariant spectral triple is the
product of classes with unbounded representatives, which are defined in terms of the
original spectral triple subject to some geometric constraints. As a consequence, we
show that if our conditions are satisfied and factorisation occurs, then the equivariant
index of the spectral triple vanishes, when this is defined.

The constructive approach to the Kasparov product [4, 14, 20, 21] seeks to construct
a spectral triple from unbounded representatives of composable KK-classes. Having
obtained a factorisation, say,

[(A,H ,D)] = [(A′, EAG ,D1)] ⊗̂AG [(AG,H2,D2)],

it is natural to ask whether the constructive product of (A′,EAG ,D1) and (AG,H2,D2)
makes sense and recovers the original triple (A,H ,D). We examine equivariant Dirac-
type spectral triples (C∞(M), L2(S ),D) on a compact Riemannian manifold with a
free isometric torus action, where we show that factorisation holds in our sense. As
an easy corollary we derive a particular case of the Atiyah–Hirzebruch theorem [1].
In this special case, we show that the constructive method produces a spectral triple
(C∞(M), L2(S ), T ) whose KK-class is the same as that of (C∞(M), L2(S ),D). The
operator T is a self-adjoint elliptic first-order differential operator, but the difference
D − T is typically unbounded. If each orbit in M is an isometrically embedded copy
of Tn, we find thatD− T is bounded. Thus we see evidence in these examples that the
constructive product is sensitive to metric data.

Factorisation of circle-equivariant spectral triples has also been studied in [4],
[10, 11] and the PhD thesis of Zucca [30]. The last three of these works study such
factorisations under the condition of ‘fibres of constant length’, a condition which is
also satisfied in the examples studied in [4]. Such a condition appears in Corollary
6.12, and corresponds to the isometric embedding of orbits (up to a constant multiple).

Finally, we consider in detail the factorisation of the Dirac operator over the 2-
sphere, for rotation by the circle. In this case, the circle action is not free and
factorisation for C(S 2) is not possible, but we show that factorisation is nevertheless
possible if one restricts to the C∗-algebra of continuous functions vanishing at the
poles.
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2. The construction of the unbounded KK-cycles
Definition 2.1. Let A and B be Z2-graded C∗-algebras carrying respective actions
α and β by a compact group G. An unbounded equivariant Kasparov A-B-module
(A, EB,D) consists of an invariant dense sub-∗-algebraA ⊂ A, a countably generated
Z2-graded right Hilbert B-module E with a homomorphism V from G into the
invertible degree-zero bounded linear (not necessarily adjointable) operators on E,
a Z2-graded ∗-homomorphism φ : A→ EndB(E), and an odd, self-adjoint, regular
operatorD : dom(D) ⊂ E → E such that:

(1) Vg(φ(a)eb) = φ(αg(a))Vg(e)βg(b) and (Vge | Vg f )B = βg((e | f )B) for all g ∈ G,
a ∈ A, e ∈ E and b ∈ B;

(2) φ(a) · dom(D) ⊂ dom(D), and the graded commutator [D, φ(a)]± is bounded for
all a ∈ A;

(3) φ(a)(1 +D2)−1/2 is a compact endomorphism for all a ∈ A;
(4) Vg · dom(D) ⊂ dom(D), and [D,Vg] = 0.

Remark 2.2. We normally suppress the notation φ. The unbounded Kasparov module
(A, EB,D) defines a class in the abelian group KKG(A, B) [2].

Remark 2.3. We will only employ unbounded equivariant Kasparov A-B-modules for
which the action of G on B is trivial. Then, for all g ∈ G, Vg is adjointable with adjoint
V∗g = Vg−1 .

Definition 2.4. Let A be a Z2-graded C∗-algebra with an action by a compact group
G. An even equivariant spectral triple (A,H ,D) for A is an unbounded equivariant
Kasparov A-C-module. If A is trivially Z2-graded, then one can also define an odd
equivariant spectral triple (A,H ,D), which has the same definition, except that
H1 = {0} andD need not be odd.

Throughout this section, G is a compact abelian Lie group, equipped with the
normalised Haar measure, and (A,H ,D) is an even G-equivariant spectral triple for
a Z2-graded separable C∗-algebra A carrying an action α by G. (The case where the
spectral triple is odd is considered later.)

There are some differences between the cases of G even-dimensional and G odd-
dimensional. We introduce the following notation so that we may handle both cases
simultaneously.

Definition 2.5. Let Cl1 be the Clifford algebra generated by a self-adjoint unitary c,
which is Z2-graded by

Cl j
1 = span{c j}, j ∈ Z2.

We denote by C the Z2-graded C∗-algebra

C =

{
C if G is even-dimensional,
Cl1 if G is odd-dimensional.

We also denote by c the generator of C; that is,

c =

{
1 if G is even-dimensional,
c if G is odd-dimensional.
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We will construct three unbounded KK-cycles. The first cycle (referred to as
the left-hand module) is constructed using the spin Dirac operator over G, and
defines a class in KKG(A, AG ⊗̂ C). The second cycle (which we call the middle
module) represents a class in KKG(AG ⊗̂C, AG ⊗̂Cl(TeG)). The module is simply the
Morita equivalence between AG ⊗̂C and AG ⊗̂Cl(TeG) � AG ⊗̂Cln, and so contains no
homological information. The third cycle (the right-hand module) is constructed by
restricting the spectral triple to a spectral subspace of H , and adding a representation
of Cl(TeG), so that it defines a class in KKG(AG ⊗̂Cl(TeG),C).

2.1. The left-hand module. Let Char(G) be the characters of G, which is the set
of smooth homomorphisms χ : G→ U(1). Since G is abelian, the characters form a
group under multiplication. For each χ ∈ Char(G), let

Aχ = {a ∈ A : αg(a) = χ(g)a}

be the spectral subspace of A associated with the character χ. Note that
⊕

χ∈Char(G) Aχ

is dense in A. For each χ ∈ Char(G), define Φχ : A→ A by

Φχ(a) =

∫
G
χ−1(g)αg(a) dg.

Each Φχ is a continuous idempotent with range Φχ = Aχ.

Definition 2.6. The action of G on A is said to satisfy the spectral subspace assumption
if the norm closure AχA∗χ is a complemented ideal in the fixed point algebra AG for each
χ ∈ Char(G).

Remark 2.7. A particular case of the spectral subspace assumption is if AχA∗χ = AG

for all χ ∈ Char(G). In this case we say that A has full spectral subspaces. This is
equivalent to the action of G on A being free or saturated [23, 27]. If A = C0(X) for
a locally compact Hausdorff G-space X, then C0(X) has full spectral subspaces if and
only if the action of G on X is free [23, Proposition 7.1.12 and Theorem 7.2.6].

We define an AG-valued inner product on A by

(a | b)AG := Φ1(a∗b) =

∫
G
αg(a∗b) dg.

With this inner product, A is a right pre-Hilbert AG-module. Hence the completion of
A with respect to (· | ·)AG is a right Hilbert AG-module, which we denote by X. The Z2-
grading of A defines a Z2-grading of X, which makes X into a Z2-graded right Hilbert
AG-module. The action of G on A extends to a unitary action α : G→ EndAG (X).

Remark 2.8. Let χ ∈ Char(G), and let a, b ∈ Aχ. Then a∗b ∈ AG, so (a | b)AG = a∗b.
Hence Aχ is closed in X, and so

Xχ := {x ∈ X : αg(x) = χ(g)x} = Aχ.
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The following is a more general version of [22, Lemma 4.2] or [6, Lemma 2.4].
The result there is for the case G = T, but the proof is much the same as in the general
case.

Lemma 2.9. For each χ ∈ Char(G), the map Φχ : A→ A extends to an adjointable
projection Φχ : X → X with range Aχ. Moreover,

(x | y)AG =
∑

χ∈Char(G)

Φχ(x)∗Φχ(y)

for all x, y ∈ X, and the sum
∑
χ∈Char(G) Φχ converges strictly to the identity on X.

Let $G be the trivial flat complex spinor bundle over G, with Dirac operatorDG. The
left multiplication of G on itself lifts to a strongly continuous unitary representation
V on L2($G) which makes (C∞(G), L2($G),DG) into a G-equivariant spectral triple,
which is even if and only if dim G is even [28]. Then (C∞(G), (L2($G) ⊗̂C)C,DG ⊗̂ c)
is a G-equivariant unbounded Kasparov C(G)-C-module for G either even- or odd-
dimensional.

Definition 2.10. Let X ⊗̂ (L2($G) ⊗̂ C) be the external tensor product of X and
L2($G) ⊗̂ C, which is a Z2-graded right Hilbert AG ⊗̂ C-module. Let E1 be the
invariant submodule of X ⊗̂ (L2($G) ⊗̂C) under the diagonal action g · (x ⊗̂ (s ⊗̂ z)) =

αg(x) ⊗̂ (Vgs ⊗̂ z). Let V1 be the homomorphism from G into the unitaries of E1 defined
by

V1,g(x ⊗̂ (s ⊗̂ z)) = αg(x) ⊗̂ (s ⊗̂ z).

For each χ ∈ Char(G), let p′χ ∈ B(L2($G)) be the orthogonal projection onto

L2($G)χ = {s ∈ L2($G) : Vg(s) = χ(g)s},

and define pχ ∈ EndC(L2($G) ⊗̂C) by pχ(s ⊗̂ z) = p′χs ⊗̂ z.

The following result is elementary, but will be quite useful in later calculations.

Lemma 2.11. For elements of homogeneous degree, the AG ⊗̂C-valued inner product
on E1 can be expressed (for x1, x2 ∈ X and s1, s2 ∈ L2($G) ⊗̂C) as

(x1 ⊗̂ s1 | x2 ⊗̂ s2)AG ⊗̂C = (−1)deg s1·(deg x1+deg x2)

×
∑

χ∈Char(G)

Φχ(x1)∗Φχ(x2) ⊗̂ (pχ−1 s1 | pχ−1 s2)C.

Proposition 2.12. Define an action of
⊕

χ∈Char(G) Aχ on E1 by∑
χ∈Char(G)

aχ · (x ⊗̂ s) :=
∑

χ∈Char(G)

aχx ⊗̂ χs,

for
∑

aχ ∈
⊕

χ∈Char(G)

Aχ, x ⊗̂ s ∈ E1.

This action extends to a Z2-graded ∗-homomorphism φ : A→ EndAG ⊗̂C(E1) satisfying

V1,g(φ(a)e) = φ(αg(a))V1,g(e), a ∈ A, e ∈ E1.
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Proof. Suppose that aχ ∈ Aχ and x =
∑
ν∈Char(G) xν ∈ X, where xν ∈ Aν for all ν ∈

Char(G). Then
‖aχx‖2 =

∑
φ∈Char(G)

‖aχxν‖2 ≤ ‖aχ‖2‖x‖2

by Lemma 2.9, so aχx is a well-defined element of x.
Since αg(a∗χ) = αg(aχ)∗ = χ(g)a∗χ = χ−1(g)a∗χ, it follows that a∗χ ∈ Aχ−1 . Hence if

aχ ∈ Aχ and xi ⊗̂ si ∈ E1, i = 1, 2, each of homogeneous degree, then

(x1 ⊗̂ s1 | aχ · (x2 ⊗̂ s2))AG ⊗̂C = (x1 ⊗̂ s1 | aχx2 ⊗̂ χs2)AG ⊗̂C

= (−1)deg s1·(deg x1+deg aχ+deg x2)(x1 | aχx2)AG ⊗̂ (s1 | χs2)C
= (−1)deg s1·(deg x1+deg aχ+deg x2)(a∗χx1 | x2)AG ⊗̂ ( χ−1s1 | s2)C
= (a∗χx1 ⊗̂ χ

−1s1 | x2 ⊗̂ s2)AG ⊗̂C = (a∗χ · (x1 ⊗̂ s1) | x2 ⊗̂ s2)AG ⊗̂C.

So the action of
⊕

χ Aχ on E1 defines a ∗-homomorphism on the direct sum
⊕

χ Aχ→

EndAG ⊗̂C(E1), which extends to a ∗-homomorphism φ : A→ EndAG ⊗̂C(E1). That φ is
Z2-graded and equivariant is obvious. �

Definition 2.13. Let DG : dom(DG) ⊂ L2($G)→ L2($G) be the spin Dirac operator
on G, and let c be the generator of C. Define a closed operator D1 : dom(D1) ⊂
E1 → E1 initially on the linear span of elements of the form x ⊗̂ (s ⊗̂ z), where x ∈ X,
s ∈ dom(DG) and z ∈ C are of homogeneous degree, by

D1(x ⊗̂ (s ⊗̂ z)) := (−1)deg xx ⊗̂ (DG s ⊗̂ cz),

and then take the operator closure. SinceDG is equivariant, this is well defined.

Proposition 2.14. The triple (⊕χAχ, (E1)AG ⊗̂C,D1) is an unbounded equivariant
Kasparov A-AG ⊗̂C-module if and only if the action of G on A satisfies the spectral
subspace assumption. When the action of G on A satisfies the spectral subspace
assumptionwe call the Kasparov module (⊕χAχ, (E1)AG ⊗̂C,D1) the left-hand module.

Proof. See [6, Proposition 2.9] and the preceding lemmas for a proof when G = T.
The general case requires only minor modifications, as in [5, Ch. 5]. �

We henceforth assume that the action of G on A satisfies the spectral subspace
assumption.

2.2. The middle module. Recall that G is a compact abelian Lie group, equipped
with the trivial spinor bundle $G, and (A,H ,D) is an even G-equivariant spectral triple
for a Z2-graded separable C∗-algebra A. We will now construct the middle module,
whose job is to correct for the spinor bundle dimensions between the left-hand module
and (A,H ,D).

Let W := ($G)e, and let ρ : Cl(TeG)→ B(W) be the Clifford representation, which is
a ∗-homomorphism. When G is even-dimensional, ρ is a Z2-graded ∗-homomorphism,
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but this is not the case when G is odd-dimensional. Note that we have the
∗-isomorphisms Cl(TeG) � Cln and

Cln �
{

M2dim G/2 (C) if G is even-dimensional,
M2(dim G−1)/2 (C) ⊕ M2(dim G−1)/2 (C) if G is odd-dimensional.

On the other hand,

W = ($G)e �

{
C2dim G/2

if G is even-dimensional,
C2(dim G−1)/2

if G is odd-dimensional.

Let c be the generator of the C∗-algebra C, as in Definition 2.5. The Z2-graded ∗-
homomorphism ρ̃ : Cl(TeG)→ EndC(W ⊗̂ C), defined on elements of homogeneous
degree by

ρ̃(s)(w ⊗̂ z) = ρ(s)w ⊗̂ cdeg sz, (2.1)

is an isomorphism.
The isomorphism (2.1) implies that W ⊗̂ C is a Z2-graded Morita equivalence

bimodule between Cl(TeG) and C, where the left inner product is defined by

ρ̃(Cl(TeG)(w1 | w2))w3 = w1(w2 | w3)C.

Hence the conjugate module (W ⊗̂C)∗ [24, page 49] is a Z2-graded Morita equivalence
bimodule between C and Cl(TeG).

The fixed point algebra AG is a Z2-graded right Hilbert module over itself, and left
multiplication on itself defines a Z2-graded ∗-homomorphism AG → EndAG (AG).

The external tensor product AG ⊗̂ (W ⊗̂ C)∗ is a Z2-graded right AG ⊗̂ Cl(TeG)-
module, which carries a Z2-graded representation AG ⊗̂ C → EndAG ⊗̂Cl(TeG)

(AG ⊗̂ (W ⊗̂C)∗). Since AG ⊗̂ (W ⊗̂C)∗ is a Morita equivalence bimodule, the triple

(AG ⊗̂C, (AG ⊗̂ (W ⊗̂C)∗)AG ⊗̂Cl(TeG), 0)

is an (unbounded) equivariant Kasparov AG ⊗̂ C-AG ⊗̂ Cl(TeG)-module. The C∗-
algebras and the Hilbert module carry the trivial action by G. We call this module
the middle module.

2.3. The right-hand module. To define the right-hand module we require greater
compatibility between the action α of G on A andA ⊂ A than we have assumed so far.
We say thatA is α-compatible if

Aχ :=A∩ Aχ is dense in Aχ for all χ ∈ Char(G).

Compatibility is implied by α restricting to a continuous action on A for some finer
complete topology onA.

Definition 2.15. For each χ ∈ Char(G), letHχ = {ξ ∈ H : Vgξ = χ(g)ξ} be the spectral
subspace corresponding to χ, and define an operator Dχ : dom(D) ∩Hχ ⊂ Hχ →Hχ

byDχξ :=Dξ. The Hilbert spaceHχ inherits the Z2-grading ofH .
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Lemma 2.16. Suppose that A is α-compatible. Let AG be the fixed point algebra of
A. Then for each χ ∈ Char(G), (AG,Hχ,Dχ) is an even equivariant spectral triple for
AG, whereHχ inherits the action of G onH .

Proof. Since G acts on H unitarily, there is an orthogonal decomposition H =⊕
χ∈Char(G)Hχ. The density of dom(D) in H thus implies that dom(Dχ) is dense

inHχ for all χ ∈ Char(G).
The operator (1 +D2)−1/2 ∈ B(H) is self-adjoint, and since D commutes with the

action of G, so too does (1 +D2)−1/2. Hence (1 +D2)−1/2|Hχ
is a bounded self-adjoint

operator onHχ, and (1 +D2)−1/2|Hχ
= (1 +D2

χ)−1/2 for all χ ∈ Char(G). Hence

Fχ :=D(1 +D2)−1/2|Hχ
=Dχ(1 +D2

χ)−1/2

is also a bounded self-adjoint operator on Hχ. Since Dχ = Fχ(1 − F2
χ)−1/2, it follows

from [18, Theorem 10.4] thatDχ is a self-adjoint operator onHχ.
Since [Dχ, a] = [D, a]|Hχ

and a(1 + D2
χ)−1/2 = a(1 + D2)−1/2|Hχ

for all a ∈ AG,
it follows that (AG,Hχ,Dχ) satisfies the conditions of Definition 2.1, and hence
(AG,Hχ,Dχ) is an even equivariant spectral triple. �

We wish to use the operator Dζ to construct our final Kasparov module, for
some fixed ζ ∈ Char(G). However, the middle module is an unbounded Kasparov
AG-AG ⊗̂Cl(TeG)-module, whereas (AG,Hζ ,Dζ) is an unbounded Kasparov AG-C-
module. Hence we need a representation of Cl(TeG) on Hζ , which will define an
action of AG ⊗̂Cl(TeG) on Hζ . The conditions we impose below on the action and
the character ζ ensure that we obtain an even spectral triple for AG ⊗̂Cl(TeG), and in
addition that Kucerovsky’s connection criterion is satisfied (Proposition 3.6).

Simple examples show thatHχ may be trivial for any given χ ∈ Char(G), including
the trivial character χ(g) = 1. We therefore impose the condition AHζ = H on the
character ζ in order to construct the right-hand module. Choosing ζ in this way allows
us to recover the original Hilbert spaceH from the three modules.

Remark 2.17. Even if AHχ = H for all χ ∈ Char(G), the positivity criterion may be
satisfied for some choices of ζ but not for others. For an example, see Section 8.

Definition 2.18. Suppose thatA is α-compatible. Let ζ ∈ Char(G) be such that AHζ =

H , and let η : Cl(TeG)→ B(H) be a unital, equivariant Z2-graded ∗-homomorphism
such that

(1) [η(s), a]± = 0 for all s ∈ Cl(TeG) and a ∈ AG, and
(2) aη(s) · dom(Dζ) ⊂ dom(D) and [D, η(s)]±aPζ is bounded onH for all a ∈ ⊕χAχ

and s ∈ Cl(TeG), where Pζ ∈ B(H) is the orthogonal projection ontoHζ .

We call η the Clifford representation when it exists.

We define a Z2-graded ∗-homomorphism AG ⊗̂Cl(TeG)→ B(Hζ) by (a ⊗̂ s) · ξ :=
aη(s)ξ. If A is α-compatible, the conditions on η and Lemma 2.16 ensure that
(AG ⊗̂Cl(TeG),Hζ ,Dζ) is an even equivariant spectral triple for AG, which we call
the right-hand module.
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Remark 2.19. Condition (2) of Definition 2.18 is stronger than necessary to ensure that
we obtain an equivariant spectral triple for AG ⊗̂Cl(TeG), but this stronger condition is
sufficient to prove that Kucerovsky’s connection criterion is satisfied.

Remark 2.20. The conditions of Definition 2.18 are quite restrictive. For instance,
if the group acts trivially on both the algebra and Hilbert space of (A,H ,D), then
Definition 2.18 requires that we have a spectral triple (A ⊗̂Cl(TeG),H ,D), whence
the class of (A,H ,D) is zero. So, as an example, the class of (C,CC, 0) in KKT(C,C)
does not satisfy the conditions of Definition 2.18.

3. The Kasparov product of the left-hand, middle and right-hand modules

Recall that G is a compact abelian Lie group, equipped with the normalised Haar
measure and a trivial spinor bundle $G, and (A,H ,D) is an even G-equivariant spectral
triple for a Z2-graded separable C∗-algebra A. Let ζ ∈ Char(G) and η : Cl(TeG)→
B(H) satisfy the conditions of Definition 2.18, so that in particularA is α-compatible.

The next result can be proved with a straightforward application of Kucerovsky’s
criteria [16, Theorem 13].

Proposition 3.1. The product of the left-hand and middle modules is represented by
(⊕χAχ, (E1 ⊗̂AG ⊗̂C (AG ⊗̂ (W ⊗̂C)∗))AG ⊗̂Cl(TeG),D1 ⊗̂ 1).

To determine whether the Kasparov product of the left-hand, middle and right-hand
modules is represented by (A,H ,D), we first construct an isomorphism

Ψ : (E1 ⊗̂AG ⊗̂C (AG ⊗̂ (W ⊗̂C)∗)) ⊗̂AG ⊗̂Cl(TeG)Hζ →H ,

which will allow us to use Kucerovsky’s criteria [16, Theorem 13]. We would like to
define the map Ψ on elements of homogeneous degree by

Ψ(((y ⊗̂ u) ⊗̂ (a ⊗̂w)) ⊗̂ ξ)

:= (−1)deg u·deg a
∑

χ∈Char(G)

Φχ(y)aη(Cl(TeG)( χ−1 pχ−1 u | w))ξ, (3.1)

where pχ ∈ EndC(L2($G) ⊗̂C) and Φχ ∈ EndAG (X) are the spectral subspace projections
of Definition 2.10 and Lemma 2.9, respectively.

To see that Ψ is well defined, even on homogeneous elements, we need to know that
the sum over characters converges. This is established by the following lemma.

Lemma 3.2. For i = 1, 2, let ((yi ⊗̂ ui) ⊗̂ (ai ⊗̂ wi)) ⊗̂ ξi be an element of (E1 ⊗̂AG ⊗̂C

(AG ⊗̂ (W ⊗̂C)∗)) ⊗̂AG ⊗̂Cl(TeG)Hζ . Then

〈Ψ(((y1 ⊗̂ u1) ⊗̂ (a1 ⊗̂w1)) ⊗̂ ξ1),Ψ(((y2 ⊗̂ u2) ⊗̂ (a2 ⊗̂w2)) ⊗̂ ξ2)〉
= 〈((y1 ⊗̂ u1) ⊗̂ (a1 ⊗̂w1)) ⊗̂ ξ1, ((y2 ⊗̂ u2) ⊗̂ (a2 ⊗̂w2)) ⊗̂ ξ2〉

and hence Ψ is a well-defined isometry.
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Proof. Suppose that both elements are of homogeneous degree. Then, using
Lemma 2.11,

〈((y1 ⊗̂ u1) ⊗̂ (a1 ⊗̂w1)) ⊗̂ ξ1, ((y2 ⊗̂ u2) ⊗̂ (a2 ⊗̂w2)) ⊗̂ ξ2〉

= (−1)deg u1·(deg y1+deg y2)+(deg u1+deg u2)·deg a2+deg w1·(deg a1+deg y1+deg y2+deg a2)

×
∑

χ∈Char(G)

〈ξ1, a∗1Φχ(y1)∗Φχ(y2)a2η(Cl(TeG)(w1 | w2(pχ−1 u2 | pχ−1 u1)C))ξ2〉

= (−1)deg u1·deg a1+deg u2·deg a2

×
∑

χ∈Char(G)

〈Φχ(y1)a1η(Cl(TeG)( χ−1 pχ−1 u1 | w1))ξ1,Φχ(y2)a2η

× (Cl(TeG)( χ−1 pχ−1 u2 | w2))ξ2〉

= 〈Ψ(((y1 ⊗̂ u1) ⊗̂ (a1 ⊗̂w1)) ⊗̂ ξ1),Ψ(((y2 ⊗̂ u2) ⊗̂ (a2 ⊗̂w2)) ⊗̂ ξ2)〉.

The penultimate line follows from

Cl(TeG)(w1 | χ
−1 pχ−1 u1)Cl(TeG)( χ−1 pχ−1 u2 | w2)

= Cl(TeG)(w1 | w2(pχ−1 u2 | pχ−1 u1)C), (3.2)

which in turn follows from ( χ−1 pχ−1 u2 | χ
−1 pχ−1 u1)C = (pχ−1 u2 | pχ−1 u1)C.

We have already established that the sum over characters∑
χ∈Char(G)

Φχ(y)aη(Cl(TeG)( χ−1 pχ−1 u | w))ξ

converges. It only remains to check that Ψ is well defined with respect to the balanced
tensor products, which is a straightforward exercise. �

Proposition 3.3. The map Ψ is a unitary, equivariant, Z2-graded, A-linear
isomorphism. The inverse

Ψ−1 :H → (E1 ⊗̂AG ⊗̂C (AG ⊗̂ (W ⊗̂C)∗)) ⊗̂AG ⊗̂Cl(TeG)Hζ

is defined as follows. Let (x j)n
j=1 be a G-invariant global orthonormal frame for $G,

and let (φ`)∞`=1 be an approximate identity for AG of homogeneous degree zero. For
ξ ∈ H , choose sequences (ak)∞k=1 ⊂ A and (ξk)∞k=1 ⊂ Hζ such that akξk → ξ as k→∞.
Then

Ψ−1(ξ) :=
∑

χ∈Char(G)

n∑
j=1

lim
k→∞

lim
`→∞

((Φχ(ak) ⊗̂ ( χx j ⊗̂ 1)) ⊗̂ (φ` ⊗̂ x j ⊗̂ 1)) ⊗̂ ξk.

Proof. It is immediate that Ψ is equivariant and Z2-graded, and Ψ is an isometry by
Lemma 3.2. So it remains to show that (i) Ψ is A-linear, and (ii) Ψ−1 is an inverse
for Ψ.
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(i) Let b ∈ A. Then

Ψ(b · ((y ⊗̂ u) ⊗̂ (a ⊗̂w)) ⊗̂ ξ) =
∑

µ∈Char(G)

Ψ(((Φµ(b)y ⊗̂ µu) ⊗̂ (a ⊗̂w)) ⊗̂ ξ)

= (−1)deg u·deg a
∑

χ,µ∈Char(G)

Φχ(Φµ(b)y)aη(Cl(TeG)( χ−1 pχ−1µu | w))ξ

= (−1)deg u·deg a
∑
χ,µ

Φµ(b)Φχ(y)aη(Cl(TeG)( χ−1 pχ−1 u | w))ξ

= bΨ(((y ⊗̂ u) ⊗̂ (a ⊗̂w)) ⊗̂ ξ),

so Ψ is A-linear.
(ii) We first check that Ψ−1 is well defined, which means checking that the

limits exist and that the sum converges. Suppose that ξ ∈ H , and choose sequences
(ak)∞k=1 ⊂ A and (ξk)∞k=1 ⊂Hζ such that akξk→ ξ as k→∞, which exist since AHζ =H .
Since

∑n
j=1 Cl(TeG)(x j ⊗̂ 1 | x j ⊗̂ 1) = 1,

Ψ

( n∑
j=1

((Φχ(ak) ⊗̂ ( χx j ⊗̂ 1)) ⊗̂ (φ` ⊗̂ x j ⊗̂ 1)) ⊗̂ ξk

)
=

n∑
j=1

Φχ(ak)φ`η(Cl(TeG)(x j ⊗̂ 1 | x j ⊗̂ 1))ξk

= Φχ(ak)φ`ξk = Pχζ(akφ`ξk),

where Pχζ ∈ B(H) is the orthogonal projection ontoHχζ , and

lim
k→∞

lim
`→∞

Pχζ(akφ`ξk) = lim
k→∞

Pχζ(akξk) = Pχζξ.

Since Ψ is an isometry, this establishes that the limits exist. Moreover,∑
χ∈Char(G)

Pχζξ =
∑

χ∈Char(G)

Pχξ = ξ,

so the sum converges. This calculation also shows that Ψ−1 is a right-inverse for Ψ,
so that Ψ is surjective. Since Ψ is injective, it follows that Ψ is invertible with inverse
Ψ−1. �

Now that we have the isomorphism Ψ, we can use Kucerovsky’s criteria
[16, Theorem 13] to determine if (A,H ,D) represents the Kasparov product
of the left-hand, middle and right-hand modules. More precisely, (A,H ,D) is
unitarily equivalent as an unbounded equivariant Kasparov module to (A, (E1 ⊗̂AG ⊗̂C

(AG ⊗̂ (W ⊗̂C)∗)) ⊗̂AG ⊗̂Cl(TeG)Hζ ,Ψ
−1 ◦ D ◦Ψ), and Kucerovsky’s criteria may now be

applied to determine whether factorisation has been achieved.

Theorem 3.4 (The criterion for factorisation). Let ζ ∈ Char(G) and η : Cl(TeG)→
B(H) satisfy the conditions of Definition 2.18, so in particular A is α-compatible.
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Let (x j)n
j=1 be a G-invariant global orthonormal frame for $G, and for each χ ∈

Char(G), let Pχ ∈ B(H) be the orthogonal projection onto Hχ. If there is some R ∈ R
such that

n∑
j=1

(〈Dξ, η(Cl(TeG)( χ−1DG( χx j) ⊗̂ c | x j ⊗̂ 1))Pχζξ〉

+ 〈η(Cl(TeG)( χ−1DG( χx j) ⊗̂ c | x j ⊗̂ 1))Pχζξ,Dξ〉) ≥ R‖ξ‖2 (3.3)

for all χ ∈ Char(G), ξ ∈ dom(D), then (A,H ,D) represents the Kasparov product of
left-hand, middle and right-hand modules.

Remark 3.5. Although [16, Theorem 13] is stated for the nonequivariant case, it
requires no modification in the equivariant case [17].

Theorem 3.4 is proved by showing that Kucerovsky’s domain and connection
conditions hold under the existing assumptions. The remaining positivity condition
is precisely condition (3.3).

Condition (3.3) is essentially about whether the part of the operator D which acts
in the direction of the group G is (more or less) proportional to the operator DG. The
‘more or less’ is quantified by condition (3.3), as is the fact that the remaining part of
the operatorD should (more or less) anticommute withDG.

In practice this condition is checkable once we have identified the Clifford
representation, as all the operators are given and computable. In the final two sections
we will see that this condition is indeed checkable when we apply it in examples.

Proposition 3.6 (The connection criterion). For each

e ∈ E1 ⊗̂AG ⊗̂C (AG ⊗̂ (W ⊗̂C)∗),

let Te :Hζ → (E1 ⊗̂AG ⊗̂C (AG ⊗̂ (W ⊗̂C)∗)) ⊗̂AG ⊗̂Cl(TeG)Hζ be the creation operator. The
graded commutators [(

Ψ−1 ◦ D ◦ Ψ 0
0 Dζ

)
,

(
0 Te

T ∗e 0

)]
±

are bounded for all e ∈ Y, where Y ⊂ E1 ⊗̂AG ⊗̂C (AG ⊗̂ (W ⊗̂C)∗) is the dense subspace

Y := span{(z ⊗̂ s) ⊗̂ (a ⊗̂w) ∈ E1 ⊗̂AG ⊗̂C (AG ⊗̂ (W ⊗̂C)∗) : z ∈ ⊕χAχ, a ∈ AG}.

Proof. Consider vectors e = (z ⊗̂ s) ⊗̂ (a ⊗̂w) ∈ Y , ψ ∈ dom(Dζ), and ((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂
ξ ∈ dom(Ψ−1 ◦ D ◦ Ψ), each of homogeneous degree. Then the upper entry of the
column vector [(

Ψ−1 ◦ D ◦ Ψ 0
0 Dζ

)
,

(
0 Te

T ∗e 0

)]
±

(
((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ

ψ

)
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is

Ψ−1 ◦ D ◦ Ψ ◦ Teψ − (−1)deg z+deg s+deg a+deg wTe ◦ Dζψ

= Ψ−1 ◦ D ◦ Ψ(((z ⊗̂ s) ⊗̂ (a ⊗̂w)) ⊗̂ψ)

− (−1)deg z+deg s+deg a+deg w((z ⊗̂ s) ⊗̂ (a ⊗̂w)) ⊗̂Dζψ

= (−1)deg s·deg aΨ−1 ◦ D
∑

χ∈Char(G)

Φχ(z)aη(Cl(TeG)( χ−1 pχ−1 s | w))ψ

− (−1)deg z+deg s+deg a+deg w+deg s·deg a

×Ψ−1
∑

χ∈Char(G)

Φχ(y)aη(Cl(TeG)( χ−1 pχ−1 s | w))Dζψ

= (−1)deg s·deg aΨ−1
∑

χ∈Char(G)

[D,Φχ(z)aη(Cl(TeG)( χ−1 pχ−1 s | w))]±ψ,

and we estimate

∥∥∥∥∥(−1)deg s·deg aΨ−1
∑

χ∈Char(G)

[D,Φχ(z)aη(Cl(TeG)( χ−1 pχ−1 s | w))]±ψ
∥∥∥∥∥2

=
∑

χ∈Char(G)

‖[D,Φχ(z)aη(Cl(TeG)( χ−1 pχ−1 s | w))]±Pζψ‖
2

≤ ‖ψ‖2
∑

χ∈Char(G)

‖[D,Φχ(z)aη(Cl(TeG)( χ−1 pχ−1 s | w))]±Pζ‖
2,

where the sum converges since z ∈ ⊕χAχ. Hence the upper entry is a bounded function
of ψ. For the lower entry we have

Dζ ◦ T ∗e (((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ)

=Dζ(((z ⊗̂ s) ⊗̂ (a ⊗̂w) | (y ⊗̂ t) ⊗̂ (b ⊗̂ v))AG ⊗̂Cl(TeG)ξ)

= (−1)deg s·(deg z+deg y)+deg w·(deg a+deg z+deg y+deg b)+deg b·(deg s+deg t)

×
∑

χ∈Char(G)

Dζ(a∗Φχ(z)∗Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 s | w)Cl(TeG)( χ−1 pχ−1 t | v))ξ),

using Lemma 2.11 and Equation (3.2). Let (x j)n
j=1 be a G-invariant, global orthonormal

frame for $G, and let (φ`)∞`=1 be an approximate identity for AG of homogeneous degree
zero. For each χ ∈ Char(G), let (cχk )∞k=1 ⊂ A and (σχk )∞k=1 ⊂ Hζ be sequences such that

lim
k→∞

cχkσ
χ
k =D(Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ).
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Then

T ∗e ◦ Ψ−1 ◦ D ◦ Ψ(((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ)

= (−1)deg t·deg b+deg s·deg z+deg w·(deg a+deg z)

×
∑

χ,ν∈Char(G)

n∑
j=1

lim
k→∞

a∗Φν(z)∗η(Cl(TeG)(w | (x j ⊗̂ 1)

· (νx j ⊗̂ 1 | pν−1 s)C))Φν(c
χ
k )σχk

= (−1)deg t·deg b+deg s·deg z+deg w·(deg a+deg z)

×
∑
χ

n∑
j=1

a∗Φχ(z)∗η(Cl(TeG)(w | (x j ⊗̂ 1) · ( χx j ⊗̂ 1 | pχ−1 s)C))

×D(Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ)

where we have used

lim
k→∞

Φν(c
χ
k )σχk = lim

k→∞
Pνζc

χ
kσ

χ
k = PνζD(Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ)

= δν,χD(Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ).

Since χ−1 pχ−1 s =
∑n

j=1(x j ⊗̂ 1) · ( χx j ⊗̂ 1 | pχ−1 s)C,

T ∗e ◦ Ψ−1 ◦ D ◦ Ψ(((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ)

= (−1)deg t·deg b+deg s·deg z+deg w·(deg a+deg z)

×
∑

χ∈Char(G)

a∗Φχ(z)∗η(Cl(TeG)(w | χ−1 pχ−1 s))D(Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ).

Hence the lower entry is

Dζ ◦ T ∗e (((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ)

− (−1)deg z+deg s+deg a+deg wT ∗e ◦ Ψ−1 ◦ D ◦ Ψ(((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ)

= (−1)deg s·(deg z+deg y)+deg w·(deg a+deg z+deg y+deg b)+deg b·(deg s+deg t)

×
∑

χ∈Char(G)

Dζ(a∗Φχ(z)∗Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 s | w)Cl(TeG)( χ−1 pχ−1 t | v))ξ)

− (−1)deg z+deg s+deg a+deg w+deg t·deg b+deg s·deg z+deg w·(deg a+deg z)

×
∑

χ∈Char(G)

a∗Φχ(z)∗η(Cl(TeG)(w | χ−1 pχ−1 s))D(Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ)

= (−1)deg t·deg b+deg s·deg z+deg w·(deg a+deg z)

×
∑

χ∈Char(G)

[D, a∗Φχ(z)∗η(Cl(TeG)(w | χpχs))]±Φχ(y)bη(Cl(TeG)( χpχt | v))ξ.
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The sum
∑
χ∈Char(G) Φχ(y)aη(Cl(TeG)(χ−1 pχ−1 t | w))ξ converges since Ψ is an isometry, so∑

χ∈Char(G)

[D, a∗Φχ(z)∗η(Cl(TeG)(w | χ−1 pχ−1 s))]±

×Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ

=

(∑
ν

Pζ[D, a∗Φν(z)∗η(Cl(TeG)(w | ν−1 pν−1 s))]±
)

×

(∑
χ

Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ
)
.

Thus we can estimate the lower entry by∥∥∥∥∥ ∑
χ∈Char(G)

[D, a∗Φχ(z)∗η(Cl(TeG)(w | χ−1 pχ−1 s))]±

×Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ
∥∥∥∥∥2

≤

∥∥∥∥∥∑
ν

Pζ[D, a∗Φν(z)∗η(Cl(TeG)(w | ν−1 pν−1 s))]±
∥∥∥∥∥2

×
∑
χ

‖Φχ(y)bη(Cl(TeG)( χ−1 pχ−1 t | v))ξ‖2

=

∥∥∥∥∥ ∑
ν∈Char(G)

Pζ[D, a∗Φν(z)∗η(Cl(TeG)(w | ν−1 pν−1 s))]±
∥∥∥∥∥2

× ‖((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ‖2,

since Ψ is an isometry. We note that∑
ν∈Char(G)

Pζ[D, a∗Φν(z)∗η(Cl(TeG)(w | ν−1 pν−1 s))]±

is a finite sum of bounded operators and hence is bounded. Therefore the lower entry
is a bounded function of ((y ⊗̂ t) ⊗̂ (b ⊗̂ v)) ⊗̂ ξ. �

Lemma 3.7. Let (x j)n
j=1 be a G-invariant global orthonormal frame for $G, let DG

be the Dirac operator on $G, and let Pχ ∈ B(H) be the projection onto Hχ for
χ ∈ Char(G). Then

Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1 =
∑

χ∈Char(G)

n∑
j=1

η(Cl(TeG)( χ−1DG( χx j) ⊗̂ c | x j ⊗̂ 1))Pχζ .
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Proof. Let c be the generator of C, let ξ ∈ dom(Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1), and choose
sequences (ak)∞k=1 ⊂ A and (ξk)∞k=1 ⊂ Hζ such that akξk → ξ as k→∞. Then

Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ

= Ψ
∑

χ∈Char(G)

n∑
j=1

lim
k,`→∞

(−1)deg ak ((Φχ(ak) ⊗̂ (DG( χx j) ⊗̂ c)) ⊗̂ (φ` ⊗̂ x j ⊗̂ 1)) ⊗̂ ξk

=
∑

χ∈Char(G)

n∑
j=1

lim
k→∞

η(Cl(TeG)( χ−1DG( χx j) ⊗̂ c | x j ⊗̂ 1))Φχ(ak)ξk

=
∑

χ∈Char(G)

n∑
j=1

η(Cl(TeG)( χ−1DG( χ−1x j) ⊗̂ c | x j ⊗̂ 1))Pχζξ. �

Proposition 3.8 (The domain criterion). For all µ ∈ R\{0}, the resolvent (iµ +D)−1

maps the submodule C∞c (Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1)H into dom(Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1).

Proof. By Lemma 3.7 and the compactness of (1 +DG)−1/2, if ξ ∈ C∞c (Ψ ◦ (D1 ⊗̂ 1)
⊗̂ 1 ◦ Ψ−1)H , then Pχξ = 0 for all but finitely many χ ∈ Char(G). Since (iµ +D)−1

commutes with the action of G, it preserves Hχ for all χ ∈ Char(G). Hence if ξ ∈ C∞c
(Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1)H , then Pχ(iµ + D)−1ξ = 0 for all but finitely many χ ∈
Char(G). Lemma 3.7 then implies that (iµ +D)−1 ∈ dom(Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1). �

Since the connection and domain criteria of [16, Theorem 13] are satisfied
(Propositions 3.6 and 3.8, respectively), Theorem 3.4 is proved by combining the
remaining positivity condition with Lemma 3.7.

4. Factorisation for an odd spectral triple

Recall that G is a compact abelian Lie group, equipped with the normalised Haar
measure and a trivial spinor bundle $G. However, suppose that rather than an even
G-equivariant spectral triple, we instead have an odd G-equivariant spectral triple
(A,H ,D).

The K-homology class of an odd spectral triple is defined by associating to it
an even spectral triple. Let γ =

(1 0
0 −1

)
∈ B(C2), and equip C2 with the Z2-grading

defined by γ. Let c be the generator of the Clifford algebra Cl1, and define a Z2-
graded ∗-homomorphism Cl1 → B(C2) by c 7→

(0 1
1 0

)
. Equip A ⊗̂Cl1 and H ⊗̂C2 with

the obvious actions by G. Let ω =
(0 −i

i 0
)
∈ B(C2). Then (A ⊗̂Cl1,H ⊗̂C2,D ⊗̂ω)

is an even G-equivariant spectral triple. The class of (A,H ,D) in odd K-
homology is defined to be [(A⊗̂Cl1,H ⊗̂C2,D⊗̂ω)] ∈ KKG(A ⊗̂Cl1,C) = KK1

G(A,C)
[8, Proposition IV.A.13].

We make the following definition analogously to Definition 2.18.

Definition 4.1. Let (A,H ,D) be an odd G-equivariant spectral triple for a trivially
Z2-graded separable C∗-algebra A, and suppose that A is α-compatible. Let ζ ∈
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Char(G) satisfy AHζ = H , and let η : Cl(TeG) → B(H) be a unital, equivariant
∗-homomorphism such that

(1) [η(s), a] = 0 for all s ∈ Cl(TeG) and a ∈ AG, and
(2) aη(s) · dom(Dζ) ⊂ dom(D) and (Dη(s) − (−1)deg sη(s)D)aPζ is bounded on H

for every a ∈ ⊕χAχ, s ∈ Cl(TeG), where Pζ ∈ B(H) is the orthogonal projection
ontoHζ .

We define a Z2-graded ∗-homomorphism η̃ : Cl(TeG) → B(H ⊗̂ C2) by η̃(s) =

η(s) ⊗̂ωdeg s, where (η(s) ⊗̂ωdeg s)(ξ ⊗̂ v) = η(s)ξ ⊗̂ωdeg sv.

It is easy to see that the pair (ζ, η̃) satisfy the conditions of Definition 2.18 for the
even G-equivariant spectral triple (A⊗̂Cl1,H ⊗̂C2,D⊗̂ω).

The next result follows easily from Theorem 3.4 applied to the even G-equivariant
spectral triple (A⊗̂Cl1,H ⊗̂C2,D⊗̂ω).

Theorem 4.2. Let (A,H ,D) be an odd G-equivariant spectral triple for a trivially
Z2-graded C∗-algebra A, and let ζ ∈ Char(G) and η : Cl(TeG) → B(H) be as in
Definition 4.1, so in particularA is α-compatible. Let (x j)n

j=1 be a G-invariant global
orthonormal frame for $G. If there is some R ∈ R such that

n∑
j=1

(〈Dξ, η(Cl(TeG)( χ−1DG( χx j) ⊗̂ c | x j ⊗̂ 1))Pχζξ〉

+ 〈η(Cl(TeG)( χ−1DG( χx j) ⊗̂ c | x j ⊗̂ 1))Pχζξ,Dξ〉) ≥ R‖ξ‖2

for all χ ∈ Char(G), ξ ∈ dom(D), then the odd spectral triple (A,H ,D) represents
the Kasparov product of the left-hand, middle and right-hand modules for
(A⊗̂Cl1,H ⊗̂C2,D⊗̂ω).

5. The θ-deformation of a Tn-equivariant spectral triple and factorisation
Given a Tn-equivariant spectral triple (A,H ,D) and a skew-symmetric matrix θ ∈

Mn(R), one can construct the θ-deformed Tn-equivariant spectral triple (Aθ,Hθ,Dθ).
We show that if factorisation is achieved for (A,H ,D), then it is also achieved for
(Aθ,Hθ,Dθ).

We first recall the construction of a θ-deformed Tn-equivariant spectral triple [9, 26].

Definition 5.1. Let θ ∈ Mn(R) be a skew-symmetric matrix. The noncommutative
torus C(Tn)θ is the universal C∗-algebra generated by n unitaries U1, . . . ,Un subject to
the commutation relations U jUk = e2πiθ jk UkU j for j, k = 1, . . . , n.

The noncommutative torus C(Tn)θ carries an action by the n-torus Tn, which is
given by t ·U j = e2πit j

U j, where t = (t1, . . . , tn) ∈ Tn are the standard torus coordinates.

Definition 5.2. Let A be a Z2-graded C∗-algebra with an action α by Tn. Let θ ∈ Mn(R)
be a skew-symmetric matrix, and equip the tensor product A ⊗̂C(Tn)θ with the diagonal
action t · (a ⊗̂ b) = αt(a) ⊗̂ (t · b) by Tn. The θ-deformation of A is the invariant sub-C∗-
algebra Aθ := (A ⊗̂C(Tn)θ)T

n
.

The θ-deformation Aθ carries an action α(θ) by Tn, given by α(θ)
t (a ⊗̂ b) = αt(a) ⊗̂ b.
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Definition 5.3. Let H = H0 ⊕ H1 be a Z2-graded Hilbert space with a strongly
continuous unitary representation V : Tn → U(H) such that Vt · H

j ⊂ H j for t ∈ Tn,
j ∈ Z2. Let θ ∈ Mn(R) be a skew-symmetric matrix. Viewing C(Tn)θ as a right Hilbert
module over itself, form the Z2-graded right Hilbert C(Tn)θ-moduleH ⊗̂C(Tn)θ. This
module carries an action by Tn, given by t · (ξ ⊗̂ b) = Vtξ ⊗̂ (t · b). The θ-deformation
of H is the Z2-graded Hilbert space Hθ := (H ⊗̂C(Tn)θ)T

n
. We define a unitary

represenation V (θ) : Tn → U(Hθ) by V (θ)
t (ξ ⊗̂ b) = Vtξ ⊗̂ b.

We now define the θ-deformed Tn-equivariant spectral triple (Aθ,Hθ,Dθ).

Definition 5.4. Suppose that A is α-compatible. Let (A,H ,D) be a Tn-equivariant
spectral triple, and let θ ∈ Mn(R) be skew-symmetric. Represent Aθ on Hθ by
(a ⊗̂b)(ξ ⊗̂ c) = aξ ⊗̂bc (for a ∈ A, b ∈ C(Tn)θ), and setting Uk := Uk1

1 · · ·U
kn
n for k ∈ Zn,

let
Aθ = span{ak ⊗̂U−k ∈ Aθ : ak ∈ A ∩ Ak, k ∈ Zn}

which is a dense sub-∗-algebra of Aθ compatible with α(θ), and define an operator Dθ

on Hθ by Dθ(ξ ⊗̂ b) =Dξ ⊗̂ b for ξ ∈ dom(D). Then (Aθ,Hθ,Dθ) is a Tn-equivariant
spectral triple for Aθ, which we call the θ-deformation of (A,H ,D).

Proposition 5.5. Let A be a C∗-algebra with an action by Tn, and let θ ∈ Mn(R) be
skew-symmetric. Then Aθ satisfies the spectral subspace assumption if and only if A
does.

Proof. Let ψ : AT
n
→ AT

n

θ be the ∗-isomorphism ψ(a) = a ⊗̂ 1. Then ψ(AkA∗k) =

(Aθ)k(Aθ)∗k for all k ∈ Zn. �

Definition 5.6. Define a unitary isomorphism u :H →Hθ by

u
(∑

k∈Zn

ξk

)
=

∑
k∈Zn

ξk ⊗̂U−k.

This isomorphism intertwines the actions of Tn, so that u :H` → (Hθ)` for all ` ∈ Zn.
Given η : Cl(Tn

e)→ B(H), define ηθ : Cl(Tn
e)→ B(Hθ) by ηθ(s) = u ◦ η(s) ◦ u∗.

Proposition 5.7. The pair (`, ηθ) satisfies the conditions of Definition 2.18 for
(Aθ,Hθ,Dθ) if and only if (`, η) satisfies those conditions for (A,H ,D).
Consequently, (Aθ,Hθ,Dθ) factorises if and only if (A,H ,D) does.

Proof. If ξ ⊗̂ U−` ∈ (Hθ)` and a ⊗̂ U−k ∈ (Aθ)k are homogeneous, then (a ⊗̂ U−k)
(ξ ⊗̂U−`) = λaξ ⊗̂U−k−` for some λ ∈ U(1). Hence Aθ(Hθ)` = H if and only if
AH` =H .

Recall the ∗-isomorphism ψ : AT
n
→ AT

n

θ , ψ(a) = a ⊗̂ 1. Then u(aξ) = ψ(a)u(ξ) for
all a ∈ AT

n
, ξ ∈ H . Hence u ◦ [η(s), a]± ◦ u∗ = [ηθ(s), ψ(a)]± for all s ∈ Cl(Tn

e), a ∈ AT
n
,

so condition (1) of Definition 4.1 is satisfied for the θ-deformation if and only if it is
satisfied for the original spectral triple.

By construction, ⊕k(Aθ)k =Aθ. Let a ⊗̂U−k ∈ (Aθ)k and let s ∈ Cl(Tn
e). If ξ ⊗̂U−` ∈

(Hθ)` then u∗((a ⊗̂U−k)ηθ(s)(ξ ⊗̂U−`)) = λaη(s)ξ for some λ ∈ U(1). Since Dθ =
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u ◦ D ◦ u∗, it follows that aη(s) · dom(D`) ⊂ dom(D) for all a ∈ ⊕kAk, s ∈ Cl(Tn
e) if

and only if bηθ(s) · dom((Dθ)`) ⊂ dom(Dθ) for all b ∈ Aθ, s ∈ Cl(Tn
e).

Let a ⊗̂U−k ∈ (Aθ)k, and let s ∈ Cl(Tn
e). Then

u∗ ◦ [Dθ, ηθ(s)]±(a ⊗̂U−k)P` ◦ u = λ[D, η(s)]±aP`

for some λ ∈ U(1) depending on k, ` and θ. Therefore (`, η) satisfies condition (2) if
and only if (`, ηθ) satisfies condition (2) of Definition 4.1.

Since Dθ = u ◦ D ◦ u∗ and ηθ = u ◦ η ◦ u∗, clearly the factorisation criterion
(Theorems 3.4 and 4.2) is satisfied for (`, ηθ) and the θ-deformed spectral triple if
and only if it is satisfied for (`, η) and the original spectral triple. �

6. Factorisation of a torus-equivariant Dirac-type operator over a compact
manifold

Throughout this section, let (M, g) be a compact Riemannian manifold with a
smooth, free, isometric left action by the n-torus Tn, and let S be a (possibly Z2-
graded) Clifford module over M. We suppose that that either (i) the action of Tn lifts to
an action of S , or (ii) the action of Tn on M by the double covering Tn → Tn lifts to an
action of S , so that in either case S is a Tn-equivariant Clifford module [3, page 186].
The reason why we include both these cases is that if S is the spinor bundle over M,
then the action of either Tn or its double cover lifts to an action on the spinor bundle,
making the spin Dirac operator into a equivariant Dirac operator [1, Proposition on
page 22]. This more general setting will be necessary to deduce a particular case of
the Atiyah–Hirzebruch theorem in Corollary 7.2.

Remark 6.1. The results generalise easily to an action via any finite covering of Tn,
but in the interest of readability we restrict ourselves to the single or double cover.

We suppose that the equivariant Clifford module S is equipped with a Tn-equivariant
Clifford connection ∇S . Then (C∞(M), L2(S ),D) is a Tn-equivariant spectral triple,
where D is the associated Dirac operator on S . The spectral triple is even if S is
Z2-graded; otherwise it is odd.

We will show that (C∞(M), L2(S ),D) can always be factorised. If the torus action
is free, C(M) has full spectral subspaces (a special case of the spectral subspace
assumption) by [23, Theorem 7.2.6]. If the torus action is via the double cover, then
it is no longer free, but the spectral subspace assumption is still satisfied. This is
because the nonzero spectral subspaces of C(M) are precisely the spectral subspaces of
C(M) under the original torus action. Hence C(M)kC(M)∗k = C(M)T

n
if k/2 ∈ Zn, and

C(M)k = {0} otherwise. We show that the remaining two conditions for factorisation
(that is, the existence of the Clifford representation η : Cl(Tn

e)→ B(L2(S )) and the
positivity criterion) are satisfied in turn. Compatibility of C∞(M) with the action is
satisfied since we assume the action to be smooth.

Remark 6.2. A particular case of this situation is when the Dirac operator D on the
total space M is constructed from a spin structure on the base space M/Tn, as in
[3, page 335]. In this case D is constructed as a Kasparov product and so it is not
difficult to see that factorisation occurs.
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6.1. The Clifford representation. We require a character ` ∈ Zn and a map η :
Cl(Tn

e)→ B(L2(S )) satisfying the conditions of Definition 2.18 (or Definition 4.1 if S
is trivially graded). The following lemma shows that any ` ∈ Zn satisfies the condition
if the action is free (respectively, ` ∈ 2Zn if the action is via the double cover), and
indeed factorisation is achieved for any choice of ` (respectively, ` ∈ 2Zn).

Lemma 6.3. Let N be a Riemannian manifold with a smooth free left action by the
n-torus Tn, and let F be an equivariant Hermitian vector bundle over N. Then
C0(N)L2(F)` = L2(F) for all ` ∈ Zn.

Proof. Since L2(F) =
⊕

k∈Zn L2(F)k, it is enough to show that the subspace
C0(N)k−`L2(F)` is dense in L2(F)k for all k ∈ Zn. We show that C0(N)k−`Γc(F)` =

Γc(F)k for all k ∈ Z, which since Γc(F) is dense in L2(F) proves the result.
Let ξ ∈ Γc(F)k. Since ξ has compact support, there is a finite collection of

open sets (Ui)N
i=1 which cover the support of ξ, such that Ui � π(Ui) × Tn as Tn-

spaces, recalling the quotient map π : N → N/Tn. Let (φn)N
n=1 be an invariant

paritition of unity for
⋃N

i=1 Ui subordinate to (Ui)N
i=1. For each i = 1, . . . , N, let

fi ∈ C0(π(Ui)) be a function such that ( fi ◦ π)φi = fi ◦ π, and let ai, bi ∈ C0(Ui) be the
functions corresponding to fi ⊗ χk−` and fi ⊗ χ`−k respectively under the equivariant
∗-isomorphism C0(Ui) � C0(π(Ui)) ⊗C(Tn). Note that biaiφi = φi and aiξ ∈ Γc(F)`, so
ξ =

∑N
i=1 φiξ =

∑N
i=1 biaiφiξi ∈ C0(N)k−`Γc(F)`. �

We will assume that ` ∈ Zn (respectively, ` ∈ 2Zn) is fixed from now on. This choice
does not affect the factorisation. This means we could choose ` = 0 for convenience,
but we will leave ` arbitrary in order to show that factorisation is achieved for all
choices of `.

Next we define the map η : Cl(Tn
e)→ B(L2(S )). First recall that the fundamental

vector field X(v) ∈ Γ∞(T M) associated to v ∈ TeT
n is X(v)

x = (d/dt) exp(tv) · x|t=0. Since
the original action of the n-torus Tn on M is free, the fundamental vector field
of a nonzero vector in TeT

n is nonvanishing. The fundamental vector field map
and the canonical isomorphism T M � T ∗M define an equivariant, Z2-graded map
TeT

n → Γ∞(T ∗M). However, this map need not be an isometry and hence need not
extend to a ∗-homomorphism Cl(Tn

e)→ Γ∞(Cl(M)). We will modify this map to
obtain a ∗-homomorphism. For j = 1, . . . , n, let X j ∈ Γ∞(T M)T

n
be the fundamental

vector field associated to ∂/∂t j ∈ TeT
n. Observe that {X1(x), . . . , Xn(x)} is a linearly

independent set for every x ∈ M. For each x ∈ M, let W(x) = (W jk(x))n
j,k=1 ∈ Mn(R) be

the inverse square root of the positive-definite matrix (g(X j(x), Xk(x)))n
j,k=1. Letting x

vary, we obtain functions W jk ∈ C∞(M)T
n

for j, k = 1, . . . , n. Let

vk =

n∑
j=1

X[
jW

jk ∈ Γ∞(T ∗M)T
n
, k = 1, . . . , n, (6.1)

where T M → T ∗M, X 7→ X[ is the canonical isomorphism. Then the set
{v1(x), . . . , vn(x)} is orthonormal for all x ∈ M. We call the functions W jk ∈ C∞(M)T

n
,

j, k = 1, . . . , n the normalisation functions.
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Definition 6.4. The map

TeT
n 3 dtk 7→ −vk = −

n∑
j=1

X[
jW

jk ∈ Γ∞(T ∗M)T
n

is now not only equivariant and Z2-graded (when S is Z2-graded) but also an isometry.
It therefore extends to a unital ∗-homomorphism η : Cl(Tn

e)→ Γ∞(Cl(M)) ⊂ B(L2(S )).

Remark 6.5. The action of the torus on sections of the Clifford module S is
Vexp(tv)u(x) = exp(tv) · u(exp(−tv) · x), explaining the appearance of a minus sign in
the definition of η. So the more natural convention to define η is to use the vector field
Y (v)

x = (d/dt) exp(−tv) · x|t=0 = −X(v)
x .

As functions are central in the endomorphisms, η satisfies condition (1) of
Definition 2.18, so it remains to check condition (2). Since the image of η consists
of smooth sections of Cl(M), η(s) · dom(D) ∩ L2(S )` ⊂ dom(D) for all s ∈ Cl(Tn

e).
Before showing that [D, η(s)]±P` is bounded for all s ∈ Cl(Tn

e), we prove a lemma.

Lemma 6.6. Let N be a Riemannian manifold, and let G be a Lie group acting smoothly
by isometries on N. Let F be an equivariant Hermitian vector bundle over N. This
defines a unitary representation V : G→ U(L2(F)).

Let v ∈ g, and let X(v) ∈ Γ∞(T N) be the fundamental vector field associated to
v. Define a one-parameter unitary group on L2(F) by γv(t) = Vexp(tv). Let A be the
infinitesimal generator of γv, characterised by γv(t) = eitA. Then

(1) A : Γ∞(F)→ Γ∞(F) and
(2) iA + ∇X(v) ∈ Γ∞(End(F)) for any connection ∇ on F.

In particular, if N is compact, then iA + ∇X(v) ∈ B(L2(F)) for any connection ∇.

Proof. Let u ∈ Γ∞(F). Working on a local trivialisation of F, we can view u as a Ck-
valued function on N. Since γv(t)u(x) = exp(tv) · u(exp(−tv) · x), in this trivialisation,

iAu(x) =
d
dt
γv(t)u(x)

∣∣∣∣∣
t=0

= Bu(x) − X(v)
x (u),

where B ∈ Mk(C) is the derivative at t = 0 of the curve t 7→ exp(tv) ∈ Mk(C). This
shows (1) and (2), since if ∇ is a connection then locally ∇X(v) = X(v) + ω, where ω is a
locally-defined Mk(C)-valued function on N. �

The next result shows that the pair (`, η) satisfy the remaining condition (2) of
Definition 2.18.

Proposition 6.7. Let η be as in Definition 6.4 and ` ∈ 2Zn (or ` ∈ 2Zn if the action is
via the double cover of Tn). Then the graded commutator [D, η(s)]±P` is bounded for
all s ∈ Cl(Tn

e).
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Proof. For j = 1, . . . , n, let X j be the fundamental vector field associated to ∂/∂t j, and
let v j =

∑n
k=1 XkWk j be the normalised vector field as in (6.1). Let U ⊂ M be an open

set such that M|U is parallelisable, and choose vector fields (w1, . . . ,wm−n) ⊂ Γ∞(TU)
(where m := dim M) such that (v1, . . . , vn,w1, . . . ,wm−n) is an orthonormal frame for
TU. We can locally express the Dirac operatorD as

D|U =

n∑
j=1

c(v[j)∇
S
v j

+

m−n∑
i=1

c(w[
i )∇

S
wi
,

where v 7→ v[ is the isomorphism T M → T ∗M determined by the Riemannian metric,
and c denotes Clifford multiplication.

Since the C∗-algebra Cl(Tn
e) is generated by (c(dtk))n

k=1, we need only show that
the anticommutator {D, c(v[j)}P` is bounded for j = 1, . . . , n. Letting ∇LC be the Levi-
Civita connection on T ∗M and using the compatibility between ∇S and ∇LC , we have

{D, c(v[j)}|U =

n∑
i=1

c(v[i )c(v[j)∇
S
vi

+

m∑
i=1

c(w[
i )c(v[j)∇

S
wi

+

n∑
i=1

c(v[i )c(∇LC
vi

v[j)

+

m∑
i=1

c(w[
i )c(∇LC

wi
v[j) +

n∑
i=1

c(v[j)c(v[i )∇
S
vi

+

m∑
i=1

c(v[j)c(w[
i )∇

S
wi

= −2∇S
v j

+

n∑
i=1

c(v[i )c(∇LC
vi

v[j) +

m∑
i=1

c(w[
i )c(∇LC

wi
v[j).

The second and third terms are smooth endomorphisms which are independent of the
choice of ( f1, . . . , fm−n), and so globally

{D, c(v[j)} = −2∇S
v j

+ bundle endomorphism

= −2
n∑

k=1

Wk j∇S
Xk

+ bundle endomorphism.

Since M is compact, every endomorphism is bounded, and so it is enough to show that
∇S

X j
P` is bounded. By Lemma 6.6, ∇S

X j
= −iA j + ω for some ω ∈ Γ∞(End(S )), where

A j is the infinitesimal generator of the one-parameter unitary group s 7→ Vexp(s(∂/∂t j)) ∈

U(L2(S )). Since

exp
(
s
∂

∂t j

)
= (0, . . . , 0, s︸︷︷︸

jth

, 0, . . . , 0), s ∈ R,

Vexp(s(∂/∂t j)) =
∑

k∈Zn e2πisk j Pk, where we note that Pk = 0 if the action is by the double
cover of Tn and k < 2Zn. Hence A j =

∑
k∈Zn 2πk jPk, and thus

∇S
X j

P` = −iA jP` + ωP` = −2πi` jP` + ωP`

is bounded, and so we have shown that {D, c(v[j)}P` is bounded. �
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6.2. The positivity criterion. Now that we have a pair (`, η) satisfying the
conditions of Definition 2.18, it remains to check the positivity criterion. To this
end we derive an explicit formula for Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1, recalling from (3.1) the
isomorphism

Ψ : (E1 ⊗̂C(M)Tn
⊗̂C (C(M)T

n
⊗̂ (W ⊗̂C)∗)) ⊗̂C(M)Tn

⊗̂Cl(Tn
e ) L2(S )` → L2(S ),

where we recall W = ($Tn )e.

Lemma 6.8. For j = 1, . . . , n, let X j ∈ Γ∞(T M) be the fundamental vector field
associated to ∂/∂t j ∈ TeT

n, with corresponding covector field X[
j , and let A j be

the infinitesimal generator of the one-parameter unitary group t 7→ Vexp(t(∂/∂t j)) ∈

U(L2(S )). Let W jk ∈ C∞(M)T
n

be the normalisation functions. Then

Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1 = −i
n∑

j,r=1

Wr jc(X[
r )(A j − 2π` j).

Proof. Let (xr)2bn/2c
r=1 be an invariant, global orthonormal frame for $Tn , corresponding

to some orthonormal basis for ($Tn )e. By Lemma 3.7,

Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1 =
∑
k∈Zn

2bn/2c∑
r=1

η(Cl(Tn
e )( χ−1

k DTn ( χk xr) ⊗̂ c | xr ⊗̂ 1))Pk+`.

Since we are using the trivial flat spinor bundle over Tn,DTn xr = 0 for all r, and

[DTn , χk] = 2πi
n∑

j=1

k jχkc(dt j).

Recall η : Cl(Tn
e)→ B(L2(S )) is defined by c(dt j) 7→ −

∑n
r=1 c(X[

r )Wr j. Hence

Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1 = 2πi
∑
k∈Zn

2bn/2c∑
r=1

n∑
j=1

k jη(Cl(Tn
e )(c(dt j)xr ⊗̂ c | xr ⊗̂ 1))Pk+`

= 2πi
∑
k∈Zn

2bn/2c∑
r=1

n∑
j=1

k jη(c(dt j))η(Cl(Tn
e )(xr ⊗̂ 1 | xr ⊗̂ 1))Pk+`

= −2πi
∑

k

n∑
j,p=1

k jW p jc(X[
p)Pk+` = −i

n∑
j,r=1

Wr jc(X[
r )(A j − 2π` j). �

Theorem 6.9. The positivity criterion is satisfied; that is, there is some R ∈ R such that

〈Dξ,Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ〉 + 〈Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ,Dξ〉 ≥ R‖ξ‖2

for all ξ ∈ dom(D) ∩ Ψ(dom((D1 ⊗̂ 1) ⊗̂ 1)). Thus (C∞(M), L2(S ),D) factorises.

https://doi.org/10.1017/S1446788718000423 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000423


168 I. Forsyth and A. Rennie [24]

Proof. For j = 1, . . . , n, let X j ∈ Γ∞(T M) be the fundamental vector field
corresponding to ∂/∂t j ∈ TeT

n, and let v j =
∑n

p=1 XpW p j be the normalised vector
field as in (6.1). Let U ⊂ M be an open set such that M|U is parallelisable,
and choose vector fields (w1, . . . , wm−n) ⊂ Γ∞(TU) (where m := dim M) such that
(v1, . . . , vn,w1, . . . ,wm−n) is an orthonormal frame for TU. Recall that we can locally
express the Dirac operatorD as

D|U =

n∑
j=1

c(v[j)∇
S
v j

+

m−n∑
i=1

c(w[
i )∇

S
wi
.

Since M is compact, by using a partition of unity it is enough to prove the positivity
for sections with support in an open set V with V ⊂ U.

Let A j generate the one-parameter unitary group s 7→ Vexp(s(∂/∂t j)) ∈ U(L2(S )) for
j = 1, . . . , n. Then for ξ ∈ dom(D) ∩ Ψ(dom((D1 ⊗̂ 1) ⊗̂ 1)) with support in V ,

〈Dξ,Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ〉 + 〈Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ,Dξ〉

=
∑
j,p

〈c(v[j)∇
S
v j
ξ,−ic(v[p)(Ap − 2π`p)ξ〉

+
∑
j,p

〈c(w[
j)∇

S
w j
ξ,−ic(v[p)(Ap − 2π`p)ξ〉

+
∑
j,p

〈−ic(v[p)(Ap − 2π`p)ξ, c(v[j)∇
S
v j
ξ〉

+
∑
j,p

〈−ic(v[p)(Ap − 2π`p)ξ, c(w[
j)∇

S
w j
ξ〉.

Given X ∈ Γ∞(T M), the (formal) adjoint of ∇X is (∇S
X)∗ = −∇S

X − div X. Using the
compatibility between ∇S and the Levi-Civita connection ∇LC on T ∗M, we compute

〈Dξ,Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ〉 + 〈Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ,Dξ〉

= 4πi
∑

(k j − ` j)〈ξ,∇S
v j

Pkξ〉 − 2πi
∑

(kp − `p)

× (〈ξ, (c(∇LC
v j

v[j)c(v[p) + c(v[j)c(∇LC
v j

v[p) + (div v j)c(v[j)c(v[p))Pkξ〉

+ 〈ξ, (c(∇LC
w j

w[
j)c(v[p) + c(w[

j)c(∇LC
w j

v[p) + (div w j)c(w[
j)c(v[p))Pkξ〉).

Let ω j = ∇S
X j

+ iA j ∈ Γ∞(End(S )), as in Lemma 6.6. Since A jPk = 2πk jPk,

〈Dξ,Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ〉 + 〈Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ,Dξ〉

= 8π2
∑

kp(k j − ` j)〈ξ,W jpPkξ〉 + 4πi
∑

(k j − ` j)〈ξ,W jpωpPkξ〉

− 2πi
∑

(kp − `p)

× (〈ξ, (c(∇LC
v j

v[j)c(v[p) + c(v[j)c(∇LC
v j

v[p) + (div v j)c(v[j)c(v[p))Pkξ〉

+ 〈ξ, (c(∇LC
w j

w[
j)c(v[p) + c(w[

j)c(∇LC
w j

v[p) + (div w j)c(w[
j)c(v[p))Pkξ〉).
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We estimate

〈Dξ,Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ〉 + 〈Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ,Dξ〉

≥ 8π2
∑
j,p,k

kp(k j − ` j)〈Pkξ,W jpPkξ〉 −
∑
p,k

| kp − `p | Cp〈Pkξ, Pkξ〉,

for some constants Cp ∈ [0,∞), p = 1, . . . , n, which are based on the norms of the
endomorphisms such as W jpωp and (div w j)c(w[

j)c(v[p) on the compact set V .
For x ∈ M, let λ(x) > 0 be the smallest eigenvalue of the positive-definite real matrix

(W jp(x))n
p,q=1. Then

∑n
j,p,q=1 k jkpW jp(x) ≥ λ(x)

∑n
j=1 k2

j , and so we can estimate

〈Dξ,Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ〉 + 〈Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ,Dξ〉

≥ 8π2 inf
x∈M
{λ(x)}

∑
j,k

k2
j‖Pkξ‖

2

− 8π2n sup
j,p
{|`p| sup

x∈M
{|W jp(x)|}}

∑
r,k

|kr |‖Pkξ‖
2

−
∑
p,k

|kp − `p|Cp‖Pkξ‖
2

≥
∑
k∈Zn

(
a
∑

j

k2
j − b

∑
j

|k j| − d
∑

j

|k j − ` j|

)
‖Pkξ‖

2,

where we have relabelled some constants and set d := supp{Cp}. Since M is compact,
the constant a = 8π2 infx∈M{λ(x)} is strictly positive, and so the function

Q : Zn → R, Q(k) = a
∑

j

k2
j − b

∑
j

|k j| − d
∑

j

|k j − ` j|

is bounded from below by some R ∈ R. Hence

〈Dξ,Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ〉 + 〈Ψ ◦ (D1 ⊗̂ 1) ⊗̂ 1 ◦ Ψ−1ξ,Dξ〉

≥ R
∑
k∈Zn

‖Pkξ‖
2 = R‖ξ‖2. �

6.3. The constructive Kasparov product for manifolds. Recall that (M, g) is a
compact Riemannian manifold with a free, isometric left action by Tn, (S ,∇S ) is an
equivariant Clifford module over M with Dirac operator D, for either the free action
of Tn or via the double cover Tn → Tn, and ` ∈ Zn (respectively, ` ∈ 2Zn) is fixed.

We have seen that (C∞(M), L2(S ),D) represents the product of the unbounded
Kasparov modules

(⊕kC(M)k, (E1 ⊗̂C(M)Tn
⊗̂C (C(M)T

n
⊗̂ (W ⊗̂C)∗))C(M)Tn

⊗̂Cl(Tn
e ),D1 ⊗̂ 1)

(the product of left-hand and middle modules) and (C∞(M)T
n
⊗̂Cl(Tn

e),H`,D`) (the
right-hand module). We now show that the constructive Kasparov product [4, 14, 21]
can be used to produce a representative of the product of these two cycles. The
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representative thus obtained is unitarily equivalent to1 (C∞(M), L2(S ), T ) for some
self-adjoint, first-order elliptic differential operator T on S . If the orbits of Tn are
embedded isometrically into M, then T is a bounded perturbation of the original
operatorD.

Definition 6.10. Let G be a compact group, and let A and B be Z2-graded C∗-algebras
carrying respective actions α and β by G. Let EA be a Z2-graded right Hilbert A-module
with a homomorphism V from G into the invertible degree-zero bounded operators on
E such that Vg(ea) = Vg(e)αg(a) for all g ∈ G, a ∈ A and e ∈ E, and let (A, FB, T ) be
an unbounded equivariant Kasparov A-B-module. There is a natural action of G on
E ⊗̂A EndB(FB) given by g · (e ⊗̂ B) = Vg(e) ⊗̂UgBU−1

g , where U is the action of G on
FB. A T -connection on EA is a linear map ∇ from a dense subspace E ⊂ EA which is a
rightA-module into E ⊗̂A EndB(FB), such that g · ∇(e) = ∇(Vg(e)) for all g ∈ G, e ∈ E,
and

∇(ea) = ∇(e)a + (−1)deg ee ⊗̂ [T, a]±, e ∈ E, a ∈ A. (6.2)

We define a closed operator 1 ⊗̂∇T initially on span{e ⊗̂ f : e ∈ E, f ∈ dom(T )} ⊂ E ⊗̂AF
by

(1 ⊗̂∇ T )(e ⊗̂ f ) = (−1)deg ee ⊗̂T f + ∇(e) f .

The equivariance of ∇ ensures that 1 ⊗̂∇T is equivariant. We say that ∇ is Hermitian if

(e1 | ∇e2)EndB(FB) − (∇e1 | e2)End(FB) = (−1)deg e1 [T, (e1 | e2)A]±, e1, e2 ∈ E.

If ∇ is Hermitian, then the operator 1 ⊗̂∇T is symmetric.

Let x ∈ M. Choose tangent vectors (v1, . . . , vm−n) spanning the subspace span{X1(x),
. . . , Xn(x)}⊥ ⊂ TxM, where we recall that X j is the fundamental vector field associated
to ∂/∂t j ∈ TeT

n. Let (x1, . . . , xn, y1, . . . , ym−n) be the geodesic normal coordinates
around x corresponding to the tangent vectors (X1(x), . . . , Xn(x), v1, . . . , vm−n). There
is a neighbourhood U of x and V of e ∈ Tn such that U � π(U) × V as Tn-spaces,
where π : M → M/Tn is the quotient map (if the action is free we may take V =

Tn), so the standard coordinates (t1, . . . , tn) ∈ (0, 1)n on Tn give us coordinates
(t1, . . . , tn, y1, . . . , ym−n) in a neighbourhood of x. Since g(X j(x), vp) = 0 and X j = ∂/∂t j,
it follows from the fact that a geodesic is orthogonal to one orbit of Tn if and only
if it is orthogonal to every orbit of Tn that it intersects [25, Proposition 2], that
g(∂/∂t j, ∂/∂yp) = 0 on the coordinate chart for j = 1, . . . , n, p = 1, . . . ,m − n.

1Here we replace the algebra ⊕kC(M)k by ⊕kC∞(M)k, and even by C∞(M). The distinction between
these algebras is unimportant for KK-classes, but may produce differences for (unitary equivalence classes
of) spectral triples, where the choice of smooth algebra enters. We will ignore numerous subtleties
involved in the choice of smooth algebra, which is harmless in the context of first-order differential
operators on compact manifolds.
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Let (Ui)N
i=1 be a finite cover of M by such coordinate neighbourhoods, and for each

k ∈ Zn, i = 1, . . . ,N, define χi,k ∈ C∞(Ui) by

χi,k(t1, . . . , tn, y1, . . . , ym−n) = e−2πi
∑n

j=1 k jt j
.

Observe that if g ∈ C(M)k has support in Ui, then gχ−1
i,k ∈ C(M)T

n
. Let (φi)N

i=1 be
an invariant partition of unity subordinate to (Ui)N

i=1, and for each i = 1, . . . , N, let
ψi ∈ C∞(M) be an invariant function with support in Ui, such that ψi is 1 in a
neighbourhood of supp φi.

Then, for f ∈ C(M),

Φk( f ) =
∑

i

φiψiΦk( f ) =
∑

i

φiχi,k(Φk( f )ψiχ
−1
i,k ).

Let (xr)2bn/2c
r=1 be an invariant orthonormal frame for $Tn of homogeneous degree,

such that x1 is of even degree (in the case where $Tn is Z2-graded). Then, given
(( f ⊗̂ u) ⊗̂ (h ⊗̂w)) ⊗̂ ξ in

(E1 ⊗̂C(M)Tn
⊗̂C (C(M)T

n
⊗̂ (W ⊗̂C)∗)) ⊗̂C(M)Tn

⊗̂Cl(Tn
e ) L2(S )`,

we may write

(( f ⊗̂ u) ⊗̂ (h ⊗̂w)) ⊗̂ ξ =
∑
k∈Zn

2bn/2c∑
r=1

N∑
i=1

((φiχi,k ⊗̂ ( χk xr ⊗̂ 1)) ⊗̂ (1 ⊗̂ x1 ⊗̂ 1))

⊗̂ Φk( f )ψiχ
−1
i,k hη(Cl(Tn

e )(x1 ⊗̂ (xr ⊗̂ 1 | χ−1
k pχ−1

k
u)C | w))ξ. (6.3)

Define aD`-connection on E1 ⊗̂C(M)Tn
⊗̂C (C(M)T

n
⊗̂ (W ⊗̂C)∗) by

∇(( f ⊗̂ u) ⊗̂ (h ⊗̂w))

:=
∑
k∈Zn

2bn/2c∑
r=1

N∑
i=1

(−1)deg xr ((φiχi,k ⊗̂ ( χk xr ⊗̂ 1)) ⊗̂ (1 ⊗̂ x1 ⊗̂ 1))

⊗̂ [D,Φk( f )ψiχ
−1
i,k hη(Cl(Tn

e )(x1 ⊗̂ (xr ⊗̂ 1 | χ−1
k pχ−1

k
u)C | w))]±.

That ∇ is equivariant and satisfies (6.2) follows from (6.3). Since ∇ is built from a
frame [21], it is also Hermitian.

Writing 1 ⊗̂∇D` = (1 ⊗̂ 1) ⊗̂∇D` andD1 ⊗̂ 1 = (D1 ⊗̂ 1) ⊗̂ 1 for short, the following
result shows that the constructive Kasparov product yields a spectral triple.

Theorem 6.11. For j = 1, . . . , n, let X j ∈ Γ∞(M) be the fundamental vector field
associated to ∂/∂t j ∈ TeT

n. Let (h jk)n
j,k=1 = (g(X j, Xk))n

j,k=1, (h jk) = (h jk)−1, and let
(W jk)n

j,k=1 be the normalisation functions. Then

Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1 =D +

n∑
j,r=1

(Wr j − hr j)c(X[
r )∇S

X j
+ B,
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where B ∈ Γ∞(End(S )). Thus Ψ ◦ (1 ⊗̂∇D` + D1 ⊗̂ 1) ◦ Ψ−1 is a first-order, self-
adjoint, equivariant, elliptic differential operator. Hence the data (C∞(M), L2(S ),Ψ ◦
(1 ⊗̂∇ D` + D1 ⊗̂ 1) ◦ Ψ−1) defines an equivariant spectral triple representing the
Kasparov product (which is also represented by (C∞(M), L2(S ),D)).

Proof. Given ξ ∈ L2(S ),

Ψ−1(ξ) =

N∑
i=1

∑
k∈Zn

2bn/2c∑
r=1

((ψiχi,k−` ⊗̂ ( χ−1
k−`xr ⊗̂ 1)) ⊗̂ (1 ⊗̂ xr ⊗̂ 1)) ⊗̂ χi,`−kφiPkξ.

Using this, we can compute

Ψ ◦ 1 ⊗̂∇D` ◦ Ψ−1 =
∑
k∈Zn

2bn/2c∑
r=1

N∑
i, j=1

(−1)deg xrφiχi,k−`η(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))

× [D, ψ jχ j,k−`ψiχ
−1
i,k−`η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))]±χ j,`−kφ jPk

+

N∑
i=1

∑
k∈Zn

2bn/2c∑
r=1

ψiχi,k−`η(Cl(Tn
e )(xr ⊗̂ 1 | xr ⊗̂ 1))Dχi,`−kφiPk

=
∑
k∈Zn

2bn/2c∑
r=1

N∑
i, j=1

(−1)deg xrφiχi,k−`η(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))

× [D, ψ jχ j,k−`ψiχ
−1
i,k−`η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))]±χ j,`−kφ jPk

+

N∑
i=1

∑
k∈Zn

χi,k−`[D, ψiχi,`−k]φiPk +D, (6.4)

where we have used
∑2bn/2c

r=1 Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1) = 1 and

∑N
i=1 φi = 1. Let I denote

the first term of (6.4). By several applications of the graded commutator relation
[a, bc]± = (−1)deg bb[a, c]± + [a, b]±c, the first term of (6.4) can be simplified to

I =
∑
k∈Zn

N∑
j=1

[D, ψ jχ j,k−`]χ j,`−kφ jPk +
∑
k∈Zn

2bn/2c∑
r=1

N∑
i=1

(−1)deg xrφiχi,k−`

× η(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))[D, ψiχ

−1
i,k−`]η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))Pk

+

2bn/2c∑
r=1

(−1)deg xrη(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))[D, η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))]±.

With respect to the (t1, . . . , tn, y1, . . . , ym−n) coordinates on Ui, χi,k = e−2πi
∑n

j=1 t jk j , and
so

χ−1
i,k [D, ψiχi,k] = χ−1

i,k c(dχi,k) = −2πi
n∑

j=1

k jc(dt j).
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Write D =
∑n

j=1 c(dt j)∇S
X j

+
∑m−n

s=1 c(dys)∇S
∂ys

. Since g(∂t j , ∂yp ) = 0 and X[
j =∑n

p=1 h jk dtk, the Clifford vector c(dyp) anticommutes with c(X[
j) and hence graded

commutes with the image of Cl(Tn
e) under η for each p = 1, . . . ,m − n. Using this fact

as well as the compatibility of ∇S with the Levi-Civita connection, the first term of
(6.4) is locally

I = −2πi
∑
k∈Zn

n∑
j=1

c(dt j)(k j − ` j)Pk

+ 2πi
∑
k∈Zn

2bn/2c∑
r=1

n∑
j=1

(−1)deg xrη(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))

× c(dt j)η(Cl(Tn
e )(x1 ⊗̂ 1 | xr ⊗̂ 1))(k j − ` j)Pk

+

2bn/2c∑
r=1

n∑
j=1

(−1)deg xrη(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))

× [c(dt j)∇S
X j
, η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))]±

+

2bn/2c∑
r=1

m−n∑
p=1

n∑
j=1

(−1)deg xrη(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))

× [c(dyp)∇S
∂yp , η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))]±

=

n∑
j=1

c(dt j)(∇S
X j

+ ω j − 2π` j) −
2bn/2c∑
r=1

n∑
j=1

(−1)deg xr

× (η(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))c(dt j)(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))(∇S
X j

+ ω j − 2π` j)

− η(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))c(dt j)∇LC

X j
(η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1)))

− η(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))[c(dt j), η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))]±∇S
X j

)

+

2bn/2c∑
r=1

m−n∑
p=1

(−1)deg xrη(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))c(dyp)

×∇LC
∂yp (η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1)))

for ω j ∈ Γ∞(End(S )) for j = 1, . . . , n, using A j = 2π
∑

k∈Zn k jPk and Lemma 6.6. Here
∇LC denotes the extension of the Levi-Civita connection on the cotangent bundle to
the Clifford bundle. Using

2bn/2c∑
r=1

Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1)Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1) = 1
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and the fact that c(dyp) graded commutes with the image of η, we can make some
cancellations and, working locally, simplify the first term of (6.4) to

I =

n∑
j=1

c(dt j)(ω j − 2π` j) −
2bn/2c∑
r=1

n∑
j=1

(−1)deg xr

× (η(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))c(dt j)η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1))(ω j − 2π` j)
− η(Cl(Tn

e )(xr ⊗̂ 1 | x1 ⊗̂ 1))c(dt j)∇LC
X j

(η(Cl(Tn
e )(x1 ⊗̂ 1 | xr ⊗̂ 1))))

+

2bn/2c∑
r=1

m−n∑
p=1

(−1)deg xrη(Cl(Tn
e )(xr ⊗̂ 1 | x1 ⊗̂ 1))c(dyp)

×∇LC
∂yp (η(Cl(Tn

e )(x1 ⊗̂ 1 | xr ⊗̂ 1)))

∈ Γ∞(End(S )).

The second term of (6.4) is
N∑

i=1

∑
k∈Zn

χi,k−`[D, ψiχi,`−k]φiPk = 2πi
∑
k∈Zn

n∑
j=1

c(dt j)(k j − ` j)Pk

= −

n∑
j=1

c(dt j)(∇S
X j

+ ω j − 2π` j) = −

n∑
j,q=1

h jqc(X[
q)(∇S

X j
+ ω j − 2π` j)

for some ω j ∈ Γ∞(End(S )) by Lemma 6.6. Putting the expressions for (6.4) together
with Lemma 6.8 and Lemma 6.6 yields

Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1 = D +

n∑
j,r=1

(Wr j − hr j)c(X[
r )∇S

X j
+ B

=

m−n∑
p=1

c(dyp)∇S
∂yp +

n∑
j,r,q=1

Wr jhrqc(dtq)∇S
X j

+ B

for some B ∈ Γ∞(End(S )), which establishes that Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1 is a
first-order differential operator. Since (Wr j)n

r j=1 and (hrq)n
r,q=1 are invertible, this also

shows that the operator Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦Ψ−1 is elliptic. Since ∇ is Hermitian,
1 ⊗̂∇D` is symmetric, and so 1 ⊗̂∇D` +D1 ⊗̂1 is the sum of a symmetric operator with
a self-adjoint operator, which is symmetric. Elliptic operator theory [13, 19] implies
that Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1 is essentially self-adjoint with compact resolvent,
and hence (C∞(M), L2(S ),Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1) is an equivariant spectral
triple. That (C∞(M), L2(S ),Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1) represents the product is
now a straightforward application of Kucerovsky’s criteria. �

Corollary 6.12. Suppose that each orbit is an isometric embedding of Tn in M. That
is, the fundamental vector fields TeT

n 3 v 7→ X(v) ∈ Γ∞(T M) satisfy (X(v) | X(v))C(M) =

‖v‖2. Then
D− Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1 ∈ Γ∞(End(S )).

https://doi.org/10.1017/S1446788718000423 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000423


[31] Factorisation of equivariant spectral triples in unbounded KK-theory 175

Proof. In this case, the normalisation functions are W jk = δ jk, and so Lemma 6.11
becomes Ψ ◦ (1 ⊗̂∇D` +D1 ⊗̂ 1) ◦ Ψ−1 =D + B where B ∈ Γ∞(End(S )). �

7. Applications to index theory
As an easy application of factorisation, we can say that when an even equivariant

unital spectral triple factorises by our method, then its equivariant index is zero.

Proposition 7.1. Let G be a compact abelian Lie group of positive dimension, and let
(A,H ,D) be an even G-equivariant spectral triple for a Z2-graded unital G-algebra
A. Suppose that the spectral subspace assumption and the conditions of Theorem 3.4
are satisfied, so that factorisation occurs. Then the equivariant index ofD is zero; that
is,

indexG(D) := [(C,H ,D)] = 0 ∈ KKG(C,C) � R(G).

Proof. Since the spectral triple (A,H ,D) factorises, the index is given by

indexG(D) = [(C, (E1)AG ⊗̂C,D1)] ⊗̂AG ⊗̂C y,

where y is the Kasparov product of the middle and right-hand modules. The class of
the module (C, (E1)AG ⊗̂C,D1) is represented by

(C, (kerD1)AG ⊗̂C, 0) = (C, (AG ⊗̂ (kerDG ⊗̂C))AG ⊗̂C, 0).

It is clear that (C, (AG ⊗̂ (kerDG ⊗̂ C))AG ⊗̂C, 0) is the external Kasparov product of
(C, AG

AG , 0) and (C, (kerDG ⊗̂C)C, 0). The spinor bundle over G is $G = G ×W, where
W = ($G)e. Since

DG =

dim G∑
j=1

c(X[
j)X j

for an orthonormal invariant frame {X1, . . . , Xdim G} for TG, kerDG is precisely the
sections of G ×W which are constant on each connected component of G, and so
kerDG � C

N ⊗̂W, where N is the number of connected components of G. Because
G is abelian, its action on W is trivial [28], and hence its action is also trivial on
kerDG ⊗̂ C. It follows that the even and odd parts of kerDG ⊗̂ C are equivariantly
isomorphic as Hilbert C-modules (for dim G > 0). For dim G even, this is because
Clifford multiplication by a vector in TeG of norm 1 defines a unitary isomorphism
between the even and odd parts of W, and hence the even and odd parts of kerDG
are isomorphic. For dim G odd, kerDG is trivially graded, and the Hilbert module
isomorphism between the even and odd parts of kerDG ⊗̂Cl1 is implemented by the
generator c of Cl1. Hence (C, (kerDG ⊗̂C)C, 0) defines a trivial class in KKG(C,C).
Thus indexG(D) = ([(C, AG

AG , 0)] ⊗̂ 0) ⊗̂AG ⊗̂C y = 0. �

Combining this result with Theorem 6.9 recovers a special case of a theorem of
Atiyah and Hirzebruch [1].

Corollary 7.2 (Atiyah and Hirzebruch). Let M be a compact spin manifold which
admits a free isometric action by a torus. Then the spin Dirac operator has zero
equivariant index, and hence Â (M) = 0.
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Proof. Either the torus action or the action of its double cover lifts to the spinor bundle,
and in either case the spin Dirac operator is equivariant. The spectral triple defined by
the Dirac operator factorises by Theorem 6.9, and the spin Dirac operator has trivial
equivariant index by Proposition 7.1. �

8. Example: the Dirac operator on the 2-sphere

The spinor Dirac operator D on the sphere S 2 defines an even spectral triple
(C∞(S 2), L2($S 2 ),D). The circle acts on S 2 by rotation about the north–south axis,
and there are countably infinitely many lifts of this action to L2($S 2 ), such that
(C∞(S 2), L2($S 2 ),D) is an equivariant spectral triple. One can then ask whether any of
these spectral triples can be factorised, but since the action of T on S 2 is not free we
cannot apply the earlier theory.

In fact, we cannot factorise (C∞(S 2), L2($S 2 ),D), since the spectral subspace
assumption is not satisfied, and, more seriously, K1(C(S 2)T) = K1([0, 1]) = {0}. Since
the class of the triple (C∞(S 2), L2($S 2 ),D) in K0(C(S 2)) is nonzero, it is impossible
to recover this class under the Kasparov product between KK1(C(S 2),C(S 2)T) and
KK1(C(S 2)T,C) = {0}.

Instead, we remove the poles, restrict the spectral triple to the complement and
consider (C∞c (S 2\{N, S }), L2($S 2 ),D), and ask whether this equivariant spectral triple
can be factorised. The circle now acts freely, and hence the spectral subspace
assumption is satisfied.

We show that factorisation is achieved for (C∞c (S 2\{N, S }), L2($S 2 ),D) for every
possible lift of the circle action. Unlike for a free action on a compact manifold,
the positivity criterion is satisfied for precisely two choices of the character ` ∈ Z of
Definition 2.18 used to define the right-hand module.

We will describe the Dirac operatorD on the spinor bundle $S 2 over S 2 [12, 29].
Let N be the north pole of S 2, and let UN be S 2\{N}. A chart for UN is given by

stereographic projection onto C. This chart defines a trivialisation of the spinor bundle
$S 2 . All work will be done in the UN trivialisation unless explicitly stated otherwise.
We will work in the standard polar coordinates (θ, φ) ∈ (0, π) × (0, 2π).

The spinor Dirac operator is given by

D =

(
0 eiφ(i∂θ + csc(θ)∂φ + i cot(θ/2)/2)

e−iφ(i∂θ − csc(θ)∂φ + i cot(θ/2)/2) 0

)
.

The Hilbert space L2($S 2 ) is graded by γ =
(1 0
0 −1

)
. The action of the circle T on S 2 is

t · (θ, φ) = (θ, φ + 2πt). There are countably infinitely many lifts of this action which
make (C∞(S 2), L2($S 2 ),D) into a T-equivariant spectral triple.

Proposition 8.1. Any even unitary action of T on L2($S 2 ) which commutes withD and
which is compatible with the action on C(S 2) is equal to Vk : T→ U(L2($S 2 )) for some
k ∈ Z, where

Vk,t

(
f (θ, φ)
g(θ, φ)

)
:=

(
e2πikt f (θ, φ − 2πt)

e2πi(k−1)tg(θ, φ − 2πt)

)
.
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Proof. We require the action of T on L2($S 2 ) to be compatible with the action α of T
on C(S 2), which is αt( f )(θ, φ) = f (θ, φ − 2πt). Hence the action on spinors is of the
form

Vt

(
f (θ, φ)
g(θ, φ)

)
=

(
a b
d h

) (
f (θ, φ − 2πt)
g(θ, φ − 2πt)

)
,

where a, b, d and h can a priori depend on θ, φ and t. Since the action of T should
commute with the grading, we require b = d = 0. Requiring that the action is unitary,
that it commutes withD and that it is a group homomorphism determines that a = e2πikt

and h = e2πi(k−1)t for some k ∈ Z. �

Remark 8.2. None of these actions preserve the real structure on $S 2 , so they are spinc

but not spin actions. There is, however, a unique lift of the action of T via the double
covering T→ T, t · (θ, φ) = (θ, φ + 4πt), to a spin action given by setting k = 1/2 and
replacing t by 2t in Proposition 8.1.

We fix k ∈ Z for the remainder of the section, fixing a representation Vk : T→
U(L2($S 2 )). The spectral subspaces of C(S 2) are

C(S 2) j =

{
{ f (θ) : f ∈ C([0, 1])} if j = 0,
{ f (θ)e−i jφ : f ∈ C0((0, 1))} if j , 0.

Hence

C(S 2) jC(S 2)∗j �
{

C([0, 1]) if j = 0,
C0((0, 1)) if j , 0.

Since C0((0, 1)) is not a complemented ideal in C(S 2)T � C([0, 1]), C(S 2) does not
satisfy the spectral subspace assumption, and so we cannot define the left-hand module
if we use the C∗-algebra C(S 2). However, the spectral subspace assumption is satisfied
for C0(S 2\{N, S }), since the action on S 2\{N, S } is free, by [23, Theorem 7.2.6].

By taking the fundamental vector field map and normalising as in Section 6, we
define the map η : Cl(Te)→ B(L2($S 2 )) by

η(c(dt)) = −
1√

g(dφ, dφ)
c(dφ) =

(
0 −eiφ

e−iφ 0

)
.

We check that η satisfies the conditions of Definition 2.18. Clearly η(c(dt)) commutes
with the algebra, so condition (1) is satisfied. Since aη(c(dt)) is a smooth bundle
endomorphism for all a ∈ C∞c (S 2\{S , N}), aη(c(dt)) preserves dom(D). It remains to
check the commutation condition. We compute

{D, η(c(dt))} =
(
2 csc(θ)∂φ − i csc(θ) 0

0 2 csc(θ)∂φ + i csc(θ)

)
.

Hence if f (θ)e−i jφ ∈ C∞c (S 2\{S ,N}) j, then

{D, η(c(dt))} f (θ)e−i jφP`

=

(
2i csc(θ)(k − ` − j) − i csc(θ) 0

0 2i csc(θ)(k − ` − j − 1) + i csc(θ)

)
f (θ)e−i jφP`

= −i csc(θ)(2 j + 2` − 2k + 1) f (θ)e−i jφP`.
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Since f ∈Cc((0, π)), this is bounded, and so condition (2) of Definition 2.18 is satisfied.
Therefore (`, η) satisfy the conditions of Definition 2.18 for any ` ∈ Z.

Let n, ` ∈ Z, and let ξ =
( f (θ)ei(k−n−`)φ

g(θ)ei(k−n−`−1)φ

)
∈ dom(D) ∩ L2($S 2 )n+`. Then the positivity

criterion reduces to

〈Dξ, inη(c(dt))Pn+`ξ〉 + 〈inη(c(dt))Pn+`ξ,Dξ〉

= 4πn(n − k + ` + 1/2)
∫ π

0
dθ (| f (θ)|2 + |g(θ)|2).

If p(n) = 2n(n − k + ` + 1/2) is nonnegative for all n ∈ Z, then the factorisation
condition is satisfied. Conversely, since

∫ π

0 dθ (| f (θ)|2 + |g(θ)|2) is not bounded by ‖ξ‖2,
if p(n) < 0 for some n ∈ Z, then 〈Dξ,−inη(c(dt))Pn+`ξ〉 + 〈−inη(c(dt))Pn+`ξ,Dξ〉 is
not bounded from below and the factorisation condition is not satisfied.

Since ` ∈ Z has thus far not been fixed, we will determine for which values of ` the
polynomial p : Z→ R is nonnegative. As a real-valued polynomial, p has a minimum
at x = (k − `)/2 − 1/4.

Suppose that k − ` is even. Then the integer values of n either side of this
minimum are n = (k − `)/2 − 1 and n = (k − `)/2, at which p(n) has respective values
−(` − k + 2)(` − k − 1)/2 and −(` − k + 1)(` − k)/2. The smallest of these two values
is p((k − `)/2) = −(` − k + 1)(` − k)/2. As a function of `, q(`) = −(` − k + 1)(` − k)/2
has a maximum at ` = k − 1/2. The integer values on either side of this with k − ` even
are ` = k and ` = k − 2, at which q(`) has respective values 0 and −1. Therefore if k − `
is even, then p(n) is nonnegative if and only if ` = k.

Suppose now that k − ` is odd. Then the integer values of n either side of the
minimum n = (k − `)/2 − 1/4 are n = (k − `)/2 − 1/2 and n = (k − `)/2 + 1/2, at which
p(n) has respective values −(` − k + 1)(` − k)/2 and −(` − k + 2)(` − k − 1)/2, the
smallest of which is p((k − `)/2 − 1/2) = −(` − k + 1)(` − k)/2. As a function of `,
r(`) = −(` − k + 1)(` − k)/2 has a maximum at ` = k − 1/2. The values on either side
such that k − ` is odd are ` = k − 1 and ` = k + 1, at which r(`) has respective values 0
and −1. Therefore if k − ` is odd, then p(n) is nonnegative if and only if ` = k − 1.

Thus factorisation is achieved for the nonunital equivariant spectral triple
(C∞c (S 2\{N, S }), L2($S 2 ),D) for any lift Vk of the circle action to L2($S 2 ), by choosing
the characters ` = k or ` = k − 1 when constructing the right-hand module.

We conclude the 2-sphere example by examining the operator on the right-hand
module, which, upon identifying C0(S 2\{N, S })T with C0((0, π)) and Cl(Te) with Cl1,
defines a spectral triple for C0((0, π)) ⊗̂Cl1. One might wonder whether it can be
obtained from an odd spectral triple for C0((0, π)), such as that defined by (some self-
adjoint extension of) the Dirac operator on (0, π). We show that this is not the case; for
each ` ∈ Z there is no odd spectral triple (C∞c ((0, π)),H ′,D′) such that the right-hand
module is the even spectral triple corresponding to (C∞c ((0, π)),H ′,D′).

Let k, ` ∈ Z be fixed, where Vk : T→ U(L2($S 2 )) is the representation and (`, η) is
the pair of Definition 2.18. Define F :H` → L2([0, π]) ⊗̂C2 by

F
((

f (θ)ei(k−`)φ

g(θ)ei(k−`−1)φ

))
=
√

sin θ
(
i f (θ)
g(θ)

)
.
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The map F is a C0((0, π)) ⊗̂ Cl1-linear Z2-graded unitary isomorphism between
L2($S 2 )` and L2([0, π]) ⊗̂C2, where the latter space is graded by 1 ⊗̂

(1 0
0 −1

)
and the

action of Cl1 is given by c 7→ 1 ⊗̂
(0 1
1 0

)
. We can compute

F ◦ D` ◦ F−1 = −i∂θ ⊗̂ω − (k − ` − 1/2) csc(θ) ⊗̂ c,

where ω =
(0 −i

i 0
)
. Hence the right-hand module is unitarily equivalent to the spectral

triple

(C∞c ((0, π)) ⊗̂Cl1, L2([0, π]) ⊗̂C2,−i∂θ ⊗̂ω − (k − ` − 1/2) csc(θ) ⊗̂ c).

If (C∞c ((0, π)), L2([0, π]),D′) is an odd spectral triple, then the corresponding even
spectral triple is (C∞c ((0, π)) ⊗̂ Cl1, L2([0, π]) ⊗̂ C2,D′ ⊗̂ ω). The presence of the
(k − ` − 1/2) csc(θ) ⊗̂ c factor means that the right-hand module is not the even spectral
triple corresponding to any odd spectral triple.
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