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Abstract The self-affine measure µM,D corresponding to M = diag[p1, p2, p3] (pj ∈ Z \ {0, ±1}, j =
1, 2, 3) and D = {0, e1, e2, e3} in the space R

3 is supported on the three-dimensional Sierpinski gasket
T (M, D), where e1, e2, e3 are the standard basis of unit column vectors in R

3. We shall determine the
spectrality and non-spectrality of µM,D, and show that if pj ∈ 2Z \ {0, 2} for j = 1, 2, 3, then µM,D is a
spectral measure, and if pj ∈ (2Z + 1) \ {±1} for j = 1, 2, 3, then µM,D is a non-spectral measure and
there exist at most 4 mutually orthogonal exponential functions in L2(µM,D), where the number 4 is
the best possible. This generalizes the known results on the spectrality of self-affine measures.
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1. Introduction

This paper is concerned with harmonic analysis on certain fractals. This class falls within
more general fractal constructions. In a variety of different contexts, this analysis typically
involves notions of repeated similarity and, in certain cases, similarity may be defined
by a fixed scale number or scaling matrix that is then iterated ‘in the small’ through
a prescribed algorithm. In each iteration step, ‘small’ components are then repeated
according to fixed rules. Since the general situation can be complicated, it is helpful to
look for patterns in special examples. An important class of fractals is defined from a
system of affine mappings in Euclidean space of a fixed dimension: the so-called affine
fractals. In general, the affine mappings in R

n can be written in the following form:

φd(x) = M−1(x + d), d ∈ D, x ∈ R
n,

where M ∈ Mn(Z) is an expanding integer matrix and D ⊂ Z
n is a finite digit set of

cardinality |D|. For a given pair (M, D), the affine fractal is a unique non-empty compact
subset T := T (M, D) ⊂ R

n such that T =
⋃

d∈D φd(T ). More precisely, T (M, D) is an
attractor (or invariant set) of the affine iterated function system (IFS) {φd(x)}d∈D. In
this affine case, the scaling law is defined by a fixed matrix M−1, and at each level in

c© 2012 The Edinburgh Mathematical Society 477

https://doi.org/10.1017/S0013091511000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091511000502


478 J.-L. Li

the iteration a system of translations is applied, and of course the translation vectors
scale as well. Each fractal defined by a contractive scale is naturally equipped with a
unique invariant probability measure µ := µM,D; invariance is defined from the given
affine system {φd(x)}d∈D by

µ =
1

|D|
∑
d∈D

µ ◦ φ−1
d . (1.1)

The existence of µM,D is a construction due to Hutchinson [12], and µM,D is supported
on T (M, D). The invariant measure µM,D is also called the self-affine measure, and it may
be thought of as a generalization of the more familiar Haar measure for compact groups.
Since the affine fractals can be realized in R

n for some n, it is natural to ask whether
or not the Hilbert space L2(µM,D) has an orthogonal family of complex exponentials:
a Fourier basis. In successful constructions, it has been shown that Fourier bases may
indeed be obtained by a dual scaling in the large. However, many open questions remain.

The question of the existence of an orthogonal family of complex exponentials was
first raised, and answered, for n = 1 in the case of families of Cantor constructions. The
results were somewhat surprising. It turned out that, when the affine fractal is specified,
the answer to the existence question for a Fourier basis in the corresponding L2(µ) is
sensitive to choice of scaling number. Jorgensen and Pedersen [15] showed that a Fourier
basis exists when the scaling number is an even integer, but not in the odd case. In later
papers, by a number of different authors, the same questions were addressed for Sierpinski
constructions in two and three dimensions (i.e. n = 2, 3). The case when n = 3 is also
called the fractal Eiffel tower. Indeed, for a number of reasons, the case when n = 3
has received relatively more attention in the literature, but so far only scaling by the
same number in each of the three directions has been considered (see, for example, [15,
Example 7.1], [26], [27, Example 2.9 (e)], [14], [4, Theorem 5.1 (iii)], [23, Theorem 1]).
The present paper contains interesting results (see Theorem 1.1, below) when a different
scale is allowed in the separate directions.

The question proposed above also has its origin in analysis and geometry. For a prob-
ability measure µ of compact support on R

n, we call µ a spectral measure if there exists
a discrete set Λ ⊂ R

n such that E(Λ) := {exp(2πi〈λ, x〉) : λ ∈ Λ} forms an orthogonal
basis (Fourier basis) for L2(µ). The set Λ is then called a spectrum for µ; we also say
that (µ, Λ) is a spectral pair. Spectral measure is a generalization of the spectral set.
The notion of the spectral set was introduced by Fuglede [10], whose famous spectrum-
tiling conjecture motivated the previous research (see, for example, [6,8,17]). In recent
years, research on the spectrality or non-spectrality of a self-affine measure µM,D has
received much attention, following the pioneering work of Jorgensen and Pedersen [15]
(see, for example, [1–3,5,7,9,11,13,16,18–22,24,25]). The Fourier series associated
with a spectrum of spectral Cantor measure or spectral self-affine measure is called a
mock Fourier series, and has some interesting properties compared with the ordinary
Fourier series [27, 28]. Until now, the spectral or non-spectral problem of a self-affine
measure has focused mainly on the conditions under which µM,D is a spectral measure
or a non-spectral measure. There are two conjectures related to the problem (see, for
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example, [5, Conjecture 2.5], [7, Conjecture 1.1], [6, Problem 1] and [21, Conjectrue 1]),
which are still open even for the Sierpinski family.

Recall that the self-affine measure µM,D corresponding to

M =

⎡
⎢⎣p1 0 0

0 p2 0
0 0 p3

⎤
⎥⎦ , p1, p2, p3 ∈ Z \ {0, ±1},

D =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝1

0
0

⎞
⎟⎠ ,

⎛
⎜⎝0

1
0

⎞
⎟⎠ ,

⎛
⎜⎝0

0
1

⎞
⎟⎠
⎫⎪⎬
⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.2)

is supported on the three-dimensional Sierpinski gasket T (M, D). Because of the efforts
of Jorgensen and Pedersen (see [15, Example 7.1] and [14]), Strichartz (see [26] and [27,
Example 2.9 (e)]), Dutkay and Jorgensen (see [4, Theorem 5.1 (iii)]) and Li (see [23,
Theorem 1]), the spectrality and non-spectrality of the self-affine measure µM,D are
known only in the case when p1 = p2 = p3 = p: if p ∈ (2Z) \ {0}, then µM,D is a spectral
measure; if p ∈ (2Z + 1) \ {±1}, then µM,D is a non-spectral measure, and there exist at
most 4 mutually orthogonal exponential functions in L2(µM,D), where the number 4 is
the best possible. The general case for the spectrality or non-spectrality of the self-affine
measure µM,D is not known.

Motivated by the above problem on the self-affine measure, we shall determine the
spectrality and non-spectrality of self-affine measure µM,D for the three-dimensional Sier-
pinski gasket (1.2). The main result of the paper is the following.

Theorem 1.1. For the self-affine measure µM,D corresponding to (1.2), the following
spectrality and non-spectrality hold:

(i) if pj ∈ 2Z \ {0, 2} for j = 1, 2, 3, then µM,D is a spectral measure;

(ii) if pj ∈ (2Z + 1) \ {±1} for j = 1, 2, 3, then µM,D is a non-spectral measure,
and there exist at most 4 mutually orthogonal exponential functions in L2(µM,D).
Furthermore, it is possible to construct examples for which there are four mutually
orthogonal exponential functions in L2(µM,D). This shows that the number 4 is the
best possible (i.e. smallest) upper bound for the number of mutually orthogonal
exponential functions in L2(µM,D).

This extends the known results on the spectrality of the self-affine measure µM,D, which
is supported on the three-dimensional Sierpinski gasket (see [15, Example 7.1], [26], [27,
Example 2.9 (e)], [14], [4, Theorem 5.1 (iii)] and [23, Theorem 1]).

The paper is organized as follows. In § 2 we review some known results on the spectral
self-affine measures. We then prove Theorem 1.1 (i) by applying a result of Strichartz [26].
In § 3 we prove Theorem 1.1 (ii) in several typical cases. This proof is based on the detailed
analysis of the zero set Z(µ̂M,D(ξ)) of the Fourier transform µ̂M,D(ξ) and the careful
choice of each case. We obtain a method to deal with each case (only the typical cases
are presented). Note that our method is different from the previously known method.
Finally, we give a supplement to the planar Sierpinski family in § 4.
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2. Proof of Theorem 1.1 (i)

Let B and P be finite subsets of R
n of the same cardinality q. We say that (B, P ) is

a compatible pair if the q × q matrix HB,P := [q−1/2 exp(2πi〈b, p〉)]b∈B,p∈P is unitary,
i.e. HB,P H∗

B,P = Iq. Here we use ∗ to denote the transposed conjugate. For a given pair
(M, D), the spectrality or non-spectrality of µM,D is directly connected with the Fourier
transform µ̂M,D(ξ). From (1.1), we have

µ̂M,D(ξ) :=
∫

exp(2πi〈x, ξ〉) dµM,D(x) =
∞∏

j=1

mD(M∗−jξ), ξ ∈ R
n, (2.1)

where
mD(x) =

1
|D|

∑
d∈D

exp(2πi〈d, x〉), x ∈ R
n. (2.2)

It has been conjectured by Dutkay and Jorgensen (see [5, Conjecture 2.5], [7, Conjec-
ture 1.1] and also [6, Problem 1]) that for an expanding integer matrix M ∈ Mn(Z) and
a finite digit set D ⊂ Z

n with 0 ∈ D, if there exists a subset S ⊂ Z
n, 0 ∈ S, such that

(M−1D, S) is a compatible pair (or (M, D, S) is a Hadamard triple), then µM,D is a
spectral measure. This conjecture holds in the dimension n = 1 [16], in the case when
|D| = |S| = |det(M)| [18] and in the case when |det(M)| is a prime number [19]; it
also holds in higher dimensions with additional conditions (cf. [3,5,7]). With the above
existence S, the dual IFS {ψs(x) = M∗x + s}s∈S and its invariant set Λ(M, S) (fractals
in the large) play an important role. Usually, we use Λ(M, S) to denote the expansive
orbit of 0 under {ψs(x)}s∈S , that is

Λ(M, S) :=
{ k−1∑

j=0

M∗jsj : k � 1 and all sj ∈ S

}
, (2.3)

Since M∗Λ(M, S) + S = Λ(M, S), we also call Λ(M, S) the invariant set of the dual IFS
{ψs(x)}s∈S . In the above conjecture of Dutkay and Jorgensen, we know that E(Λ(M, S))
is an infinite orthogonal system in L2(µM,D) [14], but it need not be an orthogonal
basis (Fourier basis) for L2(µM,D) [18, Example 4.4]. To ensure the completeness of
E(Λ(M, S)) in L2(µM,D), Strichartz [26] obtained the following theorem, which can be
applied to prove Theorem 1.1 (i).

Theorem 2.1. Let M ∈ Mn(Z) be expanding, let D and S be finite subsets of Z
n

such that (M−1D, S) is a compatible pair and let 0 ∈ D ∩ S. Suppose that the zero
set Z(mM−1D(x)) of the function mM−1D(x) is disjoint from the set T (M∗, S). Then
Λ(M, S) is a spectrum for µM,D.

Proof of Theorem 1.1 (i). Firstly, for the pair (M, D) given by (1.2) with even
numbers p1, p2 and p3, we can choose the set

S =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝p1/2

p2/2
0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

p2/2
p3/2

⎞
⎟⎠ ,

⎛
⎜⎝p1/2

0
p3/2

⎞
⎟⎠
⎫⎪⎬
⎪⎭ (2.4)
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in Z
3 such that (M−1D, S) is a compatible pair. Then, the invariant set T (M∗, S) is

given by

T (M∗, S) =
{ ∞∑

j=1

M∗−jsj : sj ∈ S

}

=

⎧⎪⎨
⎪⎩

∞∑
j=1

⎡
⎢⎣

1/pj
1 0 0

0 1/pj
2 0

0 0 1/pj
3

⎤
⎥⎦
⎛
⎜⎝s1,j

s2,j

s3,j

⎞
⎟⎠ :

⎛
⎜⎝s1,j

s2,j

s3,j

⎞
⎟⎠ ∈ S

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

∞∑
j=1

⎛
⎜⎝

s1,j/pj
1

s2,j/pj
2

s3,j/pj
3

⎞
⎟⎠ :

⎛
⎜⎝s1,j

s2,j

s3,j

⎞
⎟⎠ ∈ S

⎫⎪⎬
⎪⎭ , (2.5)

which shows that for any x = (x1, x2, x3)T ∈ T (M∗, S) we have

|x1| � |p1|
2(|p1| − 1)

, |x2| � |p2|
2(|p2| − 1)

, |x3| � |p3|
2(|p3| − 1)

. (2.6)

So, if p1, p2, p3 ∈ (2Z) \ {0, ±2}, then T (M∗, S) ⊆ [− 2
3 , 2

3 ]3. Furthermore, it follows
from (2.5) that if pj = −2 for a fixed j ∈ {1, 2, 3}, then the point x = (x1, x2, x3)T ∈
T (M∗, S) satisfies xj ∈ [− 1

3 , 2
3 ] for the same j ∈ {1, 2, 3}. Hence,

T (M∗, S) ⊆ [− 2
3 , 2

3 ]3 if p1, p2, p3 ∈ (2Z) \ {0, 2}. (2.7)

Secondly, for the given digit set D in (1.2), we have

Z(mD(x)) := {x ∈ R
3 : mD(x) = 0} = A1 ∪ A2 ∪ A3, (2.8)

where

mD(x) = 1
4{1 + exp(2πix1) + exp(2πix2) + exp(2πix3)}, x = (x1, x2, x3)T ∈ R

3,

and A1, A2, A3 are given by

A1 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

1
2 + k1

a + k2
1
2 + a + k3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3,

A2 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

1
2 + a + k1

1
2 + k2

a + k3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3,

A3 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a + k1

1
2 + a + k2

1
2 + k3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)
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So, the zero set Z(mM−1D(x)) of the function mM−1D(x) = mD(M∗−1x) is given by

Z(mM−1D(x)) = M∗Z(mD(x)) = M∗A1 ∪ M∗A2 ∪ M∗A3. (2.10)

Now, if p1, p2, p3 ∈ (2Z) \ {0, 2}, then for any x = (x1, x2, x3)T ∈ Z(mM−1D(x)), we
observe from (2.9) and (2.10) that

|x1| = |( 1
2 + k1)p1| � 1 if k1 ∈ Z and x ∈ M∗A1,

|x2| = |( 1
2 + k2)p2| � 1 if k2 ∈ Z and x ∈ M∗A2,

|x3| = |( 1
2 + k3)p3| � 1 if k3 ∈ Z and x ∈ M∗A3.

⎫⎪⎬
⎪⎭ (2.11)

This shows that
Z(mM−1D(x)) ∩ [− 2

3 , 2
3 ]3 = ∅. (2.12)

Finally, it follows from (2.7), (2.12) and Theorem 2.1 that Λ(M, S) with S ⊂ Z
3 given

by (2.4) is a spectrum for µM,D. That is, µM,D is a spectral measure with spectrum
Λ(M, S). This completes the proof of Theorem 1.1 (i). �

Since the spectrality or non-spectrality of a self-affine measure is invariant under the
similarity [18, p. 208], Theorem 1.1 (i) can be stated in a more general form. For example,
we have the following corollary.

Corollary 2.2. If M and D are given by

M =

⎡
⎢⎣p1 0 0

0 p2 0
0 0 p3

⎤
⎥⎦ and D =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝d1

0
0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

d2

0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

0
d3

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , (2.13)

where p1, p2, p3 ∈ 2Z \ {0, 2} and d1, d2, d3 ∈ R \ {0}, then µM,D is a spectral measure.

With the same method as above, we also have the following.

Corollary 2.3. If M and D are given by

M =

⎡
⎢⎣ 0 0 p1

0 p2 0
p3 0 0

⎤
⎥⎦ and D =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝d1

0
0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

d2

0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

0
d1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , (2.14)

where p1, p2, p3 ∈ 2Z \ {0, 2} and d1, d2 ∈ R \ {0}, then µM,D is a spectral measure.

3. Proof of Theorem 1.1 (ii)

Firstly, we know from (2.1) and (2.8) that the zero set Z(µ̂M,D (ξ)) of the Fourier trans-
form µ̂M,D(ξ) is

Z(µ̂M,D(ξ)) =
∞⋃

j=1

M∗jZ(mD(ξ)) := B1 ∪ B2 ∪ B3, (3.1)
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where

B1 =
∞⋃

j=1

M∗jA1 =
∞⋃

j=1

⎧⎪⎨
⎪⎩
⎛
⎜⎝

( 1
2 + k1)p

j
1

(a + k2)p
j
2

( 1
2 + a + k3)p

j
3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3, (3.2)

B2 =
∞⋃

j=1

M∗jA2 =
∞⋃

j=1

⎧⎪⎨
⎪⎩
⎛
⎜⎝

( 1
2 + a + k1)p

j
1

( 1
2 + k2)p

j
2

(a + k3)p
j
3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3 (3.3)

and

B3 =
∞⋃

j=1

M∗jA3 =
∞⋃

j=1

⎧⎪⎨
⎪⎩
⎛
⎜⎝

(a + k1)p
j
1

( 1
2 + a + k2)p

j
2

( 1
2 + k3)p

j
3

⎞
⎟⎠ : a ∈ R, k1, k2, k3 ∈ Z

⎫⎪⎬
⎪⎭ ⊂ R

3. (3.4)

Since p1, p2, p3 ∈ (2Z+1)\{±1}, we can verify directly that the following two lemmas
hold.

Lemma 3.1. The sets Bj , j = 1, 2, 3, given by (3.2)–(3.4) satisfy the following prop-
erties:

(a) ξ ∈ Bj if and only if −ξ ∈ Bj , j = 1, 2, 3;

(b) Z(µ̂M,D(ξ)) ∩ Z
3 = Z(µ̂M,D(ξ)) ∩ (( 1

2 , 1
2 , 1

2 )T + Z
3) = ∅;

(c) if ξ = (ξ1, ξ2, ξ3)T ∈ B1 ± B1, then ξ1 ∈ Z;

(d) if ξ = (ξ1, ξ2, ξ3)T ∈ B2 ± B2, then ξ2 ∈ Z;

(e) if ξ = (ξ1, ξ2, ξ3)T ∈ B3 ± B3, then ξ3 ∈ Z.

Lemma 3.2. Let ξ = (ξ1, ξ2, ξ3)T ∈ Z(µ̂M,D (ξ)) = B1 ∪ B2 ∪ B3. Then the following
statements hold:

(i) if ξ ∈ Bj , then ξj ∈ 1
2 + Z, where j = 1, 2, 3;

(ii) if ξ1 ∈ Z, then ξ2 �∈ Z, ξ3 �∈ Z and ξ ∈ B2 ∪ B3;

(iii) if ξ2 ∈ Z, then ξ1 �∈ Z, ξ3 �∈ Z and ξ ∈ B1 ∪ B3;

(iv) if ξ3 ∈ Z, then ξ1 �∈ Z, ξ2 �∈ Z and ξ ∈ B1 ∪ B2.

Secondly, if λj ∈ R, j = 1, 2, 3, 4, 5, are such that the five exponential functions

exp(2πi〈λ1, x〉), exp(2πi〈λ2, x〉), exp(2πi〈λ3, x〉), exp(2πi〈λ4, x〉), exp(2πi〈λ5, x〉)
(3.5)

are mutually orthogonal in L2(µM,D), then the differences λj − λk, 1 � j �= k � 5,
are in the zero set Z(µ̂M,D(ξ)) of the Fourier transform µ̂M,D(ξ) (see, for example, [20,
p. 163], [21, p. 3140]). That is, we have

λj − λk ∈ Z(µ̂M,D(ξ)) = B1 ∪ B2 ∪ B3, 1 � j �= k � 5. (3.6)
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Define λj − λk by

λj − λk = (xj,k, yj,k, zj,k)T ∈ R
3 for 1 � j �= k � 5.

We shall apply the above two lemmas to deduce a contradiction below.
Observe that the following 10 differences:

λ2 − λ1, λ3 − λ1, λ4 − λ1, λ5 − λ1,

λ3 − λ2, λ4 − λ2, λ5 − λ2,

λ4 − λ3, λ5 − λ3,

λ5 − λ4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.7)

belong to the union of the three sets B1, B2 and B3. In particular, we have

λ2 − λ1, λ3 − λ1, λ4 − λ1, λ5 − λ1 ∈ B1 ∪ B2 ∪ B3. (3.8)

Claim 3.3. Each set B1 (or B2 or B3) cannot contain any three differences of the
form λj1 − λj , λj2 − λj , λj3 − λj , where 1 � j1 �= j2 �= j3 �= j � 5.

Claim 3.3 can be checked directly. For example, if λj1 − λj , λj2 − λj , λj3 − λj ∈ B1,
then, by applying Lemma 3.1 (c) and (3.6), we have

λj1 − λj3 = (λj1 − λj) − (λj3 − λj) ∈ (B1 − B1) ∩ Z(µ̂M,D(ξ)),

λj2 − λj3 = (λj2 − λj) − (λj3 − λj) ∈ (B1 − B1) ∩ Z(µ̂M,D(ξ)),

λj1 − λj2 = (λj1 − λj) − (λj2 − λj) ∈ (B1 − B1) ∩ Z(µ̂M,D(ξ)),

xj1,j3 , xj2,j3 , xj1,j2 ∈ Z,

and by Lemma 3.2 (ii),

λj1 − λj3 , λj2 − λj3 , λj1 − λj2 ∈ B2 ∪ B3,

which shows that at least one of the two sets B2 and B3, say B3, contains two differences,
say λj2 − λj3 and λj1 − λj2 . Then

λj1 − λj3 = (λj1 − λj2) + (λj2 − λj3) ∈ B3 + B3.

This shows (by Lemma 3.1 (e)) that zj1,j3 ∈ Z: a contradiction of Lemma 3.2 (ii).
From (3.8) and Claim 3.3, we only need to deal with the following two typical cases.

Case 1. λ2 − λ1 ∈ B1, λ3 − λ1 ∈ B2, λ4 − λ1 ∈ B3 and λ5 − λ1 ∈ B1.

Case 2. λ2 − λ1, λ3 − λ1 ∈ B1 and λ4 − λ1, λ5 − λ1 ∈ B2.

Note that Case 1 denotes the 2−1−1 distribution in (3.8), it also denotes the 1−2−1
or 1 − 1 − 2 distribution in (3.8), while Case 2 denotes the 2 − 2 − 0 (or 2 − 0 − 2 or
0 − 2 − 2) distribution in (3.8). If Case 1 and Case 2 can be proved, then the other cases
can be proved in the same way.
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In Case 1, we have

λ5 − λ2 = (λ5 − λ1) − (λ2 − λ1) ∈ B1 − B1.

Applying Lemma 3.1 (c), (3.6) and Lemma 3.2 (ii), we also have

λ5 − λ2 = (x5,2, y5,2, z5,2)T ∈ B2 ∪ B3 : x5,2 ∈ Z, y5,2 �∈ Z, z5,2 �∈ Z. (3.9)

From λ5 − λ2 ∈ B2 ∪ B3, the discussion here can be divided into two cases: λ5 − λ2 ∈ B2

and λ5 − λ2 ∈ B3. That is, we have the following two subcases.

Case 1.1. λ2 − λ1, λ5 − λ1 ∈ B1, λ3 − λ1, λ5 − λ2 ∈ B2, λ4 − λ1 ∈ B3.

Case 1.2. λ2 − λ1, λ5 − λ1 ∈ B1, λ3 − λ1 ∈ B2, λ4 − λ1, λ5 − λ2 ∈ B3.

The discussion of Case 1.2 is analogous to that of Case 1.1: it denotes the 2 − 2 − 1 or
2 − 1 − 2 or 1 − 2 − 2 distribution. So we only need to deal with Case 1.1. In this case,
by Lemma 3.2 (i), we see that (3.9) becomes

λ5 − λ2 = (x5,2, y5,2, z5,2)T ∈ B2 : x5,2 ∈ Z, y5,2 ∈ 1
2 + Z, z5,2 �∈ Z. (3.10)

From λ3 − λ2 ∈ B1 ∪ B2 ∪ B3, Case 1.1 can be divided into three cases.

Case 1.1.1. λ2 − λ1, λ5 − λ1, λ3 − λ2 ∈ B1, λ3 − λ1, λ5 − λ2 ∈ B2, λ4 − λ1 ∈ B3.

Case 1.1.2. λ2 − λ1, λ5 − λ1 ∈ B1, λ3 − λ1, λ5 − λ2, λ3 − λ2 ∈ B2, λ4 − λ1 ∈ B3.

Case 1.1.3. λ2 − λ1, λ5 − λ1 ∈ B1, λ3 − λ1, λ5 − λ2 ∈ B2, λ4 − λ1, λ3 − λ2 ∈ B3.

The above three cases denote the 3 − 2 − 1 (or 2 − 3 − 1) distribution and 2 − 2 − 2
distribution. The first two cases are similar. We shall give a method to deal with each
case by considering the remainder differences in (3.7). Note that each case is concluded
with a contradiction.

3.1. Case 1.1.1

In Case 1.1.1, we have

λ3 − λ1 = (λ3 − λ2) + (λ2 − λ1) ∈ B1 + B1,

which shows (by applying Lemma 3.1 (c), (3.6) and parts (i) and (ii) of Lemma 3.2) that

λ3 − λ1 = (x3,1, y3,1, z3,1)T ∈ B2 : x3,1 ∈ Z, y3,1 ∈ 1
2 + Z, z3,1 �∈ Z. (3.11)

By Lemma 3.1 (a) and λ1−λ2, λ3−λ2 ∈ B1, we know from Claim 3.3 that λ4−λ2 �∈ B1.
So λ4 − λ2 ∈ B2 or λ4 − λ2 ∈ B3, and Case 1.1.1 can be divided into two cases.

Case 1.1.1.1. λ2−λ1, λ5−λ1, λ3−λ2 ∈ B1, λ3−λ1, λ5−λ2, λ4−λ2 ∈ B2, λ4−λ1 ∈ B3.

Case 1.1.1.2. λ2−λ1, λ5−λ1, λ3−λ2 ∈ B1, λ3−λ1, λ5−λ2 ∈ B2, λ4−λ1, λ4−λ2 ∈ B3.

The above two cases denote the 3 − 3 − 1 distribution and 3 − 2 − 2 distribution. By
considering the remainder differences in (3.7), we apply Lemmas 3.1 and 3.2 to deal with
each case.
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Step 1. In Case 1.1.1.1, we have

λ5 − λ4 = (λ5 − λ2) − (λ4 − λ2) ∈ B2 − B2,

which shows (by applying Lemma 3.1 (d), (3.6) and Lemma 3.2 (iii)) that

λ5 − λ4 = (x5,4, y5,4, z5,4)T ∈ B1 ∪ B3 : x5,4 �∈ Z, y5,4 ∈ Z, z5,4 �∈ Z. (3.12)

(i) If λ5 − λ4 ∈ B1, then (3.12) becomes

λ5 − λ4 = (x5,4, y5,4, z5,4)T ∈ B1 : x5,4 ∈ 1
2 + Z, y5,4 ∈ Z, z5,4 �∈ Z. (3.13)

From λ4 − λ1 = (λ5 − λ1) − (λ5 − λ4) ∈ B1 − B1, we have (by applying Lemma 3.1 (c),
(3.6) and parts (i) and (ii) of Lemma 3.2) that

λ4 − λ1 = (x4,1, y4,1, z4,1)T ∈ B3 : x4,1 ∈ Z, y4,1 �∈ Z, z4,1 ∈ 1
2 + Z. (3.14)

It follows from (3.11), (3.14) and λ4 − λ3 = (λ4 − λ1) − (λ3 − λ1) that

λ4 − λ3 = (x4,3, y4,3, z4,3)T : x4,3 ∈ Z, y4,3 �∈ Z, z4,3 �∈ Z, (3.15)

which shows (by Lemma 3.2 (ii)) that λ4 − λ3 ∈ B2 ∪ B3. If λ4 − λ3 ∈ B2, then

λ4 − λ1 = (λ4 − λ3) + (λ3 − λ1) ∈ B2 + B2,

which shows (by Lemma 3.1 (d)) that y4,1 ∈ Z: a contradiction of (3.14). If λ4 −λ3 ∈ B3,
then

λ3 − λ1 = (λ4 − λ1) − (λ4 − λ3) ∈ B3 − B3,

which shows (by Lemma 3.1 (e)) that z3,1 ∈ Z: a contradiction of (3.11).
Note that in (3.15), we write y4,3 �∈ Z and z4,3 �∈ Z by Lemma 3.2 (ii) after obtaining

x4,3 = x4,1 − x3,1 ∈ Z (where x4,1, x3,1 ∈ Z). From y4,3 = y4,1 − y3,1, y4,1 �∈ Z and
y3,1 ∈ 1

2 + Z, we cannot assert that y4,3 �∈ Z. If y4,3 ∈ Z or z4,3 ∈ Z, then the discussion
will immediately conclude with a contradiction.

(ii) If λ5 − λ4 ∈ B3, then (3.12) becomes

λ5 − λ4 = (x5,4, y5,4, z5,4)T ∈ B3 : x5,4 �∈ Z, y5,4 ∈ Z, z5,4 ∈ 1
2 + Z. (3.16)

From λ5 − λ1 = (λ5 − λ4) + (λ4 − λ1) ∈ B3 + B3, we have (by applying Lemma 3.1 (e),
(3.6) and parts (i) and (iv) of Lemma 3.2)

λ5 − λ1 = (x5,1, y5,1, z5,1)T ∈ B1 : x5,1 ∈ 1
2 + Z, y5,1 �∈ Z, z5,1 ∈ Z. (3.17)

Now, consider the remainder difference λ4 −λ3 in (3.7): by Lemma 3.1 (a) and Claim 3.3,
we have λ4 − λ3 �∈ B3, so λ4 − λ3 ∈ B1 ∪ B2. If λ4 − λ3 ∈ B1, then

λ4 − λ2 = (λ4 − λ3) + (λ3 − λ2) ∈ B1 + B1,
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which shows (by applying Lemma 3.1 (c), (3.6) and parts (i) and (ii) of Lemma 3.2) that

λ4 − λ2 = (x4,2, y4,2, z4,2)T ∈ B2 : x4,2 ∈ Z, y4,2 ∈ 1
2 + Z, z4,2 �∈ Z. (3.18)

It follows from (3.10), (3.18) and λ5 − λ4 = (λ5 − λ2) − (λ4 − λ2) that x5,4 ∈ Z: a
contradiction of (3.16). If λ4 − λ3 ∈ B2, then

λ4 − λ1 = (λ4 − λ3) + (λ3 − λ1) ∈ B2 + B2,

which shows (by applying Lemma 3.1 (d), (3.6) and parts (i) and (iii) of Lemma 3.2) that

λ4 − λ1 = (x4,1, y4,1, z4,1)T ∈ B3 : x4,1 �∈ Z, y4,1 ∈ Z, z4,1 ∈ 1
2 + Z. (3.19)

It follows from (3.16), (3.19) and λ5 − λ1 = (λ5 − λ4) + (λ4 − λ1) that y5,1 ∈ Z and
z5,1 ∈ Z: a contradiction of (3.17) and parts (iii) and (iv) of Lemma 3.2, respectively.

Parts (i) and (ii) above and (3.12) illustrate that Case 1.1.1.1 is proved.

Step 2. In Case 1.1.1.2, we have

λ2 − λ1 = (λ4 − λ1) − (λ4 − λ2) ∈ B3 − B3,

which shows (by applying Lemma 3.1 (e), (3.6) and parts (i) and (iv) of Lemma 3.2) that

λ2 − λ1 = (x2,1, y2,1, z2,1)T ∈ B1 : x2,1 ∈ 1
2 + Z, y2,1 �∈ Z, z2,1 ∈ Z. (3.20)

Now, consider the three remainder differences λ4 − λ3, λ5 − λ3 and λ5 − λ4 in (3.7).
By Claim 3.3, we have λ4 − λ3 �∈ B3, so λ4 − λ3 ∈ B1 ∪ B2.

(i) If λ4 − λ3 ∈ B1, then

λ4 − λ2 = (λ4 − λ3) + (λ3 − λ2) ∈ B1 + B1,

which shows (by applying Lemma 3.1 (c), (3.6) and parts (i) and (ii) of Lemma 3.2) that

λ4 − λ2 = (x4,2, y4,2, z4,2)T ∈ B3 : x4,2 ∈ Z, y4,2 �∈ Z, z4,2 ∈ 1
2 + Z. (3.21)

Consider the remainder difference λ5 − λ4 in (3.7). By Claim 3.3, we have λ5 − λ4 �∈ B3,
so λ5 − λ4 ∈ B1 ∪ B2. If λ5 − λ4 ∈ B1, then

λ4 − λ1 = (λ5 − λ1) − (λ5 − λ4) ∈ B1 − B1,

which shows (by applying Lemma 3.1 (c), (3.6) and parts (i) and (ii) of Lemma 3.2) that

λ4 − λ1 = (x4,1, y4,1, z4,1)T ∈ B3 : x4,1 ∈ Z, y4,1 �∈ Z, z4,1 ∈ 1
2 + Z. (3.22)

It follows from (3.21), (3.22) and λ2 − λ1 = (λ4 − λ1) − (λ4 − λ2) that x2,1 ∈ Z and
z2,1 ∈ Z: a contradiction of (3.20). If λ5 − λ4 ∈ B2, then

λ4 − λ2 = (λ5 − λ2) − (λ5 − λ4) ∈ B2 − B2,

which shows (by applying Lemma 3.1 (d), (3.6) and Lemma 3.2 (iii)) that y4,2 ∈ Z: a
contradiction of (3.21).
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(ii) If λ4 − λ3 ∈ B2, then

λ4 − λ1 = (λ4 − λ3) + (λ3 − λ1) ∈ B2 + B2,

which shows (by applying Lemma 3.1 (d), (3.6) and parts (i) and (iii) of Lemma 3.2) that

λ4 − λ1 = (x4,1, y4,1, z4,1)T ∈ B3 : x4,1 �∈ Z, y4,1 ∈ Z, z4,1 ∈ 1
2 + Z. (3.23)

Consider the remainder difference λ5 − λ4 in (3.7). By Claim 3.3, we have λ5 − λ4 �∈ B3,
so λ5 − λ4 ∈ B1 ∪ B2. If λ5 − λ4 ∈ B1, then

λ4 − λ1 = (λ5 − λ1) − (λ5 − λ4) ∈ B1 − B1,

which shows (by applying Lemma 3.1 (c), (3.6) and Lemma 3.2 (ii)) that x4,1 ∈ Z: a
contradiction of (3.23). If λ5 − λ4 ∈ B2, then

λ4 − λ2 = (λ5 − λ2) − (λ5 − λ4) ∈ B2 − B2,

which shows (by applying Lemma 3.1 (d), (3.6) and parts (i) and (iii) of Lemma 3.2) that

λ4 − λ2 = (x4,2, y4,2, z4,2)T ∈ B3 : x4,2 �∈ Z, y4,2 ∈ Z, z4,1 ∈ 1
2 + Z. (3.24)

It follows from (3.23), (3.24) and λ2 − λ1 = (λ4 − λ1) − (λ4 − λ2) that y2,1 ∈ Z: a
contradiction of (3.20).

Step 2 illustrates that Case 1.1.1.2 is proved. Hence, Case 1.1.1 is proved.

3.2. Case 1.1.2

This case is analogous to, but easier than, Case 1.1.1; we mainly give a method here.
In Case 1.1.2, we have

λ2 − λ1 = (λ3 − λ1) − (λ3 − λ2) ∈ B2 − B2

and

λ5 − λ3 = (λ5 − λ2) − (λ3 − λ2) ∈ B2 − B2,

which shows (by applying Lemma 3.1 (d), (3.6) and parts (i) and (iii) of Lemma 3.2) that

λ2 − λ1 = (x2,1, y2,1, z2,1)T ∈ B1 : x2,1 ∈ 1
2 + Z, y2,1 ∈ Z, z2,1 �∈ Z (3.25)

and

λ5 − λ3 = (x5,3, y5,3, z5,3)T ∈ B1 ∪ B3 : x5,3 �∈ Z, y5,3 ∈ Z, z5,3 �∈ Z. (3.26)

Also, by Lemma 3.1 (a) and Claim 3.3, we have

λ4 − λ2 �∈ B2 and λ4 − λ3 �∈ B2. (3.27)
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If λ4 − λ2 ∈ B3, then λ2 − λ1 = (λ4 − λ1) − (λ4 − λ2) ∈ B3 − B3 and z2,1 ∈ Z: a
contradiction of (3.25); hence,

λ4 − λ2 �∈ B3 and λ4 − λ2 ∈ B1.

From λ4 − λ1 = (λ4 − λ2) + (λ2 − λ1) ∈ B1 + B1, we have

λ4 − λ1 = (x4,1, y4,1, z4,1)T ∈ B3 : x4,1 ∈ Z, y4,1 �∈ Z, z4,1 ∈ 1
2 + Z. (3.28)

If λ4 − λ3 ∈ B1, then λ3 − λ2 = (λ4 − λ2) − (λ4 − λ3) ∈ B1 − B1 and

λ3 − λ2 = (x3,2, y3,2, z3,2)T ∈ B2 : x3,2 ∈ Z, y3,2 ∈ 1
2 + Z, z3,2 �∈ Z,

which, combined with (3.10) and λ5 − λ3 = (λ5 − λ2) − (λ3 − λ2), shows that x5,3 ∈ Z:
a contradiction of (3.26); hence,

λ4 − λ3 �∈ B1 and λ4 − λ3 ∈ B3.

From λ3 − λ1 = (λ4 − λ1) − (λ4 − λ3) ∈ B3 − B3, we have

λ3 − λ1 = (x3,1, y3,1, z3,1)T ∈ B2 : x3,1 �∈ Z, y3,1 ∈ 1
2 + Z, z3,1 ∈ Z. (3.29)

If λ5 − λ3 ∈ B1, then λ3 − λ1 = (λ5 − λ1) − (λ5 − λ3) ∈ B1 − B1 and x3,1 ∈ Z: a
contradiction of (3.29); hence, λ5 − λ3 �∈ B1. From (3.26), we have λ5 − λ3 ∈ B3, and
(3.26) becomes

λ5 − λ3 = (x5,3, y5,3, z5,3)T ∈ B3 : x5,3 �∈ Z, y5,3 ∈ Z, z5,3 ∈ 1
2 + Z. (3.30)

From λ5 − λ4 = (λ5 − λ3) − (λ4 − λ3) ∈ B3 − B3, we have

λ5 − λ4 = (x5,4, y5,4, z5,4)T ∈ B1 ∪ B2 : x5,4 �∈ Z, y5,4 �∈ Z, z5,4 ∈ Z. (3.31)

If λ5 − λ4 ∈ B2, then λ4 − λ2 = (λ5 − λ2) − (λ5 − λ4) ∈ B2 − B2 and

λ4 − λ2 = (x4,2, y4,2, z4,2)T ∈ B1 : x4,2 ∈ 1
2 + Z, y4,2 ∈ Z, z4,2 �∈ Z,

which, combined with (3.25) and λ4 − λ1 = (λ4 − λ2) + (λ2 − λ1), yields y4,1 ∈ Z: a
contradiction of (3.28); hence, λ5 − λ4 �∈ B2. This shows that λ5 − λ4 ∈ B1, and (3.31)
becomes

λ5 − λ4 = (x5,4, y5,4, z5,4)T ∈ B1 : x5,4 ∈ 1
2 + Z, y5,4 �∈ Z, z5,4 ∈ Z. (3.32)

With the above method and λ5−λ4 ∈ B1, we have λ5−λ2 = (λ5−λ4)+(λ4−λ2) ∈ B1+B1

and λ4 −λ1 = (λ5 −λ1)−(λ5 −λ4) ∈ B1 −B1, which yield (3.10) and (3.28), respectively.
Now, the 10 differences in (3.7) satisfy

λ2 − λ1, λ5 − λ1, λ4 − λ2, λ5 − λ4 ∈ B1,

λ3 − λ1, λ5 − λ2, λ3 − λ2 ∈ B2,

λ4 − λ1, λ4 − λ3, λ5 − λ3 ∈ B3,

⎫⎪⎬
⎪⎭ (3.33)
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and we have (3.10), (3.25), (3.28)–(3.30) and (3.32). There are several contradictions
implied in them. For example, from (3.10) and (3.25), we have

λ5 − λ1 = (x5,1, y5,1, z5,1)T = (λ5 − λ2) + (λ2 − λ1) : x5,1 ∈ 1
2 + Z, y5,1 ∈ 1

2 + Z.

From (3.29) and (3.30), we have

λ5 − λ1 = (x5,1, y5,1, z5,1)T = (λ5 − λ3) + (λ3 − λ1) : y5,1 ∈ 1
2 + Z, z5,1 ∈ 1

2 + Z.

Thus, we have
λ5 − λ1 = (x5,1, y5,1, z5,1)T ∈ ( 1

2 , 1
2 , 1

2 )T + Z
3,

which contradicts Lemma 3.1 (b). This proves Case 1.1.2.

3.3. Case 1.1.3

According to λ4 − λ2 ∈ B1 ∪ B2 ∪ B3, Case 1.1.3 can be divided into the following
three cases.

Case 1.1.3.1. λ2−λ1, λ5−λ1, λ4−λ2 ∈ B1, λ3−λ1, λ5−λ2 ∈ B2, λ4−λ1, λ3−λ2 ∈ B3.

Case 1.1.3.2. λ2−λ1, λ5−λ1 ∈ B1, λ3−λ1, λ5−λ2, λ4−λ2 ∈ B2, λ4−λ1, λ3−λ2 ∈ B3.

Case 1.1.3.3. λ2−λ1, λ5−λ1 ∈ B1, λ3−λ1, λ5−λ2 ∈ B2, λ4−λ1, λ3−λ2, λ4−λ2 ∈ B3.

The above three cases denote that the seven differences in the first two rows of (3.7)
have the 3 − 2 − 2 or 2 − 3 − 2 or 2 − 2 − 3 distribution. In each case, we have (3.10).
In addition, in Case 1.1.3.1, we have λ4 − λ1 ∈ B1 + B1; in Case 1.1.3.2, we have
λ5 − λ4 ∈ B2 − B2; in Case 1.1.3.3, we have λ4 − λ3 ∈ B3 − B3 and λ2 − λ1 ∈ B3 − B3.
So, the discussion of the first two cases is analogous, and the discussion of the third case
is easier than the first two cases. In the following, we use the above method to deal with
Case 1.1.3.1. The other two cases can be proved in the same manner.

In Case 1.1.3.1, we have

λ4 − λ1 = (λ4 − λ2) + (λ2 − λ1) ∈ B1 + B1,

which shows (by applying Lemma 3.1 (c), (3.6) and parts (i) and (ii) of Lemma 3.2) that

λ4 − λ1 = (x4,1, y4,1, z4,1)T ∈ B3 : x4,1 ∈ Z, y4,1 �∈ Z, z4,1 ∈ 1
2 + Z. (3.34)

Note that the three remainder differences λ4 − λ3, λ5 − λ3 and λ5 − λ4 are also in the
set B1 ∪ B2 ∪ B3. Firstly, (3.10) and (3.34) give us the information that

λ4 − λ3 �∈ B2 or λ4 − λ3 ∈ B1 ∪ B3 (3.35)

and

λ5 − λ3 �∈ B3 or λ5 − λ3 ∈ B1 ∪ B2. (3.36)

In fact, by Lemma 3.1, if λ4−λ3 ∈ B2, then λ4−λ1 = (λ4−λ3)+(λ3−λ1) ∈ B2+B2 gives
y4,1 ∈ Z: a contradiction of (3.34). If λ5 −λ3 ∈ B3, then λ5 −λ2 = (λ5 −λ3)+(λ3 −λ2) ∈
B3 + B3 gives z5,2 ∈ Z: a contradiction of (3.10). Hence, (3.35) and (3.36) hold.
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From (3.35), we consider the following two cases.

(i) If λ4 − λ3 ∈ B1, then, from λ3 − λ2 = (λ4 − λ2) − (λ4 − λ3) ∈ B1 − B1, we have
(by applying Lemma 3.1 (c), (3.6) and parts (i) and (ii) of Lemma 3.2)

λ3 − λ2 = (x3,2, y3,2, z3,2)T ∈ B3 : x3,2 ∈ Z, y3,2 �∈ Z, z3,2 ∈ 1
2 + Z, (3.37)

which also shows λ5−λ3 �∈ B2 (otherwise, by Lemma 3.1, λ3−λ2 = (λ5−λ2)−(λ5−λ3) ∈
B2 − B2 gives y3,2 ∈ Z: a contradiction of (3.37)). From (3.36), we have λ5 − λ3 ∈ B1.
From λ3 − λ1 = (λ5 − λ1) − (λ5 − λ3) ∈ B1 − B1, we have (by applying Lemma 3.1 (c),
(3.6) and parts (i) and (ii) of Lemma 3.2)

λ3 − λ1 = (x3,1, y3,1, z3,1)T ∈ B2 : x3,1 ∈ Z, y3,1 ∈ 1
2 + Z, z3,1 �∈ Z. (3.38)

From (3.37), (3.38) and λ2 −λ1 = (λ3 −λ1)−(λ3 −λ2), we have x2,1 ∈ Z: a contradiction
of Lemma 3.2 (i) (for λ2 − λ1 ∈ B1 gives x2,1 ∈ 1

2 + Z).

(ii) If λ4 − λ3 ∈ B3, then, from λ4 − λ2 = (λ4 − λ3) + (λ3 − λ2) ∈ B3 + B3 and
λ3 − λ1 = (λ4 − λ1) − (λ4 − λ3) ∈ B3 − B3, we have (by applying Lemma 3.1 (e), (3.6)
and parts (i) and (iv) of Lemma 3.2)

λ4 − λ2 = (x4,2, y4,2, z4,2)T ∈ B1 : x4,2 ∈ 1
2 + Z, y4,2 �∈ Z, z4,2 ∈ Z (3.39)

and

λ3 − λ1 = (x3,1, y3,1, z3,1)T ∈ B2 : x3,1 �∈ Z, y3,1 ∈ 1
2 + Z, z3,1 ∈ Z. (3.40)

Now we consider (3.36). If λ5 −λ3 ∈ B1, then, by Lemma 3.1 and λ3 −λ1 = (λ5 −λ1)−
(λ5−λ3) ∈ B1−B1, we have x3,1 ∈ Z: a contradiction of (3.40). If λ5−λ3 ∈ B2, then, from
λ3 −λ2 = (λ5 −λ2)− (λ5 −λ3) ∈ B2 −B2 and λ5 −λ1 = (λ5 −λ3)+(λ3 −λ1) ∈ B2 +B2,
we have (by applying Lemma 3.1 (d), (3.6) and parts (i) and (iii) of Lemma 3.2)

λ3 − λ2 = (x3,2, y3,2, z3,2)T ∈ B3 : x3,2 �∈ Z, y3,2 ∈ Z, z3,2 ∈ 1
2 + Z (3.41)

and

λ5 − λ1 = (x5,1, y5,1, z5,1)T ∈ B1 : x5,1 ∈ 1
2 + Z, y5,1 ∈ Z, z5,1 �∈ Z. (3.42)

From the equality

λ2 − λ1 = (λ5 − λ1) − (λ5 − λ2) = (λ3 − λ1) − (λ3 − λ2) = (λ4 − λ1) − (λ4 − λ2),

we see, from (3.42) and (3.10), (3.40) and (3.41), (3.34) and (3.39) that

λ2 − λ1 = (x2,1, y2,1, z2,1)T ∈ ( 1
2 , 1

2 , 1
2 ) + Z

3,

which contradicts (3.6) and Lemma 3.1 (b).
Parts (i) and (ii) above and (3.35) illustrate that Case 1.1.3.1 is proved, and Case 1.1.3

is proved.
Thus, the proof of Case 1 is completed.
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3.4. Case 2

In Case 2, we have λ3 − λ2 = (λ3 − λ1) − (λ2 − λ1) ∈ B1 − B1, and λ5 − λ4 =
(λ5 − λ1) − (λ4 − λ1) ∈ B2 − B2, which shows (by Lemmas 3.1 and 3.2) that

λ3 − λ2 = (x3,2, y3,2, z3,2)T ∈ B2 ∪ B3 : x3,2 ∈ Z, y3,2 �∈ Z, z3,2 �∈ Z (3.43)

and

λ5 − λ4 = (x5,4, y5,4, z5,4)T ∈ B1 ∪ B3 : x5,4 �∈ Z, y5,4 ∈ Z, z5,4 �∈ Z. (3.44)

According to λ3 − λ2 ∈ B2 ∪ B3, Case 2 can be divided into the following two cases.

Case 2.1. λ2 − λ1, λ3 − λ1 ∈ B1 and λ4 − λ1, λ5 − λ1, λ3 − λ2 ∈ B2.

Case 2.2. λ2 − λ1, λ3 − λ1 ∈ B1, λ4 − λ1, λ5 − λ1 ∈ B2 and λ3 − λ2 ∈ B3.

Case 2.2 is similar to Case 1.1, so we only need to deal with Case 2.1. In this case,
(3.43) becomes

λ3 − λ2 = (x3,2, y3,2, z3,2)T ∈ B2 : x3,2 ∈ Z, y3,2 ∈ 1
2 + Z, z3,2 �∈ Z. (3.45)

According to λ5 − λ4 ∈ B1 ∪ B3, Case 2.1 can be divided into the following two cases.

Case 2.1.1. λ2 − λ1, λ3 − λ1, λ5 − λ4 ∈ B1 and λ4 − λ1, λ5 − λ1, λ3 − λ2 ∈ B2.

Case 2.1.2. λ2 − λ1, λ3 − λ1 ∈ B1, λ4 − λ1, λ5 − λ1, λ3 − λ2 ∈ B2 and λ5 − λ4 ∈ B3.

Case 2.1.2 is similar to Case 1.1.2, so we only need to deal with Case 2.1.1. In this
case, (3.44) becomes

λ5 − λ4 = (x5,4, y5,4, z5,4)T ∈ B1 : x5,4 ∈ 1
2 + Z, y5,4 ∈ Z, z5,4 �∈ Z. (3.46)

Consider the remainder difference λ4−λ2 in (3.7). According to λ4−λ2 ∈ B1∪B2∪B3,
Case 2.1.1 can be divided into three cases.

Case 2.1.1.1. λ2 − λ1, λ3 − λ1, λ5 − λ4, λ4 − λ2 ∈ B1, λ4 − λ1, λ5 − λ1, λ3 − λ2 ∈ B2.

Case 2.1.1.2. λ2 − λ1, λ3 − λ1, λ5 − λ4 ∈ B1, λ4 − λ1, λ5 − λ1, λ3 − λ2, λ4 − λ2 ∈ B2.

Case 2.1.1.3. λ2−λ1, λ3−λ1, λ5−λ4 ∈ B1, λ4−λ1, λ5−λ1, λ3−λ2 ∈ B2, λ4−λ2 ∈ B3.

Case 2.1.1.3 is similar to Case 1.1.1.1. Case 2.1.1.2 is similar to Case 2.1.1.1, so we only
need to deal with Case 2.1.1.1. In this case, from λ5−λ2 = (λ5−λ4)+(λ4−λ2) ∈ B1+B1

and λ4 − λ1 = (λ4 − λ2) + (λ2 − λ1) ∈ B1 + B1, we have

λ5 − λ2 = (x5,2, y5,2, z5,2)T ∈ B2 ∪ B3 : x5,2 ∈ Z, y5,2 �∈ Z, z5,2 �∈ Z (3.47)

and

λ4 − λ1 = (x4,1, y4,1, z4,1)T ∈ B2 : x4,1 ∈ Z, y4,1 ∈ 1
2 + Z, z4,1 �∈ Z. (3.48)

If λ5 − λ2 ∈ B2, then, (3.47) becomes

λ5 − λ2 = (x5,2, y5,2, z5,2)T ∈ B2 : x5,2 ∈ Z, y5,2 ∈ 1
2 + Z, z5,2 �∈ Z, (3.49)
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which, combined with (3.45), yields

λ5 −λ3 = (λ5 −λ2)− (λ3 −λ2) = (x5,3, y5,3, z5,3)T : x5,3 ∈ Z, y5,3 ∈ Z, z5,3 �∈ Z, (3.50)

which contradicts parts (ii) and (iii) of Lemma 3.2, respectively. Hence, λ5 − λ2 ∈ B3,
and Case 2.1.1.1 can be treated as before. So the same method can be applied here to
complete the proof of Case 2.

Summing up the above discussion, we know that any set of orthogonal exponentials in
L2(µM,D) contains at most 4 elements. One can obtain many such orthogonal systems
which contain four elements. For instance, the exponential function system E(S) with
S ⊂ R

3 given by (2.4) is an orthogonal system in L2(µM,D) consisting of 4 exponential
functions. This shows that the number 4 is the best possible. The proof of Theorem 1.1 (ii)
is complete.

Note that Theorem 1.1 (ii) can be stated in a more general form. For example, we also
have the following corollary.

Corollary 3.4. If M and D are given by (2.13) with p1, p2, p3 ∈ (2Z + 1) \ {±1}
and d1, d2, d3 ∈ R \ {0}, then µM,D is a non-spectral measure, and there exist at most 4
mutually orthogonal exponential functions in L2(µM,D), where the number 4 is the best
possible.

To conclude this section, we point out that the method used to prove Theorem 1.1 (ii)
essentially gives us the following useful hints on the non-spectrality of self-affine measures.

If Z(µ̂M,D(ξ)) =
⋃k

j=1 Bj is a finite union of sets B1, B2, . . . , Bk in R
n such that for

each orthogonal system E(Λ) in L2(µM,D) with Λ ⊂ R
n, Bj , j = 1, 2, . . . , k, contain

finite elements of set Λ − {λi} for a fixed λi ∈ Λ, then µM,D is a non-spectral measure
and Λ is a finite set. Furthermore, to obtain the best upper bound of |Λ|, one needs some
combinative techniques along with more properties on the sets Bj , j = 1, 2, . . . , k.

4. A supplement to the planar Sierpinski family

The generalized planar Sierpinski family corresponds to the expanding integer matrix
M ∈ M2(Z) and the three-element digit set D given by

M =

[
a b

d c

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
. (4.1)

Li [22] proved that if ac − bd �∈ 3Z, then there exist at most 3 mutually orthogonal
exponentials in L2(µM,D), and the number 3 is the best possible. Note that the proof of
this result in [22] contains an incomplete statement. For the sake of completeness, we
add here a supplement to the proof of the main result in [22].

The statement ‘the remainder three elements (3.7) will be in the three different small
boxes also’ on [22, p. 548] is not correct. It needs the fact that we can deal with the case
when these three remainder elements (3.7) are in two different small boxes. (It is clear
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Table 1. Distribution of differences

Z1 Z2 Z3 Z4 Z̃1 Z̃2 Z̃3 Z̃4

λ1 − λ2 λ1 − λ3 λ1 − λ4

λ2 − λ1 λ3 − λ1 λ4 − λ1

λ2 − λ3 λ3 − λ2

λ3 − λ4 λ4 − λ3

λ4 − λ2 λ2 − λ4

that they cannot be in one small box.) Here we provide a proof of this fact. The three
remainder elements (3.7) of [22] may be in two small boxes, such as

λ2 − λ3 ∈ Z4, λ2 − λ4 ∈ Z̃4, λ3 − λ4 ∈ Z4 (4.2)

or λ2 − λ3 ∈ Z̃4, λ2 − λ4 ∈ Z4, λ3 − λ4 ∈ Z̃4. We use the same symbol as in [22]. If this
case happens, then there exists another typical case among the cases (3.14) of [22] that
should be treated separately. This typical case is

λ1 − λ2 ∈ Z1, λ1 − λ3 ∈ Z2, λ1 − λ4 ∈ Z3,

λ2 − λ3 ∈ Z4, λ2 − λ4 ∈ Z̃4, λ3 − λ4 ∈ Z4,

}
(4.3)

and the corresponding Box 1 in [22] becomes Table 1 by [22, Proposition 2].
For this typical case, we can deduce a contradiction in the following manner. Note

that the proof of this typical case, though implicit in the author’s previous research (the
previous research illustrates that a small box such as Z4 in Table 1 cannot contain many
elements), does not appear there explicitly. We present it here briefly.

From the definition of Zl (l = 1, 2, 3, 4) (the same method applies to Z̃l (l = 1, 2, 3, 4))
in [22], we see that there are integer numbers kij , k

′
ij ∈ Z, i = 1, 2, 3, 4, j = 2, 3, 4, such

that

λ1 − λ2 = M∗

(
1
3 + k12
2
3 + k′

12

)
, λ1 − λ3 = M∗2

(
1
3 + k13
2
3 + k′

13

)
,

λ1 − λ4 = M∗3

(
1
3 + k14
2
3 + k′

14

)
, λ2 − λ3 = M∗4

(
1
3 + k23
2
3 + k′

23

)
,

λ3 − λ4 = M∗4

(
1
3 + k34
2
3 + k′

34

)
, λ4 − λ2 = M∗4

(
1
3 + k42
2
3 + k′

42

)

hold. Then, from (λ1 − λ3) − (λ1 − λ2) = λ2 − λ3, we have

M∗

(
1
3 + k13
2
3 + k′

13

)
−
(

1
3 + k12
2
3 + k′

12

)
= M∗3

(
1
3 + k23
2
3 + k′

23

)
. (4.4)
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Similarly, we have

M∗

(
1
3 + k14
2
3 + k′

14

)
−
(

1
3 + k13
2
3 + k′

13

)
= M∗2

(
1
3 + k34
2
3 + k′

34

)
, (4.5)

(
1
3 + k12
2
3 + k′

12

)
− M∗2

(
1
3 + k14
2
3 + k′

14

)
= M∗3

(
1
3 + k42
2
3 + k′

42

)
. (4.6)

In type 4 of [22], the expanding matrix M is given by

M∗ =

[
a d

b c

]
= 3

[
l1 l4
l2 l3

]
+ Mα := 3M̃ + Mα (4.7)

for α = 3, 5, 10, 12, 19, 22, 26, 28, 37, 42, 44, 48, where

M3 =

[
0 1
1 1

]
, M5 =

[
0 1
1 2

]
, M10 =

[
0 2
2 1

]
, M12 =

[
0 2
2 2

]
,

M19 =

[
1 1
1 0

]
, M22 =

[
1 2
1 1

]
, M26 =

[
1 2
2 0

]
, M28 =

[
1 1
2 1

]
,

M37 =

[
2 1
1 0

]
, M42 =

[
2 2
1 2

]
, M44 =

[
2 2
2 0

]
, M48 =

[
2 1
2 2

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

From (4.7) and (4.8), we can verify that in each case of type 4, none of the equalities
(4.4)–(4.6) holds. For example, consider the case (M22); we see that the left-hand side
of (4.4) is in (1

3 , 1
3 )T + Z

2, but the right-hand side of (4.4) is in (0, 1
3 )T + Z

2, so (4.4) does
not hold; the left-hand side of (4.5) is in (1

3 , 1
3 )T + Z

2, but the right-hand side of (4.5) is
in (2

3 , 2
3 )T + Z

2, so (4.5) does not hold; the left-hand side of (4.6) is in (2
3 , 0)T + Z

2, but
the right-hand side of (4.6) is in (0, 1

3 )T + Z
2, so (4.6) does not hold. The other cases of

type 4 can be proved in the same way. This completes the proof of the main result of [22]
in the case similar to (4.3) or Table 1.
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