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The regulation of electron heat transport in high-β, weakly collisional, magnetized
plasma is investigated. A temperature gradient oriented along a mean magnetic field
can induce a kinetic heat-flux-driven whistler instability (HWI), which back-reacts on
the transport by scattering electrons and impeding their flow. Previous analytical and
numerical studies have shown that the heat flux for the saturated HWI scales as β−1

e .
These numerical studies, however, had limited scale separation and consequently large
fluctuation amplitudes, which calls into question their relevance at astrophysical scales.
To this end, we perform a series of particle-in-cell simulations of the HWI across a
range of βe and temperature-gradient length scales under two different physical set-ups.
The saturated heat flux in all of our simulations follows the expected β−1

e scaling,
supporting the robustness of the result. We also use our simulation results to develop
and implement several methods to construct an effective collision operator for whistler
turbulence. The results point to an issue with the standard quasi-linear explanation of
HWI saturation, which is analogous to the well-known 90◦ scattering problem in the
cosmic-ray community. Despite this limitation, the methods developed here can serve
as a blueprint for future work seeking to characterize the effective collisionality caused by
kinetic instabilities.

Keywords: astrophysical plasmas, plasma instabilities, plasma simulation

1. Introduction
1.1. Physical motivation

1.1.1. The intracluster medium of galaxy clusters
Galaxy clusters are the largest virialized structures in the Universe, spanning more

than a megaparsec in diameter. Clusters are bound by dark matter, which forms a deep
gravitational well. Dark matter accounts for the majority of cluster mass, ≈84 %. The
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remaining mass is attributed to baryonic matter in the hundreds to thousands of galaxies
scattered across the cluster (≈3 %) or the relatively hot, diffuse plasma between them
(≈13 %) known as the intracluster medium (ICM) (see Peterson & Fabian 2006 for a
review). Studies of temperature gradients in various clusters (e.g. Binney & Cowie 1981;
Ettori & Fabian 2000; Vikhlinin, Markevitch & Murray 2001; Markevitch et al. 2003;
Zakamska & Narayan 2003) have suggested that heat conduction must be suppressed by
a multiplicative factor of ∼0.3 to ∼10−2 relative to the Spitzer value (Fabian, Voigt &
Morris 2002), which, because of its strong temperature dependence ∝T7/2 (Spitzer 1962),
would otherwise isothermalize the ICM rapidly or fail to prevent runaway cooling (e.g.
Bregman & David 1988; Kim & Narayan 2003; Conroy & Ostriker 2008).

1.1.2. The solar wind
The modern understanding of the solar wind has its origins in seminal work by

Parker (1958): the corona, which is heated to temperatures upwards of 106 K (e.g. by
Alfvén-wave turbulence (Chandran & Hollweg 2009; Chen 2022; Squire et al. 2022)
or perhaps interchange reconnection (Raouafi et al. 2023)), provides much of the free
energy and mass required to accelerate the plasma to velocities exceeding ≈400 km s−1

(see Verscharen, Klein & Maruca 2019, for a review). The observed radial electron
temperature profile inside a few au does not match predictions from a purely adiabatic wind
(Richardson & Smith 2003); heat fluxes are therefore thought to play an important role in
the thermodynamic evolution of the solar wind. A statistical study of Wind spacecraft
measurements taken from the β � 1, weakly collisional slow wind (Bale et al. 2013)
revealed that the scaling of the electron heat flux with the Coulomb-collisional mean free
path λmfp,e depends on the local temperature-gradient length scale LT : for LT � λmfp,e, the
measured heat flux matched collisional predictions (Spitzer 1962), whereas for LT/λmfp,e �
3, the heat flux was found to be constant with LT . Similar results were also found in data
from the Parker Solar Probe (Halekas et al. 2021).

1.1.3. Low-luminosity black-hole accretion flows
Accretion flows onto supermassive black holes are often significantly underluminous

when compared with predictions from classical thin-disc theory. For example, if plasma
were accreted at the Bondi (1952) rate onto the ≈4 × 106 M� black hole at the Galactic
centre, Sgr A∗, via a geometrically thin, optically thick accretion disc (Shakura &
Sunyaev 1973), then the luminosity would be ∼105 times larger than that observed
(see reviews by Quataert 2003; Yuan & Narayan 2014). Such radiatively inefficient
accretion flows (RIAFs) can be explained by a combination of substantially sub-Bondi
accretion, because much of the inflowing plasma is gravitationally unbound and lost to a
magnetically driven wind (e.g. Blandford & Begelman 1999; Hawley & Balbus 2002) and
low radiative efficiency, because the liberated gravitational potential energy is stored as
thermal energy primarily in the poorly radiating ion population (e.g. Narayan & Yi 1994).
The result is a geometrically thick accretion flow, one in which the thermodynamics of the
putative collisionless, high-β plasma should play an important role, whether by instigating
hydrodynamic (Narayan, Igumenshchev & Abramowicz 2000; Quataert & Gruzinov 2000)
or magnetothermal (Balbus 2001) convective transport, or by being modified directly by
conductive transport (Tanaka & Menou 2006; Johnson & Quataert 2007; Ressler et al.
2015).

1.2. General transport considerations and history
Given the potential importance of conductive and convective heat transport in the ICM,
solar wind and RIAFs, it is not surprising that it remains an active area of research
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within each of the associated communities. Obtaining definitive physical models for this
transport, however, is made difficult by the extreme scale separations characterizing these
plasmas and by the complexities such multiscale physics brings. Namely, all of these
plasmas are weakly collisional, with the ratio of Coulomb mean free path and macroscopic
temperature-gradient length scales ranging from ∼10−2 to ∼1 in the ICM, in the solar
wind and around Sgr A∗ near the Bondi radius (increasing to values �1 towards the event
horizon). They are also highly magnetized, with the ratio of electron gyroradius ρe to
LT being (very roughly) ∼10−15 in the ICM, ∼10−8 in the solar wind and ∼10−12 at the
Bondi radius of Sgr A∗. As a result, the motions of charged particles are tightly bound to
magnetic-field lines and the transport of both momentum and heat perpendicular to the
field is highly suppressed relative to the parallel transport. Thus, both the angle of the
magnetic field with respect to the local temperature gradient (e.g. in insulated cluster cold
fronts; Vikhlinin et al. 2001; Markevitch & Vikhlinin 2007) and the extent to which the
field lines are tangled by turbulence (e.g. Chandran & Cowley 1998; Narayan & Medvedev
2001) have a significant effect on heat transport. If the temperature gradient is aligned or
anti-aligned with a confining gravitational field, even energetically weak magnetic fields
can drive buoyancy instabilities like the magnetothermal instability (Balbus 2000, 2001) or
heat-flux buoyancy instability (Quataert 2008), provided that the conductive heat transport
between fluid elements is rapid and restricted along field lines (see Kunz (2011) and Xu
& Kunz (2016) for detailed treatments of these instabilities for weakly collisional and
collisionless plasmas, respectively).

Kinetic instabilities can also strongly affect transport in weakly collisional, magnetized
plasma. The transport of heat or momentum implies a distortion of the distribution
function (e.g. Braginskii 1965), which can be a source of free energy for kinetic
instabilities (e.g. Bott, Cowley & Schekochihin 2024). If the plasma beta β = 8πp/B2

(the ratio of thermal pressure p and magnetic pressure B2/8π) is large, small departures
from local thermodynamic equilibrium, and thus, small amounts of transport implied
by the departure, are enough to grow Larmor-scale distortions in the energetically weak
magnetic field. Such distortions can scatter or trap particles, pushing the particles’ velocity
distribution function back towards isotropy and thereby limiting transport.

One instability of note in this context is the heat-flux-driven whistler instability (HWI),
which was first investigated in the case of a weakly collisional plasma by Levinson
& Eichler (1992). Those authors derived a growth rate for the case of a wave vector
oriented parallel to the local magnetic field; however, they considered the case where
the HWI is saturated by wave-mode coupling and found that the saturated heat flux was
independent of the quasi-linear scattering rate. A few years later, Pistinner & Eichler
(1998) found that oblique whistler waves, which are elliptically (rather than circularly)
polarized, could diffusively scatter heat-flux-carrying electrons via cyclotron resonance
and limit the heat flux ∝ β−1

e . Following these analytical results has been a relatively recent
flurry of numerical works, namely particle-in-cell (PIC) simulations of the HWI. The first
of these were one-dimensional (1-D) simulations (Roberg-Clark et al. 2016), which found
little reduction of the heat flux by parallel whistlers, confirming the need for oblique waves.
It was not until two-dimensional (2-D) PIC simulations were performed that the predicted
∼β−1

e scaling was shown empirically. These runs were performed concurrently by two
independent groups: Komarov et al. (2018) (hereafter K18) and Roberg-Clark et al. (2018)
(hereafter RC18).

The literature for heat-flux instabilities in the solar wind evolved largely independently
from the more astrophysics-focused work discussed in the preceding paragraph. This is
likely due to the emphasis on high-βe plasma for the latter and the multiple electron
populations encountered in the former. The ‘whistler heat-flux instability’, or WHFI as it is
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called in the solar wind literature, was first investigated in Gary et al. (1975) for the case of
two bi-Maxwellian electron populations representing the core and the halo. The instability
was presented as a viable mechanism for heat-flux reduction and was supported by a
semi-empirical model by Gary et al. (1994), who used data from the Ulysses spacecraft
to show that the parallel heat flux is suppressed by a factor of β−0.9

‖,c , where β‖,c is the
parallel beta of the electron core population. This scaling was later supported by analytic
calculations in the limit of high β‖,c (Gary & Li 2000). A statistical study by Scime
et al. (1994) also reported that the WHFI best explained the heat flux measured by
Ulysses. A later study using data from the Artemis mission (Tong et al. 2019) revealed
correlations between the properties of whistler waves seen in the magnetic-field data and
the macroscopic plasma parameters, in a way that is consistent with their excitation by the
HWI.

1.3. Purpose and organization
Previous numerical work on the HWI suffers from a number of limitations. First, the
equilibria adopted in these works – isobaric in the case of K18 and collisionless in the case
of RC18 – are unlikely to be found in actual galaxy clusters. Secondly, the scale separations
used in the numerical simulations are limited, with the ratio of temperature-gradient length
scale to electron gyroradius being no more than 256. As a result, the saturated fluctuation
amplitude of the whistlers, predicted to satisfy δB/B0 ∼ (βeρe/LT)

1/2, approached the
strength of the background field. On these topics, the aim of this paper is to assess the
extent to which prior results on the whistler-mediated heat flux by K18 and RC18 are
robust with respect to the physical set-up and scale separation. For numerical results of
the HWI to be extrapolated reliably to astrophysical scale separations and more realistic
astrophysical environments, it ought to be checked that the underlying physics of the
saturated instability converges at large scale separation and that the HWI is robust to
different physical set-ups. We therefore perform electromagnetic PIC simulations similar
to those in RC18 and K18, but with an additional, physically motivated equilibrium (i.e. in
which thermal stratification is associated with hydrostatic equilibrium in a gravitational
field) and a focus on studying the largest scale separations available to us numerically.

We then use the results of our simulations to obtain a numerical effective collision
operator for the saturated HWI using three distinct methods: the first leverages
a Chapman–Enskog expansion to calculate a pitch-angle-scattering frequency from
the electron distribution function, the second uses a quasi-linear operator to obtain
a pitch-angle-scattering rate from the magnetic spectrum, and the third utilizes a
Fokker–Planck method to obtain a pitch-angle-scattering operator from tracked particle
data. The results of each of these methods will be discussed and synthesized in the
context of building a model effective collision operator for the HWI. Our model operator
has inherent limitations associated with it, which we show to be a manifestation of a
longstanding issue with quasi-linear analyses. Despite our inability to construct a fully
self-consistent model operator, we hope the present work will advance the methods
available and that our experience will provide a useful road map so that future studies
of the saturation of kinetic instabilities may be more successful.

The paper is organized as follows. In § 2 we provide a brief quantitative introduction to
the HWI. We then detail our numerical methods and simulation diagnostics in § 3. Section
4 contains simulation results that largely confirm past work – namely, the dependence
of the saturated heat flux and wave amplitude on βe and the temperature-gradient length
scale. For those already familiar with the instability, the heat flux and wave amplitude
dependencies are given by (4.4) and are consistent with an effective collision frequency
given by (2.6). All of these relationships hold regardless of the equilibrium state and
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agree with previous work. Section 5 contains the bulk of our original analysis. Here,
we detail three methods for obtaining model collision operators from our simulations,
namely: leveraging a Chapman–Enskog expansion (§ 5.1), a quasi-linear method (§ 5.2)
and a Fokker–Planck method (§ 5.3). In § 6 we present a physically motivated model
collision operator (§ 6.2), discuss its shortcomings in explaining the heat flux observed
in our simulations (§ 6.3) and end the section by exploring various ways to deal with those
shortcomings (§ï£¡ï£¡6.4). Finally, we present our conclusions in § 7.

2. Background

Given the existing body of work on the HWI, we present here only a brief overview
of the instability and refer the reader to the works cited in the introduction (§ 1) for more
detail. In § 2.1 we provide a simplified description of the HWI, focusing mostly on its
qualitative features. It should be noted that the quantitative details used to support this
description differ slightly from those obtained from the fully self-consistent, collisionless
simulations presented in subsequent sections. A reader already familiar with the HWI can
skip to § 3 for our numerical methods and set-up, § 4 for a summary of our simulation
results or § 5 for our model collision operator results.

2.1. The HWI
The HWI is a destabilization of the whistler branch of the plasma dispersion relation in
the presence of a heat flux. To see this, consider a plasma threaded by a magnetic field
B. If the plasma is magnetized, meaning that the electron gyroradius ρe is much smaller
than some characteristic macroscale length scale L in the plasma, then the transport of
heat and momentum will be highly anisotropic, with transport along (‘‖’) the magnetic
field occurring much more rapidly than transport across (‘⊥’) the field. For example, if
a macroscopic electron temperature gradient ∇Te has a component oriented along the
magnetic-field direction b̂ = B/|B| (i.e. ∇‖Te �= 0), then electrons will flow to produce a
heat flux qe that is oriented predominantly along the field, viz. qe  q‖,eb̂. If, furthermore,
the collisional mean free path λmfp is much smaller than the temperature-gradient length
scale along the field, LT = (−∇‖ ln Te)

−1, then the distortion in the velocity distribution
function of the electrons associated with the heat flux will be small, ∼λmfp/LT , relative
to the equilibrium (Maxwellian) distribution. Assuming that electrons are pitch-angle
scattered at some velocity-independent rate ν, these considerations suggest a steady-state
electron distribution function given by

fe(v, ξ) = ne

π3/2v3
the

e−v2/v2
the

[
1 − vthe

νLT
ξ
v

vthe

(
v2

v2
the

− 5
2

)]
, (2.1)

where ξ .= v‖/v is the cosine of the pitch angle, ne is the local electron number density
and vthe is the local electron thermal speed (e.g. Braginskii 1965). For a derivation of a
similar expression, see Appendix A.

Parallel-propagating whistler waves in a plasma with an electron distribution function
given by (2.1) are unstable, with a growth rate dependent upon the product of the mean
free path normalized by the temperature-gradient length scale and the electron plasma beta
parameter βe = 8πpe/B2 – the ratio of scalar electron thermal pressure pe to magnetic
pressure B2/8π. An analytic expression for the growth rate of whistlers with parallel
wavenumber k‖ = k · b̂ > 0 may be obtained in the asymptotic limit vtheβe/νLT � 1 and
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k‖ρe/β
1/2
e � 1 (see § 3.3.1 of Bott et al. 2024); it is

γ

Ωe


√
π

k2
‖ρ2

e

(
vthe

2νLT
− k3

‖ρ
3
e

βe

)
exp

(
− 1

k2
‖ρ2

e

)
, (2.2)

where Ωe = vthe/ρe is the (positive) electron gyrofrequency. (The qualitative features
of (2.2) do not change outside the limit vtheβe/νLT � 1; the same is not true for the
k‖ρe/β

1/2
e � 1 limit.) Note that the growth rate is only positive when LT > 0, i.e. for

whistlers moving down the temperature gradient. The corresponding dispersion relation
for the (real) wave frequency ω is

ω

Ωe
 kk‖ρ2

e

βe
. (2.3)

Coincidentally, this is the same as the cold plasma dispersion relation for whistler waves,
ω/Ωe  kk‖d2

e , where de is the electron skin depth.
The growth rate (2.2) and dispersion relation (2.3) are plotted schematically in figure 1.

The growth rate has a maximum near k‖ρe ∼ 1 (while this statement does not strictly
follow from (2.2) because the expression was derived in a certain asymptotic limit, the
statement is rigorous in the correct limit; see Bott et al. (2024) for specific details). For
this wave vector, the whistler phase velocity

vw ∼ ω

k‖
∼ vthe

βe
(2.4)

is very subthermal. Resonant wave–particle interactions occur when the frequency of the
wave vanishes in the frame co-moving with a particle having parallel velocity v‖, i.e.

ω − k‖v‖ + nΩe = 0, (2.5)

where n is an integer. Whistler waves in the HWI, therefore, are only Landau (n = 0)
resonant with electrons that are buried deep in the core of the distribution and do
not contribute to the instability. Instead, the principal cyclotron (n = ±1) resonances,
which couple the waves with thermal (v‖ ∼ vthe) electrons in the unstable region of the
distribution function (2.1), mediate the instability. This is represented schematically in
figure 1, where the cyclotron resonances corresponding to thermal electrons intersect
the whistler dispersion relation at the k‖ρe corresponding to maximum growth rate. The
decline in growth rate at small k‖ρe can be identified with electrons that have superthermal
parallel velocities, of which there are exponentially few (thus, the multiplicative factor of
exp(−1/k2

‖ρ
2
e )). The growth rate has a zero at k‖ρe = (βevthe/2νLT)

1/3; any waves with
larger k‖ are cyclotron damped on subthermal electrons in the core of the distribution.

2.2. The saturation of the HWI
As the whistlers grow to finite amplitude, resonant wave–particle interactions satisfying
(2.5) begin to diffuse electrons, which pushes the distribution function toward isotropy.
This in turn reduces the whistler growth rate. The system eventually reaches saturation,
a steady state in which the waves have large enough amplitudes to scatter electrons and
thereby hold the distribution function at a marginally stable state in which the growth rate
is zero. Denoting the rate at which the nonlinear whistlers diffuse electrons as νeff, an

https://doi.org/10.1017/S002237782400151X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400151X


Whistler transport 7

FIGURE 1. The HWI growth rate (red line), whistler dispersion relation (solid black line) and
cyclotron resonances (dashed lines) plotted as functions of k‖ρe. For thermal electrons, only the
cyclotron resonances intersect the whistler dispersion relation at values of k‖ρe corresponding to
the maximum growth rate.

‘effective collisionality’, and substituting νeff for ν in (2.2) with k‖ρe ∼ 1, we find that the
HWI should saturate when

νeff ∼ βevthe

LT
. (2.6)

The saturated heat flux in the saturated state should then scale as

qsat
‖,e ∼ mene

v4
the

νeffLT
∼ mene

v3
the

βe
. (2.7)

If whistlers do indeed scatter electrons diffusively, the effective scattering frequency can
be related to the whistler fluctuation energy via

νeff ∼ Ωe
δB2

B2
0
. (2.8)

Matching this expression for νeff with (2.6) implies that

δB2

B2
0

∼ βe

LT/ρe
(2.9)

in saturation.
The scaling (2.9) was predicted by K18 and obtained empirically using bespoke kinetic

PIC simulations. Those authors then argued that the whistlers pitch-angle scatter electrons
in the frame of the background flow. Roberg-Clark et al. (2018) argued instead that
whistlers advect thermal energy at their phase velocity, so that

q‖,e ∼ neTe〈v‖〉 ∼ neTevw ∼ mene
v3

the

βe
. (2.10)

Both arguments reproduce the scaling (2.7) for the saturated heat flux. This was recognized
by Drake et al. (2021), who concluded that whistlers should act as pitch-angle scatterers
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in a frame moving at the wave phase velocity. The argument for electromagnetic waves
scattering electrons in this way goes back to Kennel & Engelmann (1966), who derived a
quasi-linear wave–particle diffusion operator and found that, for particles with v‖ � ω/k‖,
the gyroresonant scattering is dominated by scattering in pitch angle due to the parallel
electric field vanishing in the frame of the particle; only particles with v‖ ∼ ω/k‖ have
strong velocity diffusion.

Another aspect agreed upon by K18, RC18 and Drake et al. (2021) is the need for oblique
– and, thus, elliptically polarized – whistler waves to achieve the heat-flux scaling q‖e ∼
β−1

e . This requirement, initially discovered by Pistinner & Eichler (1998), is due to both the
right-handedness of purely parallel whistler waves and the fact that the HWI only drives
unstable whistlers travelling down the temperature gradient. Any electron travelling down
the temperature gradient faster than the whistler phase speed will therefore never be in
cyclotron resonance with the wave, which is Doppler shifted to a left-hand polarization
in that electron’s frame. In contrast, the elliptical polarization of oblique waves can be
decomposed into left- and right-handed components, which can be in cyclotron resonance
with electrons travelling in either direction along the temperature gradient. What seems
to have gone unappreciated, however, is that the ratio of energy in left- to right-handed
waves is significantly below unity for all but the most oblique wave vectors. Using the
cold plasma whistler dispersion (Stix 1992), the ratio of energies in the left-handed (−)
and right-handed (+) components is

E−

E+ 
(

cos θ − 1
cos θ + 1

)2

. (2.11)

Even for oblique waves with θ = 45◦, E−/E+  0.03. (Finite-temperature effects can
increase this ratio.) Given (2.8), it is possible an asymmetry will arise in the scattering
rate with respect to pitch angle; as far as we are aware, this effect has not been commented
on in the literature thus far.

The ion species can also affect the saturation of the HWI. At high βe, ions may
be resonant with oblique whistler waves. For example, when βe = (mi/me)

1/2, the ion
thermal speed is concurrent with the cold plasma whistler phase speed, viz. vthi =
(mi/me)

−1/2vthe = vthe/βe ∼ vw, and the waves can Landau damp on the ions. For βe =
mi/me, the whistler wave frequency is of the order of the ion gyrofrequency, viz. ω ∼
Ωe/βe = Ωi, and the ions can cyclotron damp the waves. Such interactions would heat the
ion species at the expense of the strength of the turbulent fluctuations and, therefore, might
increase the saturated electron heat flux in the HWI.

2.3. Constructing collision operators
In this work we explore three methods to construct a collision operator from our
kinetic simulations describing how the electrons interact with the HWI fluctuations:
Chapman–Enskog, quasi-linear and Fokker–Planck. In § 5.1 we leverage measurements of
the distribution function in the simulations to solve the Chapman–Enskog problem for a
postulated pitch-angle-scattering operator and obtain the associated scattering frequency
νCE as a function of v. This method is very powerful in that it solves for the effective
collision frequency that explains the observed heat flux for a given scattering model,
thereby reproducing the observed heat flux by definition. The downside is that one must
assume a scattering model, so the approach is not very flexible. The quasi-linear operator
(§ 5.2) computes a collision frequency from the observed spectrum of waves, assuming
resonant wave–particle scattering. As we will show, the assumption of purely resonant
interactions does not hold because of the large fluctuation amplitudes in our runs (though
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may be better justified at increasingly large scale separations). Finally, in § 5.3 we construct
a Fokker–Planck operator by explicitly computing the short-time velocity and pitch-angle
jump moments from ∼500 k tracked electrons. This operator is by far the most general,
but can be easily misinterpreted.

3. Numerical methods and diagnostics
3.1. Initial equilibrium states

We initialize each run with a thermally stratified ion–electron plasma and a constant
background magnetic field B0 = B0x̂. We parameterize the temperature profile of each
species as a function of x by a factor N > 1 using

T(x) = Th

(
1 − x

NLx

)
, (3.1)

where Th is a ‘hot’ temperature at the left wall, x = 0. The ‘cold’ temperature at the right
wall, x = Lx, is then given by

Tc = Th

(
N − 1

N

)
. (3.2)

The temperature-gradient length scale LT
.= −(∇‖ ln T)−1 is therefore LT = NLx.

We take the scalar pressure of species α, pα, to be related to its density nα and
temperature Tα through an ideal equation of state, pα = nαTα. We then construct two
different equilibria depending on whether a gravitational field g = −gx̂ is present. For
g = 0, hydrostatic equilibrium is simply dpα/dx = 0. Using (3.1) for Tα(x), we find that

n(x) = n0

(
1 − x

NLx

)−1

, when g = 0, (3.3)

which is independent of species. This is the initial condition used in K18. While this set-up
is simple, it is difficult to imagine a physically relevant scenario in which the gradients
of temperature and density have equal and opposite signs, d ln Tα/dx = −d ln nα/dx. We
therefore consider a complementary set-up in which gravity balances a non-zero pressure
gradient and the gradients of temperature and density have the same sign. For g �= 0,
hydrostatic equilibrium is then given by

dpα
dx

− qαnαE0 + mαnαg = 0, (3.4)

an equation that must hold for each species individually. We take Ti = Te
.= T in the

equilibrium state, in which case E0 is the equilibrium electric field that is required to
maintain quasi-neutrality with a gravitational force that is greater on the ions than on
the electrons. To determine this electric field, one multiplies (3.4) by qα/mα, sums over
particle species and uses

∑
α qαnα = 0 to find that

E0 =
∑
α

qα
mα

dpα
dx

/∑
α

q2
αnα
mα

= − 1
en

(
mi − me

mi + me

)
dp
dx
, (3.5)

where in the second equality we have taken pi = pe
.= p, qi = −qe = e and ni = ne

.= n.
Directly summing (3.4) over species yields the standard hydrostatic equilibrium,∑

α

dpα
dx

= 2
dp
dx

= −�g, (3.6)
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10 E.L. Yerger, M.W. Kunz, A.F.A. Bott and A. Spitkovsky

where �
.= (mi + me)n. Using (3.1) for the temperature profile, (3.6) can be

straightforwardly integrated to find that

n(x) = n0

(
1 − x

NLx

)N−1

when g = 2Th

(mi + me)Lx
. (3.7)

In this case, both the temperature and the density decrease with ‘height’ (x).
Before proceeding to discuss our numerical approach for evolving these equilibria, it

is worth addressing an issue with the g �= 0 case, which may have caught the attention
of erudite students of astrophysical fluid dynamics. The situation in which a thermally
conducting magnetic field is aligned with a temperature gradient that points in the
direction of gravity is known to be linearly overstable to g-mode perturbations when the
profiles satisfy the inequalities 1 < (1 − 1/γ )(d ln p/d ln T) < 2, where γ is the effective
adiabatic index of the plasma (Balbus & Reynolds 2008).1 Using the profiles (3.1) and
(3.7), this criterion requires that N satisfies 1 < (1 − 1/γ )N < 2. Without specifying
γ , which can differ from the standard monatomic 5/3 when the plasma in question
is collisionless and magnetized, we can nevertheless state that this overstability plays
no role in our simulations, because its maximum growth rate is a fraction (typically
∼0.1) of the characteristic buoyancy frequency, ∼(g/Lx)

1/2  Ωe(me/mi)
1/2(ρe/Lx) (Kunz

2011, § 4.3). With our use of mi/me = 1600 and Lx/ρe ≥ 125 (see § 3.2), none of our
simulations are run for long enough to realize such slow growth. In fact, with the whistler
instability rapidly producing an effective collisionality νeff ∼ βe(vthe/LT), one can show
that the fastest-growing g mode has a parallel wavelength larger than the scale height
(and, therefore, the box length).

3.2. Simulation approach and choice of free parameters
The initial conditions described in § 3.1 are advanced forward in time by the
Vlasov–Maxwell set of equations using the PIC method implemented in TRISTAN-MP
(Spitkovsky et al. 2019). All runs are 2.5D: the spatial simulation domain is an elongated,
2-D grid of size Lx × Ly with Lx � Ly, while particle velocities are fully three dimensional.
We choose the ‘hot’ temperature at the left wall to be commensurate with an electron
thermal velocity vthe,0

.= vthe(x = 0) = √
2Th/me = c/5, where c is the speed of light.

We take the same temperature ratio, Th/Tc = 2, across all of our runs. Thus, N = 2 in
(3.1)–(3.3) and (3.7). The heat flux driven through the box in the absence of collisions is

q‖,e0
.= mene(x = 0)v3

the(x = 0)− mene(x = Lx)v
3
the(x = Lx)

=
⎧⎨
⎩
(1 − 2−1/2)mene0v

3
the,0 for ∇p0 = 0,

1
2

mene0v
3
the,0 for ∇p0 = ρ0g,

(3.8)

which we use to normalize the computed parallel heat flux in all of our runs. We set the
density at the left wall to be

ne0
.= ppc0 =

{
175 ppc for ∇p0 = 0,
350 ppc for ∇p0 = ρ0g,

(3.9)

where ppc is particles per cell; in both cases the electron density at the centre of the
domain is 262. Electrons are first sampled in the x–y plane according to the appropriate

1This configuration is linearly stable to the magnetothermal instability (Balbus 2000, 2001), the heat-flux-driven
buoyancy instability (Quataert 2008), and their weakly collisional and collisionless generalizations (Kunz 2011; Xu &
Kunz 2016).
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density distribution, whereupon their temperature is calculated following (3.1). An ion is
deposited at the same spatial coordinates as each electron so that the initial condition is
exactly charge neutral. Following Zenitani (2015), the particle speed is sampled from a
Maxwell–Jüttner distribution with that temperature and projected onto a uniform sphere
to obtain an isotropic velocity distribution. We set the electron inertial length de(x = 0) =
7.5x, where x is the grid spacing, across all runs. The electron Debye length, λD,e(x =
0) = 1.5x, is large enough with respect to the grid to minimize spurious particle heating.

The strength of the background field B0 is controlled by the initial electron plasma beta
parameter βe,0 measured at the left boundary of the domain, x = 0:

βe,0 = 8πpe,0

B2
0
. (3.10)

Here pe,0 = pe(x = 0) = n0Th. The size of the domain is given in units of the electron
gyroradius measured at x = 0, ρe,0 = vthe,0/Ωe,0, with Ly/ρe,0 = 25. We vary Lx/ρe,0 to
change the temperature-gradient length scale LT . This ensures that the expected effective
whistler mean free path,

λmfp,eff ∼ LT

βe,0
∼ 2
βe,0

Lx, (3.11)

is much smaller than Lx for βe,0 � 1.
We conducted a number of simulations varying βe,0, LT/ρe,0 and the equilibrium state;

these runs are summarized in table 1. To determine how the heat flux scales with βe,0, we
conduct simulations at βe,0 = {10, 25, 40, 50, 100} using the K18 equilibrium and βe,0 =
{10, 25, 40, 50} for the gravitational equilibrium, keeping LT = 250ρe,0 fixed throughout.
Similarly, we fix βe,0 = 40 while varying LT/ρe,0 = {250, 500, 1000, 2000} and LT/ρe,0 =
{250, 500} for the K18 and gravitational equilibria, respectively, to quantify how the heat
flux scales with the temperature-gradient length scale. All but one of the aforementioned
runs were conducted using mi/me = 1600; there is one run with mi/me = 100 and βe,0 =
100, designed to test the effect of the ion gyroresonance on the instability.

3.3. Particle boundary conditions and temperature enforcement
In the y direction perpendicular to B0, the boundary conditions for the particles are
periodic. In order to maintain the temperature gradient across the domain and thereby
drive the system to a steady state, the boundaries in the x direction fix the temperatures
at x = 0 and x = Lx to Th and Tc, respectively. This is achieved by placing particle
barriers on the edges of the simulation domain and re-sampling any particle that crosses
them from a half-shell distribution with the appropriate temperature. The algorithm is
as follows. If, after a single particle push a particle crosses a barrier, it is pushed back
to the point of collision with the wall and the current generated by the push back is
added to the current density on the grid. The particle speed is then sampled from a
Maxwell–Jüttner distribution in the same manner as the simulation domain was initialized
in (§ 3.2); however, instead of projecting the speed onto a uniform sphere, we project
onto a half-shell distribution that pushes the particle back into the active domain. The
returning particle therefore acts as though it has been thermalized by a heat bath at the
appropriate temperature. When this particle boundary condition is enforced, any currents
deposited by a particle being rewound to the domain boundary or subsequently re-injected
are summed into the total current density for that time step. That total current density
is then used to calculate the fields in the next time step, ensuring that the algorithm is
physically consistent and conserves charge.
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Name Equilibrium βe,0
mi

me

Lx

ρe,0

LT

ρe,0
TrunΩe,0 βe,0

vw

vthe,0
(ts − te)Ωe,0

b10 ∇p0 = 0 10 1600 125 250 6150 0.20 4500–6000
b10g ∇p0 = ρ0g 10 1600 125 250 6125 – –
b25 ∇p0 = 0 25 1600 125 250 7476 0.19 5000–7476
b25g ∇p0 = ρ0g 25 1600 125 250 2430 – –
b40 ∇p0 = 0 40 1600 125 250 7630 0.21 5500–7500
b40g ∇p0 = ρ0g 40 1600 125 250 3125 – –
b40x2 ∇p0 = 0 40 1600 250 500 6988 0.25 4500–6988
b40gx2 ∇p0 = ρ0g 40 1600 250 500 3255 – –
b40x4 ∇p0 = 0 40 1600 500 1000 7975 0.25 6500–7500
b40x8 ∇p0 = 0 40 1600 1000 2000 7805 0.25 6000–7800
b50 ∇p0 = 0 50 1600 125 250 3992 – –
b50g ∇p0 = ρ0g 50 1600 125 250 3015 – –
b100 ∇p0 = 0 100 1600 125 250 4600 0.28 3000–4500
b100m ∇p0 = 0 100 100 125 250 4000 – –

TABLE 1. For all runs performed, from left to right: run name, equilibrium initial condition,
initial electron plasma beta parameter, proton-to-electron mass ratio mi/me, length of the box
along the temperature gradient Lx, temperature-gradient length scale LT and run time Trun. For
∇p0 = 0 runs used to compute an effective collision operator, we include the whistler phase
speed vw measured from spectrograms and the time interval over which our Fokker–Planck
coefficients are calculated, ts − te.

3.4. Field boundary conditions and wave absorption
The electromagnetic fields, following the particles, are taken to be periodic across the y
boundaries. In the x direction we employ the masking method for absorbing boundary
conditions detailed in Umeda, Omura & Matsumoto (2001). The electric and magnetic
fields are multiplied by a masking function M(x,LD, r), which is a function of x, the length
of the damping region LD and the masking parameter r (0 < r ≤ 1) given by

M(x,LD, r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 −
(

r
x − LD

LD

)2

, x ≤ LD,

1, LD < x < Lx − LD,

1 −
(

r
x − Lx + LD

LD

)2

, x ≥ Lx − LD.

(3.12)

This mask is multiplied to the right-hand side of the discretized Ampère’s and Faraday’s
laws. This has the effect of strongly suppressing the fluctuations near the x-domain
boundaries. We set the length of the damping region LD = λw/π ∼ 2ρe,0, assuming
a characteristic wavenumber for the whistlers satisfying k‖ρe ∼ 1, and the masking
parameter r = 0.25. The ratio of the incident wave intensity to the reflected intensity using
this scheme is proportional to the amount of time the wave spends in the buffer.

4. Results: I. Whistler regulation of the heat flux

To help organize the presentation, our results are divided into two separate sections.
The first (this section) focuses on how the imposed temperature gradient drives a heat
flux unstable to the whistler instability, which subsequently scatters electrons and thereby
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(b)

(a)

(c)

FIGURE 2. Perturbed magnetic energy in run b40 at the beginning of the exponential phase
(a), end of exponential phase (b) and in the saturated state (c).

regulates that heat flux to a value that is marginally unstable. This section generally serves
to confirm previous work – in particular, the dependence of saturated heat flux and whistler
amplitude on βe,0 and LT (§ 4.2). We therefore keep this section brief, referring the reader
to both K18 and RC18 for more detail. We do, however, comment on the prolonged secular
phase of the instability we observe (§ 4.1), directly measure the whistler dispersion relation
(§ 4.3) and note a significant reduction in heat flux by ion-cyclotron-resonant damping
(§ 4.4) – all of which are novel contributions. The second section, § 5, documents our
efforts to derive, using a combination of analytical arguments and simulation data, an
effective collision operator describing how electrons interact with the whistler fluctuations.
The latter is the principal contribution of this work.

4.1. Evolution of the instability
Each of our runs follow a qualitatively similar evolution, going through four distinct
phases: (i) establishment of an unstable heat flux, (ii) exponential growth of whistler
waves, (iii) sustained power-law (‘secular’) growth, and (iv) complete saturation of the
HWI. Qualitatively, these four stages are manifest in figure 2, which shows 2-D plots
of the magnetic-field energy in run b40 (βe,0 = 40 and LT = 250ρe,0) during the latter
three stages in the top, middle and bottom panels, respectively. In the exponential phase
(ii), figure 2(a) shows oblique, kρe,0 ∼ 1, whistlers throughout the domain. The grey bars
at the edges of the domain correspond to the masked regions described in § 3.4. In the
secular phase (middle panel), we see a shift towards smaller wavenumbers and stronger
field fluctuations, a trend that continues until saturation (third panel).

https://doi.org/10.1017/S002237782400151X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400151X


14 E.L. Yerger, M.W. Kunz, A.F.A. Bott and A. Spitkovsky

More quantitatively, in figure 3 we plot the box-averaged magnetic-field fluctuations
and heat flux as functions of time, with panel (a) corresponding to a scan in βe,0 at
fixed LT = 250ρe,0 and panel (b) corresponding to a scan in LT at fixed βe,0 = 40. For
the first ∼100–500Ω−1

e,0 , depending on LT/ρe,0, the whistler instability is inactive. This
is a consequence of our initial conditions: we initialize the domain with a temperature
gradient, but with no heat flux. It therefore takes some fraction of the sound crossing time
Tc = Lx/vthe,0 for the heat flux – and the associated anisotropy in the distribution function
– to grow large enough for the whistlers to overcome cyclotron damping.

Once the heat flux is sufficiently strong, the instability enters an exponential phase,
which is predicted by the whistler growth rate (2.2). At k‖ρe = 1,

γw

Ωe
= C
βe

(
vtheβe

2νLT
− 1
)
, (4.1)

where C = √
πe−1. The time rate of change of the whistler fluctuation energy at this scale

is therefore

∂

∂t
δB2 = 2γwδB2 = 2C

βe

(
βevthe

2LTν
− 1
)
Ωe δB2. (4.2)

In the analysis of Bott et al. (2024), ν is the scattering rate associated with a weakly
collisional background and that results in the whistler-unstable steady-state distribution
function (2.1). We argue that we, too, have a (very) weakly collisional background in
the form of finite-particle-number noise, which scatters electrons at a rate νPIC. We
additionally have effective scattering from whistler fluctuations at a rate νeff (see (2.8)),
so we take ν = νPIC + νeff. Exponential growth (ii) occurs in the limit νeff � νPIC �
βevthe/LT , in which the −1 term in (4.2) can be ignored and the scattering rate is
approximately independent of the magnetic field. This rapid growth is sustained only
for a short time – approximately 10 − 100Ω−1

e , depending on βe,0 and LT – until the
effective scattering rate by the magnetic-field fluctuations, νeff, becomes comparable to
νPIC and the whistler fluctuations begin to feed back on themselves. In the limit where
ν  νeff ∼ Ωe(δB/B0)

2, the instability grows linearly in time following

∂

∂t
δB2 ∼ Cvthe

LT
B2

0 =⇒ δB2(t)
B2

0
− δB2(tsec)

B2
0

∼ Cvthe

LT
(t − tsec), (4.3)

where tsec marks the start of the secular phase. For all runs at LT/ρe,0 = 250, tsec ∼
100Ω−1

e,0 ; this value increases up to ∼500Ω−1
e,0 at LT/ρe,0 = 2000. The secular phase

lasts ∼103−4Ω−1
e,0 , depending on the simulation, until the magnetic energy saturates at

a value that is dependent upon βe and LT . This phase (iii) was not reported in earlier
numerical work (K18; RC18).

4.2. Saturated heat-flux scaling with βe and LT

Once the fields are saturated, they are able to maintain a temperature gradient throughout
the box, which we show in figure 4. For the ∇p0 = 0 set-up, the saturated temperature
gradient in the centre of the domain is close to the initialized temperature gradient.
However, for the ∇p0 = ρ0g set-up, the gradient is ∼60 % less, likely due to the stronger
equilibrium heat flux. In figure 5 we plot the saturated box-averaged heat flux (c,d) and
magnetic-field perturbation energy (a,b) versus βe,0 (a,c) and LT/ρe,0 (b,d). These results
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(b)

(a)
(i) (ii)

(i) (ii)

(iii) (iv)

(iii) (iv)

FIGURE 3. Time evolution of δB2 and q‖ for both the ∇p0 = 0 (a i,iii,b i,iii) and ∇p0 = ρ0g
(a ii,iv,b ii,iv) equilibria (a) as a function of the electron plasma beta βe,0 for LT = 250ρe,0 and
(b) as a function of the temperature-gradient length scale LT for βe = 40.
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(b)(a)

(c) (d )

FIGURE 4. Average temperature as a function of distance along the temperature gradient. The
initial temperature profile is shown by the black dotted line. In saturation, the ∇p0 = 0 runs (save
b10) support a temperature gradient close to the initial gradient near the centre of the simulation
domain. The runs with a gravitationally supported pressure gradient, however, only support a
temperature gradient that is ≈60 % of its initial value.

are consistent with the scalings

〈q‖,e〉
q‖,e0

∼ 1
βe
, (4.4a)

〈δB2〉
B2

0
∼ βe

LT/ρe
, (4.4b)

and are independent of the equilibrium set-up. Our result (4.4) not only confirms the work
of both K18 and RC18, but extends the validity of the scaling to larger scale separations
and to an equilibrium set by gravity. The empirical scalings (4.4a) and (4.4b), along
with the analysis in § 2.2, strongly suggest that the relevant dimensionless parameter
in the saturation of the HWI is βe,0ρe,0/LT . For the remainder of the paper, therefore,
we normalize the magnetic energy 〈δB2〉/B2

0 and all effective collision frequencies using
(βe,0ρe,0/LT)Ωe0.

4.3. Magnetic-field spectra and spectrograms
We compute the time-averaged magnetic energy spectrum for each run over the final
103Ωe,0. Results are plotted in figure 6. The spectra are qualitatively similar between
runs and are characterized by a sharp break around kρe,0 ∼ 0.6–0.7. At smaller k, the
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(b)(a)

(c) (d )

FIGURE 5. Normalized magnetic fluctuation amplitude (a,b) and heat flux (c,d) versus βe,0
(a,c) and LTρe,0 (b,d) for the K18 set-up (blue) and gravity set-up (orange). The heat flux and
fluctuation amplitude show good agreement with (4.4a) and (4.4b), respectively.

spectral index is approximately zero, while the index (or indices) at larger k are more
difficult to interpret due to the noise in the spectrum. For kρe,0 > 1, the spectra can be
characterized by an index of −4, which was also reported in Zhdankin et al. (2017) for
PIC simulations of driven turbulence in magnetized, collisionless, relativistic pair plasma.
The two spectra that differ quantitatively are runs b10 and b40x8, which have a pronounced
peak at kρe,0 ∼ 0.6.

We determine the whistler dispersion relation in our simulations by calculating the
spectrogram of the combination By + iBz, which reveals information about the polarization
of the waves: positive wave frequencies (ω > 0) correspond to left-hand-polarized waves,
while ω < 0 corresponds to right-hand-polarized waves. We show results for runs b100
and b40x4 in figure 7; spectrograms from the other runs were qualitatively similar. Data
was taken over the final ∼4000Ω−1

e of each run to obtain sufficient resolution at low
frequencies. We also applied Gaussian windows in x and t with standard deviations 1/4
and 1/6 of the total window widths, respectively, to ensure non-periodic edge effects were
minimized. The black dashed lines in figure 7 are best fits for the wave dispersion relation
multiplied by a free parameter A, i.e.

ω

Ωe
 A

(k‖ρe)(kρe)

βe
, (4.5)
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(b)(a)

FIGURE 6. One-dimensional spectra of δB2 for all runs versus kx (a) and ky (b), computed
by integrating along the free dimension. For either direction, the spectrum is consistent with a
power-law index of −4 for kρe ≥ 1.

which implies a phase speed

vw  A
vthe

βe
k‖ρe. (4.6)

The best fit value of A, expressed as a multiplicative constant of βe,0vw/vthe,0 with
k‖ρe,0 = 1, is reported for each ∇p0 = 0 run in table 1. In general, A increases with βe,0:
from 0.20 at βe,0 = 10 to 0.28 at βe,0 = 100. Our analysis indicates that the whistler
phase speed is slower than that of the cold plasma dispersion prediction at k‖ρe = 1
(cf. (2.3)). For the remainder of the work, we treat vw as a constant, given by the k‖ρe,0 = 1
values reported in table 1. Given the complexity of the analysis in the following sections,
we view this as an expedient assumption and leave the effects of a more general treatment
to future work.

4.4. Effect of ion-Landau and ion-cyclotron resonances
Runs b40 and b40g, with βe,0 = 40 and mi/me = 1600, allow us to assess any impact
from the ion-Landau resonance. Run b100m, with βe,0 = 100 and mi/me = 100, tests
the effect of the ion-cyclotron resonance. As explained at the end of § 2.2, ions may
be Landau resonant with whistler waves when the phase velocity of the former is of
the order of the thermal speed of the latter, i.e. when βe ∼ (mi/me)

1/2. The ions can
also be cyclotron resonant with whistlers if the wave frequency equals the ion-cyclotron
frequency – this occurs when βe ∼ mi/me. Re-examining figure 5(a,c) shows that the runs
at βe,0 = 40 do not stray appreciably from the q ∼ β−1

e scaling and so we conclude that
effects due to the ion-Landau resonance are negligible. Komarov et al. (2018) report a
20 % increase in saturated heat flux and 15 % decrease in magnetic-field fluctuation energy.
Their conclusion comes from comparing a βe = 15, mi/me = 225 run to one at the same
βe, but at mi/me = ∞. In our tests we saw changes in saturation levels with immobile ions
at β = 10, so it is possible that their conclusion is affected by comparison to a run with
immobile ions instead of a different mass ratio, resulting in a deviation higher than ours.
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(b)(a)

(c) (d )

FIGURE 7. Spectrograms of By + iBz for runs b100 (a,c) and b40x4 (b,d) for kyρe = 0 (a,b) and
kyρe = 1 (c,d). Energy is concentrated in right-hand polarization (ω < 0) for parallel modes, but
energy does go into left-hand polarization for oblique modes, as expected with whistler waves.
Black dots represent the frequency ω with the highest Fourier amplitude at each k‖; black dashed
lines are the best fits to these points. The best fit lines differ from the cold plasma dispersion by
a factor of 0.32–0.17, with an average value of 0.23.

In contrast to K18, we find that the ion-cyclotron resonance affects the saturated
state of the HWI significantly. In figure 8 we plot the box-averaged magnetic-field
fluctuation amplitude and heat flux as functions of time for two βe,0 = 100 runs, one with
mi/me = 1600 and the other with mi/me = 100. While the heat-flux accumulation and
exponential stages are nearly identical between runs, the cyclotron-resonant run saturates
much sooner than does the run with mass ratio 1600, with a 25 % smaller fluctuation
amplitude and 57 % higher heat flux. Our result that the ion-cyclotron resonance
significantly alters the saturated heat flux relative to the Landau resonance is consistent
with our simple explanation of the instability in § 2. Evidently, cyclotron-resonant ions
can strongly damp the oblique whistlers that are necessary for scattering heat-flux-carrying
electrons. We also conjecture that Landau-resonant ions preferentially damp the parallel
whistlers and have a diminishing effect on the heat flux. An in-depth analysis of the
interaction between whistlers and ions, however, is outside the scope of this work.

5. Results: II. An effective collision operator for heat-flux-driven whistler turbulence

In this section we present detailed methods and results for three different means of
obtaining a collision operator from our simulations. Section 5.1 is devoted to a method
based upon the Chapman–Enskog expansion. After stipulating a model collision operator
that captures pitch-angle scattering in the frame of the whistlers, we derive the implied
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(b)(a)

FIGURE 8. Box-averaged magnetic perturbation (a) and box-averaged heat flux (b) versus
time for two βe,0 = 100, LT = 250ρe,0 runs with mi/me = 1600 and mi/me = 100. When
βe ∼ mi/me, ions are in cyclotron resonance with the whistler waves. This results in both a
reduction of δB2/B2

0 and an increase in the saturated heat flux by a factor of 2.

‘Chapman–Enskog’ scattering frequency νCE in § 5.1.1, characterize the equilibrium
electron distribution function in § 5.1.2 and present our numerical findings in § 5.1.3.
Section 5.2 focuses on the quasi-linear operator; we define the operator in § 5.2.1 and
give our numerical results in § 5.2.3. Finally, we detail the Fokker–Planck method in § 5.3.
We define the resulting operator in § 5.3.1 and discuss the relevant time scales, particle
statistics and limitations in § 5.3.2. In §§ 5.3.3 and 5.3.4 we present our numerical results
for the velocity-space Fokker–Planck operator in (v, ξ ) coordinates.

For all of these methods, we leverage a key finding from § 4: that the energy of
magnetic-field fluctuations in the saturated state of the HWI and the effective collisionality
implied by the steady-state heat flux both scale proportionally with βe(ρe/LT). We organize
the various features of our model collision operators according to this dimensionless free
parameter.

5.1. Chapman–Enskog pitch-angle-scattering operator
Our first method to obtain a collision operator for whistler turbulence relies on a
Chapman–Enskog expansion of the electron kinetic equation. In the usual expansion,
one solves for the collisional transport resulting from the free-energy gradients (usually
velocity or temperature) in a fluid with a known scattering operator. We instead solve
for the collision operator that self-consistently describes the transport and fluid gradients
measured in our simulations. Using this method, one assumes the mathematical form of
the collision operator and solves for the implied diffusion coefficient as a function of
phase-space variables. This is simultaneously a strength and a limitation, as the diffusion
coefficient is designed to explain all the observed transport given the model.

5.1.1. Derivation
For the remainder of § 5.1, we assume that the whistlers pitch-angle scatter electrons in

a frame moving at the whistler phase speed, vw. This assumption is consistent with the
quasi-linear operator for slow electromagnetic modes (see § 5.2 of Kennel & Engelmann
1966) and is the same as chosen by Drake et al. (2021). What follows is a brief outline
of the full calculation; see Appendix A for more details. The model collision operator is
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given by

CCE[ f ] = ∂

∂ξ ′

[
1 − ξ ′2

2
νCE(v

′, ξ ′)
∂f
∂ξ ′

]
, (5.1)

where the prime denotes quantities evaluated in the reference frame of the whistlers; note
that CCE[ f ] is independent of the gyroangle, φ. We take vw, β−1

e , the electron gyroradius
and the effective electron mean free path to all be small quantities of the same order ε, viz.

ε ∼ vw

vthe
∼ 1
βe

∼ ρe

LT
∼ λmfp,e

LT
� 1. (5.2)

Expanding CCE[ f ] in ε, we find that the electron kinetic equation evaluated to leading
order in ε is

0 = Ωe
∂fe0

∂φ
+ ∂

∂ξ

[
1 − ξ 2

2
νCE(w, ξ)

∂fe0

∂ξ

]
, (5.3)

where w = v − ue is the velocity of the electrons in the frame of any bulk flow ue.
This constraint is satisfied trivially by an isotropic fe0 = fe0(v). To next order, after
gyroaveraging, we obtain the correction equation for parallel transport,

w‖∇‖fe0 + ∇‖pe

mene

w‖
w

dfe0

dw
= ∂

∂ξ

[
1 − ξ 2

2
νCE(w, ξ)

(
∂〈 fe1〉φ
∂ξ

+ vw
dfe0

dw

)]
. (5.4)

The term proportional to vw arises as a consequence of the ordering of the whistler phase
speed and ensures that the scattering occurs in the wave frame. The correction equation
(5.4) can be solved for νCE by using w‖ = wξ and integrating both sides with respect to ξ .
Choosing the integration constant to keep ∂〈 fe1〉φ/∂ξ finite, we find that

νCE(w, ξ) = −
(

w∇‖fe0 + ∇‖pe

mene

dfe0

dw

)/(
∂〈 fe1〉φ
∂ξ

+ vw
dfe0

dw

)
. (5.5)

5.1.2. Calculating the distribution function
In order to evaluate (5.5), we require expressions for fe0 and 〈 fe1〉φ . We calculate these

quantities from our simulations by binning individual particle data on a finite phase-space
grid. To do so, we break up the central 60 % of the simulation domain into 4 % intervals
and integrate over the y direction; this ensures that we sample a distribution function with
nearly uniform temperature in each interval. In velocity space we bin using a 60 × 60
grid in (v, ξ) coordinates, from v = 0 to v = 3vthe (where vthe is the electron thermal
speed local to that interval) and from ξ = −1 to ξ = 1. Because the magnitude of the
fluid velocity ue in our simulations is at most a few percent of the whistler phase speed
vw, we do not distinguish between v and w in what follows; in real astrophysical contexts
with bulk flows, ue may not be small compared with vw. A consequence of our choice to
ignore the φ coordinate is that our measured distributions only contain parallel transport,
naturally precluding any transport perpendicular to the background field.

The algorithm is as follows. For every electron at a certain time step, we calculate the
bin indices that correspond to its location in velocity-space coordinates (v, ξ ) and add 1
to that bin. After normalizing, this procedure yields fe(v, ξ) for each 4 % interval of the
simulation domain. We then determine fe0 by requiring that all fluid quantities (ne, ue, Te)
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are contained in fe0, so that the transport is determined solely by fe1 (Krommes 2018), viz.

(ne,ue, pe) ≡
∫

d3v

(
1,

v

ne
,

me

3
w2

)
fe =

∫
d3v

(
1,

v

ne
,

me

3
w2

)
fe0, (5.6)

where pe is the scalar electron pressure associated with Te. As a consequence of this
procedure, fe0 is naturally isotropic, as required by the Chapman–Enskog expansion at
zeroth order in ε (5.3). Finally, we calculate the first-order deviation in fe from the
definition

fe1 = fe − fe0, (5.7)

so that ∫
d3v (1, v, v2)fe1 = 0, (5.8)

i.e. fe1 is fully kinetic.
The only subtlety in the above procedure is the choice of fe0, since (5.3) demands

only that fe0 is isotropic. In what follows, we choose fe0 to be an isotropic Maxwellian
distribution: fe0(v, ξ) = fMe(v). Alternatively, we could have chosen fe0 = 〈 fe〉φ,ξ , which
puts fewer restrictions on fe0. Thankfully, the exact choice of fe0 does not substantially
change the following analysis or the resulting computed collision frequency. To determine
νCE(v, ξ), we first normalize each 4 % domain segment to a single vthe and then average
both fe0 and fe1 across all segments. Given fe0(v) and ∇‖ ln Te from each simulation, we
then need only to determine vw and ∂〈 fe1〉φ/∂ξ . The former is straightforwardly computed
for each simulation using the method explained in § 4.3. Unfortunately, the latter presents
some difficulties, which are addressed in the next subsection.

5.1.3. Numerical results
In principle, the Chapman–Enskog method can resolve the full velocity-space

dependence of the collision frequency (5.5), at least within the model operator. However,
in practice we find that spurious zeros in ∂〈 fe1〉φ/∂ξ caused by statistical noise in the
binned distribution function as well as shallow gradients in fe1 result in a noisy calculation
of νCE(v, ξ), which can have unphysical (i.e. negative) values in certain regions of phase
space. See figure 9 for plots of 〈 fe1〉φ/fe0 and (∂〈 fe1〉φ/∂ξ + vw dfe0/dw)/fe0 for run b40x4
at reduced resolutions of 10 × 10 and 20 × 20, which exhibit noise and negative values for
v/vthe � 2. Increasing the grid resolution only increases and worsens the artifacts already
present in figure 9. It is possible that even lower resolutions might produce favourable
numbers; however, much fewer than 10 × 10 grid cells runs the risk of not resolving the
structure of νCE in both v and ξ . To circumvent these issues, we average ∂fe1/∂ξ over the
pitch angle to find a v-dependent collision frequency:

νCE(v) = −
(
v∇‖fe0 + ∇‖pe

mene

dfe0

dv

)/(〈
∂fe1

∂ξ

〉
ξ,φ

+ vw
dfe0

dv

)
. (5.9)

A particularly unfortunate consequence of having to average over ξ is that any resonant
structure in νCE(v, ξ) (e.g. due to Landau-cyclotron resonances occurring along lines of
constant v‖) is lost. A distinct benefit, however, is that we are able to resolve precisely the
velocity dependence of the scattering frequency.

In figure 10 we plot (5.9) as a function of speed v for each of the ∇p0 = 0 runs.
The discontinuities and spikes in the range 1 � v/vthe � 2 are the result of zeros in
the denominator not exactly cancelling with the zero in the numerator at v/vthe =
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(b)(a)

(c) (d )

FIGURE 9. Two-dimensional plots of 〈 fe1〉φ/fe0 (a,c) and (∂〈 fe1〉/∂ξ + vw dfe0/dw)/fe0 (b,d)
for run b40x4 at grid resolution 10 × 10 (a,b) and 20 × 20 (c,d). The noise and negative values
for v/vthe � 2 only get worse at increasing resolution and imply a νCE(v, ξ) that is noisy and
contains unphysical negative values. Dashed lines correspond to constant v‖.

√
5/2  1.6. Within this model, subthermal electrons are scattered at a rate that is

weakly dependent upon speed, with only a slight increase as v becomes very subthermal.
Superthermal electrons, on the other hand, have a pitch-angle-scattering rate that increases
steeply with v, approximately as (v/vth)

3 (black dashed line) though with some significant
spread. (Note that this is rather different than in Coulomb-collisional plasmas, for which
the scattering rate decreases with v at superthermal speeds.) While the model operator is
unable to resolve the pitch-angle dependence of the scattering operator, it does serve as an
important data point for comparison with the other methods used in §§ 5.2 and 5.3.

5.2. Quasi-linear operator
Our next model collision operator for the saturated HWI is a quasi-linear operator that
depends explicitly on the energy spectrum of the electromagnetic fluctuations. This
dependence arises from averaging the electron kinetic equation over a few wave periods
in time and wavelengths in space and separating the electron distribution function into
its mean and fluctuating parts; one then finds that the time rate of change of the mean
distribution function is due to the mean of the interaction of the perturbed fields with
the perturbed distribution function. If one further assumes that the perturbed distribution
function is the linear response to the fields (hence, the qualifier ‘quasi-linear’), one obtains
an operator that depends only on the fields resonantly interacting with particles. A benefit
of this method is a rich insight into the physics of the saturation mechanism. Its main
disadvantage is that the quasi-linear operator contains a number of strict assumptions that
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FIGURE 10. Chapman–Enskog whistler scattering frequency νCE (5.9) as a function of speed
v/vthe. A Gaussian filter with standard deviation of one cell (vthe/20 and 1/30 in v and ξ ,
respectively) is applied for smoothing. The distribution function used to calculate νCE was taken
at the end of each of the runs (see table 1). To guide the eye, we include a black dashed line
∝(v/vthe)

3.

are often suspect. For our results in particular, wave–particle resonances are likely to be
broadened.

5.2.1. Definition
We adopt the electromagnetic quasi-linear operator given in Stix (1992) (also given

by (B1)–(B3)) under two simplifying assumptions: (i) that the turbulence is only two
dimensional (as in our simulations), and (ii) that the phase speed of the scattering whistlers
relative to the electron thermal velocity is small and order ε, i.e.

ε ∼ vw

vthe
∼ 1
βe

∼ ρe

L
∼ λmfp,e

L
� 1. (5.10)

The first assumption allows us to write the original quasi-linear diffusion operator (B1),
which is expressed in terms of the electric field, in terms of the magnetic and parallel
electric fields (see (B4)). The second assumption allows us to expand the electron kinetic
equation in ε � 1 (cf. § 5.1.1). At zeroth order, we find that the quasi-linear operator is
simply a pitch-angle-scattering operator associated with the magnetic-field fluctuations.
At this order, there is no Landau damping from the parallel electric field, but there is
transit-time damping as the guiding centres of Landau-resonant particles surf the mirror
force associated with low-frequency fluctuations in the magnetic-field strength (Stix 1992;
Barnes 1966). At first order in ε, we find a correction equation in which the distortion in
the distribution function caused by the parallel temperature gradient is balanced by two
terms: pitch-angle scattering of fe1 and a term proportional to vw. Except for the nature
of the collision frequency, this correction equation is identical to that associated with a
collision operator that pitch-angle scatters in a frame co-moving with whistler waves at vw
(cf. (5.4)). We refer the reader to Appendix B for a more detailed derivation.

Keeping only relevant terms, the simplified operator is

CQL[ f ] = ∂

∂ξ

[
1 − ξ 2

2
νQL(v, ξ)

(
∂f
∂ξ

+ vw
∂f
∂v

)]
, (5.11)
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in which the quasi-linear collision frequency is given by

νQL(v, ξ)  2π
Ωe

NxNy

∑
n

∑
kx

∑
ky

δ

(
ω(k‖ρe)

Ωe
− k‖ρe

v‖
vthe

+ n
) ∣∣∣∣Ψn,k

B0

∣∣∣∣
2

. (5.12a)

The magnetic field enters this expression via

Ψn,k  B−
k Jn−1(z)+ B+

k Jn+1(z), (5.12b)

with the argument of the Bessel functions Jn being z = kyv⊥/Ωe, and the complex
quantities

B±
k =Bkz ± iBky

2
(5.12c)

are the Fourier-transformed magnetic fields corresponding to right-handed (+) and
left-handed (−) polarizations. For parallel waves, ky = kz = 0 and the cyclotron
resonances correspond to purely right-handed modes for n = −1 and left-handed
modes for n = 1. For n = 0, Ψ0,k = iBkyJ1(z) = −i(kx/ky)BkxJ1(z); at long wavelengths
such that z � 1 and J1(z) ≈ z/2, we have 2Ωe|Ψ0,k/B0|2 ≈ (v2

⊥/2Ωe)k2
x |Bkx/B0|2, which

corresponds to transit-time damping.

5.2.2. Resonance condition
The argument of the delta function in (5.12a), commonly called the resonance condition,

defines the parallel wavenumber that resonantly interacts with an electron at a given
parallel velocity. Using the whistler dispersion relation (4.5), the resonance condition is

−sign(n)
0.23
βe

(k‖ρe)(kρe)− k‖ρe
v‖
vthe

+ n = 0. (5.13)

The factor of sign(n) in front of the whistler dispersion relation ensures that (5.13) has the
correct solution for electrons with v‖/vthe > 0 in resonance with oblique whistler waves;
we take sign(0) = −1. The general solution to (5.13) for quasi-parallel (k⊥/k‖ � 1) waves
is

k‖ρe = −sign(n)
1
2
βe

0.23
v‖
vthe

⎡
⎣1 ±

√
1 + 4

(
βe

0.23
v‖
vthe

)−2 (
βe

0.23
|n| + (k⊥ρe)2

)⎤⎦ .
(5.14)

For n = 0, exactly parallel whistlers have their resonance at

k‖ρe = βe

0.23
v‖
vthe

(n = 0), (5.15)

excluding k‖ρe = 0. For n �= 0, we expand (5.14) in βe � 1 to find the resonance
conditions

k‖ρe ≈ n
(
v‖
vthe

)−1

(n �= 0), (5.16)

as well as

k‖ρe = −sign(n)
βe

0.23
v‖
vthe

+ n
vthe

v‖
(n �= 0). (5.17)

We omit the solution (5.17) for the reason that, in the βe � 1 limit, it yields a negative
k‖ for |v‖|/vthe ∼ 1 electrons and a proper choice of n; such wave vectors are stable to the
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(b)(a)

(c) (d )

FIGURE 11. Two-dimensional plots of the quasi-linear pitch-angle collision frequency
νQL(v, ξ) (5.12) for all βe,0 = 40 runs normalized to βe,0ρe,0/LTΩe,0. Dashed lines correspond
to contours of constant v‖.

HWI. Keeping only solutions (5.15) and (5.16) and performing some simple manipulations
of the delta function, we have, for purely parallel waves,

δ

(
ω(k‖ρe)

Ωe
− k‖ρe

v‖
vthe

+ n
)

=
∣∣∣∣vthe

v‖

∣∣∣∣
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ

(
k‖ρe − βe

.23
v‖
vthe

)
, n = 0,

δ

(
k‖ρe − n

vthe

v‖

)
, n �= 0.

(5.18)

For the numerical results provided in § 5.2.3, we solve the full oblique resonance condition
(5.13) numerically.

5.2.3. Numerical results
In figure 11 we plot νQL(v, ξ)LT/(ρe,0βe,0Ωe,0) from (5.12) for simulations b40 and

b40x4. One property of the operator that is readily apparent is the asymmetry about ξ = 0.
The scattering frequency for ξ < 0 is an order of magnitude higher than that for ξ > 0,
and is consistent with the fraction of energy in the left-hand-polarized component of an
elliptically polarized oblique whistler wave (cf. (2.11)). As discussed in § 2.2, whistler
waves appear to be left-hand polarized to any electron with v‖ > vw, so no gyroresonance
can occur. Resonance can only be facilitated by the left-hand component of oblique
whistlers, which will appear right-handed in the frame of these electrons. This asymmetry
is prominent and a significant refinement over the results in the previous section.
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(b)(a)

FIGURE 12. Quasi-linear collision frequency calculated for each of the runs as a function of
v‖. Electrons with ξ < 0 are plotted on (a) and those with ξ > 0 are on (b); the former are
scattered at a rate ∼10 times faster than the latter due to the relative amounts of energy in the
right- and left-hand-polarized components of the wave spectrum. We include lines with power
laws (v‖/vthe,0)

2.5 and (v‖/vthe,0)
2 on (a) and (b), respectively.

It is also clear from figure 11 that the collision frequency is approximately constant
along lines of constant v‖ (dashed lines), a functional dependence that is expected given
the form of (5.12). Suppose the magnetic energy scales with the parallel wavenumber as
δB2/B2

0 ∝ k−α
‖ ; ignore any ky dependence for simplicity. This scaling implies a resonant

scattering frequency νQL ∝ |v‖|α−1. In figure 12 we plot νQL(v, ξ) as a function of v‖
for electrons with ξ < 0 (a) and ξ > 0 (b). Regardless of the sign of ξ , the scattering
frequency grows as a power law in |v‖|. For electrons with v‖ < 0, νQL ∼ (v‖/vthe,0)

2.5,
implying a field spectrum ∼k−3.5

‖ that is compatible with the results shown in figure 6.
There is a break in this power law at |v‖|/vthe ∼ 2, which corresponds to the break in
magnetic energy spectrum around kxρe,0 ∼ 0.6 for the n = ±1 principal resonances. There
is another break near |v‖|/vthe ∼ 0.3 that is due to contributions from both the (n = ±1)
cyclotron resonances and the (n = 0) resonance. The contribution from the principal
cyclotron resonances is the smallest of the two and corresponds to the transition of the
spectrum from being dominated by the kxρe,0 > 1 cascade to being dominated by noise
with a spectral index of 0. The dominant contribution is from the n = 0 resonance and
is the result of transit-time damping. The consequence is scattering at very small parallel
velocities v‖/vthe ∼ vw/vthe ≤ 0.1 at a rate generally much smaller than that at thermal
velocities; however, the effect is most pronounced for positive parallel velocities.

In general we find rough agreement with νQL/Ωe ∝ βe,0ρe,0/LT , matching the predicted
scaling (2.8) and the observed scaling using our Chapman–Enskog method in § 5.1. In
figure 13 we plot νQL as a function of pitch angle (a) and pitch angle averaged as a
function of v/vthe,0 (b). The latter shows a strong resemblance to the pitch-angle-averaged
Chapman–Enskog results in figure 10: the scattering frequency shows a clear power law
in v/vthe,0 for both superthermal and subthermal velocities. The increase in scattering for
subthermal velocities is due to transit-time damping and is significantly more pronounced
when plotting νQL as a function of v versus as a function of v‖ because the increased
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(b)

(a)

FIGURE 13. Quasi-linear scattering frequency averaged over the range v/vthe = [2, 3] as a
function of pitch angle ξ (a) and averaged over pitch angle as a function of v/vthe (b), the latter
of which exhibits power laws in v with indices from 1.2 to 2.9 (dotted lines).

scattering at small parallel velocities applies for electrons with any v⊥ and, thus, any v.
The scattering frequency for superthermal electrons grows as ∼(v/vthe,0)

1.2−2.9, which is
compatible with the power laws observed in the Chapman–Enskog case. It is possible
that the superthermal power-law indices have a βe or LT dependence; however, comparing
figures 10 and 13 – and indeed looking ahead to figure 23 – it is not clear that there
is a consistent dependence between all three of our methods, and it seems best not to
over-interpret these indices.

5.3. Fokker–Planck method
The most direct and detailed method for calculating the HWI collision operator is the
Fokker–Planck method. This method is particularly powerful because it calculates drag
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and diffusion directly from the statistics of the particle motion. Moreover, this method
requires no assumptions about the physics underlying the drag and diffusive processes.
That being said, it does require statistical assumptions; in particular, the Fokker–Planck
method works well when there is a large separation between the autocorrelation time of
the forcing and the collisional time scale. For a number of our runs, this scale separation
is not especially large and results in some complications that are otherwise avoided by the
other methods we have employed.

5.3.1. Definition
The Fokker–Planck equation describes the time rate of change of a distribution function

f (t, v) undergoing drag, modelled by the vector A(v), and diffusion, modelled by the
tensor B(v). These coefficients may be calculated by tracking the Lagrangian changes
in velocity,

v(t;t) = v(t +t, x(t +t))− v(t, x(t)), (5.19)

of a large number of particles having the trajectories x(t) and computing various ‘jump
moments’ given by statistical averages over all of these particles within a time interval
t ∈ [ts, te], in which the system is assumed to be in steady state. The specific interval for
each run is given in table 1. The Fokker–Planck drag vector and diffusion tensor are given
by

A(v) .= lim
t→‘0’

〈v〉
t

and B(v)
.= lim
t→‘0’

〈vv〉
t

, (5.20a,b)

respectively, where

〈· · · 〉 .= 1
te − ts

∫ te

ts

dt
∫

dv (· · · ) f (t, v). (5.21)

The jump intervalt must be taken to be much smaller than the characteristic ‘collisional’
time scale over which f evolves and yet not so small that it is comparable to the
autocorrelation time of the (assumed random) kicks experienced by the particles as they
interact with the electromagnetic fluctuations, i.e.

τac � t � ν−1, (5.22)

where τac is the autocorrelation time and ν is the effective collision frequency (thus, the
notation t → ‘0’ rather than t → 0 in (5.20a,b)). Assuming that the jumps are small,
so that the consequent changes in the distribution function can be approximated by a Taylor
expansion in v, one can show that the Fokker–Planck operator is given by

CFP[ f ] = − ∂

∂v
· [A(v)f (t, v)]+ 1

2
∂2

∂v∂v
:
[
B(v)f (t, v)

]
. (5.23)

Provided that A and B can be reliably computed, (5.23) is the model collision operator for
our Fokker–Planck method.

In what follows, we work in spherical velocity coordinates, (v, ξ, φ). We further assume
that the interactions between the electrons and the fluctuations do not push the distribution
function sufficiently far from gyrotropy (i.e. ∂f /∂φ ≈ 0) to warrant retaining jump
moments in φ. To transform (5.23) into this coordinate system, we follow Rosenbluth,
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MacDonald & Judd (1957) in writing (5.23) as

CFP[ f ] = − (Aμf );μ + 1
2
(Bμν f );μν

= − 1√
g
∂

∂qμ
(√

gAμf
)+ 1

2
√

g
∂2

∂qμqν
(√

gBμν f
)+ 1

2
√

g
∂

∂qν
(√

g νλμBμλf
)
,

(5.24)

where the semi-colon denotes the covariant derivative, g .= det(gμν) is the determinant of
the metric tensor gμν ,  νλμ are the associated Christoffel symbols and qμ ranges over the
coordinates (v, ξ, φ). With the metric given by

ds2 .= gμν dqμ dqν = dv2 + v2

1 − ξ 2
dξ 2 + v2(1 − ξ 2) dφ2, (5.25)

it is then a straightforward calculation to show that (5.23) becomes

CFP[ f ] = 1
v2

∂

∂v

(
−v2Avf + 1

2
∂

∂v
v2Bvvf

)
+ ∂

∂ξ

(
−Aξ f + 1

2
∂

∂ξ
Bξξ f

)

+ 1
v3

∂2

∂v∂ξ

(
v3Bvξ f

)+ 1
2v2

(
ξ
∂

∂ξ
− v

∂

∂v

)(
v2

1 − ξ 2
Bξξ f

)
, (5.26)

where the jump moments are given by

Av
.= lim
t→‘0’

〈v〉
t

, Aξ
.= lim
t→‘0’

〈ξ 〉
t

,

Bvv
.= lim
t→‘0’

〈(v)2〉
t

, Bξξ
.= lim
t→‘0’

〈(ξ)2〉
t

, Bvξ
.= lim
t→‘0’

〈vξ 〉
t

.

⎫⎪⎪⎬
⎪⎪⎭ (5.27)

Note that (5.26) can be simplified further if we demand that the operator annihilates a
particular form of distribution function. For example, if we demand that CFP[ f ] = 0 for
an isotropic Maxwellian distribution having temperature T = (1/2)mv2

th and bulk velocity
vwb̂, then (5.26) becomes

CFP[ f ] = 1
2
∂

∂ξ
Bξξ
(
∂f
∂ξ

+ vw
∂f
∂v

)
+ 1
v2

∂

∂v

v2

v2
th

Bvv
[
(v − vwξ)f + v2

th

2
∂f
∂v

]
. (5.28)

Each of the three terms in this equation has a clear physical interpretation. The first
term corresponds to perpendicular diffusion at fixed energy, i.e. pitch-angle scattering,
occurring in a frame moving at speed vw with a velocity-dependent rate given by

νFP(v, ξ) = Bξξ
1 − ξ 2

. (5.29)

This term then recovers the form of both the Chapman–Enskog (5.1) and quasi-linear
(5.11) pitch-angle-scattering operators, viz.

CFP[ f ] = ∂

∂ξ

[
1 − ξ 2

2
νFP(v, ξ)

(
∂f
∂ξ

+ vw
∂f
∂v

)]
. (5.30)

The second term in (5.28) proportional to (v − vwξ) corresponds to drag, and the third
term proportional to ∂f /∂v to energy diffusion. The physical consequence of these final

https://doi.org/10.1017/S002237782400151X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400151X


Whistler transport 31

two terms are that the distribution function relaxes to a Maxwellian with thermal speed vth

and bulk velocity vwb̂ at a rate given by Bvv/v2
th. Notwithstanding the relatively pleasant

form of (5.28), we caution that the HWI is not guaranteed to push the distribution function
towards an isotropic, drifting Maxwellian; indeed, a more natural expectation is that the
instability pushes the system towards marginal stability, with a non-zero heat flux and
its associated asymmetry in f (v, ξ). In this case, (5.30), with the jump moments (5.27)
calculated from the particle trajectories, is arguably a more appropriate operator than
(5.28).

We calculate the expectation values 〈v〉, 〈(v)2〉, 〈ξ 〉, 〈(ξ)2〉 and 〈vξ 〉 from
the simulated particle data for a wide variety of t. Without a priori knowledge of the
autocorrelation and collisional time scales, we select values of t that are logarithmically
spaced between Ωe,0t ∈ [0.1, 500] and use the method described in the next subsection
(§ 5.3.2) to choose thet most consistent with the limitt → ‘0’. As with our calculation
of the distribution function, we focus on the central 4 % of the domain, which restricts our
sample of particles to an area of nearly uniform temperature that is far removed from
the domain boundaries. After computing indices describing the velocity-space location of
each particle on a 60 × 60 grid in (v, ξ), we add the individual Lagrangian jump moment
to the grid at the indices that correspond to the particle’s initial phase-space location. This
ensures that electrons that jump out of the 4 % domain under consideration in any given
interval t are included in the jump moment calculations inside the domain. Doing this
for all particles in the sample, we generate an ensemble average. We repeat this process
at different times throughout the interval t ∈ [ts, te] (again, reported in table 1) to give a
time-averaged operator, which drastically reduces the amount of noise in the computed
jump moments. The accuracy of the time-averaged operators relies on the system being in
steady state – i.e. in saturation – over the measurement interval. While this is not exactly
satisfied for all runs, they are all very near saturation: the heat flux varies at most by
10 % across any given interval. Given the expected sampling noise, particularly out to
v/vthe,0 = 3, we take this amount of error to be acceptable.

5.3.2. Time scales and hierarchies
The limit t → ‘0’ in the definitions of the jump moments (5.20a,b) ensures that the

jumps are sufficiently small that the Taylor expansion that relates them to the rate of change
of the distribution function converges to the true value. We estimate the autocorrelation
time of the HWI fluctuations as the quasi-linear autocorrelation time τ lin

ac , the time it takes
a resonant particle to interact with a wave packet (Krommes 2002). Given a packet of
waves with central wavenumber k̄ and width k,

τ lin
ac ∼ (|vp(k̄)− vg(k̄)|k

)−1
, (5.31)

where vp is the wave phase velocity and vg is the group velocity of the packet. From the
spectra in our simulations (figure 6) we see that whistlers are energetically peaked around
kρe,0 ∼ 1 and that most of the energy is contained within a few kρe,0 of the peak. Taking
kρe ∼ 1 as our characteristic wavenumber and k/k ∼ 1, we find that

τ lin
ac Ωe ∼ (n + 1/βe)

−1 . (5.32)

For our simulations in the limit of high βe, the cyclotron (n �= 0) resonances will therefore
have an autocorrelation time of the order of an inverse cyclotron frequency:

τ lin
ac (n �= 0)Ωe ∼ 1. (5.33)
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However, the Landau (n = 0) resonance can have an arbitrarily long autocorrelation time

τ lin
ac (n = 0)Ωe ∼ βe (5.34)

in the limit of high βe. It is conceivable that in our simulations, there does not exist a t
for electrons with v‖ ∼ vw that satisfies the ordering (5.22). We therefore rely on a model
process, called an Ornstein–Uhlenbeck process, to inform our choice of an appropriatet
with which to calculate our drag and diffusion values.

Consider a 1-D Fokker–Planck equation in v with drag to a mean velocity v̄ at a rate ν
and a diffusion coefficient D:

∂f (t, v)
∂t

= ∂

∂v
ν(v − v̄)f (t, v)+ D

2
∂2

∂v2
f (t, v). (5.35)

This equation represents a particular statistical process called an Ornstein–Uhlenbeck
process (Uhlenbeck & Ornstein 1930) and will serve as a prototypical model for
understanding our numerical results. The Green’s function for the differential equation
(5.35) has a well-known solution (Risken & Caugheyz 1991), which can be written in
terms of the jump moments as a Gaussian distribution:

G(v,t) = 1√
2πVar(v)

exp
[
−(v − 〈v〉)2

2 Var(v)

]
, (5.36)

with the first and second jump moments given by

〈v〉 = (v̄ − v)
(
1 − e−νt

)
, (5.37a)

Var(v) = 〈v2〉 − 〈v〉2 = D
2ν

(
1 − e−2νt

)
, (5.37b)

for stationary solutions.
The expressions for the jump moments (5.37), taken in the limit t → 0, recover the

drag and diffusion coefficients in (5.35). In the opposite limit of νt � 1, 〈v〉  v̄ − v
and Var(v)  D/ν ∼ v2

th/2. On this long time scale, particles drift at the mean velocity
v̄ and equilibrate to a mean temperature corresponding to vth. If one were to use such a t
when calculating the coefficients, all kinetic information would be lost and the measured
coefficients would be incorrect. We must therefore be cautious in choosing an appropriate
t when calculating jump moments. For cases where the jump moments are constant
for a range of t � τac, the proper choice of t is unambiguously in that range and the
coefficients can be simply read off from the jump moment at a proper t. This is the
case for drag and diffusion in speed, as we show first in § 5.3.3. If no such interval is
present, for instance, because ν−1 ∼ τac, the choice of an appropriate t is much more
complicated. One must choose the t ≥ τac that corresponds to the range in which the
jump moments are most constant with t, much before the jump moments begin to scale
as t−1 and represent thermalized, non-kinetic physics. If the scattering rate is near the
autocorrelation time, often the best choice is to take t = τac. Critically, if the scattering
frequency varies in velocity space, one must repeat this process for every point in phase
space one wishes to compute coefficients, or risk reporting a drag or diffusion coefficient
that corresponds to thermalized physics in a portion of phase space. This is the case for
drag and diffusion in pitch angle in many of our runs; we show in detail the process and
results in § 5.3.4.
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(b)(a)

FIGURE 14. First (a) and second (b) velocity jump moments withtΩe,0 = 10 from simulation
b40x4. The cross marks the point in phase space where the jump moments are plotted as
functions of t in figure 15 and where the probability density functions (p.d.f.s) of the jump
moments are plotted for tΩe,0 = 10 in figure 16.

(b)(a)

FIGURE 15. Fokker–Planck drag (a) and diffusion (b) coefficients as a function of t for all
∇p0 = 0 simulations at the location in phase space marked by the cross in figure 14. While the
moments are roughly constant fortΩe,0 < 25, as expected for an Ornstein–Uhlenbeck process,
there is clearly some non-Markovian behaviour for larger t.

5.3.3. Fokker–Planck jump moments: velocity
The drag and diffusion coefficients in velocity are remarkably simple to recover from

the jump moments. In figure 14 we show 2-D plots of drag and diffusion coefficients for
run b40x4 at tΩe,0 = 10. In figure 15 we plot the values of these coefficients for all
runs as a function of tΩe,0 at the point in phase space denoted by the ‘X’ in figure 14,
approximately v/vthe,0 = 2.5 and ξ = 0.45. Across all runs, both the drag and diffusion
coefficients are nearly constant as a function of t for tΩe < 25. Runs at low βe,0
and small LT/ρe,0 (runs b10, b25 and b40) show a non-Markovian increase in the jump
moments for 25 ≤ tΩe,0 ≤ 500.

In the following, we assume the underlying process is Ornstein–Uhlenbeck and take
as an appropriate jump interval tΩe,0 = 10. This assumption is well justified. The jump
interval lies comfortably in the interval τacΩe,0 ∼ 1 � tΩe,0 = 10 � (ν/Ωe,0)

−1 ∼ 103,
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FIGURE 16. Probability densities for jump in velocity v/vthe for t/Ωe = 10 at the location
in phase space denoted by the cross in figure 14. Gaussian p.d.f.s constructed from the moments
of the densities are plotted in dashed lines, showing the densities are in fact Gaussian.

and both coefficients are approximately constant with t in the vicinity of tΩe,0 = 10
for all points in (v, ξ) space. In figure 16, for all runs, we plot with solid lines histograms
of individual electron jumps in speed for the jump interval tΩe,0 = 10 at the same
location in velocity space as in figure 15. Using dashed lines we overlay Gaussian
distributions with the same mean and variance as each histogram. The correspondence
between the data and the Gaussian distributions further suggest that the observed process
is Ornstein–Uhlenbeck.

In figure 17 we plot normalized velocity drag Av and diffusion Bvv coefficients as
functions of both v/vthe,0 and ξ . The drag coefficient is linear in v, with a zero near
v = vthe,0. The diffusion coefficient peaks at v/vthe,0 ∼ 2, decreasing at higher and lower
speeds. The dependence on ξ of these coefficients, however, is more complicated. For
runs b40 and b100 – i.e. those with the highest 〈δB2〉/B2

0 – drag and diffusion are greatest
at ξ = 0 and decrease towards ξ = ±1. For runs with lower fluctuation amplitudes, the
dependence inverts and appears to converge towards a single shape as LT/ρe,0 increases.
This feature is evident in figure 14(b), where the velocity diffusion coefficient for run
b40x4 peaks near ξ = ±1 for v/vthe,0 ∈ [1, 2].

Assuming that the speed jump moments are well approximated by their pitch-angle
averages, we find that the resulting Av(v) and Bvv(v) can be accurately modelled by

Av(v) = −νv(βe,LT)(v − vthe) and Bvv(v) = Dv(βe,LT), (5.38a,b)

with the constant νv and Dv plotted in figure 18 as functions of βe,0 and LT/ρe,0. These rates
appear to be independent of LT/ρe,0 but exhibit power-law dependencies on βe,0 (shown by
the dashed line fits). In §§ 5.1.3, 5.2.3 and 5.3.4, we show that these rates are much smaller
than those associated with pitch-angle scattering. We therefore neglect Av and Bvv in what
follows.
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(b)(a)

(c)
(d )

FIGURE 17. Drag (a,b) and diffusion (c,d) coefficients in speed as functions of v/vthe,0
(a,c) and ξ (b,d) for all ∇p0 = 0 runs. All coefficients are approximately constant except for
drag, which linearly decreases with increasing speed.

5.3.4. Fokker–Planck jump moments: pitch angle
Obtaining the Fokker–Planck jump moments in pitch angle, Aξ and Bξξ , turns out to be

considerably more complicated than for Av and Bvv, the principal reason being insufficient
lack of scale separation. Analogously to figure 15, we plot in figure 19 the values of
the drag and diffusion coefficients in pitch angle as functions of tΩe,0 at (v, ξ) 
(2.5vthe,0, 0.45) for all of our analysed runs. There is a stark difference between runs with
higher 〈δB2〉/B2

0, namely b40 and b100, and those where it is lower, like b10 and b40x8.
Runs with large fluctuation amplitude have jump moments ∼0.1Ωe,0 that are comparable
to the inverse autocorrelation time τ−1

ac ∼ Ωe,0. It is impossible to be certain whether
the coefficients are constant in t within such a small range. Likewise, the probability
distributions of individual particle pitch-angle jumps ξ are far from Gaussian; these are
shown in figure 20 for the jump interval tΩe,0 = 10 (solid lines) and compared with
Gaussian distributions having identical means and variances (dashed lines). At this jump
interval, all of the distributions stray from Gaussian, with runs having larger fluctuation
amplitudes exhibiting almost completely flat distributions. The distributions do, however,
appear to converge towards Gaussian in the limit of low fluctuation amplitude (see b10,
b40x4 and b40x8).

Further complicating matters, the drag and diffusion coefficients depend on v and ξ ,
so in most all cases there is no single values of tΩe,0 appropriate for use in calculating
these coefficients (unlike for the speed jump moments). As explained in § 5.3.2, we pick an
appropriatet at a subset of locations in phase space and then use this value to calculate Aξ

and Bξξ for each (v, ξ) combination. The results of this procedure for runs b40 and b40x4
are shown in figure 21. For run b40, the collisional time scale is close to the autocorrelation
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(b)(a)

FIGURE 18. Drag rate νv (green) and diffusion coefficient Dv (red) versus βe,0 (a) and LT/ρe,0
(b). Both νv and Dv are nearly constant with LT/ρe,0, but scale as β0.53

e,0 and β0.77
e,0 , respectively.

These values are subdominant to drag and diffusion in pitch angle (see § 5.3.4).

(b)(a)

FIGURE 19. Pitch-angle drag (a) and diffusion (b) as a function of t for all ∇p0 = 0
simulations at the location in phase space denoted by the cross in figure 14. These moments
exhibit clear non-Markovian behaviour and in general do not conform to an Ornstein–Uhlenbeck
process.

time across all velocity space. Run b40x4 does have some separation of time scales,
particularly close to ξ = 1 where the scattering is measured to be weak. The normalized
diffusive scattering frequency νFPLT/ρe,0βe,0Ωe,0 resulting from the appropriate jump
times are shown in figure 22. For v/vthe,0 > 1, there is a clear difference in symmetry about
ξ = 0 between these two runs. This asymmetry shows up in all runs with LT/ρe,0 > 250,
as shown in figure 23(a). The Fokker–Planck results at large LT/ρe,0 as a function of
pitch angle are structurally similar to the quasi-linear results (cf. figure 13). The ratio
νFP(ξ = −0.83)/νFP(ξ = 0.83) ≈ 6 for run b40x8 is comparable to the quasi-linear result
νQL(ξ = −1)/νQL(ξ = 1) ∼ 10; however, the scattering rate around ξ = 0 is much higher
for the Fokker–Planck case. Figure 23(b) shows the pitch-angle average of νFP as a function
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FIGURE 20. Probability densities for jumps in pitch angle ξ for tΩe,0 = 10 calculated at
(v, ξ) = (2.5, 0.45). Gaussian p.d.f.s constructed from the moments of the densities are plotted
in dashed lines; the p.d.f.s differ significantly from Gaussian due to strong scattering.

of v. The velocity dependence is a fast and slow power law, similar to § 5.1.3 and § 5.2.3
(cf. figures 10 and 13, respectively), which can be attributed to transit-time damping and
cyclotron resonances, respectively, per the analysis in § 5.2.3. Here, as with the other
models, the scattering amplitude at small velocities increases with LT/ρe,0, implying
that the relative contribution from transit-time damping also increases with LT/ρe,0. The
velocity dependence of the pitch-angle-average scattering frequency for superthermal
particles here is ∼(v/vthe,0)

1.5, which is generally shallower than other models (see
figures 10 and 13).

5.3.5. Summary of Fokker–Planck results
In § 5.3 we calculated an effective Fokker–Planck collision operator for the HWI by

constructing drag and diffusion coefficients as functions of velocity space for both velocity
and pitch angle. The drag and diffusion coefficients were constructed from jump moments
of tracked particles in our simulations, which we showed how to construct rigorously
using jump intervals informed self-consistently by the particle statistics. The statistics
for velocity were found to be consistent with Ornstein–Uhlenbeck statistics while the
statistics for pitch angle were less conclusively Ornstein–Uhlenbeck due to the limited
scale separation of our runs. Through a judicious choice of jump interval, we obtained
the drag and diffusion coefficients and demonstrated that pitch-angle diffusion clearly
dominated drag and diffusion in velocity, as is predicted by the quasi-linear model in
§ 5.2. The pitch-angle dependence of the pitch-angle-scattering frequency obtained by the
Fokker–Planck method, however, is much flatter than the quasi-linear result (§ 5.2.3) and
will prove to be a distinct advantage of the former over the latter in § 6.

6. Results: III. A model effective collision operator for saturated HWI

In § 5 we used our numerical simulation data to calculate three model collision
operators describing the drag and diffusion of electrons as they interact with saturated
HWI fluctuations. Here we attempt to unify these operators, highlighting their essential
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(b)(a)

(c) (d )

FIGURE 21. Appropriate jump intervals tΩe,0 for a subset of (v, ξ) points for all βe,0 = 40
runs. Due to a lack of scale separation, all jump intervals for run b40 coincide with the
quasi-linear autocorrelation time τ lin

ac Ωe,0 ∼ tΩe,0 = 1.

ingredients, proposing a model that captures them and testing whether that model can
result in a heat flux that matches, within reason, the heat flux measured directly in the
simulations. While doing so, we feature similarities and differences between existing
model operators and emphasize what aspects of our model operator could benefit from
further refinement.

6.1. Salient features of a model effective collision operator
First and foremost, all of our model operators show scattering rates that scale as βevthe/LT ,
with the exact rate depending on the model. We also demonstrated that pitch-angle
scattering dominates over drag and diffusion in velocity (§ 5.3), and showed in § 5.2.1
that this is expected analytically from an electromagnetic quasi-linear operator for waves
with highly subthermal phase velocity. Such an operator includes a drag term proportional
to the phase velocity of the scattering waves, which we showed is equivalent to boosting
the pitch-angle-scattering operator to the wave frame (§ A.2). Finally, we found that the
consequent advection of scattered particles at the phase speed vw ∼ vthe/βe is of the same
order as the diffusive scattering; unsurprisingly then, we show in § 6.3 that each effect is
responsible for approximately half of the observed heat flux.

The pitch-angle average of the pitch-angle-scattering frequency derived from each
of our methods all show two power laws in v: one decreasing as a function of v for
subthermal electrons (physically, due to transit-time damping) and the other increasing like
∼(v/vthe)

3 for superthermal electrons (physically, due to cyclotron-resonant scattering).
The pitch-angle dependence of the operators, however, is more complicated. The
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(b)(a)

(c) (d )

FIGURE 22. Normalized Fokker–Planck diffusive scattering frequency for all βe,0 = 40 runs as
a function of v and ξ , calculated from appropriate jump times t, as shown in figure 21. Dashed
lines correspond to contours of constant v‖.

quasi-linear operator showed (a) a structure that was a function of v‖ rather than of v
and ξ separately, and (b) that the scattering frequency for electrons with v‖ < 0 was an
order of magnitude larger than for electrons with v‖ > 0. For runs with LT/ρe,0 = 250, the
Fokker–Planck operator showed a largely symmetric structure, but with some evidence
that the scattering was a function of v‖. At larger LT/ρe,0, however, the operator began to
show more qualitative similarities to the quasi-linear operator, particularly with a resonant
structure and a strong asymmetry between electrons with positive versus negative parallel
velocities.

6.2. Basic model collision operator
The preponderance of evidence presented in this work points towards whistlers acting as
pitch-angle scatterers in a frame moving at the whistler phase velocity

C[ f ] = ∂

∂ξ

[
1 − ξ 2

2
ν(v, ξ)

(
∂f
∂ξ

+ vw
∂f
∂v

)]
, (6.1a)

where we have measured the wave phase velocity in simulation to be

vw  0.23vthe/βe. (6.1b)

Following § 6.1, we take the model scattering frequency to be given by the quasi-linear
value, repeated here, with a few modifications:

νmodel

Ωe
= 2π

∑
n

∫ ∞

0
d(k‖ρe) δ

(
ω(k‖ρe)

Ωe
− k‖ρe

v‖
vthe

+ n
)

1
Lx

∣∣∣∣Ψn,k‖

B0

∣∣∣∣
2

. (6.1c)
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(b)

(a)

FIGURE 23. Normalized νFP for all runs as a function of ξ at v/vthe,0 = 2.5 (a) and pitch angle
averaged as a function of v/vthe,0 (b). Runs b40–b40x8 show a transition from nearly symmetric
scattering in ξ to electrons with v‖ < 0 scattering significantly faster than those with ξ > 0. All
runs show a double power law similar to § 5.1.3, with the normalized scattering frequency of the
slow power law increasing with larger LT/ρe,0.

In order to make the full quasi-linear expression more tractable for our model, we remove
the explicit dependence of the quasi-linear scattering frequency on k⊥. We accomplish
this simplification by assuming that the oblique resonance condition can be approximated
by the parallel resonance condition (5.18) and that the effect of integrating over oblique
modes – specifically the reduction in resonant power for electrons interacting with the
left-handed wave component – can be encapsulated by a bespoke numerical weighting of
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the parallel spectrum for each of the principle resonances n = [−1, 0, 1], viz.

1
Lx

∣∣∣∣Ψn,k‖

B0

∣∣∣∣
2

= 〈δB2〉
B2

0

⎧⎨
⎩
[(

k‖ρe − 0.5
0.4

)3

+ 1

]−1

δn,−1 + 0.1

[(
k‖ρe − 0.5

0.25

)2.5

+ 1

]−1

δn,0

+ 0.1

[(
k‖ρe − 0.5

0.5

)3

+ 1

]−1

δn,1

⎫⎬
⎭ . (6.1d)

The integral in (6.1c) has bounds [0,∞], reflecting the fact that whistler waves travel only
down the temperature gradient (k‖ > 0).

Before we discuss our model spectrum in more detail, the use of the parallel whistler
dispersion relation in our model resonance condition requires some justification. The
oblique cold plasma dispersion relation (4.5) differs from the parallel dispersion relation
by a factor 1/ cos θ , where θ is again the angle between the wave vector and the magnetic
field. For |v‖/vthe| ∼ 1 and θ = 0, the wave frequency is a factor 1/βe smaller than the
(order unity) other terms and k‖ρe ∼ 1. Only when cos θ ∼ 1/βe does the obliquity of the
wave begin to affect the solution – and even then only by an order-unity factor. At the same
time, βe � 1 implies that waves are propagating nearly perpendicular to the mean field.
Waves in this parameter regime are almost certainly kinetic Alfvén waves, not whistler
waves, and so the resonance condition in (6.1c) is no longer applicable. More realistic
(smaller) propagation angles will change the resonant parallel wavenumber by a factor
smaller than unity, thus justifying our use of the parallel dispersion relation.

For each of our runs, we fit (6.1d) to the numerical magnetic-field spectra in saturation;
a plot of the fit for run b40 can be found in figure 24 along with L−1

x |Ψn,k‖/B0|2 calculated
from the numerical spectrum using (5.12b). Overall the fit is good, especially so for the
n = −1 and n = 0 spectra. However, an issue with our fit becomes immediately clear:
|Ψn,k‖/B0|2 for n = −1 and n = 1 should approach each other at small k‖ρe. As it pertains
to the heat flux implied by the model, however, this deviation makes little difference as it is
the fluctuations at the high-k‖ρe end of the cascade that matter most. One might argue that,
in terms of energy, including this high-k‖ part of the cascade makes very little difference
to the operator, since the spectra die away very quickly rightward of their peaks. However,
the implied heat flux of a collision operator of the form (6.1a) depends on the inverse of
ν(v, ξ) (see § 6.3, specifically (6.2) and (6.3)). The heat flux is therefore largely insensitive
to regions in velocity space in the vicinity of v‖ = vthe where particles are scattering and
is instead dominated by regions where they are not. The latter include two populations of
particles: those with small enough v‖ that they bounce, and therefore are trapped, in the
whistler wave frame; and those that are still passing, but scatter inefficiently because they
are resonant with low-energy fluctuations. Proper modelling of both the spectrum at low
energies and the effect of resonance broadening and particle trapping is crucial to obtain
a scattering frequency that accurately reproduces the observed heat flux.

In figure 25 we plot the model collision frequency (6.1c) normalized by βe,0ρe,0Ωe,0/LT
for all βe,0 = 40, ∇p0 = 0 runs using the model spectrum (6.1d). Qualitatively, results
match those of the quasi-linear operator in figure 11: scattering for electrons travelling
up the temperature gradient is higher than that for electrons travelling down the gradient
by a factor of ∼10 and there is a small scattering rate at v‖/vthe � 1 due to transit-time
damping. The n = 0 features in the model, however, are significantly sharper than those in
the quasi-linear case, likely a result of using a continuous model for the spectrum rather
than a discrete calculation from simulation.
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FIGURE 24. Plot of L−1
x |Ψn,k‖/B0|2 from run b40 using (5.12b) in solid lines and model (6.1d)

in dashed lines, for n = [−1, 0, 1]. The spectra calculated from simulation vary from run to run;
the model presented here is a good qualitative fit across all runs.

(b)(a)

(c) (d )

FIGURE 25. Two-dimensional plots of the model pitch-angle collision frequency νmodel (6.1) for
all βe,0 = 40 runs. The scattering frequency is normalized to βe,0ρe,0Ωe,0/LT and dashed lines
correspond to contours of constant v‖. These results are qualitatively similar to the quasi-linear
scattering frequency, shown in figure 11.
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6.3. Implied heat flux for model collision operators
We calculate numerically the heat flux implied by the operators described in §§ 5.2.3–5.3.4
by first computing the implied perturbation to the distribution function via

〈 fe1〉φ = −
∫

dξ
[

1
ν(w, ξ)

(
w∇‖fe0 + ∇‖pe

mene

dfe0

dw

)
+ vw

dfe0

dw

]
, (6.2)

using fe0 = fMe and ν(v, ξ) from the appropriate model operator. The first term on the
right-hand side of (6.2) is the perturbation of the distribution function implied by the
diffusive flux, which has a scattering frequency ν(w, ξ), and the last term represents
the perturbation implied by advection of particles at the whistler phase velocity vw. The
perturbed distribution is then used to compute the parallel electron heat flux according to

q‖e =
∫

d3w
1
2

mew2w‖〈 fe1〉φ

= −me

2

∫ ∞

0
dw w5

[∫
dξ ξ

(
w∇‖fe0 + ∇‖pe

mene

dfe0

dw

)∫ ξ

0

dξ ′

ν(w, ξ ′)
+ 2vw

3
dfe0

dw

]
.

(6.3)

Before discussing the results of this calculation, we should note that (6.2) was derived
assuming a steady state, i.e. ∂fe/∂t = 0. This assumption may be violated in regions
of phase space where our model scattering frequencies are small. Electrons in these
regions must experience many collisions to approach a steady state, so ∂fe/∂t → 0 on
time scales much longer than 1/ν(v, ξ). Including this effect would serve to reduce the
strong variation in 〈 fe1〉φ; however, it likely will not alter the qualitative results that follow.

In figure 26 we plot normalized heat fluxes as a function of βe,0ρe,0/LT : in blue we
show the box-averaged heat flux measured in the ∇p0 = 0 runs; and in orange, red, purple
and cyan we show the normalized heat flux implied, respectively, by advection at the
whistler phase speed, by the quasi-linear operator, by the Fokker–Planck operator and by
the model from Drake et al. (2021) (discussed in § 6.6). In black, green and grey we show,
respectively, heat fluxes implied by our model (6.1), the same model but where we neglect
the heat-flux contribution of electrons expected to be trapped (see § 6.4.1 for evidence of
trapped electrons in one of our runs, as well as § 6.4.2 for heat flux calculations) and our
semi-empirical model (6.10). Points marked by an ‘x’ are runs with βe,0 = 40 and points
marked by circles are runs with LT = 125ρe,0; the former are connected with a dotted line
and the latter are connected with a dashed line. Run b40, which belongs to both groups, is
denoted with an ‘x.’ The blue dashed line is the average of the measured heat flux across
all runs. We find that the heat flux implied by advection is on average half of the total
measured heat flux, suggesting that the advection and pitch-angle diffusion contribute to
the heat flux equally.

Overall, we find that the heat flux implied by our Fokker–Planck operator agrees well
with the heat flux measured in our simulations. While there is some deviation of the
former from the latter, particularly for βe,0ρe,0/LT = 0.04 − 0.1, the deviations appear to
be random, i.e. not a function of scale separation. We therefore associate these fluctuations
with some error in our Fokker–Planck measurement process, perhaps due to our choice of
jump moment or limited velocity-space resolution. In contrast, the heat fluxes implied by
both our quasi-linear operator and basic model generally increase with βe,0, as evidenced
by the increasing trend of (q‖QL) and (q‖model) for runs with LT/ρe,0 = 250 as a function of
βe,0ρe,0/LT (all runs with LT/ρe,0 = 250 are denoted by dots in figure 26 except for run b40,
which is denoted by an ‘x’ at βe,0ρe,0/LT = 0.16). We attribute this trend to transit-time
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FIGURE 26. Heat flux measured in simulations (q‖measured) compared with the heat flux implied
by advection at the whistler phase speed (qvw), quasi-linear operator (q‖QL), Fokker–Planck
operator (q‖FP), Drake et al. (2021) (q‖Drake2021), our model (6.1) (q‖model), our model only
including passing electrons (6.5) assuming the trapped-passing boundary (6.4) (q‖model,ξcrit ) and
our semi-empirical model (6.10) (q‖model,SE). Points denoted by an ‘x’ are runs with βe,0 = 40
and are connected by a dotted line. Runs with LT = 125ρe,0 are denoted with a circle (except for
run b40) and are connected with dashed lines; the blue dashed line is the average measured heat
flux across the runs.

damping becoming weaker at larger βe,0. For n = 0, the resonant parallel wavenumber is
proportional to βev‖/vthe (5.18). At a given parallel velocity, therefore, the resonant k‖ρe
increases proportionally to βe. The result, given the steep spectrum we observe, is that
transit-time damping is only active over an ever-narrower region of phase space close to
v‖ = 0 as βe increases, the result being an increasingly larger heat flux.

While q‖QL and q‖model exhibit the same qualitative trend due to their similar
construction, the two imply very different levels of heat flux. In both models, electrons
scatter resonantly off magnetic-field fluctuations whose amplitudes scale proportionally
to some negative power of k‖ρe, resulting in scattering frequencies that decrease rapidly
as |v‖/vthe| decreases from |v‖/vthe| ∼ 1. Physically, low-v‖ electrons interact via exact
resonance only with high-k‖ waves, which do not have appreciable power; this implies
a large perturbation to the distribution function in that region of velocity space, which
in turn contributes to a large heat flux. The critical difference between our quasi-linear
operator and our model is that our basic model spectrum does not include the noise floor
(due to a finite number of PIC particles) present in the actual simulated spectra used to
calculate the quasi-linear operator. For a direct comparison of these spectra for run b40,
see figure 24; the spectrum measured from our simulations levels out for k‖ρe � 10 while
the model spectrum continues toward 0. We can therefore expect noise to contribute to the
cyclotron resonances of our quasi-linear model, at least in run b40, when |v‖/vthe| � 0.1.
Referring to parallel velocity averages of the quasi-linear operator shown in figure 12,
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|v‖/vthe| ∼ 0.1 appears to be a plausible estimate for noise to affect the scattering rate;
however, transit-time damping complicates this picture somewhat. The only outlier in
figure 12 is run b100, which has the weakest transit-time damping and PIC noise relative
to fluctuation amplitude, resulting in the high implied heat flux in figure 26. Even though
our quasi-linear operator does imply heat fluxes close to our simulation measurements
for βe,0ρe,0/LT � 0.1, the observed scaling of the implied heat flux with βe attributed to
transit-time damping and our difficulties in disambiguating it from the effects of cyclotron
scattering and PIC noise call into question the applicability of the basic model to explain
the saturated HWI.

There is evidently a physical reality to the Fokker–Planck results that is not captured by
the quasi-linear numerical result and our model. The incompatible scaling of transit-time
damping rate with βe found from our numerical quasi-linear and simple models also
strongly suggest this to be the case. In other words, there must be something scattering
electrons with v‖/vthe � 1 that is not captured by resonant physics. This is a manifestation
of perhaps the longest-standing issue in quasi-linear theory called the 90◦ scattering
problem; we discuss this issue in detail in § 6.4. One physical effect that can alleviate
the 90◦ problem is trapping in large-amplitude waves; see § 6.4.1 for evidence of trapped
electrons in our runs. If we treat these trapped electrons as if they have no contribution
to the perturbed distribution function, and therefore, to the model diffusive heat flux (see
§ 6.4.2 for details), then the model produces implied heat fluxes, labelled q‖model,ξcrit and
shown in green in figure 26, which are less than the whistler advection value, i.e. the
diffusive heat-flux contributions are negative. We argue in § 6.4.2 that this is a specific
consequence of our model operator, as the same methodology applied to other operators
produce reasonable results. It is likely that a more self-consistent treatment of the trapped
population is required. In addition to this model where trapped electrons have no effect on
fe1, we also consider a model where electrons have a minimal scattering rate that is agnostic
of a physical explanation and purely motivated by our Fokker–Plank scattering frequency.
We call this a semi-empirical model, and cover it in detail in § 6.4.5. The heat flux implied
by the model is plotted in figure 26 with grey markers and labelled by q‖model,SE. This
model matches simulation results well; however, the lack of a physics-based explanation
for the scattering floor should give pause to a reader who wishes to extrapolate this model
to astrophysical scale separation. Finally, another way around the 90◦ scattering problem
is to ignore the pitch-angle dependence of the scattering frequency entirely, as in the
model from Drake et al. (2021), which we discuss in § 6.6. As shown in figure 26 by the
cyan markers, this model does reproduce the proper heat-flux scaling and is reasonably
consistent with our measurements from simulation. However, there are concerns with
this operator in addition to the omission of any pitch-angle dependence of the scattering
frequency; we refer the reader to § 6.6 for details on these concerns.

6.4. Scattering across the gap
As discussed at the end of § 6.3, the heat flux implied by our model scattering frequency
(6.1) is unphysically large because the scattering rate approaches 0 geometrically as
|v‖/vthe| → 0. This is a variation on the well-known ‘90◦ problem’, which also afflicts
theories of cosmic-ray transport in the Galactic and intracluster contexts. Just as in our
formulation, the scattering rate for cosmic rays approaches 0 for small parallel velocities
because the limited power in resonant (in this case, Alfvén) waves. It is argued that some
nonlinear mechanism is in fact required to scatter cosmic rays across v‖ = 0 and isotropize
the distribution (e.g. Shalchi 2009; Holcomb & Spitkovsky 2019). Options proposed in the
literature include adiabatic mirroring (i.e. trapping; Jones, Birmingham & Kaiser 1978;
Felice & Kulsrud 2001) and resonance broadening (Dupree 1966), among others. We
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see strong evidence for such trapping or mirroring in our simulations, which we detail
in § 6.4.1. We then continue with a discussion of the repercussions of limiting our heat
flux to only passing electrons (§ 6.4.2). Finally, we end § 6.4 with a discussion of how
to improve our resonant scattering frequency calculations in § 6.4.3 and a discussion of
resonance broadening in § 6.4.4.

6.4.1. Evidence for trapped electrons
One avenue to reduce the large contribution of low-pitch-angle electrons to the heat

flux is to treat them as trapped particles that do not participate in diffusive transport. In
figure 27 we show various quantities versus time for three selected electrons (blue, orange
and green) from run b40x4 that exhibit periods of trapping (denoted by a background
of the corresponding colour). We select time periods representative of trapping by eye,
looking for large-amplitude, quasi-periodic oscillations in ξ . This method is by no means
perfect, yet we can be confident in stating the selected electrons are largely trapped,
rather than scattered: the tracks of velocity, which we have shown to be consistent with
an Ornstein–Uhlenbeck process in § 5.3.3, are clearly more reminiscent of a random
walk than the tracks of ξ(t) and v‖(t), which exhibit periods of coherent, quasi-periodic
oscillations about 0. By sampling and averaging the period of the largest-amplitude
oscillations, we estimate that ωb/Ωe,0 ∼ 0.2. This value is approximately half what
results from a naïve calculation using (6.7) after assuming that electrons with a
thermal perpendicular velocity (v⊥/vthe ∼ 1) are trapped by k‖ρe ∼ 0.5 fluctuations with
root-mean-square (r.m.s.) amplitude 〈δB2〉/B2

0. Our simple expression for the bounce
frequency of an electron in a single mode, (6.7), can therefore be reasonably applied
to our turbulent simulations. It is more difficult to say the same of our expression for
the trapped-passing boundary (6.4). For run b40x4, ξcrit � 0.5; our tracked electrons in
figure 27 show trapped oscillations largely inside the boundary, but the electrons do
occasionally veer outside it. That said, what really matters is how the boundary scales
with fluctuation amplitude – of which we can be confident – and the conclusions of § 6.4.2
stand regardless of its precise value.

6.4.2. Heat-flux contribution from passing electrons only
As an improvement to our model, we allow only passing particles to contribute to the

diffusive part of the heat flux. The trapping/passing boundary occurs at a critical pitch
angle ξcrit given by

ξcrit 
√

δB/B0

1 + δB/B0
, (6.4)

where we have taken δB/B0 = √
2
√

0.1〈δB2〉/B2
0, i.e. the r.m.s. of the box-averaged

fluctuation energy that is sampled by electrons at the n = 0 resonance. For trapped
electrons to have no contribution to the heat flux, their impact on the perturbed electron
distribution function fe1 must be neglected. We accomplish this by enforcing fe1 = const.
for |ξ | ≤ ξcrit, requiring fe1 to be continuous across the trapped-passing boundary ξ =
±ξcrit and choose const to satisfy the solvability conditions (5.8). We construct fe1 subject
to these conditions by simply altering the collision frequency to be infinite for trapped
electrons, i.e.

νξcrit(v, ξ) =
{
νmodel(v, ξ), (|ξ | > ξcrit),

∞, (|ξ | ≤ ξcrit).
(6.5)

Our approach here is similar to that of Felice & Kulsrud (2001), but much more
simple. In that work, the authors find that adiabatic mirroring regularizes the singularity
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(b)

(a)

(c)

(d )

FIGURE 27. Parallel position (a), velocity (b), pitch angle (c) and parallel velocity (d) for
three electrons from run b40x4 that exhibit periods of extended wave trapping, denoted by the
background of the corresponding colour.

in f1, effectively setting the distribution to a constant for trapped particles. Their
treatment included a self-consistent solution to match the distribution function between
the quasi-linear and adiabatic regions; our inner and outer solutions match automatically
by construction of (6.5).

We evaluate the heat flux implied by (6.5) according to (6.3) and plot the result in
figure 26 using green markers. Note that the heat flux implied by this method is at or
below the results for qvw , indicating that the diffusive contribution to the heat flux is zero
or negative. The reason the diffusive heat flux is negative comes down to how setting
fe1 = const inside |ξ | < ξcrit affects the integrand of (6.3). Without any modification to fe1
calculated using (6.1c), the integrand is dominated by values where 1/ν is the largest; these
regions are positive, hence, the positive heat flux. When we set fe1 = const for |ξ | < ξcrit,
the regions of largest 1/ν no longer contribute to the integrand; the positive contribution
is therefore suppressed relative to the negative one and the overall diffusive heat flux
becomes negative. Perhaps a more self-consistent treatment like Felice & Kulsrud (2001)
is required when applying this method, as it clearly does not produce physical results for
all physically motivated collision frequencies.

6.4.3. Refined resonance condition at |v‖/vthe| � 1
With the cyclotron resonance condition (5.16) requiring k‖ρe → ∞ as |v‖/vthe| →

0, it ought to be checked whether or not the dispersion relation used to derive this
result is in fact still appropriate as k‖ρe → ∞. As it turns out, (5.13) breaks down for
|v‖/vthe| � β−1/2

e . The breakdown occurs for two reasons: firstly, the term under the square
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root in (5.14) is no longer small; secondly, and most importantly, k‖ρe → β1/2
e , in which

case ω(k‖ρe) → Ωe under (2.3). It is clear from (2.5) that ω → Ωe as |v‖/vthe| → 0, even
without any assumptions on the size of βe. However, the dispersion relation (2.3) used in
(5.13) is only valid for k‖ρe � β1/2

e . One could use the full parallel cold plasma dispersion
relation (Stix 1992),

ω(k‖ρe)

Ωe
= (k‖ρe)

2/βe

1 + (k‖ρe)2/βe
, (6.6)

which would lead to a different resonance condition for |v‖/vthe| ≤ β−1/2
e . However,

even (6.6) is liable to be wrong in detail due to thermal corrections. Thus, a detailed
understanding of the dispersion relation is necessary to understand the resonant wave
vector at small parallel velocities.

6.4.4. Resonance broadening
One additional possibility for whistler waves to scatter electrons self-consistently across

the gap is resonance broadening. The delta function that features in the quasi-linear
operator is customarily replaced with a peaked function having finite width (Berk et al.
1995). Resonance broadening can result from particle trapping or deviation from linear
orbits resulting from statistical variation in the integrated trajectories when calculating
the quasi-linear operator. In the former case, the resonance broadening function is often
taken to be a table-top distribution of width Ω = 4ωb (Karimabadi, Krauss-Varban &
Terasawa 1992), where (Roberg-Clark et al. 2016; Cai, Wu & Tao 2020)

ωb(kρe)

Ωe
=
√

kρe
v⊥
vthe

δB(kρe)

B0
(6.7)

is the bounce frequency for a deeply trapped particle under the pendulum approximation
with perpendicular velocity v⊥ bouncing in a magnetic mirror of amplitude δB and
wavneumber k, viz.

RK92(x/Ωe, ωb/Ωe) =
⎧⎨
⎩
Ωe

4ωb
, |x| ≤ 2ωb,

0, |x| > 2ωb.

(6.8)

Here, x = ω(k‖)− k‖v‖ + nΩe is the exact linear resonance condition. A recent numerical
study of resonance broadening for a single wave mode (Meng et al. 2018) has verified that
the broadening width Ω = 4ωb is valid at small wave amplitudes.

In the case of resonance broadening by statistical variation in the linear particle orbits,
one obtains a resonance function (Dupree 1966)

RD = 1
π

∫ ∞

0
dτ exp

(
i(ω(k‖)− k‖〈v‖〉 − nΩe)τ − 1

3
k2

‖ν(v‖, v⊥)v2
theτ

3

)
. (6.9)

Because the scattering frequency appears as a parameter in (6.9), one is left with an
implicit expression for ν when solving an expression like (6.1c) with the delta function
replaced with (6.9). In either the case of (6.8) or (6.9), because the scattering frequency or
fluctuation energy controls the width of the broadened resonance, the resulting scattering
frequency does not in general scale with the energy in the fluctuations. The heat flux
implied by a resonance-broadened operator calculated from the magnetic energy spectrum
observed in our simulations, therefore, does not equal the HWI threshold heat flux, except
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perhaps in special circumstances, casting doubt on whether current theories of resonance
broadening can explain our results. This is not to say, however, that there could not be a
physically relevant regime in which resonance broadening might control HWI saturation
and in which the scattering rate scales non-diffusively with the magnetic energy – we just
have yet to see it.

Closely related to, and intertwined with the concept of resonance broadening, is the
concept of resonance overlap. For a discrete wave mode of infinitesimal amplitude,
resonant diffusion occurs along quasi-linear contours in velocity space within an
infinitesimal neighbourhood of the resonant parallel velocity. As the wave amplitude
is increased, particles within a finite neighbourhood of the resonance become trapped.
Resonances are broadened by the trapping according to, e.g. (6.8) with (6.7), leading
to diffusion with finite extent along the quasi-linear contours (Karimabadi et al. 1992).
Particles can therefore only diffuse across discrete wave modes when the wave amplitudes
are large enough that their resonances overlap (Chirikov 1960). Earlier work on the
HWI by Roberg-Clark et al. (2016) concluded that the overlap of Landau (n = 0) and
cyclotron (n = ±1) resonances was necessary to explain the saturation of the HWI in
two dimensions. Overlap was found to occur for wave amplitudes δB2/B2

0 � 0.09; all of
our simulations saturate in this regime. Whether or not the HWI saturates in the way
we have observed in this work at wave amplitudes below this overlap threshold remains
to be seen. Our analysis, however, suggests a more strict condition for HWI saturation
than Roberg-Clark et al. (2016), namely, that resonances not only need to overlap, but the
scattering frequency where they overlap must also scale like the marginal stability criterion
(2.6). We present a model that satisfies this condition in § 6.4.5.

6.4.5. Semi-empirical scattering frequency
While we are so far unable to affix an analytical theory to our quasi-linear model that

satisfactorily scatters electrons across the |v‖/vthe| � 1 gap, our results clearly indicate
that they are. Not only do all of our simulations saturate at the threshold heat flux (§ 4.2),
but our Fokker–Planck analysis (§ 5.3.4) directly reports a finite pitch-angle-scattering
rate across the gap that is also consistent with the threshold heat flux (§ 6.3). Motivated
by these observations and eschewing any detailed theoretical arguments, we propose a
semi-empirical model that is identical to (6.1) except that the scattering frequency (6.1c)
has a floor that scales with βeρe/LT , i.e.

νSE(v, ξ)

Ωe
= max

[
νmodel(v, ξ)

Ωe
,

1
2
βeρe

LT

]
. (6.10)

The heat fluxes implied by (6.10) are shown by the grey dots in figure 26 and closely
agree with the heat fluxes measured in our simulations. While we cannot guarantee the
asymptotic relevance of this operator, it is at least consistent out to the scale separations
we were able to simulate. One can also argue that the scattering rate must be this in order
to saturate self-consistently under the diffusive scaling predicted by theory and observed
in this paper. The fact that our simulations have extended out to larger scale separations
numerically than previously published ones and yet the diffusive scaling still holds lends
us a certain degree of confidence that the scaling might continue to astrophysical scale
separations. We discuss the possibility that the asymptotic HWI does not saturate in this
manner in § 6.5.

6.5. Alternative transport regimes
In the ICM the saturated field amplitude δB/B0 is expected to be ∼3 × 10−7 at the largest
temperature-gradient length scales, leaving ωb/Ωe ∼ 5 × 10−4 and ξcrit  3 × 10−7. Thus,
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the effect of trapping is expected to be small. In reality, there are Coulomb collisions in
the ICM that scatter electrons at a rate ∼νei, which may help regulate the heat flux. Let us
explore this possibility. Coulomb collisions in the ICM correspond to a mean free path

λe,ICM  680
(

Te

6 keV

)2 (10−2 cm−3

ne

)
pc. (6.11)

For temperature-gradient length scales shorter than βeλe,ICM, the Coulomb-collisional
heat flux will exceed the HWI threshold and the instability will be active. If the HWI
is only able to scatter resonant electrons, then there will be a range of |v‖/vthe| � 1
where scattering is dominated by the Coulomb collisions. However, by definition, the
Coulomb scattering frequency is not fast enough to stabilize the HWI, so it is unlikely that
background Coulomb collisions will cause the HWI to saturate in the manner described
and observed in this work. Except perhaps in the case of a specific spectral index for
magnetic-field fluctuations or for temperature-gradient length scales near the Coulomb
mean free path, the HWI fluctuations must continue to grow until the heat flux reaches the
marginally stable value.

Another possibility is that large-scale turbulence traps electrons and isotropizes the
distribution at small parallel velocities (for a discussion of this effect in the cosmic-ray
literature, see, e.g. Yan & Lazarian 2008; Xu & Lazarian 2018). Assuming the wavelengths
of the turbulent fluctuations are significantly smaller than the temperature-gradient length
scale, the problem here is in principle the same as for Coulomb collisions. Either the
trapping is strong enough to suppress the heat flux below the HWI threshold, resulting
in no instability, or the HWI is active and, if only able to scatter resonantly, must grow
until the heat flux is regulated to the threshold. Whether it is realistic to expect the system
to adapt to some hybrid state with Coulomb collisions or large-scale turbulence – and
even what such a state would look like – remains to be seen. It is worth noting that our
PIC simulations do have noise that is analogous to Coulomb collisions resulting from
a finite number of PIC particles, which clearly affected the results of our quasi-linear
model that was computed from the magnetic spectrum measured in our simulations.
When we introduced a quasi-linear model derived from a model spectrum that does not
incorporate PIC noise, the heat flux implied was significantly larger than that implied by
the operator using the measured spectrum. However, because the PIC noise does not scale
proportionally to βeρe/LT , the quasi-linear model incorporating the noise did not imply
heat fluxes that were consistent with HWI saturation.

6.6. Comparison to model in Drake et al. (2021)
Drake et al. (2021) proposed a model collision operator for the saturated HWI similar to
the one presented in § 6.2, with the same differential form of the operator and a scattering
frequency

νDrake21 = 0.1Ωe

(
δB
B0

)2 (
v

vthe

)4/3

. (6.12)

The power-law index is similar to the pitch-angle-average results from §§ 5.2.3 and 5.3.4
for v/vthe � 1; however, this result is a coincidence. Drake et al. (2021) argues for a
4/3 power law by invoking quasi-linear scattering off of an assumed k−7/3 spectrum of
electron-magnetohydrodynamic turbulence; our results are direct calculations from the
simulation. The model (6.12) also contains no ξ dependence, as Drake et al. (2021) argued
the whistlers ‘should be able to scatter through the whole range of pitch angle. . . because
of the multiple anomalous resonances’ under a broad spectrum of oblique waves. While we
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have found that the anomalous cyclotron resonances play a significant part in the saturation
of the instability, their contribution to the scattering rate – according to quasi-linear theory
and our Fokker–Planck measurements at the largest LT/ρe,0 – is a factor ∼10 smaller than
from the usual resonances. We also find that the ‘anomalous’ resonances on their own
cannot be responsible for scattering electrons across all pitch angles because of the issues
mentioned in § 6.4.

7. Conclusion

Making use of an ensemble of electromagnetic PIC simulations across different scale
separations LT/ρe and plasma βe parameters, we have demonstrated the ability of the HWI
to limit the parallel electron heat flux to quasi-linear threshold levels ∝β−1

e in high-β,
weakly collisional, magnetized plasma. We also show this result to be robust with respect
to the initial hydrostatic equilibrium. To investigate in detail how the saturated state of
the HWI regulates the heat flux, we have utilized three different methods to quantitatively
characterize the effects of the HWI fluctuations on the velocity-space dynamics of the
electrons.

The first method assumes that the whistlers pitch-angle scatter electrons in a frame
travelling with the whistler phase velocity and leverages a Chapman–Enskog expansion to
solve for the scattering frequency given the electron distribution function measured in the
simulations. Although we found this method to be too noisy to resolve the full pitch-angle
dependence of the scattering frequency, we were able to resolve the speed dependence
of its pitch-angle average. The second method is derived from the electromagnetic
quasi-linear operator, which takes as its input the spectrum of magnetic-field fluctuations
measured in our simulations. The resulting operator was rigorously shown to converge
– in the limit of slow whistler phase velocity – to a pitch-angle-scattering operator
expressed in the frame of the phase velocity. This operator makes evident the previously
known fact that oblique whistlers are necessary for heat-flux-limiting interactions to occur
with electrons that travel down the temperature gradient. Using this operator, we also
showed that the implied scattering frequency of these electrons is an order of magnitude
less than for electrons that travel up the temperature gradient. This asymmetry in the
scattering frequency directly follows from the ratio of energies in the left- and right-handed
components of oblique whistler waves, which resonate with electrons moving down and up
the temperature gradient, respectively. The third and final method relied on the calculation
of Fokker–Planck jump moments in velocity space from tracked particle data. We showed
not only how such jump moments are to be obtained in curvilinear coordinates, but also
how to obtain drag and diffusion coefficients from said jump moments by using a jump
interval that is self-consistently obtained from the particle statistics.

The pitch-angle-scattering frequency from all of our methods show two power laws
in v: one decreasing as a function of v for subthermal electrons, due to transit-time
damping at |v‖/vthe| � 1; and the other increasing for superthermal electrons, due to
cyclotron-resonant scattering at |v‖/vthe| ∼ 1. Unfortunately, the pitch-angle dependence
of the method leveraging the Chapman–Enskog expansion was unable to be resolved due
to finite-particle-number noise, and our quasi-linear and Fokker–Planck methods produced
scattering frequencies that differed significantly from one another. The quasi-linear
scattering frequency exhibits steep power laws in |v‖/vthe|, which results from the steep
spectral slope of the magnetic energy. The Fokker–Planck scattering frequency is flat in
comparison, only showing slight asymmetry in pitch angle at the smallest βe,0ρe,0/LT .
The heat flux implied by the Fokker–Planck operator matches well with our simulations,
although there is some random variation in the result that suggests our method could be
improved. The quasi-linear operator, however, implies a heat flux that varies as a function
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of plasma β in a way that is inconsistent with the HWI marginal stability criterion, due to
transit-time damping for electrons with |v‖|/vthe � 1. We also introduce a simple model,
which is motivated by the quasi-linear model but includes a model whistler spectrum.
Our simple model implies heat fluxes that are qualitatively similar to the quasi-linear
model, except that the implied heat flux is even higher in our simple model. Because a
diffusive heat flux is proportional to the inverse of the scattering frequency, it is therefore
sensitive to where ν is the smallest. The increased heat flux implied by the simple model
suggests that the numerical quasi-linear result is sensitive to the level of PIC noise in
the runs, which is not incorporated into our model spectrum. Even though our numerical
quasi-linear operator does imply heat fluxes that are consistent with simulations producing
small fluctuation amplitudes, these issues call into question whether a resonant quasi-linear
approach can explain physically the saturation of the HWI.

Ultimately, though, it is the quasi-linear cyclotron resonance that explains why the
marginal whistler scattering rate ν/Ωe ∼ βeρe/LT is also proportional to the square of
the whistler fluctuation amplitude, i.e. ν/Ωe ∼ 〈δB2〉/B2

0, which we clearly show to be
the case in our simulations. But there is the rub: electrons with |v‖/vthe| � 1 are cyclotron
resonant with k‖ρe � 1 whistler waves, which have vanishingly little power at high parallel
wavenumbers. The problem of how exactly these |v‖/vthe| � 1 electrons are scattered in
a way that is consistent with the simple cyclotron-resonant quasi-linear picture of the
HWI is a vexing one. This is a variation on the well-known 90◦ scattering problem in
the cosmic-ray community, albeit with tighter constraints than is usually found in the
literature. We commented on various ways to improve the quasi-linear scattering rate at
low |v‖/vthe|, including using a more accurate treatment of the dispersion relation and
incorporating various schemes for resonance broadening. The former would require an
in-depth method to solve the plasma dispersion function for our distribution function and
is beyond the scope of this work; the latter runs into the problem that resonances are
broadened in a way that depends on the turbulent fluctuation amplitude. While detailed
calculations of resonance-broadened scattering frequencies also lie beyond the scope of
this work, we argue that, in general, such scattering frequencies will not be proportional
to 〈δB2〉/B2

0 and will violate the basic picture of the HWI to which we are constrained by
simulation results.

The best model we can currently produce is a simple quasi-linear scattering frequency
derived from a model whistler spectrum, but with an empirically motivated floor that is
proportional to the marginal whistler scattering frequency ∝βeρe/LT . It is no surprise that
this model does imply a heat flux consistent with our simulations; however, we stress
that we do not have an explanation for the physical process that underlies such a floor,
other than to say that whatever that process is, it must result in the same scaling. This
conclusion limits the possibility that either Coulomb collisions or large-scale turbulence
could play a role in HWI saturation. For either process to help saturate the instability
effectively, they would need to scatter electrons at or near the instability threshold value;
but, this also means that the plasma would be stable to the HWI in the first place and
so the scheme is not logically consistent. Clearly, for the HWI to regulate the electron
heat flux self-consistently, therefore, the effective collision operator must look closer
to our relatively flat Fokker–Planck operator or to the model from Drake et al. (2021).
Unfortunately, a rigorous statement as to how this operator works in detail is beyond the
scope of the current work.

While our three methods to obtain an effective HWI collision operator did not converge
numerically to an unambiguous result, we hope the procedures outlined in this paper
find utility in characterizing the phase-space dynamics of other kinetic instabilities in
future studies. In fact, a concurrent work by some of the authors uses similar techniques
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to this work in the characterization of a pressure-anisotropy-driven firehose instability
in hybrid-PIC simulations. That work saw more success in particular with the method
that leverages the Chapman–Enskog expansion, owing to a much better resolved particle
distribution function. That study also points out limitations with the Fokker–Planck
method in regards to the locality of individual particle jumps; a curious reader is
encouraged to refer to Bott et al. (2024, in preparation) for an in-depth discussion. We
also plan to apply many of the lessons learned here in the study of a corresponding
ion-heat-flux instability, discovered by Bott et al. (2024), using hybrid-PIC simulations.
The utility of these methods to obtain effective collision operators lies in their distillation
of complex kinetic physics into relatively simple expressions, which can then be used in a
small-parameter expansion for an even simpler fluid-like closure of the kinetic equations.
Such a closure would be much less computationally expensive to simulate and could be
incorporated into Braginskii-magnetohydrodynamic simulations of the ICM (e.g. Berlok
et al. 2021; Perrone, Berlok & Pfrommer 2024) and simple models of the solar wind or
low-luminosity black-hole accretion flows.
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Appendix A. Derivation of the Chapman–Enskog operator

In this appendix, we detail the derivation of the Chapman–Enskog operator. This
includes a statement of the ordering used to reduce the kinetic equation and a brief
derivation of the resulting correction equation that determines the perturbed electron
distribution function fe1 in terms of the background distribution fe0 and its phase-space
gradients (§ A.1), the coordinate transform of the model collision operator to the frame of
the whistler waves (§ A.2) and the solution of the correction equation for the gyroaveraged
fe1 (§ A.3).

A.1. Chapman–Enskog ordering and the correction equation
The Vlasov–Maxwell equation governing the evolution of the electron distribution
function fe = fe(t, r,w .= v − ue), written in the frame of the bulk electron velocity

ue(t, r) .= 1
ne(t, r)

∫
d3v vfe(t, r, v), (A1)

is given by

Dfe

Dt
+ w · ∇fe −

[
e

me

(
E + ue

c
× B

)
+ Due

Dt
+ w · ∇ue

]
· ∂fe

∂w
= Ωe

∂fe

∂φ
+ C[ fe], (A2)

where D/Dt .= ∂/∂t + ue · ∇ is the material derivative and φ is the gyrophase. To tailor
this equation for our problem, we introduce the dimensionless quantity

ε ∼ ρe

LT
∼ λmfp,e

LT
∼ ue

vthe
∼ 1
βe

� 1, (A3)

which is designed to separate kinetic physics – namely, Larmor gyrations occurring
at frequency Ωe = ρe/vthe and particle scattering (whether Coulombic or anomalous)
occurring at frequency ν = λmfp,e/vthe – from any physics that occurs on the thermal
crossing time LT/vthe or the characteristic dynamical time scale LT/ue.2 Note that
spatial diffusion along the magnetic field occurs on a time scale ∼L2

T/(vtheλmfp,e) that is
comparable to LT/ue. Expanding the electron distribution function in ε using

fe = fe0 + εfe1 + ε2fe2 + · · · (A4)

and taking ∂/∂t ∼ ue/LT ∼ εvthe/LT ∼ ε2Ωe, we can then determine fe0 and then express
fen in terms of the lower-order quantities fe0, . . . , fe(n−1) at progressively higher orders.

2In the primary ordering used by Braginskii (1965), the plasma β parameter and the Mach number relative to the ion
thermal speed are both ordered unity. The electron bulk flow is then small relative to the electron thermal speed because
Braginskii also expands in the mass ratio

√
me/mi, including this small number in the ε ordering. In our expansion,

we assume that βe � 1 is sufficient to guarantee that ue/vthe � 1, since ue ∼ vw ∼ vthe/βe � vthe for the whistler
fluctuations with phase velocity vw. This ordering is also consistent with our theoretical expectation (and numerical
finding) that the effective mean free path is ∼LT/β.
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Equation (A2) at O(ε0fe0Ωe) is

0 = Ωe
∂fe0

∂φ
+ C[ fe0]. (A5)

The solution to this equation is a gyrotropic fe0 that also annihilates the collision operator,
C[ fe0] = 0. For example, if the collision operator were to scatter only in pitch angle,
then fe0 = fe0(w) would be a consistent solution of (A5). If the collision operator were
additionally required to satisfy Boltzmann’s H theorem, then fe0 would have the form
of a Maxwellian distribution. Regardless, in order for this solution to correspond to the
‘hydrodynamic’ fe0 that includes information only about the fluid quantities – viz., the
number density, bulk velocity and isotropic temperature of the electrons – we must demand
that fe1 satisfies ∫

d3w (1,w,w2)fe1 = 0, (A6)

i.e. that it is purely kinetic. In what follows, we assume that the collision operator provides
an isotropic fe0 = fe0(w).

At O(εfe0Ωe), (A2) provides the correction equation

w · ∇fe0 + ∇pe

mene
· w

w
dfe0

dw
= Ωe

∂fe1

∂φ
+ C[ fe1], (A7)

whose gyroaverage is

w‖∇‖fe0 + ∇‖pe

mene

w‖
w

dfe0

dw
= C[〈 fe1〉φ]. (A8)

Provided we are able to invert the operator on the right-hand side, the solution to
this equation provides 〈 fe1〉φ in terms of fe0 and its parallel gradients. From there, the
corresponding parallel heat flux may be calculated. Alternatively, if fe0 and 〈 fe1〉φ are
known, say, from a numerical simulation, the form of the collision operator might then be
inferred. This latter option was the route taken in § 5.1. In the remainder of this appendix,
we provide additional calculations needed in that section to infer the effective collision
operator of the HWI.

A.2. Coordinate transformation for pitch-angle-scattering operator in the whistler frame
We assume that the unstable whistler waves act as sites of pitch-angle scattering in a frame
moving with the whistler phase velocity ue = vwb̂. The corresponding collision operator
is then

C[ fe] = ∂

∂ξ ′

[
1 − ξ ′2

2
ν(w′, ξ ′)

∂fe

∂ξ ′

]
, (A9)

where the prime denotes quantities evaluated in the whistler frame and we have implicitly
taken fe = fe(w, ξ) to be gyrotropic. Writing w′

‖ = w′ξ ′ = w‖ − vw, we transform to the lab
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frame as follows. First, we expand w′ and ξ ′ up to first order in vw/w:

w′2 = (w‖−vw)
2 + w2

⊥ =⇒ w′ = w
√

1 − 2ξvw/w + (vw/w)2  w − ξvw,

ξ ′ = w‖−vw

w′  ξ − (1 − ξ 2)
vw

w
.

⎫⎬
⎭ (A10)

The corresponding inverse transformations are

w  w′ + ξ ′vw and ξ  ξ ′ + (1 − ξ ′2)
vw

w′ . (A11a,b)

The pitch-angle derivative in (A9) is then

∂

∂ξ ′ = ∂ξ

∂ξ ′
∂

∂ξ
+ ∂w
∂ξ ′

∂

∂w
 (1 − 2ξvw/w)

∂

∂ξ
+ vw

∂

∂w
. (A12)

Using (A12) in (A9) then leads to

C[ fe]  ∂

∂ξ

[
1 − ξ 2

2
ν(w′, ξ ′)

(
∂fe

∂ξ
+ vw

∂fe

∂w

)]

+ vw

w

(
w
∂

∂w
− 2ξ

∂

∂ξ

)[
1 − ξ 2

2
ν(w′, ξ ′)

∂fe

∂ξ

]
, (A13)

where

ν(w′, ξ ′) = ν
(
w − ξvw, ξ − (1 − ξ 2)vw/w

)
 ν(w, ξ)− ξvw

∂ν(w, ξ)
∂w

− (1 − ξ 2)
vw

w
∂ν(w, ξ)
∂ξ

. (A14)

We now decompose fe according to (A4) and use C[ fe0] = 0 to find that

C[ fe]  ∂

∂ξ

[
1 − ξ 2

2
ν(w, ξ)

(
∂fe1

∂ξ
+ vw

dfe0

dw

)]
, (A15)

again dropping terms of order (vw/w)2.

A.3. Chapman–Enskog expansion with the pitch-angle-scattering operator (A15)
Inserting (A15) into the correction equation (A8) gives

w‖∇‖fe0 + ∇‖pe

mene

w‖
w

dfe0

dw
= ∂

∂ξ

[
1 − ξ 2

2
ν(w, ξ)

(
∂〈 fe1〉φ
∂ξ

+ vw
dfe0

dw

)]
. (A16)

Integrating both sides of this equation with respect to ξ , choosing the integration constant
to keep ∂〈 fe1〉φ/∂ξ finite and rearranging terms, we find that

ν(w, ξ) = −
(

w∇‖fe0 + ∇‖pe

mene

dfe0

dw

)/(
∂〈 fe1〉φ
∂ξ

+ vw
dfe0

dw

)
. (A17)

This equation matches (5.5). Provided fe0 and 〈 fe1〉φ , we may determine the effective
collision frequency ν(w, ξ) within the assumptions of the model operator. Alternatively,
given a model for ν(w, ξ), the value of 〈 fe1〉φ may be calculated and its velocity-space
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dependence compared with that measured in the numerical simulations; this procedure
yields

〈 fe1〉φ = −
∫

dξ
[

1
ν(w, ξ)

(
w∇‖fe0 + ∇‖pe

mene

dfe0

dw

)
− vw

dfe0

dw

]
. (A18)

Furthermore, if fe0 were taken to be a Maxwellian distribution, fe0 = fM, then (A18) would
return the more familiar expression

〈 fe1〉φ = −
[(

w2

v2
the

− 5
2

)
w∇‖ ln Te

∫
dξ

ν(w, ξ)
+ 2vw

wξ
v2

the

]
fM. (A19)

The integrals over ξ in the above equations are indefinite, with the constant chosen such
that the integral expression equals 0 at ξ = 0.

Appendix B. Derivation of the quasi-linear collision operator

This appendix provides further information on the derivation of the quasi-linear
collision operator (5.11). It begins by leveraging a particularly convenient form of the
quasi-linear diffusion equation of Kennel & Engelmann (1966) provided by Stix (1992):

∂f (t, v‖, v⊥)
∂t

= lim
V→∞

πΩ2
∞∑

n=−∞

∫
d3k
V

L

×
[
v⊥δ

(
ω − k‖v‖ − nΩ

) ∣∣∣∣cψn,k

B0

∣∣∣∣
2

v⊥Lf (t, v‖, v⊥)

]
. (B1)

Here, Ω is the cyclotron frequency associated with the mean magnetic field B0 = B0x̂;
ω = ω(k) is the (real) wave frequency;

ψn,k
.= Ey,k + iEz,k

2
e−iφJn−1(z)+ Ey,k − iEz,k

2
eiφJn+1(z)+ v‖

v⊥
Ex,k Jn(z) (B2)

is an effective electric field expressed in Fourier space, with k = k‖x̂ + k⊥(cosφŷ +
sinφẑ) and the argument of the Bessel functions Jn being z .= k⊥v⊥/Ω; and the differential
operator

L .=
(

1 − k‖v‖
ω

)
1
v⊥

∂

∂v⊥
+ k‖
ω

∂

∂v‖
. (B3)

For our 2-D setup, φ = 0 and V → A where A is the area of the domain, so that d3k → d2k
with k⊥ = ky. In this limit, we can express the circularly polarized electric fields in terms
of the perturbed magnetic field using the Fourier-transformed version of Faraday’s law:

E±
k
.= Ey,k ± iEz,k

2
= ω

k‖c
Bz,k ∓ iBy,k

2
+ 1

2
k⊥
k‖

Ex,k
.= ω

k‖c
B∓

k + 1
2

k⊥
k‖

Ex,k. (B4)

Pulling out a factor of ω/k‖c from the above expression for ψn,k, we then define

Ψn,k
.= B−

k Jn−1(z)+ B+
k Jn+1(z)− k‖c

ω

(
v‖
v⊥

+ nΩ
k‖v⊥

)
Ex,k Jn(z). (B5)

https://doi.org/10.1017/S002237782400151X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400151X


58 E.L. Yerger, M.W. Kunz, A.F.A. Bott and A. Spitkovsky

Converting from (v‖, v⊥) coordinates to (v, ξ) coordinates and defining the dimensionless
operator

L′ .=
(

1 − ω

k‖

ξ

v

)
∂

∂ξ
+ ω

k‖

∂

∂v
, (B6)

(B1) becomes

∂f
∂t

= lim
A→∞

2πΩ2
e

∞∑
n=−∞

∫
d2k
A

1
v
L′
[
v

1 − ξ 2

2
δ
(
ω − k‖vξ − nΩe

) ∣∣∣∣Ψn,k

B0

∣∣∣∣
2

L′f

]
, (B7)

where f = f (t, v, ξ).
We now leverage the fact that, for the unstable whistler fluctuations, ω/k‖ ∼ vw ∼

vthe/βe � vthe. We expand the electron distribution function in a power series, fe =
fe0 + fe1 + · · · , with the subscript denoting the order in ω/k‖vthe ∼ vw/vthe ∼ β−1

e at which
each contribution appears, and group terms in (B7) according to their size in β−1

e . To
leading order, we find that

∂fe0

∂t
= ∂

∂ξ

[
1 − ξ 2

2
νQL(v, ξ)

∂fe0

∂ξ

]
, (B8)

where

νQL(v, ξ) = lim
A→∞

2πΩ2
e

∞∑
n=−∞

∫
d2k
A
δ
(
ω − k‖vξ − nΩe

) ∣∣∣∣Ψn,k

B0

∣∣∣∣
2

(B9)

is the quasi-linear collision frequency. This equation states that fe0 evolves under the action
of the collision operator to become nearly independent of pitch angle, viz. ∂fe0/∂ξ ∼ β−1

e .
The next-order terms can be simplified considerably if we then anticipate fe0 being
isotropic, in which case

∂fe1

∂t
= ∂

∂ξ

[
1 − ξ 2

2
νQL(v, ξ)

∂fe1

∂ξ

]
+ ∂

∂ξ

[
1 − ξ 2

2
νQL(v, ξ) vw

∂fe0

∂v

]
. (B10)

Neglecting terms of order ∼β−2
e and smaller, the two terms in (B10) may be combined

to obtain the quasi-linear operator given by (5.11), under whose influence fe becomes
isotropic in a frame moving at speed vw.
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