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Abstract Assume that f is a real ρ-harmonic function of the unit disk D onto the interval (−1, 1), where
ρ(u, v) = R(u) is a metric defined in the infinite strip (−1, 1)×R. Then we prove that |∇f(z)|(1−|z|2) ≤
4
π
(1− f(z)2) for all z ∈ D, provided that ρ has a non-negative Gaussian curvature. This extends several

results in the field and answers to a conjecture proposed by the first author in 2014. Such an inequality
is not true for negatively curved metrics.

Keywords: harmonic mappings; minimal surfaces

2020 Mathematics subject classification: Primary 30F15

1. Introduction

1.1. Schwarz lemma

The standard Schwarz lemma states that if f is a holomorphic mapping of the unit
disk D into itself such that f(0) = 0, then |f(z)| ≤ |z|.

Its counterpart for harmonic mappings states the following ([8, Section 4.6]). Let f be
a complex-valued function harmonic in the unit disk D into itself, with f(0) = 0. Then

|f(z)| ≤ 4

π
tan−1 |z|,

and this inequality is sharp for each point z ∈ D. Furthermore, the bound is sharp
everywhere (but is attained only at the origin) for univalent harmonic mappings f of D
onto itself with f(0) = 0.
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Schwarz Lemma for Real Harmonic Functions 517

The standard Schwarz lemma (also called Schwarz–Pick lemma) for holomorphic map-
pings states that every holomorphic mapping f of the unit disk onto itself satisfies the
inequality

|f ′(z)| ≤ 1 − |f(z)|2

1 − |z|2
. (1.1)

A very important version of the Schwarz lemma for holomorphic functions has been
obtained by Ahlfors [1], who proved the following: Let f be a holomorphic map of the
unit disk D into a Riemann surface S endowed with a Riemannian metric ρ with Gaussian
curvature K ≤ −1. Then the hyperbolic length of any curve in D is no less than the length
of its image. Equivalently,

dρ(f(z), f(w)) ≤ dh(z, w) for all z, w ∈ D

or ‖df(z)‖ ≤ 1 everywhere, where the norms are taken with respect to the hyper-
bolic metric on D and the given metric on the image. For some other generalizations
of the Schwarz lemma, we refer to the papers of Yau [23, 24], Osserman [20], Yang and
Zheng [22], Royden [21], Ni [18, 19] and Broder [4]. The recent survey by Broder [3]
also provides references to the Schwarz lemma in other contexts. Most of mentioned
papers deal with Schwarz lemma for holomorphic functions, and the target space has a
non-positive curvature.

We refer as well to some generalizations of Schwarz lemma for harmonic functions in
the papers [5, 7, 9, 12–17].

In particular, the following result was proved in [13]. If f : D → (−1, 1) is a real
harmonic mapping, then it satisfies the inequality

|∇f(z)| ≤ 4

π

1 − f(z)2

1 − |z|2
for all z ∈ D.

Later, by using the same approach as that in [13], Chen [6] improved the latter inequality
by showing that

|∇f(z)| ≤
cos(π

2 f(z))

1 − |z|2
for all z ∈ D.

In order to state our main result, let us introduce the class of %-harmonic mappings.

1.2. %-Harmonic mappings

Assume that Ω is a connected open set in the complex plane. Assume that % is a
positive continuous function in Ω. Then (by abusing the notation), it defines a con-
formal metric %(z) = %(z) dz ⊗ dz in Ω. Then % defines a Riemann surface (Ω, %).

https://doi.org/10.1017/S0013091523000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000263


518 D. Kalaj, M. Mateljević and I. Pinelis

Moreover, assume that % is a smooth function in Ω with Gaussian curvature K%, where

K%(z) := −∆ log %(z)

%2(z)
. (1.2)

Here ∆ denote the usual Laplacian:

∆g(z) := gxx + gyy, z = x+ iy.

We assume supz∈Ω |K%(z)| <∞ and % has a finite area defined by

A(%) =

∫
Ω

%2(u+ iv) dudv.

Let f : (D, δ) → (Ω, %) be a C2 map of two Riemann surfaces, where δ is the (pullback
to D via the inclusion of the) Euclidean metric. We say that f is harmonic if

fzz + ((log %2)w ◦ f) · fz fz̄ = 0, (1.3)

where z and w are holomorphic coordinates on D and Ω, respectively. Recall that a
Euclidean harmonic function f is a solution of the Laplace equation ∆f = 0, and in this
case % ≡ 1. Also, f satisfies Equation (1.3) if and only if its Hopf differential

Hopf(f) := (%2 ◦ f)fzfz̄ (1.4)

is a holomorphic quadratic differential on D.
Assume f : D → (−1, 1) is a real ρ-harmonic function. Vuorinen and the first named

author in [13] introduced the quantity

S(f) := |∇f(z)| 1 − |z|2

1 − |f(z)|2
(1.5)

and showed that S(f) ≤ 4
π for Euclidean harmonic functions. In order to extend the

results in [13], the first named author in [11] defined the class of admissible metrics. We
say that a metric % is admissible if %(z) = ϕ(|z|), where ϕ : D → C\(−∞, 0] is an analytic
function defined in the unit disk satisfying the following properties:

(1) ϕ(|z|) ≤ |ϕ(z)| and ϕ is nonincreasing in [0, 1],

(2) ϕ(−1, 1) ⊂ R and
∫ 1

0
(
√
ϕ(x) −

√
ϕ(−x)) dx = 0.

Then inequality (1.5) was extended by the first named author [11] to %-harmonic
functions, where % is an admissible metric. The following question was posed in [11].

Problem 1.1. Let f : D → (−1, 1) be a real %-harmonic function. Suppose % has
non-negative Gaussian curvature. Does the bound S(f) ≤ 4

π hold?
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Schwarz Lemma for Real Harmonic Functions 519

Remark 1.2. The assumption that the target domain has a non-negative Gaussian
curvature is crucial, and this is shown in Example 2.3. This problem is somehow comple-
mentary to the already mentioned Scharz lemma-type result of Ahlfors for holomorphic
functions of the unit disk onto a surface with a non-positive Gaussian curvature.

We will see in Example 3.1 that the answer to the question posed in Problem 1.1 is no.
However, it will be shown in this paper that a real %-harmonic function is also harmonic
with respect to the modified metric ρ(u, v) = %(u, 0), and the positiveness of the Gaussian
curvature of ρ will be crucial.

Indeed, we shall prove the following theorem, which is the main content of this paper.

Theorem 1.3. Assume that f is a real %-harmonic function of the unit disk onto
the interval (−1, 1). If ρ(u, v) = %(u, 0), then f is ρ-harmonic. Assume further that the
Gaussian curvature of ρ is non-negative. Then we have the sharp inequality

S (f) = |∇f (z)| 1 − |z|2

1 − |f (z) |2
6

4

π
for all z ∈ D. (1.6)

Corollary 1.4. Assume that Ω is a hyperbolic domain in the complex plane, and
let λ = λΩ be its hyperbolic metric of constant Gaussian curvature equal to −4. Let
f : Ω → (−1, 1) be a ρ-harmonic function, where ρ(u, v) = R(u) has a non-negative
Gaussian curvature. Then we have the following sharp inequality:

dh(f(z), f(w)) ≤ 4

π
dλ(z, w) for all z, w ∈ Ω. (1.7)

Here dh is the hyperbolic metric in the unit disk defined by

dh(z, w) = tanh−1 |z − w|
|1 − zw̄|

.

The proof of the first part of Theorem 1.3 is an easy matter, and it is presented in § 1.3,
while the second part is the content of Theorem 2.1. Corollary 1.4 is a straightforward
application of the definition of the hyperbolic metric. We only need to notice the following.
If g : D → Ω is a covering map, then h(z) = f(g(z)) is a real ρ-harmonic mapping of the
unit disk onto (−1, 1). Moreover,

λΩ(g(z)) = λD(z)|g′(z)|.

So, for w = g(z), in view of Equation (1.6), we have

|∇f(w)|
λΩ(w)

= |∇h(z)|(1 − |z|2) ≤ 4

π
(1 − h(z)2) =

4

π
(1 − |f(w)|2).

Thus,

|∇f(w)|
(1 − |f(w)|2)

≤ 4

π
λΩ(w).
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By integrating the previous inequality throughout the family of paths joining z 1 and
z 2 (as at the end of the proof of Theorem 2.1), we get

dh(f(z1), f(z2)) ≤ 4

π
dλ(z1, z2) for all z1, z2 ∈ Ω. (1.8)

1.3. Real %-harmonic mappings and our setting (real R-harmonic mappings)

If f is real, then Equation (1.3) can be re-stated as follows:

∆f +
%u(f(z), 0) − i%v(f(z), 0)

%(f(z), 0)
(f2x + f2y ) = 0. (1.9)

In particular, we see that %v(u, 0) ≡ 0 or f is a constant function.
Let R(u) = %(u, 0). If f is a real harmonic function of the unit disk onto the interval

(α, β), then

∆f +
R′(f)

R(f)
(|∇f |2) = 0, (1.10)

where R is a metric defined in the interval (α, β). Observe that R can be extended to the
infinite strip-domain S(α, β) := {x + iy, x ∈ (α, β), y ∈ R} by setting ρ(u, v) = R(u) =
%(u, 0).

Moreover, we have this important fact: f is real %-harmonic if and only if f is real
ρ-harmonic. This is why we will consider the Gaussian curvature of ρ instead of %. We
will refer to such real harmonic mappings as real R-harmonic mappings.

The Gaussian curvature of ρ is given by

Kρ(u, v) = − 1

R(u)2

(
R′(u)

R(u)

)′

. (1.11)

In fact, Equation (1.10) is equivalent to the Laplace equation

∆g = 0,

where

g :=
H(f)

H(1)
: D → (−1, 1), (1.12)

while

H(u) := −1

2

(∫ 1

0

R(u) du+

∫ −1

0

R(u) du

)
+

∫ u

0

R(u) du, (1.13)

and

H(1) =
1

2

∫ 1

−1

R(u) du <∞,
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provided that R belongs to the Lebesgue space L1(−1, 1). We will, however, prove that
this condition R ∈ L1(−1, 1) is a priori satisfied for metrics of non-negative Gaussian
curvature, with which we deal in our main result.

The following theorem contains some results for metrics, which are not necessarily
positively curved.

Theorem 1.5. Assume that f is a real R-harmonic mapping of the unit disk into the
interval (−1, 1), and assume that R is an increasing function in (−1, 0) and decreasing
in (0, 1). Then we have the following sharp inequality

|∇f(z)| ≤ 2
1 − |f(z)|
1 − |z|2

for all z ∈ D. (1.14)

If f(0) = 0 and
∫ 0

−1
R(t) dt =

∫ 1

0
R(t) dt, then we have the sharp inequality

|f(z)| ≤ 4

π
tan−1 |z|, z ∈ D. (1.15)

The proof of Theorem 1.5 is presented in § 2.1. We also have the following straightfor-
ward corollary of Theorem 1.5.

Corollary 1.6. If R is even in (−1, 1) and decreasing in [0, 1), then

|∇f (z)| 6 2
1 − f(z)

2

1 − |z|2
for all z ∈ D,

so that

dh (f (z) , f (w)) 6 2dh (z, w) for all z, w ∈ D.

Further, if f(0) = 0, then

|f (z)| 6 4

π
tan−1 |z| for all z ∈ D.

2. Proof of main results

Theorem 2.1 is the main part of Theorem 1.3, and it solves Problem 1.1 for the modified
metrics.

Theorem 2.1. Assume that R is a metric of non-negative Gaussian curvature in
(−1, 1). If f is an R-harmonic function of the unit disk into (−1, 1), then it satisfies the
sharp inequalities

|∇f(z)| ≤ 4

π

1 − f(z)2

1 − |z|2
(2.1)

and

dh(f(z), f(w)) ≤ 4

π
dh(z, w) (2.2)

for z, w ∈ D, where dh is the hyperbolic metric.
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To prove Theorem 2.1, we need the following lemma, which is of interest in its own
right.

Lemma 2.2. Assume that f is an increasing C1 diffeomorphism of [−1, 1] onto itself
such that f ′ is log-concave. Then for all x ∈ [−1, 1], we have the inequality

1 − f(x)2 ≤ f ′(x)(1 − x2). (2.3)

Proof of Lemma 2.2. Let h := log(f ′). Take any x ∈ (−1, 1). Since h is concave, for
some real k and all t ∈ (−1, 1), we have

h(t) ≤ hx(t) := h(x) + k(t− x); (2.4)

by approximation, without loss of generality k 6= 0. Also, the condition that f is an
increasing diffeomorphism of [−1, 1] onto itself implies that f(−1) = −1 and f(1) = 1.
So,

f(x) = 1 −
∫ 1

x

f ′(t) dt

= 1 −
∫ 1

x

eh(t) dt

> 1 −
∫ 1

x

ehx(t) dt

= g+(U, x) := 1 − U
1 − ek(1−x)

−k
,

where

U := eh(x) = f ′(x) > 0. (2.5)

Similarly,

f(x) = −1 +

∫ x

−1

eh(t) dt

≤ −1 +

∫ x

−1

ehx(t) dt

= −g−(U, x) := −1 + U
e−k(1+x) − 1

−k
.

So,

f(x)2 > g2(U, k, x) := max[g+(U, x)2+, g
−(U, x)2+], (2.6)

where z+ := max(0, z).
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We also have

2 =

∫ 1

−1

f ′ =

∫ 1

−1

eh ≤
∫ 1

−1

ehx(t) dt = U e−kx 2 sinh k

k
,

so that

U > Uk,x := ekx
k

sinh k
. (2.7)

Thus, it is enough to show that

ρ(U, k, x) :=
1 − g2(U, k, x)

U(1 − x2)
≤ 1 (2.8)

for U > Uk,x. Note that ρ(U, k, x)(1−x2) is a continuous piecewise-rational function of U
such that R can be partitioned into several intervals such that on each of the intervals of
the partition, the expression ρ(U, k, x)(1 − x2) coincides with one of the following three
expressions:

ρ+(U) :=
1 − g+(U, x)2

U
, ρ−(U) :=

1 − g−(U, x)2

U
, ρ0(U) :=

1 − 0

U
. (2.9)

We have

ρ′+(U) = −
(
ek−kx − 1

)2
k2

≤ 0, ρ′−(U) = −
e−2k(x+1)

(
ek(x+1) − 1

)2
k2

≤ 0 (2.10)

and ρ′0(U) < 0.
So, ρ(U, k, x) is nonincreasing in U. It remains to show that

r(k, x) := ρ(Uk,x, k, x) ≤ 1. (2.11)

Note that g+(Uk,x, x) = −g−(Uk,x, x) =
(
ekx − ek

)
csch k + 1. So,

r(k, x) =
1 − g+(Uk,x, x)2

Uk,x(1 − x2)
=

2(cosh k − cosh kx) csch k

k (1 − x2)
. (2.12)

Inequality (2.11) can be rewritten as

dif(x) := (1 − x2)r(k, x) − (1 − x2) ≤ 0 (2.13)

for real k > 0 and x ∈ [0, 1] because dif(−k, x) = dif(k, x) = dif(k,−x).
We have dif′′′(x) = −2k2 csch k sinh kx ≤ 0. So, dif′′ is non-increasing. Hence, there

is some c ∈ [0, 1] such that dif is convex on [0, c] and concave on [c, 1]. Also, dif′(0) =
dif′(1) = dif(1) = 0. Thus, (2.13) follows. �
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Proof of Theorem 2.1. Let us show that R ∈ L1(−1, 1). In view of Equation (1.11),
logR is concave. Therefore,

logR(t) ≤ logR(0) +
R′(0)

R(0)
t for all t ∈ (−1, 1),

and thus

R(t) ≤ R(0)e
R′(0)
R(0)

t
.

Hence, ∫ 1

−1

R(t) dt <∞.

Now we put

r := H(1) =
1

2

∫ 1

−1

R(u) du.

Recall the Euclidean harmonic function g defined in Equation (1.12). It comes down to
estimating the gradient of the derivative of the function g, which is equal to

|∇g| = R(f)|∇f |/H(1).

For the real Euclidean harmonic function g : D → (−1, 1), we have [6, 13]

|∇g(z)| =
R(f(z))|∇f(z)|

r
≤ 4

π

cos π
2 g(z)

1 − |z|2
, (2.14)

where

g(z) :=
1

r

(
H(0) +

∫ f(z)

0

R(u) du

)
.

Let

R :=
4

π

cos
(

π
2r

(
H(0) +

∫ f(z)

0
R(u) du

))
1 − |z|2

. (2.15)

Note that

cos
π

2
b ≤ 1 − b2

for b ∈ [0, 1].
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Let

ψ(v) :=
π

2r

(
H(0) +

∫ v

0

R(u) du

)
and apply Lemma 2.2. We get

R ≤ 4

π

1 − ψ(v)2

ψ′(v)
≤ 4

π
(1 − v2). (2.16)

Combining Equations (2.15), (2.14) and (2.16), we obtain Equation (2.1). Concerning
Equation (2.2), notice that the proof of [13, Theorem 1.2] can be applied in
this case because the ρ-harmonicity is invariant under precomposition by Möbius
transformations. �

The following example shows that one cannot omit the condition of positive Gaussian
curvature. In fact, we cannot prove a weaker estimate with a constant larger than 4/π.

Example 2.3. Assume that %(w) := 1
1−|w|2 and let ρ(w) := %(u, 0) = 1

1−u2
. Then

f : D → (−1, 1) is ρ-harmonic (and %-harmonic) if and only if

f(z) = tanh g(z)

for a Euclidean harmonic mapping g of the unit disk in the real line R. In particular, the
functions

f(z) = tanh(nx), z = x+ iy, n ∈ N,

are ρ-harmonic. Then |∇f(z)| = n sech 2(nx), and so,

|∇f(z)|
1 − |f(z)|2

(1 − |z|2)

∣∣∣∣
z=0

= n,

so that in Theorem 2.1, we cannot omit the condition of the positiveness of Gaussian
curvature, nor can we even prove a weaker statement with a larger constant factor instead
of 4/π. Observe that in this case

Kρ(z) = −2(1 + x2) < 0.

Of course, the curvature of the hyperbolic (Poincarè) metric is K%(z) = −4, and it is not
equal to the curvature of ρ, even though both curvatures are negative.

In the following example, a result for a metric R of zero Gaussian curvature is given.
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Example 2.4. Assume that the Gaussian curvature of R is zero. Then R(x) = ecx.
Moreover, by Equation (2.14),

|∇f(z)| ≤ A :=
4e−cf(z) sin

[
π

2 sinh(c)

(
ec − ecf(z)

)]
sinh(c)

cπ (1 − |z|2)
.

Further, by the proof of Theorem 2.1,

|∇f(z)| ≤ A ≤ 4

π

1 − f(z)2

1 − |z|2
.

2.1. Proof of Theorem 1.5

We need the following lemma.

Lemma 2.5. If R : (−1, 1) → (0,+∞) is positive, increasing in (−1, 0) and decreasing
in (0, 1), if v ∈ (−1, 1), and if

r =
1

2

∫ 1

−1

R(u) du,

then we have the sharp inequality

sin

[
π
∫ 1

v
R(u) du

2r

]
≤ π

2r
(1 − |v|)R(v), (2.17)

and in particular

sin

[
π
∫ 1

v
R(u) du

2r

]
≤ π

2r

(
1 − v2

)
R(v).

The constant π/2 is sharp even if we restrict the consideration to C2 diffeomorphisms
R : (−1, 1) → (0,∞).

Proof of Lemma 2.5. The proof of inequality (2.17) is easy. We use here the fact
that R is decreasing in [0, 1) and the elementary inequality sinx ≤ x for x ∈ [0, π/2].
Then for v ∈ [0, 1], we have

sin

[
π
∫ 1

v
R(u) du

2r

]
≤
π
∫ 1

v
R(u) du

2r

≤ π
(1 − v)R(v)

2r
.

https://doi.org/10.1017/S0013091523000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000263


Schwarz Lemma for Real Harmonic Functions 527

If v < 0, then we use the fact that R is increasing in (−1, 0). We come to the desired
inequality as follows:

sin

(
π

2r

∫ 1

v

R(u) du

)
= sin

(
π

2r

∫ v

−1

R(u) du

)
≤ π

(1 + v)R(v)

2r
.

To prove the sharpness part, observe that inequality (2.17) is equivalent to

cosφ(v) ≤ (1 − v2)φ′(v), (2.18)

where

φ(v) =
π

2
−
π
∫ 1

v
R(u) du

2
∫ 1

0
R(u) du

=
π
∫ v

0
R(u) du

2
∫ 1

0
R(u) du

.

For s, as2 ∈ (0, 1), we define the concave diffeomorphism ψ : [0, 1] → [0, 1] by the formula

ψ(x) :=

{ (
1 + 2as− as2

)
x− ax2 if x > 0 ∧ x < s,

1 +
(
1 − as2

)
(−1 + x) if x ≥ s ∧ x ≤ 1.

(2.19)

Now we define φ(x) = π
2ψ(x).

Then for u = as2, we have

cosφ(s)

(1 − s2)φ′(s)
=

2 sin
[
1
2π(1 − s)(1 − u)

]
π (1 − s2) (1 − u)

.

The supremum of the latter expression is equal to 1. It is ‘attained in the limit’, for
instance, if s = 1/n→ 0 and u = (n− 1)2/n2 = as2 → 1, with n→ ∞.

To prove the last statement, extend ψ in [−1, 1] by ψ(x) = −ψ(−x) and define R(x) =
ψ′(x), for x ∈ [−1, 1]. Then R is not smooth, but it is continuous on [−1, 1].

We introduce appropriate mollifiers: Fix a smooth even function σ : R → [0, 1], which
is compactly supported in the interval (−1, 1) and satisfies

∫
R σ = 1. For ε> 0, consider

the mollifier

σε(t) :=
1

ε
σ

(
t

ε

)
. (2.20)

It is compactly supported in the interval (−ε, ε) and satisfies
∫
R σε = 1. For ε> 0, define

ϕε(x) :=

∫
R
ψ(y)

1

ε
σ

(
x− y

ε

)
dy =

∫
R
ψ(x− εz)σ(z) dz.
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Because σ is even, we have

ϕε(−x) =

∫
R
ψ(−x− εz)σ(z) dz

=

∫
R
ψ(x+ εz)σ(z) dz

= −
∫
R
ψ(x− εz)σ(z) dz

= −ϕε(x),

and

ϕ′
ε(x) =

∫
R
ψ′(x− εz)σ(z) dz.

So ϕε is an increasing and odd function. Further, we define ψε(x) := 1
ϕε(1)

ϕε(x). Then

ψε(x) : [−1, 1] → [−1, 1] is a C∞ increasing odd diffeomorphism. Then ψε(x) converges
uniformly to ψ and ψ′

ε(x) converges uniformly to ψ′(x) as ε→ 0. Thus, the function
Rε(x) = ψ′

ε(x) is an even function, increasing in [−1, 0] and decreasing in [0, 1] that
converges uniformly to R.

This implies that the constant π/2 is sharp even if we restrict the consideration to C∞

diffeomorphisms. �

Proof of Theorem 1.5. Since R is positive, increasing in (−1, 0) and decreasing in
(0, 1), it is clear that R ∈ L(−1, 1). From Equation (2.14), we have

|∇g(z)| =
R(f(z))|∇f(z)|

r
≤ 4

π

cos π
2 g(z)

1 − |z|2
, (2.21)

where

g(z) :=
H(0)

2r
+

1

r

(∫ f(z)

0

R(u) du

)
,

with H (0) defined in Equation (1.13).
Further,

cos
π

2
g(z) = sin

[
π
∫ 1

v
R(u) du

2r

]
.

In view Lemma 2.5, the inequality (1.14) is proved. To prove Equation (1.15), in view
of the assumption, we observe first that H(0) = 0. Since the function ψ(u) =

∫ u

0
R(t)dt

r is
concave on [0, 1] with ψ(0) = ψ(1)−1 = 0, it satisfies the inequality ψ(u) > u. Therefore,
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|f(z)| ≤ 1

r

∣∣∣∣∣
∫ f(z)

0

R(u) du

∣∣∣∣∣ = |g(z)|.

Now we use the Schwarz lemma for Euclidean harmonic functions ([8, 10]), which implies
that

|g(z)| ≤ 4

π
tan−1 |z|.

Inequality (1.14) is sharp because of Lemma 2.5. Inequality (1.15) is sharp, since it
coincides with the corresponding inequality [2, p. 124] for Euclidean harmonic mappings
(planar case), where the sharpness part is established. Observe that, if R ≡ 1, then R
defines the Euclidean metric and satisfies the conditions of our theorem. This finishes the
proof of the theorem. �

3. Concluding remarks

The answer to the general question posed in Problem 1.1 is negative. In the following
example, it is shown that for metrics of zero Gaussian curvature, the quantity S (f ) defined
in Equation (1.5) can be arbitrary big.

Example 3.1. For z = x + iy, let g(z) = iky, where k > 0, and assume that φ is a
conformal automorphism of S = {x + iy : x ∈ (−1, 1), y ∈ R}, which maps y-axis onto
(−1, 1). Let g1 = φ ◦ g. For instance, one may define a conformal automorphism φ as
follows:

φ(z) := −
2i log

[
−i + 2

−i+e
iπz
2

]
π

.

Next let %(w) = |ζ ′(w)|, where we use notation w = φ(ζ) and w 7→ ζ(w) denotes the
inverse function to φ. Then g1 is %-harmonic, λ0(iy) = π/2 and |∇g1(iy)| = k|φ′(iy).
Also, |∇g1(0)| = 2k. Here λ0(z) is the hyperbolic metric of the strip. Since the expression
(1.5) is invariant with respect to conformal maps and hyperbolic metrics, by taking a
conformal mapping a of the unit disk onto the strip S satisfying a(0) = 0 and defining
f(z) = g1(a(z)), we see that

S(f(z)) =
|∇f(z)|(1 − |z|2)

1 − |f(z)|2
=

|∇g1(a(z))|
(1 − g1(a(z))2)λ0(a(z))

can be arbitrary big for z = 0, namely S(f(0)) = 4k/π. We remark that in this case

%2(u, v) =
2

cos[πu] + cosh[πv]
,

so that K% = 0, but Kρ = −π2/4, where ρ(u, v) = %(u, 0).
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The following example raises a similar question for positive harmonic functions.

Example 3.2. It is well known that a positive harmonic function defined in the half-
plane is a contraction with respect to hyperbolic metric (see e.g. [14]). So, it is natural to
ask whether such a result is true for positive R-harmonic functions defined in the half-
plane, where R is a metric of non-negative Gaussian curvature. The following example
shows that this is not true. Let R(x) = 1 − e−x and define the positive R-harmonic
function on S(0,∞) := {x+ iy : x > 0, y ∈ R} by

f(x, y) := log

[
π

π
2 − tan−1

[
y
x

]] = R (< [−i/π log(iz)]) .

Observe that − log(R(x))′′ = 1
4 csch

[
x
2

]2
. So, R has a non-negative curvature.

On the other hand,

x
|∇f(x, y)|
f(x, y)

=

2x
√

1(
x2+y2

)(
π−2 tan−1

[
y
x

])2
log

[
2π

π−2 tan−1
[
y
x

]] =

2
√

1(
1+t2

)
(π−2 tan−1[t])2

log
[

2π
π−2 tan−1[t]

]
for y = tx. The last expression has its maximum at t = −1.4771 . . . , and it is equal to
1.0482 . . . . This implies, in particular, that f : S(0,∞) → (0,+∞) is not a contraction
with respect to corresponding hyperbolic metrics. It would be of interest to find the best
Lipschitz constant in this context.
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