
Cambridge Large One

www.cambridge.org

Results
Keywords:
causality, temporal logic, verification

Causal Temporal Reasoning for Markov Decision
Processes
Milad Kazemi, Jessica Lally, and Nicola Paoletti

Department of Informatics, King’s College London, London, United Kingdom

Abstract
We present PCFTL (Probabilistic CounterFactual Temporal Logic), a new probabilistic temporal
logic for the verification of Markov Decision Processes (MDP). PCFTL introduces operators
for causal inference, allowing us to express interventional and counterfactual queries. Given
a path formula ϕ, an interventional property is concerned with the satisfaction probability
of ϕ if we apply a particular change I to the MDP (e.g., switching to a different policy);
a counterfactual formula allows us to compute, given an observed MDP path τ, what the
outcome of ϕ would have been had we applied I in the past and under the same random
factors that led to observing τ. Our approach represents a departure from existing probabilistic
temporal logics that do not support such counterfactual reasoning. From a syntactic viewpoint,
we introduce a counterfactual operator that subsumes both interventional and counterfactual
probabilities as well as the traditional probabilistic operator. This makes our logic strictly
more expressive than PCTL⋆. The semantics of PCFTL rely on a structural causal model
translation of the MDP, which provides a representation amenable to counterfactual inference.
We evaluate PCFTL in the context of safe reinforcement learning using a benchmark of
grid-world models.

1. Introduction
Temporal logic (TL) is arguably the primary language for the formal specification and
reasoning about system correctness and safety. It has been successfully applied to the
analysis of a wide range of systems, including cyber-physical systems (Bartocci, Deshmukh,
et al. 2018), programs (Manna and Pnueli 2012), and stochastic models (Kwiatkowska,
Norman, and Parker 2007). In cyber-physical systems, TLs are especially useful for
expressing and verifying critical properties of these systems, to ensure systems meet
performance and safety criteria. For example, (probabilistic) TLs can express safety and
reachability properties (e.g., “will the system eventually reach the goal state(s) while avoiding
unsafe states?”) and fault-tolerance properties (e.g., “will the system return to some desired
service level after a fault?”).

However, a limitation of existing TLs is that TL specifications must be evaluated on a
fixed configuration of the system, e.g., a fixed choice of control policy, communication
protocol, or system dynamics. That is, they cannot express queries like “what is the
probability that the system throughput will stay above a certain threshold if we switch to a high-
performance controller?”, or “what would have been the probability that the signal would have
stayed below a given threshold if we had used a different policy in the past?” This kind of
reasoning about different system conditions falls under the realm of causal inference (Pearl
2009), by which the first query is called an intervention and the second a counterfactual. Even
though both causal inference and TL-based verification are well-established on their own,
their combination hasn’t been sufficiently explored in past literature (see Section 7 for a
more complete account of the related work). With this paper, we contribute to bridging
these two fields.

We introduce PCFTL (Probabilistic CounterFactual Temporal Logic), the first probabilistic
temporal logic that explicitly includes causal operators to express interventional properties
(“what will happen if. . . ”), counterfactual properties (“what would have happened if. . . ”),
and so-called causal effects, defined as the difference of interventional or counterfactual
probabilities between two different configurations. In particular, in this paper we focus on
the analysis of Markov Decision Processes (MDPs), which are capable of modeling sequential
decision-making processes under uncertainty, a key aspect in many cyber-physical systems
applications. MDPs provide a useful framework for a variety of applications, such as
reinforcement learning, planning, and probabilistic verification. For MDPs, arguably the
most relevant kind of causal reasoning concerns evaluating how a change in the MDP
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policy affects some outcome. The outcome of interest for us is the satisfaction probability
of a temporal-logic formula.

Interventions are “forward-looking” (Oberst and Sontag 2019), as they allow us to
evaluate the probability of a TL property ϕ after applying a particular change X ← X′ to
the system. Counterfactuals are instead “retrospective” (Oberst and Sontag 2019), telling
us what might have happened under a different condition: having observed an MDP path
τ, they allow us to evaluate ϕ on the what-if version of τ, i.e., the path that we would
have observed if we had applied X ← X′ at some point in the past, provided that the random
factors that yielded τ remain fixed. Causal effects (Guo et al. 2020) allow us to establish the
impact of a given change at the level of the individual path or overall, and they quantify
the increase in the probability of ϕ induced by a manipulation X ← X′. Causal and
counterfactual reasoning has gained a lot of attention in recent years due to its power in
observational data studies: with counterfactuals, one can answer what-if questions relative
to an observed path, i.e., without having to intervene on the real system (which might
jeopardize safety) but using observational data only. Our PCFTL logic enables this kind
of reasoning in the context of formal verification.

Our approach to incorporating causal inference in temporal logic involves only a min-
imal extension of traditional probabilistic logics. PCFTL is an extension of PCTL⋆ (Baier
et al. 1997; Baier 1998) where the probabilistic operator P▷◁p(ϕ), which checks whether
the probability of ϕ satisfies threshold ▷◁ p (where ▷◁∈ {≤, <, >,≥}), is replaced with a
counterfactual operator I@t.P▷◁p(ϕ), which concerns the probability of ϕ if we had applied
intervention I at t time steps in the past. Albeit minimal, such an extension provides great
expressive power: if t > 0, then the operator corresponds to a counterfactual query; if t = 0,
it represents an interventional probability; if both t = 0 and I is empty, then we retrieve
the traditional P▷◁p(ϕ) operator.

Motivating Example To better grasp interventions and counterfactuals, consider an
example of a robot in a 2D space, modeled by the equation St+1 = St + At + Ut, where
St ∈ R2 and At ∈ R2 are the state and action at time t, and Ut ∈ R2 is an unobserved random
exogenous input (e.g., white Gaussian noise). The robot must satisfy a bounded safety
property ϕ = ¬F[1,4](St ≥ [1, 2]), which specifies that the robot must avoid entering the
unsafe region St ≥ [1, 2] on all paths (up to length 3) that it takes. Suppose we observe a path

τ under some policy π, given by τ = [0, 0] [0,1]––––––→ [0.1, 0.5] [1,1]––––––→ [0.8, 1.75] [0,0]––––––→ [1.3, 2.1],
where s a––→ s′ denotes a step from state s to s′ through action a. This path, and hence policyπ,
is unsafe because it violates the safety property in its final state. A question then arises: given
τ, if we had intervened in the past by changing the policy from π to some π′, could have
we prevented this violation? Define the intervention I = π← π′. Then, the counterfactual
PCFTL query I@3.P▷◁p(ϕ) allows us to evaluate the probability of the safety property ϕ in a
what-if version of τwhere we apply I (i.e., policyπ′ instead ofπ) at 3 steps back from the last
state of τ, i.e., from the beginning of the path in this case1. In particular, the counterfactual
path is obtained by applying I but by keeping the same values of the random exogenous factors Ut
that led to τ. These factors cannot be directly observed, but, given the above equation, they
can be readily determined as Ut = St+1–St–At, leading to U1 = [0.1, –0.5], U2 = [–0.3, 0.25],
and U3 = [0.5, 0.35]. Then, suppose the alternative policy π′ chooses actions A′1 = [0, 0.5]
and A′3 = [–0.4, –0.2] (but keeps A′2 = A2), then this induces the counterfactual path

τ′ = [0, 0] [0,0.5]––––––––→ [0.1, 0] [1,1]––––––→ [0.8, 1.25] [–0.4,–0.2]––––––––––––––→ [0.9, 1.4]. Notably, now τ′ satisfies
the safety property.

Despite the simplicity of this example, counterfactual reasoning becomes challenging
when dealing with discrete-state probabilistic models like MDPs. Indeed, the state of
an MDP evolves according to a categorical distribution, for which the identification and
inference of the exogenous factors are non-trivial.

Contributions In this paper, we introduce the syntax and semantics of PCFTL and

1. As we will explain in Section 2.3, there could be multiple such what-if paths, and so the counterfactual
probability of ϕ could take other values than 1 or 0.
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Figure 1. Overview of our approach to PCFTL verification, with section pointers.

present a statistical model-checking approach for verifying PCFTL properties in MDP
environments. Our approach, summarized in Fig. 1, relies on translating the MDP into a
so-called structural causal model (SCM), a fundamental model in causal inference that enables
computation of counterfactual distributions. We use a particular form of SCMs (Oberst and
Sontag 2019) suitable for encoding categorical counterfactuals (arising with discrete-state
MDPs). After performing counterfactual inference, the SCM model is then translated
back into an MDP amenable for PCFTL model checking. Unlike existing logics, PCFTL
formulas are interpreted with respect to an observed MDP path τ, rather than a single
MDP state, as we must keep track of the past to perform counterfactual reasoning.

Using efficient statistical model checking procedures, we evaluate PCFTL on a re-
inforcement learning benchmark (Chevalier-Boisvert, Willems, and Pal 2018) involv-
ing multiple 2D grid-world environments, goal-oriented tasks, and interventional and
counterfactual properties under various policies learned through neural-network-based
reinforcement learning methods. These results demonstrate the usefulness of PCFTL in
AI safety, but our approach could enhance the verification of probabilistic models in a
variety of domains, from distributed systems to security and biology.

The paper covers background about SCMs, MDPs, and SCM-based encoding of MDPs
in Section 2, construction of counterfactual MDPs in Section 3, definition of PCFTL
syntax, semantics, and decision procedures in Section 4, experimental results in Section 6,
related work in Section 7, and conclusions in Section 8.

2. Background
2.1 Causal Inference with Structural Causal Models
Structural Causal Models (SCMs) (Pearl 2009; Glymour, Pearl, and Jewell 2016) are
equation-based models to specify and reason about causal relationships involving some
variables of interest.

Definition 1 (Structural Causal Model (SCM)). An SCM is a tupleM = (U, V,F , P(U))
where

• U is a set of (mutually independent) exogenous variables.
• V is a set of endogenous variables, where the value of each V ∈ V is determined by a

function V = fV (PAV , UV ). Here, PAV ⊆ V are the set of direct causes of V, and UV ∈ U.
• F is the set of functions {fV}V∈V.
• P(U) =

⊗
U∈U P(U) is the joint distribution of the (mutually independent) exogenous

variables.

Assignments in F must be acyclic, to ensure that no variable can be a direct or indirect
cause of itself. Because of this, the causal relationships in an SCM can be represented by a
directed acyclic graph (DAG), called a causal diagram.

In an SCM, the values of the exogenous variables U are determined by factors outside
the model, which is modelled by some distribution P(U). Exogenous variables are unob-
served variables which act as the source of randomness in the system. Indeed, for a fixed
realization u of U, i.e., a concrete unfolding of the system’s randomness, the values of V
become deterministic, as they are uniquely determined by u and the causal processes F . A

Accepted Manuscript

https://doi.org/10.1017/cbp.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2025.2


4 Milad Kazemi et al.

concrete value u of U is also called context (or unit). We denote by PM(V) the so-called
observational distribution of V, that is, the data-generating distribution entailed by the SCM
F and P(U).

Interventions. With SCMs, one can establish the causal effect of some input variable
X on some output variable Y by evaluating Y after “forcing” some specific values x
on X, an operation called intervention. Applying X ← x means replacing the RHS of
X = fX (PAX , UX ) with x. Interventions allow to establish the true causal effect of X
on Y by comparing the so-called post-interventional distribution PM[X←x](Y) at different
values x, whereM[X ← x] is the SCM obtained fromM by applying X ← x 2. By
“disconnecting” X from any of its possible causes, interventions prevent any source of
spurious association between X and Y (Glymour, Pearl, and Jewell 2016) (i.e., caused by
variables other than X and that are not descendants of X)3. In the following we will use
the notation I (andM[I]) to denote a set of interventions I = {Vi ← vi}i.

Counterfactuals. Upon observing a particular realization v of the SCM variables V,
counterfactuals answer the following question: what would have been the value of some
variable Y for observation v if we had applied intervention I on our modelM? This corresponds
to evaluating V in a hypothetical world characterized by the same context (i.e., same
realization of random factors) that generated the observation v but under a different causal
process.

Computing counterfactuals involves three steps (Glymour, Pearl, and Jewell 2016):

1. abduction: estimate the context given the observation, i.e., derive P(U | V = v);
2. action: modify the SCM by applying the intervention of interest, e.g.,M[I]; and
3. prediction: evaluate V under the manipulated modelM[I] and the inferred context.

We denote by M(v)[I] the counterfactual model obtained by replacing P(U) with
P(U | V = v) in the SCMM and then applying intervention I. Note that here v is a
realization of V underM and not underM[I].

As explained above, each observation V = v can be seen as a deterministic function
of a particular value u of U. Therefore, the counterfactual model is deterministic too,
assuming that such u can be identified from V = v. However, inferring u precisely is
often not possible (as discussed later), resulting in a (non-Dirac) posterior distribution of
contexts P(U | V = v) and thus, a stochastic counterfactual value.

2.1.1 Causal Effects.
Estimating a causal effect amounts to comparing some variable Y (outcome, output)
under different values of some other variable X (treatment, input). Interventions and
counterfactuals enable this task by ruling out spurious association between X and Y, as
discussed above. There are three main estimators of causal effects:

Individual Treatment Effect (ITE). For a context u, the ITE of Y ∈ V between interven-
tions I1 and I0 is defined as YI1 (u) – YI0 (u), where YIi (u) is the counterfactual value of Y
induced by u under the post-intervention modelM[Ii]. As explained above, we don’t
have direct access to the exogenous values u but only to realizations v ∼ PM(V). Thus,
below we define the ITE as a function of v (rather than u) by plugging in the average
counterfactual value of Y w.r.t. the posterior P(U | V = v):

ITE(Y, I1, I0, v) = EM(v)[I1][Y] – EM(v)[I0][Y]. (1)

2. PM[X←x](Y) is often written as P(Y | do(X = x)) in Pearl’s do notation.
3. Note that PM(Y | X = x) is, in general, different from the desired PM[X←x](Y) because conditioning on

X = x alone doesn’t prevent unwanted spurious associations.
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Average Treatment Effect (ATE). ATE is used to estimate causal effects at the population
level and is defined as the expected value (w.r.t. P(U)) of the individual treatment effect,
or equivalently, as the difference of post-interventional expectations:

ATE(Y, I1, I0) = EM[I1][Y] – EM[I0][Y]. (2)

Conditional Average Treatment Effect (CATE). The CATE is the conditional version of
ATE. This estimator is useful when the treatment effect may vary across the population
depending on the value of some variables V :

CATE(Y, I1, I0, v) = EM[I1][Y | V = v] – EM[I0][Y | V = v]. (3)

2.2 Markov Decision Processes (MDPs)
MDPs are a class of stochastic models to describe sequential decision making processes,
where at each step t, an agent in state si performs some action ai determined by a policy
π ending up in state si+1 ∼ P(· | si, ai). The agent receives some reward R(si, ai) for
performing ai at si. Here, we focus on MDPs with finite state and action spaces. Without
loss of generality, we restrict the policy class to deterministic policies (Puterman 2014).
Moreover, each MDP state satisfies a (possibly empty) set of atomic propositions, with AP
being the set of atomic propositions.

Definition 2 (Markov Decision Process (MDP)). An MDP is a tupleP = (S ,A, PP , PI ,R, L)
where S is the state space, A is the set of actions, PP : (S ×A×S)→ [0, 1] is the transition
probability function, PI : S → [0, 1] is the initial state distribution, R : (S ×A)→ R is the
reward function, and L : S → 2AP is a labelling function, which assigns to each state s ∈ S
the set of atomic propositions that are valid in s. A (deterministic) policy π for P is a function
π : S → A.

An agent acting under policy π in an MDP environment will induce an MDP path τ,
as follows:

Definition 3 (MDP path). A path τ = (s1, a1), (s2, a2), . . . of an MDPP = (S ,A, PP , PI ,R, L)
induced by a policy π is a sequence of state-action pairs where si ∈ S and ai = π(si) for all i ≥ 1.
The probability of a path τ is given by PP (τ) = PI (s1) ·

∏
i≥1 PP (si+1 | si, ai). For a finite path

τ = (s1, a1), . . . , (sk, ak), we denote by PathsP ,π(τ) the set of all (infinite) paths with prefix τ
induced by MDP P and policy π, which has probability PP (PathsP ,π(τ)) = PP (τ).

We denote by |τ| the length of the path, by τ[i] the i-th element of τ (for 0 < i ≤ |τ|),
by τ[i :] the suffix of τ starting at position i (inclusive), and by τ[i : i + j] the subsequence
spanning positions i to i + j (inclusive). Even though τ[i] denotes the pair (si, ai) of the
path, we will often use it, when the context is clear, to denote only the state si. We slightly
abuse notation and write PathsP ,π(s) to denote the set of paths induced by π and starting
with s.

Usually, an MDP is stationary, meaning that its transition probability function and/or
reward function remain fixed over time. However, there exists a variant, called a non-
stationary MDP (Lecarpentier and Rachelson 2019), where the transition probability
function and/or reward function may change over time. A non-stationary MDP can be
converted to a stationary MDP by augmenting its state space with a variable that keeps
track of the time.

An MDP under a fixed policy can be described as a deterministic-time Markov Chain
(DTMC), as follows.

Definition 4 (Induced DTMC). An MDP P = (S ,A, PP , PI , R, L) and a policy π : S → A
induce a discrete-time Markov Chain (DTMC) DP ,π = (S , PDP ,π , PI , RP ,π, L) where for
s, s′ ∈ S , PDP ,π (s′ | s) = PP (s′ | s,π(s)), and for s ∈ S , RP ,π(s) = R(s,π(s)). Paths of DP ,π are
sequences of states, and their probabilities are defined similarly to Def. 3.
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2.3 SCM-based encoding of MDPs
We now present the SCM-based encoding of MDPs introduced in (Oberst and Sontag
2019). For a given path length T, the SCMMP ,π,T induced by an MDP P and a policy
π characterizes the unrolling of paths of P of length T, i.e., it has endogenous variables
St and At describing the MDP’s state and action at each time step t, where t = 1, . . . , T.
These are defined by the structural equations:

St+1 = f (St, At, Ut); At = π(St); S1 = f0(U0), (4)

where the probabilistic state transition at t, PP (St+1 | St, At), is encoded as a deterministic
function f of St, At, and the (random) exogenous variables Ut, while the random choice
of the initial state, PI (S1), as a deterministic function f0 of U0.

We stress that the SCM encoding does not require any assumptions about the structure
of the MDP: such encoding results in an acyclic graph, while the original MDP need not
be. Figure 2 shows the causal diagram resulting from this SCM encoding.

Figure 2. Causal diagram for the SCM encoding of an MDP. Black circles represents exogenous variables, while
white circles represent endogenous ones.

Note that both PP (St+1 | St, At) and PI (S1) are categorical distributions and encoding
them in the above SCM form (i.e., as functions of a random variable) is not obvious.
Oberst and Sontag (2019) proposed a solution termed Gumbel-Max SCM, as given by:

St+1 = f (St, At, Ut = (Gs,t)s∈S ) = arg max
s∈S

{
log (PP (St+1 = s | St, At)) + Gs,t

}
(5)

where, for s ∈ S and t ∈ 1 = . . . , T, Gs,t ∼ Gumbel. This is based on the Gumbel-Max
trick, by which one can sample from a categorical distribution with k categories (corre-
sponding to the |S| MDP states in our case) by first drawing realizations g1, . . . , gk of a stan-
dard Gumbel distribution and then by setting the outcome to arg maxj

{
log (P(Y = j)) + gj

}
.

By using the Gumbel-Max trick, the assignment St+1 = f (St, At, (Gs,t)s∈S ) in (5) will be
equivalent to sampling St+1 ∼ PP (S | St, At):

Proposition 1 (Gumbel-Max SCM correctness). Given an MDP P , policy π, and time
bound T, then for any path τ of P induced by π of length T, we have PMP ,π,T (τ) = PP (τ),
whereMP ,π,T is the Gumbel-Max SCM for P , π, and T.

Importantly, the Gumbel-Max SCM encoding enjoys a desirable property called
counterfactual stability:

Definition 5 (Counterfactual stability (Oberst and Sontag 2019)). An SCMM satisfies
counterfactual stability relative to a categorical variable Y of M if whenever we observe
Y = i under some intervention I, then the counterfactual value of Y under I ′ =/ I remains
Y = i unless I ′ increases the relative likelihood of an alternative outcome j =/ i, i.e., unless
PM[I′](Y = j)/PM[I](Y = j) > PM[I′](Y = i)/PM[I](Y = i).

Intuitively, the above definition tells us that, in a counterfactual scenario, we would
observe the same outcome Y = i unless the intervention increases the relative likelihood of

an alternative outcome Y = j, that is, unless
p′j
pj

>
p′i
pi

holds for some j.

Gumbel-Max SCMs are the most prominent encoding that can express categorical
variables as functions of independent random variables and that satisfy counterfactual
stability4. However, there also exists methods that generalise to other causal mechanisms
with the counterfactual stability property (see Section 7).

4. In contrast, the approach based on the inverse CDF trick, where f (St , At , Ut) is the Ut-quantile of PP (St+1 |
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Counterfactual inference. Given we observed an MDP path τ = (s1, a1), . . . , (s|τ|, a|τ|),
counterfactual inference in this setting entails deriving P((Gs,t)t=1,...,|τ|–1

s∈S | τ). Essentially,
this means finding values for the Gumbel exogenous variables compatible with τ. By the
Markov property, the above can be factorized as follows:

P((Gs,t)t=1,...,|τ|–1
s∈S | τ) = P((Gs,1)s∈S | s1) ·

|τ|–1∏
t=2

P((Gs,t)s∈S | st, at, st+1).

However, the mechanism of (5) is non-invertible, i.e., given st and at, there might be
multiple values of (Gs,t)s∈S leading to the same st+1. This implies that MDP counterfactuals
can’t be uniquely identified, a problem that affects categorical counterfactuals in general and
not just Gumbel-Max SCMs (Oberst and Sontag 2019).

As suggested by Oberst and Sontag (2019), we can perform (approximate) posterior
inference of P((Gs,t)s∈S | st, at, st+1) through rejection sampling. This involves sampling from
the prior P((Gs,t)s∈S ), and rejecting all the realizations (gs,t)s∈S for which f (st, at, (gs,t)s∈S ) =/
st+1.

Interventions in MDPs. In principle, we can consider any kind of intervention I over the
SCM encoding of an MDP. Arguably, the most relevant case is when I affects the MDP
policy π. For instance, in some applications, we might want to replace π with a more
conservative or aggressive policy. Hence, in the following, we assume interventions of the
form I = {(π← π′)} for some policy π′ (i.e., we change the RHS of the equation for At
in the SCM (4)).

Example 1 (MDP counterfactuals). Consider an MDP model of a light switch. The MDP
has two states, S = {On, Off}, and we can take two actions, A = {Switch, Nop}. If we take
action Switch, the state of the MDP changes ( from On, to Off, or vice versa) with probability
0.9, and it remains the same with probability 0.1. If we take action Nop, with probability 0.9 the
MDP’s state does not change, and with probability 0.1 the state changes. We fix the following
policy: π(On) = Nop and π(Off) = Switch.

Assume we observe the path τ = Off Switch–––––––––→ On Nop
––––––→ Off, where the first step has probability

0.9 and the second step 0.1. First, we want to show that the Gumbel-max SCM formulation (5)
yields the same probability values, modulo sampling variability. In Fig. 3a and Fig. 3b, we show
the values of log (PP (Off | St, At)) + GOff,t (x-axis) and log (PP (On | St, At)) + GOn,t (y-axis)
obtained by sampling 1000 realizations of the Gumbel variables G. We see indeed that, at t = 2,
89.7% of these points lie above the identity line, i.e., they yield On as the next state. At t = 3, we
find that 10.9% of the points yield Off as the next state.

In Fig. 3c and Fig. 3d, we show the computation of counterfactuals. Assume an intervention
that changes the policy into one that constantly performs action Switch. Now, we want to see what
is the probability of path τ′ = Off Switch–––––––––→ On Switch–––––––––→ Off given that we observed τ. That is, we
compute the probability of τ′ in the counterfactual SCM model where the (prior) Gumbel variables
are replaced by G′ = G | τ, i.e., those inferred from τ.

First note that τ and τ′ perform the same first step. Hence, this step has probability 1 under G′
because G′ is defined such that it assigns probability 1 to the observed path (see also Proposition 3
for a similar statement). In the second step, the observed path τ transitioned into Off after performing
Nop, despite a probability of 0.9 of jumping into On. This means that G′ strongly favours Off
(over On) to happen in the second step. Hence, we expect that the probability of On Switch–––––––––→ Off in
the counterfactual world will be higher than the nominal probability PP (Off | On, Switch). In
particular, by counterfactual stability (Def. 5), such probability should be 1 because the intervention
doesn’t make state On more likely to happen (rather the opposite: the relative likelihood of On is
indeed 0.1/0.9, while it is 0.9/0.1 for Off). This can be proven also by showing that, by rejection
sampling, we have that:

PG′
(

log (PP (Off | On, Nop)) + G′Off,t > log (PP (On | On, Nop)) + G′On,t

)
= 1.

St , At) and Ut ∼ Unif (0, 1), does not enjoy counterfactual stability and is highly sensitive to permutations of the
state ordering (note that imposing some ordering is required by the quantile function).
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Since 0.9 = PP (Off | On, Switch) > PP (Off | On, Nop) = 0.1 and 0.1 = PP (On |
On, Switch) < PP (On | On, Nop) = 0.9, it follows that

PG′
(

log (PP (Off | On, Switch)) + G′Off,t > log (PP (On | On, Switch)) + G′On,t

)
= 1,

i.e., performing action Switch at state On has probability 1 of leading into state Off in the
counterfactual world. In particular, since PP (Off | On, Switch) > PP (Off | On, Nop), the points
in Fig. 3d (corresponding to the counterfactual step) are shifted to the right compared to Fig. 3b
(observed step).

(a) G and t = 2 (b) G and t = 3

(c) G | τ and t = 2 (d) G | τ and t = 3

Figure 3. Light Switch MDP (Example 1). X-axis: log (PP (Off | St , At)) +GOff,t ; Y-axis: log (PP (On | St , At)) +GOn,t .
Plots (a) and (b) are relative to the prior Gumbel G and the observed path τ (using 1000 realizations for G).
Plots (c) and (d) are relative to the posterior Gumbel G | τ and the counterfactual path τ′. Points leading to
state On are in red, while those for Off are in blue.

3. Construction of Counterfactual MDP
Consider a Gumbel-max SCMMP for an MDP P under policy π, and a (finite) path
τ of MP . Let G′ = (G′s,i)

i=1,...,|τ|–1
s∈S be the set of posterior Gumbel variables, where, for

i = 1, . . . , |τ| – 1, G′s,i ∼ PMP (Gs,i | τ) and Gs,i ∼ Gumbel. That is, G′s,i is the value of
the exogenous variable (associated to position i and state s) inferred from τ. Then, for
i = 1, . . . , |τ| – 1, we have the following transition probability function, which directly
follows from the SCM (5):

PP ,i,τ(s′ | s, a) = Pr
(G′s′′ ,i)s′′∈S

(
s′ = arg max

s′′∈S

{
log
(
PP (s′′ | s, a)

)
+ G′s′′,i

})
. (6)

See also (Tsirtsis, De, and Rodriguez 2021) for a similar definition. Then, we can
express this non-stationary MDP as a stationary one by augmenting its state space as
follows.

Definition 6 (Counterfactual MDP). Given an MDP P , policy π, and a finite path τ of P
under π, the corresponding (stationary) counterfactual MDP Pτ = (Sτ,A, Pτ

P , Pτ
I ,R′, L′). Here,

Sτ = S ×{1, . . . , |τ|} is an augmented state space where each state s′ ∈ Sτ corresponds to a tuple
s′ = (s, i), where each state s ∈ S from the nominal MDP P has been augmented with a timestep
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i, R′ : (Sτ ×A)→ R is a reward function such that R′((s, i), a) = R(s, a), L′ : Sτ → 2AP is a
labelling function such that L′((s, i)) = L(s), Pτ

I (τ[1], 1) = 1, and for any (s, i), (s′, i′) ∈ Sτ and
a ∈ A,

Pτ
P (s′, i′ | s, i, a) =


PP (s′ | s, a) if i = i′ = |τ|
PP ,i,τ(s′ | s, a) if i < |τ| and i′ = i + 1
0 otherwise

.

In other words, in Pτ we introduce an extra variable to track the position i of the
observed path τ. Then, for i < |τ|, Pτ behaves according to the transition probabilities of
the counterfactual model, as per Eq. 6. For i = |τ|, Pτ is equivalent to the original MDP
model P , because we do not have an observation on which we can condition our Gumbel
exogenous variables. Also, Pτ

I is defined such that Pτ admits only one initial state, that is,
the first state of τ. The following proposition shows that the counterfactual MDP reduces
to the original MDP in the special case when |τ| = 1.

Proposition 2. If |τ| = 1, then the counterfactual MDP Pτ of an MDP P is equivalent to
P(τ[1]).

Proof. It is easy to see that, by applying Def. 6, we recover the definition of the original
MDP P (with the provision that Sτ = S × {1}) initialised at τ[1], the only state of τ.
Indeed, if τ contains only one state, then we do not have any observed transitions to
perform posterior inference of the Gumbel exogenous variables.

Another useful property is that if we do not perform any interventions, i.e., we maintain
the original policy π, then the counterfactual MDP induces the observed path τ with
probability 1, as expected.

Proposition 3. Given P , π, and τ as per Definition 6, then the resulting counterfactual MDP
Pτ is such that PPτ (τ) = 1.

Proof. It is enough to show that, for any 1 ≤ i < |τ|, it holds that

PP ,i,τ(si+1 | si, ai) = Pr
(G′s′′ ,i)s′′∈S

(
si+1 = arg max

s′′∈S

{
log
(
PP (s′′ | si, ai)

)
+ G′s′′,i

})
= 1.

This is true because the posterior Gumbel variables G′s′′,i are inferred in order to be
consistent with the observed path. This holds also for (approximate) inference via rejection
sampling: since we discard all the Gumbel realizations incompatible with the observation,
we have that

Pr
(G′s′′ ,i)s′′∈S

(
si+1 =/ arg max

s′′∈S

{
log
(
PP (s′′ | si, ai)

)
+ G′s′′,i

})
= 0,

which proves the above equality.

In the following, for simplicity, we will use policies π defined over S (the state space
of the original MDP P) also for the augmented state space Sτ of the counterfactual MDP,
by assuming π(s, i) = π(s) for any i.

4. PCFTL: a Probabilistic Temporal Logic with Interventions, Counterfactuals, and
Causal Effects
In this section, we formally define PCFTL (Probabilistic CounterFactual Temporal Logic).
A PCFTL formula is interpreted over an MDP P , a policy π, and an observed path τ
resulting from P and π.

PCFTL extends PCTL⋆ (Baier et al. 1997; Baier 1998) with a counterfactual oper-
ator I@t.P▷◁p(ϕ), a counterfactual reward operator I@t.R

≤k
▷◁r , and two causal effect operators,

∆I1,I0
@t .P▷◁p(ϕ) and ∆I1,I0

@t .R≤k
▷◁r . The latter two formulas are defined as the difference of

counterfactual probabilities (resp., cumulative rewards) between interventions I1 and I0,
in line with the definition of treatment effects in Section 2.1.
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PCFTL syntax. The syntax of PCFTL is as follows:

Φ ::=⊤ | ρ | ¬Φ | Φ ∧Φ | I@t.P▷◁p(ϕ) | I@t.R
≤k
▷◁r | ∆I1,I0

@t .P▷◁p′ (ϕ) | ∆I1,I0
@t .R≤k

▷◁r

ϕ ::=Φ | ¬ϕ | ϕ ∧ ϕ | ϕU[a,b]ϕ

where I, I0, I1 are (possibly empty) interventions, t ∈ Z≥0, ρ ∈ AP, p ∈ [0, 1], r ∈ R,
p′ ∈ [–1, 1], ▷◁∈ {<,≤,≥, >}, k ∈ Z≥1, and [a, b] is an interval with a ∈ Z≥0 and
b ∈ Z≥0∪{∞}. State formulasΦ can be atomic propositions, counterfactual or causal effect
formulas, or logical combinations of them. Path formula ϕ1U[a,b]ϕ2 is satisfied by paths
where ϕ2 holds at some time point within the (potentially unbounded) interval [a, b] and
ϕ1 always holds before that point. Other standard bounded temporal operators are derived
as: F[a,b]ϕ ≡ ⊤U[a,b]ϕ (eventually), G[a,b]ϕ ≡ ¬F[a,b]¬ϕ (always), and Xϕ ≡ F[1,1]ϕ

(next).
Before introducing the semantics of PCFTL, we define the quantitative counterfactual

operators I@t.P=?(ϕ)(P ,π, τ) and I@t.R
≤k
=? (P ,π, τ). These quantify the probability of a

path formula ϕ (resp., the expected cumulative reward up to step k) in the counterfactual
model obtained from MDP P , given that we observed path τ under policy π, and by
applying I from t steps back in the past (we emphasise that t is a local indexing).

I@t.P=?(ϕ)(P ,π, τ) =PP ′ ({τ′ ∈ PathsP ′,π′ | (P ′,π′, τ′, 1) |= ϕ}) (7)

I@t.R
≤k
=? (P ,π, τ) =

∑
τ′∈PathsP′ ,π′

PP ′ (τ′) ·
k∑

i=1
R(τ′[i])

 (8)

whereP ′ = Pτ[|τ|–t:] is the counterfactual MDP derived fromP and τ[|τ|–t :], i.e., the path
suffix starting at the time of intervention, and π′ is the intervention policy (corresponding
to π if I = ∅). Note that the probability of ϕ is evaluated in the counterfactual model
starting from the time of intervention, not from the last state of the path (to do so, one can
simply replace ϕ with F[t,t]ϕ). The satisfaction relation for path formulae is as follows.

Definition 7 (Semantics of PCFTL). Given a PCFTL formula Φ, an MDP P , and a path τ
of P under some policy π, the PCFTL satisfaction relation |= is defined by the following rules:

(P ,π, τ) |= ρ if ρ ∈ L(τ[|τ|])
(P ,π, τ) |= ¬Φ if (P ,π, τ) ⊭ Φ
(P ,π, τ) |= Φ1 ∧Φ2 if ((P ,π, τ) |= Φ1) ∧ ((P ,π, τ) |= Φ2)
(P ,π, τ) |= I@t.P▷◁p(ϕ) if I@t.P=?(ϕ)(P ,π, τ) ▷◁ p
(P ,π, τ) |= I@t.R

≤k
▷◁r if I@t.R

≤k
=? (P ,π, τ) ▷◁ r

(P ,π, τ) |= ∆I1,I0
@t .P▷◁p′ (ϕ) if (I1@t.P=?(ϕ)(P ,π, τ) – I0@t.P=?(ϕ)(P ,π, τ)) ▷◁ p′

(P ,π, τ) |= ∆I1,I0
@t .R≤k

▷◁r if (I1@t.R
≤k
=? (P ,π, τ) – I0@t.R

≤k
=? (P ,π, τ)) ▷◁ r

(P ,π, τ, t) |= Φ if (P ,π, τ[1 : t]) |= Φ
(P ,π, τ, t) |= ¬ϕ if (P ,π, τ, t) ⊭ ϕ
(P ,π, τ, t) |= ϕ1 ∧ ϕ2 if ((P ,π, τ, t) |= ϕ1) ∧ ((P ,π, τ, t) |= ϕ2)
(P ,π, τ, t) |= ϕ1U[a,b]ϕ2 if ∃t1 ∈ [a, b].((P ,π, τ, t + t1) |= ϕ2∧

∀t2 ∈ [0, t1).((P ,π, τ, t + t2) |= ϕ1)).

Remark 1. A main difference compared to existing temporal logics like PCTL⋆ is that a PCFTL
formula Φ is evaluated over a path of observed states and actions rather than the current state only.
Keeping track of the past allows us to perform counterfactual reasoning; see Equations 7 and 8.
Without counterfactuals, there would be no need to carry over the path, but only the current state
because the system is Markovian5 . Also, PCTL⋆ formulas evaluated over a DTMC model, while

5. In particular, to determine the satisfaction of path formula (P ,π,τ, t) |= Φ, we evaluate state formula Φ
over the path prefix τ[1 : t] (to allow for potentially nested counterfactual operators), while in PCTL⋆, Φ would
be evaluated over state τ[t].
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in our logic, it is convenient to keep P and π separated rather than working with the DTMC
induced by P and π.

Remark 2. Normally, probabilistic model checking of MDPs is concerned with computing
the maximum or minimum satisfaction probability across the policy space (Baier and Katoen
2008). In this work, we instead want to compute probabilities w.r.t. given nominal and interven-
tional/counterfactual policies, not across the entire policy space.

Building on the intuition that our counterfactual operator generalizes PCTL⋆’s prob-
abilistic operator, we demonstrate below that our logic subsumes PCTL⋆.

Proposition 4. Every PCTL⋆ formula is a PCFTL formula, but not viceversa.

Proof. It suffices to prove that PCTL⋆’s probabilistic operator (see (Baier and Katoen 2008))
is a special case of our counterfactual operator. Path formulas and their semantics are
indeed equivalent between the two logics, with the only difference being that in PCFTL
we keep track of the point t in the path at which ϕ is evaluated.

In particular, we show that, for s ∈ S, P=?(ϕ)(P ,π, s) = ∅@0.P=?(ϕ)(P ,π, (s)), where
P=?(ϕ)(P ,π, s) = PP(s)({τ

′ ∈ PathsP(s),π | (P(s),π, τ′, 1) |= ϕ}) is the quantitative proba-
bilistic operator. By applying (7), we have that

∅@0.P=?(ϕ)(P ,π, (s)) = PP ′ ({τ′ ∈ PathsP ′,π′ | (P ′,π′, τ′, 1) |= ϕ})

where π′ = π (the intervention is empty), and P ′ = P (s). By Proposition 2, we have that
P (s) = P(s).

Expressiveness. We discuss the counterfactual operator I@t.P▷◁p(ϕ) (a similar reasoning

holds for I@t.R
≤k
▷◁r ). When t = 0, our operator captures the post-interventional probability;

that is, the probability of a path formula ϕ after we apply intervention I at the current
state. In this case, no counterfactuals need to be inferred because, trivially, we don’t
have any observed MDP states beyond the time of intervention (see Fig. 4b). Indeed, by
Proposition 2, we have that Pτ[|τ|–0:] = P(τ[|τ| – 0]) = P(τ[|τ|]), i.e., the counterfactual
MDP conditioned on the last state of τ corresponds to the original MDP P initialized
at that state. For this reason, as also shown in the proof of Propositon 4, our operator
subsumes PCTL⋆’s probabilistic formula (which is indeed omitted in PCFTL): when
t = 0 and I = ∅, I@t.P▷◁p(ϕ) corresponds to evaluating P▷◁p(ϕ) w.r.t. the original MDP
P initialized at τ[|τ| – 0] = τ[|τ|] and under the original policy π (see Fig. 4a). Thus,
∅@0.P▷◁p(ϕ) ≡ P▷◁p(ϕ).

When t > 0, our operator expresses a counterfactual query, which answers the question:
given that we observed τ, what would have been the probability of ϕ if we had applied a
particular intervention I at t steps back in the past (but under the same random circum-
stances that led to τ)? A common choice is to apply I at the beginning of τ (t = |τ| – 1)
but other options are possible, e.g., intervening before some violation has happened in τ.
We stress, however, that our operator goes beyond the usual notion of counterfactuals, by
which the outcomes of interest are obtained only from the observed (or counterfactual)
path. Indeed, depending on the bounds in the temporal operators of ϕ, evaluating ϕ
might require paths that extend beyond τ. Hence, up to the length of τ, ϕ is evaluated on
counterfactual paths; beyond that point, paths follow the original MDP model P (which
is precisely how our counterfactual MDP is constructed, see Def. 6) because there are no
observations to condition on. We show why this matters in Example 2 below.

Example 2. Consider an MDP P and an obstacle avoidance property ϕH = G[0,H]¬obstacle for
some horizon H > 0. Let τ be an observed path of P under some policy π. Let τI , with |τI | = |τ|,
denote the counterfactual path obtained from τ by applying some intervention I = {π← π′} at
the start. (For simplicity, we assume that only one counterfactual path is possible.) Now suppose
that no obstacle is hit in τ or τI . So, in usual counterfactual analysis, one would conclude that the
nominal policy and the intervention policy are equivalent relative to property ϕH and observation
τ. However, if the safety property bound H extends beyond the length of τ, then it is necessary
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(a) I = ∅ and t = 0 (b) I = {π← π′} and t = 0 (c) I = {π← π′}, t > 0

Figure 4. Three scenarios for the evaluation of I@t .P▷◁p(ϕ). The observed path τ is in black. The counterfactual
path (induced by the counterfactual MDP P ′ = Pτ[|τ|–t:] and the intervention policy π′) is in dark blue (in
general we have a distribution of such paths, but here we show only one for simplicity). Paths extensions under
the nominal policy π are in gray, and those under π′ in light blue. The horizontal axis represents time (or path
positions), and the vertical axis the MDP state (continuous and one-dimensional for illustration purposes).
While none of the three examples hit the obstacle within the observed/counterfactual path, moving forward, π
yields a higher probability of this happening.

to reason about the future evolution of the MDP beyond τ (or τI ): in one case, starting from the
last state of τ and under the nominal policy; in the other, from the last state of the counterfactual
path τI and under I’s policy. At this point, it is entirely possible that going forward from the
counterfactual world yields a higher probability of obstacle avoidance than remaining with the
nominal policy, as illustrated in Figures 4a and 4c. Thus, limiting the analysis to outcomes within
the observed/counterfactual past, as done in previous work (Oberst and Sontag 2019; Tsirtsis, De,
and Rodriguez 2021), would lead to the wrong conclusion that the two policies are equivalent
safety-wise.

Encoding Treatment Effects. We explain how the introduced causal effect operators
∆I1,I0
@t .P▷◁p′ (ϕ) and ∆I1,I0

@t .R≤k
▷◁r can be used to express the traditional CATE and ITE esti-

mators (defined in Section 2.1). We saw that CATE is the difference of post-interventional
probabilities, conditioned on a particular value V = v of some variable V . In reinforce-
ment learning with MDPs, one sensible choice is to condition on the first state of the
post-interventional path (Oberst and Sontag 2019). Therefore, for the same argument
made above about defining post-interventional probabilities with I@0.P▷◁p(ϕ) formulas,
we can express this notion of CATE in PCFTL with the formula ∆I1,I0

@0 .P▷◁p(ϕ). The latter
indeed is the effect in the probability of ϕ between interventions I1 and I0, conditioned
on paths starting with τ[|τ| – 0] = τ[|τ|] (the last state of τ).

ATE, the unconditional version of CATE, cannot be directly expressed in PCFTL
because our semantics is defined over a non-empty path τ, and hence, probabilities are
implicitly conditional on the last state τ[|τ|]. An equivalent of ATE can be defined as the
expected value of the CATE formula ∆I1,I0

@0 .P▷◁p(ϕ) evaluated at the initial states S ∼ PI (S)
of the MDP.

Finally, akin to how I@t.P▷◁p(ϕ) with t > 0 expresses a counterfactual probability
(as discussed previously), the operator ∆I1,I0

@t .P▷◁p(ϕ) with t > 0 provides a notion of
ITE, because, like ITE, our operator is defined as the difference of the counterfactual
probabilities I1@t.P=?(ϕ) and I0@t.P=?(ϕ).

4.1 Example Properties
Below, we provide examples of useful properties that can be expressed with the newly
introduced counterfactual and causal effect operators of PCFTL, for the verification of
cyber-physical systems.

Example 3. Let τ denote an observed path (of length τ) in an arbitrary MDP P under policy π.
Let π′ represent an alternative policy that we can intervene on, defined by I ′ = π← π′, and let ϕ
be a path formula describing some requirement of interest. Using PCFTL, we can express many
interventional and counterfactual properties related to cyber-physical systems, such as:
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• Safety:

– I@|τ|–1.P≥0.99(G[0,20]signal < threshold): “If we had replaced the nominal policy π

with π′ at the beginning, would the probability of the signal remaining below a specified
safety threshold over the next 20 steps have been at least 99%?”

– ∆I′,∅
@0 .P>0(G[a,b]ϕ): “Is π′ safer than π moving forward from the current state (between

bounds a and b)?” (this is a CATE-like query)
– ∅@t.P<p(G[a,b]ϕ)→ I ′@t.P≥p(G[a,b]ϕ): “Had we deployed π′ t steps in the past, would

we have observed a safety probability of at least p if π failed to achieve so?”
– I ′@t.P=?(F[t′,t′](¬ϕ∧∆

I′′,∅
@0 .P>0F[1,H]ϕ)), where I ′′ = {(π← π′′)} and H ≥ 1: “What

would have been the probability, had we applied π′ t steps in the past, of observing a
violation after time t′, and subsequently, of a different policy π′′ yielding a better recovery
probability than π′?”

• Liveness:

– I@|τ|–1.P≥0.99(G[0,20]waiting_for_resource < Facquired_resource): “If we had re-
placed the nominal policy π with π′ at the beginning, would the probability of avoiding
resource starvation over the next 20 steps have been at least 99%?”

• Reachability:

– I@0.P≥0.95(F[0,10]goal): “If we apply the intervention I ′ = {(π← π′)} in the current
state, will the probability of reaching the goal state(s) within 10 steps be at least 95%?”

– ∆I′,∅
@0 .P≥0(F[0,10]goal): “If we replaced the nominal policy π with π′ at the current time

step, would this increase the likelihood of reaching the goal state(s) within the next 10
steps?”

• Reward-based properties:

– I@10.R≤|τ|
≥200: “If we replaced the nominal policy π with π′ in the last 10 time steps, would

the expected reward be over 200?”
– ∆I′,∅

@|τ|–1.R≤|τ|
≥30 : “If we replaced the nominal policy π with π′ at the beginning, would

the expected reward over τ steps under π′ have been at least 30 higher than the expected
reward under π?"

4.2 Decidability
Despite the added expressiveness, PCFTL remains decidable. First, we note that the
transition probability function of a counterfactual MDP, defined in (6), is a well-defined
probability measure. Therefore, the set of paths induced by a counterfactual MDP P ′
and some policy is also measurable (Baier and Katoen 2008), which ensures that we can
quantify the probability of a path formula.

A decision procedure for PCFTL can be adapted from the standard model checking
algorithm for a DTMC D = (S , PD , PI , R, L) and a PCTL∗ formula Φ (Baier and Katoen
2008), which we summarise next. The procedure traverses the parse tree of Φ bottom-up.
For each node, representing a subformula Ψ, the satisfaction set Sat(Ψ) = {s ∈ S | s |= Ψ}
is computed. When Ψ is a simple Boolean formula, computing Sat(Ψ) is straightforward,
so we focus on the case Ψ = P▷◁p′ (ϕ). Here, all maximal state subformulas of ϕ are
replaced with new atomic propositions representing their satisfaction sets. This step is
possible because the satisfaction sets are precomputed during the bottom-up traversal. This
operation effectively transforms ϕ into an LTL property, which enables the computation
of PD(s |= ϕ) using a standard automata-based approach (Baier and Katoen 2008). Hence,
we can compute the satisfaction set of Ψ as Sat(Ψ) = {s ∈ S | PD(s |= ϕ) ▷◁ p′}.

Model-checking PCTL∗ has double-exponential time complexity in |ϕ| due to the
transformation of ϕ′ into a deterministic Rabin automaton and polynomial complexity
in the size of the DTMC. Moreover, as demonstrated by Kwiatkowska, Norman, and
Parker (2007), determining reward properties does not impact the decidability or time
complexity of the model-checking procedure, so we will not discuss this case here.
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The decision procedure for PCFTL follows a similar approach. We do not discuss
Boolean and reward properties and cover the case when Ψ = I@t.P▷◁p(ϕ) (from which
a procedure for ∆I1,I0

@t .P▷◁p′ (ϕ) can be easily derived). The key difference here is that
the satisfaction set for Sat(Ψ) cannot include states, but it must include paths because the
satisfaction of I@t.P▷◁p(ϕ) depends on an (observed) path. It is important to note that this
set will include paths of at most length T where T is the largest t offset of an intervention
appearing in any state subformula. Indeed, it is easy to see that the satisfaction of I@t.P▷◁p(ϕ)
w.r.t. a path τ (with |τ| ≥ t) depends only on the t-length suffix of τ (which is the suffix
used to construct the counterfactual MDP, see (7)). To transform the path formula ϕ into
an equivalent LTL formula (as done above), we now need to express these satisfaction sets
(defined over finite paths, i.e., sequences of states) as atomic propositions (defined over
states). This is possible by augmenting the MDP with memory to keep track of the last
T – 1 visited states6. In this way, there is a direct correspondence between the elements of
Sat(Ψ) and the states of the augmented MDP, as desired. So, we can now construct our
sets as done for the PCTL∗ case above, as Sat(Ψ) = {τ ∈

⋃
1≤i≤T S i | PDτ,π′ (τ[1] |= ϕ)}

where Dτ,π′ is the (counterfactual) DTMC induced by the interventional policy π′ and
by the counterfactual MDP associated to the original MDP and path τ. Having shown
that PCFTL model checking reduces to PCTL∗ model checking, its complexity is still
polynomial in the size of the induced (counterfactual) DTMC, as the state space size of
the augmented model is polynomial in that of the induced DTMC.

5. PCFTL Verification with Statistical Model Checking
We use statistical model checking (SMC) (Younes and Simmons 2006; Legay, Delahaye,
and Bensalem 2010) to determine whether our properties are satisfied, i.e., by sampling
finite paths of the (counterfactual) MDP model. We leave the study of numerical-symbolic
algorithms for future work.

Since we deal with finite paths, we consider a fragment of the logic with bounded
temporal operators. Also, we restrict to non-nested properties, i.e., those where path
sub-formulas ϕ do not contain in turn counterfactual operators (even though we allow
for arbitrary nesting of temporal operators in ϕ). The complication with nested formulas
is that we require multiple executions to determine the satisfaction of ϕ, leading to a
sample size that is exponential in the depth of the nested operator (Younes and Simmons
2006; Legay, Delahaye, and Bensalem 2010). Nevertheless, the fragment we consider
is rich enough to express a variety of reinforcement learning tasks (see Section 6) and
subsumes Probabilistic Bounded LTL (Zuliani, Platzer, and Clarke 2013) (because our
counterfactual formulas generalize probabilistic ones).

In short, with SMC we reduce the problem of checking I@t.P≥p(ϕ) to one of hypothesis
testing, given a sample of MDP realizations. As in (Younes and Simmons 2006; Legay,
Delahaye, and Bensalem 2010), we employ a sequential scheme that allows sampling only
the number of paths necessary to ensure a priori probabilities α and β of type-1 errors
(wrongly concluding that the property is false) and type-2 errors (wrongly concluding
that it is true), respectively. Our approach builds on (Younes and Simmons 2006; Legay,
Delahaye, and Bensalem 2010) and extends it to handle reward and causal effect properties,
by defining a suitable sequential test for T-distributed outcomes (rather than Bernoulli
ones as done in (Younes and Simmons 2006; Legay, Delahaye, and Bensalem 2010)).

5.1 Computation of Counterfactuals and Causal Effects.
SMC relies on sampling paths of the (counterfactual) MDP model under some policy.
We choose to sample these paths using the Gumbel-Max trick (see (5)) as it facilitates
inference for the causal effect operator, as we will explain next. Using this formulation,
we can express the counterfactual probability of (7) as the expectation of a function f (G)

6. For an MDP with state space S and transition probabilities P, the definition of the augmented MDP is
trivial: it will have state space

⋃
1≤i≤T S i and transition probabilities P(s′1 . . . s′T | s1 . . . sT , a) = P(s′T | sT , a) if∧T

t=2 s′t–1 = st and 0 otherwise.
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of (prior) Gumbel variables G ∼ Gumbel, as follows:

I@t.P=?(ϕ)(P ,π, τ) = EG[f (G)], with f (G) = 1(P ′,π′, τ′(G), 1) |= ϕ), (9)

where 1 is the indicator function, P ′ = Pτ[|τ|–t:] is the counterfactual MDP, π′ is inter-
vention I ’s policy, and τ′(G) is the path of P ′ under π′ which is uniquely determined by
G7.

The corresponding formulation for the counterfactual reward of (8) is readily obtained
as:

R≤k
=? (P ,π, τ) = EG[f (G)], with f (G) =

k∑
i=1
R(τ′(G)[i]). (10)

We proceed similarly for causal effect operators, with one important difference. While
in Definition 7, we formulated the causal effect as the difference of two independent
probabilities (or expected rewards), we here express it as the mean of paired differences
between individual outcomes. This will allow us to reduce a two-sample inference problem
into a one-sample problem.

∆I1,I0
@t .P=?(ϕ)(P ,π, τ) : f (G) = 1(P ′,π1, τ1(G), 1) |= ϕ) – 1(P ′,π0, τ0(G), 1) |= ϕ) (11)

∆I1,I0
@t .R≤k

=? (P ,π, τ) : f (G) =
b∑

i=a
R(τ1(G)[i]) –R(τ0(G)[i]), (12)

where for i = 0, 1, πi is Ii’s policy, and τi(G) is the path of the counterfactual MDP P ′
under πi uniquely determined by the Gumbel G. The advantage of the above form using
paired differences is that this yields smaller variability, and hence, a more accurate statistical
estimation, than the one based on the difference of independent means.

5.2 Qualitative Properties
Let pϕ = I@t.P=?(ϕ)(P ,π, τ) be the true (unknown) counterfactual probability of ϕ for
a given MDP P , policy π, and path τ. The problem of checking whether pϕ is above a
given threshold θ, i.e., deciding property I@t.P≥θ(ϕ), can be formulated and solved as
one of hypothesis testing, where we test the hypothesis H : pϕ ≥ θ against K : pϕ < θ
using a set of observations x1, . . . , xm of the underlying process.

Hypothesis testing may incur two kinds of errors: type-1 errors, i.e., wrongly concluding
that K is true (when H holds) and type-2 errors, i.e., wrongly concluding that H is true
(when K holds). We denote the probability of type-1 errors by α and that of type-2 errors
by β. The pair ⟨α,β⟩ is also called the strength of the test.

Wald’s sequential probability ratio test (SPRT) (Wald 2004) is an efficient scheme
used in probabilistic model checking (Younes and Simmons 2006; Younes et al. 2006) to
sample only the number of realizations necessary to answer the above hypothesis test with
strength ⟨α,β⟩. We first explain in detail the SPRT for I@t.P≥θ(ϕ) properties, and then
briefly cover the other kinds of formulas.

I@t.P≥θ(ϕ) properties. The SPRT method considers the following relaxation of the
original hypotheses: H0 : pϕ ≥ θ0 VS H1 : pϕ ≤ θ1, with θ0 = θ + δ and θ1 = θ – δ,
where δ > 0 is a user-defined parameter. The interval (θ1, θ0) is called indifference region, as
we are willing to accept either hypothesis when pϕ ∈ (θ1, θ0). This relaxation is necessary
because, when testing the original hypotheses H and K, we cannot control simultaneously
both α and β if the true probability pϕ is exactly equal to θ, see (Younes and Simmons
2006; Younes et al. 2006).

In the SPRT, we collect observations iteratively. At the m-th iteration, we have m
observations xm = (x1, . . . , xm). In our case, these are counterfactual outcomes, i.e.,

7. This decomposition is analogous to how we obtain the distribution PM of an SCMM as a function of the
distribution P(U) of its exogenous variables U.
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realizations of the Bernoulli process (X1, . . . , Xm) where Xi ∼ f (G) = 1(P ′,π′, τ′(G), 1) |=
ϕ) (see Eq. 9). Given xm, we compute the following likelihood ratio (LR)

f (xm | H1)
f (xm | H0)

=
∏m

i=1 Pr(Xi = xi | pϕ = θ1)∏m
i=1 Pr(Xi = xi | pϕ = θ0)

=
θdm

1 (1 – θ1)m–dm

θdm
0 (1 – θ0)m–dm

, (13)

where dm =
∑m

i=1 xi is the number of observed successes. In other words, f (xm | Hi) is
the probability of observing the sequence xm if pϕ = θi holds. At this point, the SPRT

compares the LR with the constants A = (1–β)/α and B = β/(1 – α) and: if
f (xm | H1)
f (xm | H0)

≤ B,

we accept H0, with a type-2 error probability of β;

if
f (xm | H1)
f (xm | H0)

≥ A, we accept H1, with a type-1 error probability of α; or,

we collect additional observations until one of the two above conditions hold. Note
that this procedure requires a larger number of observations as the true pϕ approaches
the threshold θ. Nevertheless, a decision is always reached after a finite number of steps
(see (Younes and Simmons 2006; Younes et al. 2006) for a more detailed analysis of the
SPRT’s stopping time). The above decision scheme is valid for other kinds of properties as
well, i.e., it doesn’t depend on the underlying distribution of the observations, as long as
the LR is adequately defined. Hence, we won’t repeat it for the cases below.

I@t.R
≤k
≥θ formulas. The SPRT can be also applied to variables other than Bernoulli, as

are those entailed by reward-based properties. The corresponding test is an application of
the SPRT to T-distributed observations (Schnuerch and Erdfelder 2020). Let µ be the true
(unknown) average cumulative reward, i.e., µ = I@t.R

≤k
=? . Here, we sample observations

from the f (G) of (10), for which we have that µ = E[f (G)].
We consider the hypotheses: H0 : µ ≥ θ0 VS H1 : µ ≤ θ1, with θ0 = θ+δ·σ and θ1 =

θ–δ ·σ, where σ is the (unknown) standard deviation of f (G), and δ > 0 is the indifference
parameter: the indifference region spans 2 · δ standard deviations around θ.

The definition of the LR follows the intuition that if H0 holds and in particular, µ = θ0,
then the variable Tm = (X̄m–θ)/Sm follows a non-central T distribution with non-centrality
parameter δ ·

√
m and m – 1 degrees of freedom, where X̄m = 1

m
∑m

i=1 Xi is the sample

mean and Sm = 1√
m

√
1

m–1
∑m

i=1(Xi – X̄m)2 is the standard error of X̄m (Schnuerch and
Erdfelder 2020). The same reasoning holds for H1, but after adjusting the sign of Tm.

Hence, the LR is given by
f (xm | H1)
f (xm | H0)

=
fT (–tm | m – 1, δ ·

√
m)

fT (tm | m – 1, δ ·
√

m)
where tm is the observed

value of Tm and fT (x | m – 1, δ ·
√

m) is the p.d.f. at x of the non-central T distribution
with m – 1 degrees of freedom and parameter δ ·

√
m.

∆I1,I0
@t .P≥θ(ϕ) and ∆I1,I0

@t .R≤k
≥θ formulas. Since we can express the causal effect as the

mean of a (non-Bernoulli) variable (the paired difference in the counterfactual outcomes of
I1 and I0), we can apply the same SPRT procedure introduced above for I@t.R

≤k
≥θ formulas

8, provided that we use the correct definition of f (G), i.e., that of (11) for ∆I1,I0
@t .P≥θ(ϕ)

and (12) for ∆I1,I0
@t .R≤k

≥θ.
When I1 = I0, however, the above procedure fails because the two policies attain the

same outcomes, and so their pairwise differences are constantly 0, resulting in Sm = 0 and
Tm =∞, which has a likelihood of 0. To detect this case, as done in (David et al. 2011),
we run a dedicated SPRT to test that the probability of obtaining equal outcomes is equal
to 1.

8. For the special case of ∆I1 ,I0
@t .P>0(ϕ), an alternative sequential test could be used, see (David et al. 2011).

Accepted Manuscript

https://doi.org/10.1017/cbp.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2025.2


Cambridge Large One 17

Boolean combinations. To verify ¬Φ with strength ⟨α,β⟩, we verify Φ with strength
⟨β,α⟩ and negate the result. To verify a conjunction

∧N
i=1 Φi with strength ⟨α,β⟩, we

need to verify each conjunct Φi with strength ⟨α/N,β⟩. See (Younes and Simmons 2006)
for more details.

5.3 Quantitative Properties
For quantitative properties, we use Chernoff-Hoeffding bounds to identify the number of
realizations n necessary such that the Monte-Carlo estimate of the probability (or reward)
property meets a priori error and confidence bounds. Given an error bound δ > 0 and
an iid sample X1, . . . , Xn such that for each i = 1, . . . , n, E[Xi] = µ and xl ≤ Xi ≤ xu for
some constant xl < xu, then the Hoeffding inequality (Hoeffding 1963) establishes that

P(|X̄n – µ| ≥ δ) ≤ 2 exp
(

–
2nδ2

(xu – xl)2

)
, where X̄n = (1/n)

∑n
i=1 Xi is the sample mean.

Hence, given bounds δ > 0 and 0 < α < 1, one can determine a priori the number of

realizations n such that P(|X̄n – µ| ≥ δ) ≤ α, by equating α = 2 exp
(

–
2nδ2

(xu – xl)2

)
and

obtaining n =

⌈
–

(xu – xl)2 log (α/2)
2δ2

⌉
.

For the special case of I@t.P=?(ϕ) properties, X̄n is the sample estimate of the probability,
µ is the probability to estimate (and hence 0 < δ < 1), xl = 0 and xu = 1. For ∆I1,I0

@t .P=?(ϕ)
properties, we have that xl = –1 and xu = 1 as these are the ranges for the difference of
two Bernoulli outcomes. For I@t.R

≤k
=? formulas, each realization is a cumulative reward

value, hence xl = k · Rl and xu = k · Ru whereRu andRl are, respectively, the largest and
smallest values of the MDP’s reward function R. Hence, for ∆I1,I0

@t .R≤k
=? formulas, we have

xu = k(Ru –Rl) and xl = k(Rl –Ru).
These a priori bounds, however, might be too conservative, especially for reward

properties where the range (xu – xl) tends to be consistently larger than what observed
empirically. An alternative is to compute confidence intervals, i.e., fix the sample size n and
the confidence 1 – α, thereby obtaining an estimate X̄n and an interval [X̄n]α ∋ X̄n such
that P(µ ̸∈ [X̄n]α) = α. In this sense, the width of [X̄n]α is comparable to the δ bound
in Hoeffding inequality. To construct confidence intervals for I@t.P=?(ϕ) properties, one
can use the common normal-approximation (aka Wald) interval if n is not too small or
the true probability not too close to 0 or 19, or use the “exact” (but usually conservative)
Clopper-Pearson interval. For the other properties, we can construct one-sample mean
intervals using the T distribution.

5.4 Algorithmic Complexity
The complexity of SMC is O(k ·N · cϕ) where k is the number of counterfactual operators
in the formula, N is the number of sampled paths (for each operator), and cϕ is the cost of
evaluating the operator’s path formula ϕ on each path. The latter term has complexity
O((2|τ|)d) where |τ| is the path length (bounded by the temporal bounds in ϕ) and d is the
depth of ϕ, i.e., the maximum number of nested until expressions (Bartocci, Deshmukh,
et al. 2018). The term N is a random variable (owing to the randomness of the sample) and
its expected value depends on the true (unknown) probability p to evaluate and the error
bounds α and β. Formulas for E[N] can be found for specific values of p, see (Younes and
Simmons 2006), but no general analytical form exists. Nevertheless, the SMC algorithm
terminates with probability 1 (Younes and Simmons 2006).

6. Experimental Evaluation
We provide two sets of results. In the first one, we consider a simple grid-world model
and a reach-avoid specification. We use this case study to provide a detailed analysis
of interventional and counterfactual probabilities, their variability, and the accuracy of

9. For the normal approximation to be valid, we require n · pϕ ≥ 10 and n · (1 – pϕ) ≥ 10.
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counterfactual inference. In the second set of results, we use PCFTL on four complex 2D
grid-world environments from the MiniGrid library (Chevalier-Boisvert, Willems, and
Pal 2018). Although these two case studies evaluate our approach on relatively similar
GridWorld MDPs, we can still explore a wide range of logical specifications and properties
within these environments.

6.1 Reach-Avoid Example.
We consider a 4× 4 grid-world example, where the agent can move up, down, left, or
right, one square at a time. The specification ϕ is one of reach-avoid: we want to reach
some goal region while avoiding an unsafe region, i.e., ϕ ≡ ¬unsafe U[0,T]goal. We
choose T = 10. We consider two policies, a nominal (default) policy π and an optimal
policy πo. The optimal policy is found by value iteration after assigning a reward 1 to
the goal and making the unsafe and goal states terminal. The nominal policy is defined
manually to make it intentionally less safe than πo. The stochasticity comes from the fact
that the environment, with small probability (0.1 in our experiments), randomly takes the
agent to a different position than that determined by the policy.

For each experiment in this subsection, we perform 1000 repetitions to evaluate the
variability of the estimates. For each repetition, we generate 100 observed paths under
the nominal policy. Counterfactuals are estimated using 20 posterior Gumbel realizations.
Probability values are computed by averaging the satisfaction value of ϕ over all paths
within each repetition. We choose the optimal policy as the interventional/counterfactual
one, by defining I = {π← πo}.

We evaluate the performance of the optimal policy in a counterfactual setting. In
particular, we compare the probability P=?(ϕ) under the nominal MDP against the average
counterfactual probability I@t.P=?(ϕ) for some t (where the average is w.r.t. the set of
nominal paths used for P=?(ϕ)). We apply I at the beginning of the path (t = |τ| – 1, see
Fig. 5a) and after the first step (t = |τ| – 2, see Fig. 5b). Since πo (blue histograms in Fig. 5)
is safer than π (orange), the distribution of counterfactual probabilities clearly dominates
that under nominal settings. See Fig. 5a. For the same reason, delaying the intervention of
one step leads to more unsafe trajectories (the blue histogram in Fig. 5b is indeed shifted
to the left compared to that in Fig. 5a).

In Fig. 5c we provide results of a query corresponding to the scenario of Figure 4c,
i.e., involving both the counterfactual past and the subsequent future evolution of the
system. To do so, we draw paths τ under π of length 2 (shorter than than ϕ’s time bound)
and apply I after the first time step. This results in paths that are counterfactual in the
first part (because we apply I in the past, conditioned by τ) and post-interventional in the
second part (because to evaluate ϕ, we need paths longer than the observed τ).

(a) πo applied at the
beginning.

(b) πo applied after the
first step

(c) πo applied after the first step,
on paths shorter than T.

Figure 5. Counterfactual probabilities under the optimal policy πo (blue) given that we observe MDP paths
under the nominal policy π (orange). In (a) and (b) paths have length 10 (same as the time bound T in ϕ). In
(c), we observe paths of length 2 < T, and so, applying πo results in paths that are part counterfactual, part
post-interventional.

6.2 MiniGrid Benchmark.
MiniGrid (Chevalier-Boisvert, Willems, and Pal 2018) is a collection of 2D grid-world
environments with goal-oriented tasks designed for developing reinforcement learning
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Table 1. PCFTL verification of the MiniGrid benchmark, with 6x6 grids. For each environment, we apply the
intervention at the start of the path (t = T – 1) and 10 steps after the start (t = T – 11). T = 50 is the length of the
path. The SMC parameters (see Section 5) are δ = 0.02, and α = 0.05 and β = 0.2 for P and I@t .P properties,
and α = 0.01 and β = 0.2 for ∆I,∅

@t .P.⊤ and⊥ indicate whether the SMC procedure returns true or false for the
given PCFTL formulae, and in parentheses are the number of realizations required by SMC to reach this verdict.

Environment t P≥0.9(ϕ) I@t .P≥0.9(ϕ) ∆I,∅
@t .P>0(ϕ)

DoorKey6x6 T – 1 ⊤(125) ⊥(25) ⊥(50)
DoorKey6x6 T – 11 ⊤(125) ⊥(25) ⊥(50)

Empty6x6 T – 1 ⊤(75) ⊥(25) ⊥(50)
Empty6x6 T – 11 ⊤(75) ⊥(25) ⊥(75)

Fetch6x6 T – 1 ⊤(75) ⊥(25) ⊥(75)
Fetch6x6 T – 11 ⊤(75) ⊥(50) ⊥(75)

GoToDoor6x6 T – 1 ⊤(125) ⊥(25) ⊥(50)
GoToDoor6x6 T – 11 ⊤(125) ⊥(25) ⊥(100)

algorithms. Each cell in this grid world is encoded as a three-dimensional tuple (object,
color, state). There are 8 different objects, 6 colors and 3 states: open, close and locked.
There are 7 actions that the agent can take which are turn left, turn right, move forward,
pick up, drop, toggle and done. We consider four of these environments: Empty, DoorKey,
GoToDoor and Fetch.

Empty is the simplest environment, where the agent simply navigates the grid to reach
some goal. This corresponds to the specification F[1,T]goal, where we choose T = 50. In
the DoorKey environment, a key and a door exist on the grid. The agent must first find the
key, unlock the door, and reach the goal, expressed as ϕ ≡ F[1,Tk](key ∧ F[1,Td](door ∧
F[1,Tg]goal)), with Tk + Td + Tg = T. This task requires the agent to learn basic navigation
skills and non-trivial sequential plans. In GoToDoor, we have four doors with different
colors, and the agent is tasked to reach the door of some given color: ϕ ≡ F[1,T]door.
The door is always unlocked, making it a simpler task than DoorKey. In Fetch, the grid
contains multiple objects with assorted colors which the agent must pick up and bring to
the goal: ϕ ≡ F[1,To](object ∧ X (carrying U[1,Tg]goal)), with To + Tg + 1 = T. This task
requires learning to manipulate objects and navigate the grid.

For each environment, we train two convolutional neural network policies using the
Proximal Policy Optimization (PPO) (Schulman et al. 2017) algorithm. For the nominal
policy π, this time we use an optimal policy, trained using 10 million time steps. The
interventional/counterfactual policy is intentionally undertrained, using only 200 time
steps.

Experimental results are presented in Table 1. We examine probabilities under the
nominal/optimal policy (3rd column) using the formula P≥0.9(ϕ), counterfactual proba-
bilities with the undertrained policy (4th column) using I@t.P≥0.9(ϕ), and determine the
causal effect between the two (5th column) using ∆I,∅

@t .P>0(ϕ). For every environment and
PCFTL formula, we carry out two set of experiments using two different intervention
points, at the start of the trajectory (t = T – 1), and 10 steps into the trajectory (t = T – 11).

Verification results are computed using statistical model checking (see 5 for details on
the decision procedures). Results indicate that the system does not satisfy the property
when using an undertrained policy, while the optimal policy is always successful. This
performance gap can also be seen in the causal effect column. We observe that the
verification procedure is very efficient (requiring at most 125 realizations), and that the
number of realizations necessary to obtain a positive answer for the nominal policy is
higher than those for a negative answer for the interventional policy. The reason is that
we set a high probability threshold, p ≥ 0.9, and so, even with a well-trained policy, we
require a fair amount of evidence to conclude that the property is satisfied. Conversely, the
interventional policy performs enough badly to require much fewer points for concluding
that the property is violated.
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7. Related Work
Causality and verification. Concepts of causality have been investigated in formal ver-
ification for years (Baier, Dubslaff, et al. 2021). Two main classes of approaches exist,
respectively based on the theory of actual causality (Halpern 2016; Halpern and Pearl
2020) and on probabilistic causation. Given an SCMM and a context u, an actual cause
is, informally, the smallest set of SCM variables that, if forced with a different value, lead
to a different (counterfactual) outcome for some target variable Y. This notion has been
adapted in (Beer et al. 2012) to find so-called root causes in LTL counterexample traces,
in (Gössler and Aştefănoaei 2014) to identify the components of a timed-automata network
responsible for a given failure trace, and in (Leitner-Fischer and Leue 2013) to derive fault
trees from probabilistic counterexamples. We note there also exist techniques not based on
actual causality for finding root causes of failure in temporal logic monitoring (e.g. (Bar-
tocci, Ferrère, et al. 2018; Zhang et al. 2023)). Probabilistic causation methods like (Baier,
Funke, et al. 2021; Baier et al. 2022; Kleinberg and Mishra 2009; Kleinberg 2011) build
on the probability-raising (PR) principle by which the probability of an effect E is higher
after observing a cause C than if the cause had not happened. More precisely, these works
consider Markov models and express E and C as sets of states or PCTL state formulas.
Our work complements these methods as it focuses not on identifying causes given some
observations but on reasoning about the probability of a temporal logic specification in
interventional and counterfactual settings. Methods based on actual causality similarly
rely on counterfactuals but consider only non-probabilistic models. Methods based on the
PR principle support probabilistic models but do not support counterfactual analysis.

Two relevant papers have been published in the last year at the intersection between
causality and temporal logic (TL). In (Coenen et al. 2022), the authors extend actual
causality to the case where causes and effects are given as TL properties. Their work is
different from ours in that they do not consider probabilistic systems, plus they use TL
to specify causes and effects, but the logic itself cannot express counterfactual queries.
The work closest to ours is (Finkbeiner and Siber 2023), which introduces a new (non-
probabilistic) counterfactual TL with would and might modalities, borrowed from Lewis’
theory of counterfactuals (Lewis 2013). However, their method is model-agnostic, i.e.,
counterfactuals are obtained by manipulating the observed trace, regardless of the model
that generated it. Our counterfactual traces are instead obtained by intervening on the
data-generating model.

Probabilistic hyperproperties. Probabilistic hyper-properties (PHPs) for MDPs have
been recently introduced in (Dimitrova, Finkbeiner, and Torfah 2020; Ábrahám et al. 2020)
to support quantification over MDP schedulers (i.e., policies). One can see that PHPs for
MDPs are strictly more expressive than the fragment of PCFTL without counterfactuals
(i.e., where interventions can be applied only at t = 0). For instance, the PCFTL causal-
effect formula ∆I1,I0

@0 .P▷◁p(ϕ) can be expressed as the PHP ∃σ1∃σ0.P(ϕσ1 ) – P(ϕσ0 ) ▷◁ p
(using the syntax of (Dimitrova, Finkbeiner, and Torfah 2020)) where the domains of
schedulersσ0 andσ1 are singletons (and chosen to be consistent with I0 and I1, respectively).
However, PHPs do not support counterfactuals, which is the main strength of our method.

Causality in Reinforcement Learning. There is a growing interest in applying causal infer-
ence in RL, for instance, to evaluate counterfactual policies from observational data (Oberst
and Sontag 2019), provide counterfactual explanations (Tsirtsis, De, and Rodriguez 2021)
(i.e., the minimum number of policy actions to change in order to attain a better outcome),
produce counterfactual data to enhance training of RL policies (Forney, Pearl, and Barein-
boim 2017; Buesing et al. 2018), or estimate causal effects in presence of confounding
factors (Lu, Schölkopf, and Hernández-Lobato 2018). These works are very relevant yet
they consider different problems from ours. That said, PCFTL builds on (Oberst and
Sontag 2019) which introduces Gumbel-Max SCMs and their counterfactual stability.
More recently, other methods have shown that the Gumbel-Max SCM is not the only
causal model that satisfies the counterfactual stability property, and instead bound over
all models that satisfy counterfactual stability (Haugh and Singal 2023), or search for

Accepted Manuscript

https://doi.org/10.1017/cbp.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/cbp.2025.2


Cambridge Large One 21

a particular model that optimises some given criteria (Lorberbom et al. 2021). In this
paper we limit our attention to only Gumbel-Max SCMs since other methods are either
computationally inefficient or require extra assumptions.

8. Conclusion
We have presented the probabilistic temporal logic PCFTL, the first of its kind to enable
causal reasoning about interventions, counterfactuals, and causal effects in Markov Decision
Processes. From a syntactic viewpoint, this is achieved by introducing an operator that
subsumes interventions, counterfactuals, and the traditional probabilistic operator. The
semantics of PCFTL makes use of counterfactual MDPs constructed from Gumbel-Max
structural causal models, which provide a representation of discrete-state MDPs amenable
to counterfactual reasoning. We performed a set of experiments on a benchmark of
grid-world models, demonstrating the usefulness of the approach (being applicable to
deep reinforcement learning policies as well) and the accuracy of counterfactual inference.
We envision several future directions for this work, including investigating numerical
or symbolic (as opposed to statistical) model-checking algorithms, and extending our
approach to a broader range of systems, such as uncertain, partially observable, and
continuous-time and continuous-state MDPs. Achieving this will require developing
robust counterfactual inference methods tailored to these different complex systems but will
ultimately enable PCFTL to be applied more broadly across a diverse set of cyber-physical
and data-driven systems.
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