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Rarity of pseudo-null Iwasawa modules
for p-adic Lie extensions
Takenori Kataoka

Abstract. In this paper, we obtain a necessary and sufficient condition for the pseudo-nullity of the

p-ramified Iwasawa module for p-adic Lie extension of totally real fields. It is applied to answer the

corresponding question for the minus component of the unramified Iwasawa module for CM-fields.

The results show that the pseudo-nullity is very rare.

1 Introduction

One of the main themes in Iwasawa theory is the study of various Iwasawa mod-

ules, including unramified Iwasawa modules. It is a classical conjecture (see Green-

berg [4, Conjecture 3.5]) that the unramified Iwasawa modules for maximal multiple

Zp-extensions are always pseudo-null. This conjecture is often called Greenberg’s

generalized conjecture and a lot of research has been done, but it is still open.

It is a remarkable result of Hachimori–Sharifi [6] that, when we consider non-

commutative p-adic Lie extensions, the pseudo-nullity (in the sense of Venjakob [15]) of
unramified Iwasawa modules often fails. More concretely, assuming that the extension

is “strongly admissible” and µ = 0, they obtained a necessary and sufficient condition

for the pseudo-nullity of the minus components (see Theorem 4.3).

One of the main goals of this paper (see Theorem 1.2) is to establish a complete

necessary and sufficient condition for the pseudo-nullity of the minus components of

unramified Iwasawa modules, without assuming that the extension is “strongly admissi-

ble” or µ = 0. In fact, our first main theorem (Theorem 1.1) handles p-ramified Iwasawa

modules for totally real fields. We then deduce Theorem 1.2 from Theorem 1.1 and its

variant by using a suitable duality.

1.1 Main theorem for totally real fields

Let p be an odd prime number throughout this paper. Let F be a totally real number

field and L/F a pro-p, p-adic Lie extension (so L is also totally real). We suppose the

following:

• L ⊃ Fcyc, where Fcyc denotes the cyclotomic Zp-extension of F .
• L/F is unramified at almost all primes of F .
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2 T. Kataoka

Set G = Gal(L/F) and H = Gal(L/Fcyc), so G/H ≃ Gal(Fcyc/F) ≃ Zp . We

are mainly interested in the non-commutative case: If G is commutative, Leopoldt’s

conjecture predicts thatH is finite.

Let Sp = Sp(F) be the set of p-adic primes of F . Let S ⊃ Sp be a finite set of finite

primes of F . We study the S-ramified Iwasawa module XS(L) = Gal(MS(L)/L), where
MS(L) denotes the maximal abelian p-extension of L unramified outside S. It is known
that XS(L) is finitely generated over the Iwasawa algebra Zp[[G]] (see Corollary 3.5).
Note that we do not assume that L/F is unramified outside S. The case where S = Sp
will be applied to deduce Theorem 1.2.

To state the result, we introduce the following:

• Let SS
ram = SS

ram(L/Fcyc) be the set of primes of Fcyc that are ramified in L/Fcyc and

not lying above S.
• Let λS , µS be the Iwasawa λ, µ-invariants of XS(Fcyc).
In fact, we have µS = µSp and λS can be described by using λSp (see Lemma 3.1).

Theorem 1.1 TheZp[[G]]-module XS(L) is pseudo-null if and only if µS = 0 and (exactly)
one of (i) and (ii) holds:

(i) dimG = 1, λS = 0, and #SS
ram ≤ 1.

(ii) dimG = 2 and λS + #SS
ram = 1.

This theorem shows that the pseudo-nullity of XS(L) is very rare. See Example 3.7

for a description for the case F = Q. In general, necessary conditions include µS = 0,

λS + #SS
ram ≤ 1, and H is pro-cyclic (see Lemma 3.2(2)). It is worth mentioning that

XS(L) is not pseudo-null (and in particular, is nonzero) whenever dimG ≥ 3; even this

statement appears to be novel. We note that Lemma 3.2(2) also shows that the condition

dimG = 2 in (ii) can be replaced by dimG ≥ 2.

1.2 Main theorem for CM-fields

Let F be a CM number field and L/F be a pro-p, p-adic Lie extension that is also a

CM-field. We write L = L+ and F = F + for the maximal totally real subfields. We

suppose the same assumptions in §1.1 hold for L/F , that is:

• L ⊃ F cyc, where F cyc denotes the cyclotomic Zp-extension of F .
• L/F is unramified at almost all primes of F .

Set G = Gal(L/F ) ≃ Gal(L/F) andH = Gal(L/F cyc) ≃ Gal(L/Fcyc).
Let X(L) be the unramified Iwasawa module for L. We study its minus compo-

nent X(L)− with respect to the complex conjugation, which is finitely generated over

Zp[[G]].
To state the result, we introduce the following:

• Put δ = 1 if F contains µp and δ = 0 otherwise. Here, µp denotes the group of p-th
roots of unity.

• Let S−
ram = S−

ram(L/Fcyc) be the set of non-p-adic primes of Fcyc that are ramified in

L/Fcyc and split in (the quadratic extension) F cyc/Fcyc.
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Pseudo-null Iwasawa modules 3

• Let λ−, µ− be the Iwasawa λ, µ-invariants of X(F cyc)−.

Theorem 1.2 The Zp[[G]]-module X(L)− is pseudo-null if and only if we have µ− = 0

and (exactly) one of (i), (ii), and (iii) holds:

(i) δ = 1, dimG = 1, λ− = 0, and #S−
ram ≤ 1.

(ii) δ = 1, dimG = 2, and λ− + #S−
ram = 1.

(iii) δ = 0, λ− = 0, and #S−
ram = 0.

As inTheorem1.1, the conditiondimG = 2 in (ii) can be replacedbydimG ≥ 2. Tak-

ing this into account, we see that Theorem 1.2 is stronger than the result of Hachimori–

Sharifi [6, Theorem 1.2], as long as we are concerned with only the pseudo-nullity (see

§4.2).

1.3 The nature of the proof

As already remarked, we will deduce Theorem 1.2 from Theorem 1.1 and its variant by

using a duality. Let us briefly discuss the proof of Theorem 1.1.

For simplicity, for awhile we assume that L/F is unramified outside S, that is, SS
ram =

∅. The key idea is to use the Tate sequence (Proposition 3.4(1)) of the form

0 → XS(L) → P → Q → Zp → 0,

where P and Q are finitely generated Zp[[G]]-modules of pdZp [[G]] ≤ 1 (pd denotes

the projective dimension). This implies that XS(L) does not have a nonzero pseudo-

null submodule (Proposition 2.3). Therefore, the pseudo-nullity of XS(L) holds only if
XS(L) = 0, and then the Tate sequence shows

pdZp [[G]](Zp) ≤ 2.

This inequality holds if and only ifG is p-torsion-free and dimG ≤ 2 (Lemma 2.4). This

is a severe constraint, and indeed it suffices for our purpose.

When L/F is not necessarily unramified outside S, we still have a variant of the Tate
sequence (Proposition 3.4(2)) that is constructed in [5] by Greither, Kurihara, and the

author in the case where G is commutative and H is finite. The construction is also

valid for the general case. The sequence involves a module denoted by Z0
Σ f \S(L), which

is more complicated compared to Zp . Even in this case, a close study of Z0
Σ f \S(L) from

a homological view gives a severe constraint on G and its decomposition groups, which

suffices for our purpose. Note that this kind of argument was done in [5, Proposition

2.14] (in the much simpler case that G is commutative andH is finite, of course).

Remark 1.3 More generally, we can apply this idea to the Selmer groups of ordinary p-
adic representations. The counterpart of the Tate sequences is obtained by using suitable

Selmer complexes (onemay use the formalism in the author’s work [8, §3]). For instance,

we may deal with Selmer groups of ordinary elliptic curves, which should recover

the pseudo-nullity criterion obtained by Hachimori–Sharifi [6, Theorem 5.4]. Another

application is the Σ-ramified Iwasawa modules for p-ordinary CM-fields, where Σ is
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4 T. Kataoka

a p-adic CM-type. An advantage of this situation is that we naturally encounter com-

mutative Galois groups of dimension ≥ 2. However, the author does not think that

these kinds of Iwasawa modules are expected to be often pseudo-null. Coates–Sujatha

[2, ConjectureB andTheorem4.11] conjectured anddiscussed the pseudo-nullity for the

fine Selmer groups of elliptic curves, but our formalism cannot handle the fine Selmer

groups. For this reason, we do not pursue such generalizations in this paper.

2 Preliminaries

In this section, we review the definition and properties of pseudo-null modules over

completed group rings of compact p-adic Lie groups. The concept was introduced by

Venjakob [15] (see also [16]).

Let G be a compact p-adic Lie group. We write dimG for the dimension of G as a p-
adic Lie group. Let Λ = Zp[[G]] be the completed group ring of G over Zp . We begin

with listing basic facts (see [15, §1.2] for a more detailed summary):

• Any closed subgroup G′ of G is again a p-adic Lie group (Cartan’s theorem, see

Serre [14, Chap. V, §9]).
• There is an open subgroup G0 of G that is pro-p and p-torsion-free.
• The ringΛ is (left and right) noetherian (Lazard [10, Chap. V, (2.2.4)]).

When G is p-torsion-free, Venjakob [15, Definition 3.1(iii)] introduced the concept

of pseudo-nullity by showing that Λ is an Auslander regular ring ([15, Theorem 3.26]).

In any case, as in [6], let us define the pseudo-nullity in simple terms.

Definition 2.1 A finitely generatedΛ-module M is pseudo-null if we have

E i
Λ
(M) := Exti

Λ
(M,Λ) = 0

for i = 0,1.

Remark 2.2 It is easy to see that, when G0 is an open subgroup of G and we write

Λ0 = Zp[[G0]], we have an isomorphism

E i
Λ0
(M) ≃ E i

Λ
(M)

(see [15, Proposition 2.7(ii)]). In particular, the pseudo-nullity overΛ andΛ0 are equiv-

alent. Thus, to study the pseudo-nullity, we may assume G is p-torsion-free (and pro-p
if necessary).

Let us check the equivalence of our definition and [15, Definition 3.1(iii)] when G is

p-torsion-free. As in [15, Definition 3.3(i)], we define the grade j(M) of M by

j(M) = min{i | E i
Λ
(M) , 0}.

Then our definition of the pseudo-nullity says j(M) ≥ 2. On the other hand, [15, Def-

inition 3.1(i)] introduces the dimension δ(M) of M and define the pseudo-nullity as

δ(M) ≤ d − 2, where d = dimG + 1 is the homological dimension of Λ. Now the

equivalence follows from the formula δ(M) + j(M) = d ([15, Proposition 3.5(ii)]).
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Proposition 2.3 Let P be a finitely generatedΛ-module such that pdΛ(P) ≤ 1. Then P does
not have nonzero pseudo-null submodules.

Proof This follows from [15, Propositions 3.2(i) and 3.10]. Let us give a direct proof

by using Definition 2.1. Let 0 → F1 → F0 → P → 0 be a presentation of P with

F0,F1 finitely generated projective overΛ. Let M be a pseudo-null submodule of P. By
pull-back, we have a commutative diagram

0 // F1
// F0

// P // 0

0 // F1
f

// N //?�

OO

M //?�

OO

0.

By the pseudo-nullity of M , we have Exti
Λ
(M,F1) = 0 for i = 0,1, so the lower exact

sequence induces an isomorphism

f ∗ : HomΛ(N,F1) → HomΛ(F1,F1).

Considering the lift of the identity in HomΛ(F1,F1) to N , we see that the injective

map f splits. Therefore, the surjective map N → M also splits. Since N ⊂ F0 and

HomΛ(M,F0) = 0, we must have M = 0. ■

In §3.4, we will investigate leftΛ = Zp[[G]]-modules of the form

Zp[[G/N]] = Zp[[G]] ⊗Zp [[N]] Zp

for closed subgroupsN of G. We introduce two lemmas in advance.

Lemma 2.4 For a closed subgroupN of G, the following are equivalent.

(i) N is p-torsion-free.
(ii) We have pdΛ(Zp[[G/N]]) = dimN .
(iii) We have pdΛ(Zp[[G/N]]) < ∞.

Proof By [15, Proposition 4.9 (iii)], we have

pdΛ(Zp[[G/N]]) = pdZp [[N]](Zp).

Note that this reduces the proof to the caseN = G.

By Brumer [1, Corollary 4.4] (see [15, page 275] or [12, Corollary (5.2.13)]), we know

that pdZp [[N]](Zp) is equal to the p-cohomological dimension cdp N ofN . IfN is not

p-torsion-free, then cdp N = ∞ (e.g., [12, (3.3.1)]). IfN is p-torsion-free, sinceN is a

p-adic Lie group, it is known to be a Poincaré group of dimension dimN (Lazard [10],

see Serre [13, I, §4.5]), so in particular we have cdp N = dimN . ■

Lemma 2.5 Let N be a closed subgroup of G such that dimN ≥ 2. Then Zp[[G/N]] is
pseudo-null as a Λ-module.
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Proof It is easy to show

E i
Λ
(Zp[[G/N]]) ≃ E i

Zp [[N]](Zp) ⊗Zp [[N]] Zp[[G]]

(see [15, Proposition 2.7(i)]). This reduces the proof to the caseN = G. Then the lemma

follows from [15, Corollary 4.8(i)]; indeed, it implies that the grade j(Zp) over Zp[[N]]
equals dimN . ■

3 Results for totally real fields

In this section, we prove Theorem 1.1 and its variant (Theorem 3.16). We keep the

notation in §1.1. SetΛ = Zp[[G]].

3.1 Notes on the statement

First we review some properties of λ and µ-invariants. Recall that λS and µS are asso-

ciated to the Iwasawa module XS(Fcyc). It is well-known that the Iwasawa module

XS(Fcyc) does not have nonzero finite submodules; this is a special case of Corollary 3.5

below. Therefore, if µS = 0, then XS(Fcyc) is a freeZp-module of rank λS . In particular,
we have XS(Fcyc) = 0 if and only if λS = µS = 0.

The following basic lemma (cf. [12, Corollary (11.3.6)]) is unnecessary for the proof

of the main theorems, but it enables us to reformulate Theorem 1.1.

Lemma 3.1 We have µS = µSp and

λS = λSp + #{v ∈ S(Fcyc) | N(v) ≡ 1 (modp)},

where S(Fcyc) denotes the set of primes of Fcyc that are lying above S and N(v) denotes the
cardinality of the residue field at v.

Proof Wehave a canonical surjective homomorphism from XS(Fcyc) to XSp (Fcyc). Its
kernel is the direct sum of the projective limits of the p-parts of the local unit groups at
primes in S \ Sp . By computing the Zp-ranks, we obtain the lemma. ■

Recall that SS
ram = SS

ram(L/Fcyc) denotes the set of primes of Fcyc that are ramified

in L/Fcyc and not lying above a prime in S. We also write (SS
ram)L = SS

ram(L/Fcyc)L for

the set of primes of L that are lying above a prime in SS
ram.

The following lemma is mentioned in §1.1.

Lemma 3.2 The following statements hold.

(1) Suppose µS = λS = 0 and #SS
ram = 1. Then the unique prime v0 ∈ SS

ram is totally
ramified in L/Fcyc, so we have #(SS

ram)L = 1.
(2) If µS = 0 and λS + #SS

ram ≤ 1, thenH is pro-cyclic.

Proof (1) Take a prime w0 of L lying above v0 and let Iw0
(L/Fcyc) ⊂ H be its inertia

group. Then by XS(Fcyc) = 0, the natural map from Iw0
(L/Fcyc) to the abelianization
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H ab ofH is surjective. This implies that Iw0
(L/Fcyc) = H (see, e.g., Serre [13, I, §4.2,

Proposition 23 bis]).

(2) First, suppose #SS
ram = 1. Then by (1), L/Fcyc is totally ramified at the non-p-adic

prime v0, so it must be pro-cyclic.

Next, suppose #SS
ram = 0. Then since L/Fcyc is unramified outside S, the abelianiza-

tionH ab is a quotient of XS(Fcyc). By the assumption, XS(Fcyc) is a free Zp-module of

rank λS ≤ 1, so XS(Fcyc) is pro-cyclic. Therefore,H ab is also pro-cyclic, which implies

H is already pro-cyclic (loc. cit.). ■

Here is a remark on the statement of Theorem 1.1 when G is commutative.

Remark 3.3 Suppose that G is commutative. Also, suppose that H is finite, as

Leopoldt’s conjecture predicts. In this case, Theorem 1.1 claims that we have XS(L) = 0

if and only if XS(Fcyc) = 0 and #SS
ram ≤ 1.

We can compare this with a result of Kurihara and the author [9] on the minimal

number of generators of XS(L) over the Iwasawa algebra. It deals with the case SS
ram =

∅ only. In this case, [9, Theorem 1.1] implies that we have XS(L) = 0 if and only if

XS(Fcyc) = 0 and L = Fcyc. This agrees with Theorem 1.1.

3.2 Tate sequences

Let us introduce the exact sequences that play the crucial role in the proof of Theorem

1.1.

For a finite prime u of F , we choose a prime of L lying above u andwriteGu ⊂ G for

the decomposition group. Note that Gu has an ambiguity up to inner automorphisms,

but this does not matter in the subsequent argument. We set

Zu(L) = Zp[[G/Gu]] = Zp[[G]] ⊗Zp [[Gu ]] Zp,

which is regarded as a left module over Λ = Zp[[G]]. Then for a finite set T of finite

primes of F , we set

ZT (L) =
⊕
u∈T

Zv(L).

Moreover, whenT is non-empty, we define Z0
T (L) as the kernel of the natural surjective

map ZT (L) → Zp , so we have an exact sequence

0 → Z0
T (L) → ZT (L) → Zp → 0.

Let Sram(L/F) denote the set of primes of F that are ramified in L/F , which is

assumed to be finite. Let S∞ = S∞(F) denote the set of archimedean places of F .
Claim (1) in the next proposition is mentioned in §1.3, while claim (2) is to handle the

general case. In fact, to prove the theorems in this paper, claim (1) is not necessary and

(2) suffices in all cases.

Proposition 3.4 The following hold.
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(1) Suppose S ⊃ Sram(L/F). Then we have an exact sequence

0 → XS(L) → P → Q → Zp → 0

over Λ, where P and Q are finitely generated Λ-modules with pdΛ ≤ 1.
(2) Let Σ ⊃ S ∪ Sram(L/F) ∪ S∞ be a finite set of places of F with Σ f := Σ \ S∞ ⫌ S. Then

we have an exact sequence

0 → XS(L) → P → Z0
Σ f \S(L) → 0

over Λ, where P is a finitely generated Λ-module with pdΛ ≤ 1.

Proof At least when G is commutative and H is finite, claim (1) is well-known (e.g.,

[9, Theorem 4.1] by Kurihara and the author) and claim (2) is a direct generalization

of [5, Proposition 2.11]. Even in the non-commutative case, claim (1) follows from [16,

Proposition 2.13]. Note that the weak Leopoldt’s conjecture holds since L contains Fcyc.

Let us sketch the construction. In case (1), set Σ = S ∪ S∞ and Σ f = S. In both (1)

and (2), let CS be a complex that is defined so that we have a triangle

CS → RΓIw(FΣ/L,Zp(1)) →
⊕
v∈S

RΓIw(Lv,Zp(1)),

where FΣ denotes the maximal extension of F unramified outside Σ and RΓIw denotes

the (global and local) Iwasawa cohomology complexes (we follow the notation in the

author’s article [7, §3]). Since Σ ⊃ Sram(L/F), it is known that both RΓIw are perfect

(Fukaya–Kato [3, Proposition 1.6.5]), so CS is also perfect. The global duality gives us a

triangle

RΓIw(FΣ/L,Zp(1)) →
⊕
v∈Σ f

RΓIw(Lv,Zp(1)) → RΓ(FΣ/L,Qp/Zp)∨[−2],

where (−)∨ denotes the Pontryagin dual (see Nekovář [11, §5.4]; in the book the coeffi-

cient ring is assumed to be commutative, but the proof is valid for our non-commutative

case). Therefore, we obtain a triangle

CS →
⊕

v∈Σ f \S
RΓIw(Lv,Zp(1)) → RΓ(FΣ/L,Qp/Zp)∨[−2]. (3.1)

In case (1), triangle (6) means CS ≃ RΓ(FΣ/L,Qp/Zp)∨[−3], so H2(CS) ≃ XS(L),
H3(CS) ≃ Zp , and Hi(CS) = 0 for i , 2,3. By taking a quasi-isomorphism CS ≃ [0 →
C1 → C2 → C3 → 0] with C1,C2,C3 projective, we obtain a sequence of the desired

form (cf. [9, Theorem 4.1]).

In case (2), the cohomology exact sequence of (6) yields

0 → XS(L) → H2(CS) → ZΣ f \S(L) → Zp → 0

and Hi(CS) = 0 for i , 2. By taking a quasi-isomorphism CS ≃ [0 → C1 → C2 → 0]
with C1,C2 projective, we see that H2(CS) satisfies pdΛ ≤ 1. By setting P = H2(CS),
we obtain a sequence of the desired form. ■

The S ⊃ Sram(L/F) case of the following corollary is proved in [16, Theorem 4.5].
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Pseudo-null Iwasawa modules 9

Corollary 3.5 TheΛ-module XS(L) is finitely generated and does not have nonzero pseudo-
null submodules.

Proof Since Λ is noetherian, this immediately follows from Propositions 2.3 and

3.4(2). ■

In particular, XS(L) is pseudo-null if and only if XS(L) = 0. In what follows, we

freely use this fact.

3.3 Rephrasing the theorem

To prove Theorem 1.1, it is useful to rephrase it in the following form.

Theorem 3.6 We have XS(L) = 0 if and only if (exactly) one of (A), (B), and (C) holds:

(A) Both (A1) and (A2) hold.

(A1) L = Fcyc.
(A2) µS = 0 and λS = 0.

(B) Both (B1) and (B2) hold.

(B1) SS
ram = ∅ andH ≃ Zp .

(B2) µS = 0 and λS = 1.

(C) Both (C1) and (C2) hold.

(C1) #(SS
ram)L = 1.

(C2) µS = 0 and λS = 0.

Let us briefly discuss the equivalence between Theorems 1.1 and 3.6. The µS = 0

does not matter at all. We easily see that “(A)⇒ (i)” and “(B)⇒ (ii).” We also have “(C)⇒
λS = 0 and #SS

ram = 1⇒ (i) or (ii),” where the final implication holds since dimG = 2

in (ii) can be replaced by dimG ≥ 2 by Lemma 3.2(2). Next, we easily see that “(i) and

#SS
ram = 0⇒ (A)” and “(ii) and #SS

ram = 0⇒ (B).” If (i) or (ii) holds andmoreover #SS
ram =

1, we have (C) by Lemma 3.2(1).

Example 3.7 When F = Q, let us explicitly describe the situations (A), (B), and (C). It is
well-known that µSp = 0 and λSp = 0. Therefore, Lemma 3.1 tells us µS = 0 and what

λS is in general. Without loss of generality, we assume that every ℓ ∈ S \ {p} satisfies
ℓ ≡ 1 (modp). Then conditions (A), (B), and (C) are described as follows:

(A) S = {p} and L = Qcyc.

(B) S = {p, ℓ} with ℓ non-split inQcyc/Q, and L = MS(Qcyc).
Note that MS(Qcyc) is a Zp-extension ofQcyc.

(C) S = {p} and L/Qcyc is ramified at a unique non-p-adic prime of L (or ofQcyc).

For instance, this occurs if we choose a prime number ℓ as in (B) and take L as any

intermediate field of M{p,ℓ }(Qcyc)/Qcyc other thanQcyc.

By Theorem 3.6, we have XS(L) , 0 except for these special cases.
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To prove Theorem 3.6, we begin with observing the Galois coinvariant module

XS(L)H .

Lemma 3.8 If (B1) holds, then XS(L)H is isomorphic to the kernel of the natural homo-
morphism XS(Fcyc) ↠ H . If (C1) holds, then we have an isomorphism XS(L)H ≃
XS(Fcyc).

Proof This lemma can be deduced from the Tate sequences in Proposition 3.4 and

their functoriality, but we give a direct proof here.

In any caseH is pro-cyclic, so we have

XS(L)H ≃ Gal(M/L)

ifM denotes the maximal abelian extension of Fcyc in MS(L). If (B1) holds, thenM =

MS(Fcyc), so the claim follows.

Suppose (C1) holds and let v0 be the unique prime of Fcyc that is ramified in L/Fcyc.

Then MS(Fcyc) is the fixed subfield in M of the inertia subgroup Iv0 (M/Fcyc). Since
we have Iv0 (M/Fcyc) ≃ Iv0 (L/Fcyc) = Gal(L/Fcyc), the claim follows. ■

By Lemma 3.8, together with Nakayama’s lemma, we immediately obtain the follow-

ing.

Lemma 3.9 Assuming (A1) (resp. (B1), resp. (C1)), we have XS(L) = 0 if and only if (A2)
(resp. (B2), resp. (C2)) holds.

Thanks to this lemma, in order to prove the full statement of Theorem 3.6, it is

enough to show that “XS(L) = 0 ⇒ (A1), (B1), or (C1).” To show this implication,

assuming XS(L) = 0, we observe that Proposition 3.4(2) shows

pdΛ(Z0
Σ f \S(L)) ≤ 1. (3.2)

In fact, this property is all we need:

Proposition 3.10 If pdΛ(Z0
Σ f \S(L)) ≤ 1, then one of (A1), (B1), and (C1) holds.

This proposition will be shown in the next subsection.

3.4 Homological argument

We consider the following abstract situation.

Let G be a pro-p, p-adic Lie group. LetH ⊂ G be a normal closed subgroup such

that G/H is isomorphic to Zp . Let {Gj}j∈J be a family of closed subgroups of G with

J a non-empty finite set. We suppose Gj 1 H for any j ∈ J; note that this implies

dimGj ≥ 1 since G/H ≃ Zp . Set Z j = Zp[[G/Gj]] and ZJ =
⊕

j∈J Z j . Also, let Z0
J

be the kernel of the natural homomorphism ZJ → Zp , so we have an exact sequence

0 → Z0
J → ZJ → Zp → 0. (3.3)
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For each j ∈ J , setHj = H ∩ Gj .

The following is the abstract version of Proposition 3.10.

Proposition 3.11 If pdZp [[G]](Z0
J ) ≤ 1, then one of the following holds:

(a) H is trivial.
(b) Hj is trivial for all j ∈ J , andH is isomorphic to Zp .
(c) H is non-trivial, there is j0 ∈ J such that Gj0 = G, andHj is trivial for any j ∈ J \ { j0}.

This proposition is an immediate consequence of Claims 3.12–3.15 below.

Claim 3.12 Suppose that dimGj0 ≥ 2 for some j0 ∈ J . Then (c) holds.

Proof By pdZp [[G]](Z0
J ) ≤ 1 and Proposition 2.3, the module Z0

J does not have

nonzero pseudo-null submodules. On the other hand, Z j0 is pseudo-null by the assump-

tion and Lemma 2.5. Therefore, the homomorphism Z j0 → Zp must be injective. This

means that Gj0 = G and then we obtain

Z0
J ≃ ZJ\{ j0 } :=

⊕
j∈J\{ j0 }

Z j .

So pdZp [[G]](Z0
J ) ≤ 1 implies pdZp [[G]](Z j) ≤ 1 for any j ∈ J \ { j0}. By Lemma 2.4,

this means Gj ≃ Zp , that is,Hj is trivial. Therefore, (c) holds. ■

Claim 3.13 Suppose that dimGj = 1 for all j ∈ J . Then we have dimG ≤ 2.

Proof We take any open subgroupG0 ⊂ G without p-torsion. By Lemma 2.4, we have

pdZp [[G0]](Zp) = dimG and pdZp [[G0]](Z j) = dimGj = 1 for any j ∈ J . Then (3.4) and
pdZp [[G0]](Z

0
J ) ≤ 1 show the claim. ■

Claim 3.14 Suppose that dimG = 1. Then (a) or (c) holds.

Proof Let us assumeH is non-trivial and finite, so the claim says (c) holds. By (3.4) and

pdZp [[G]](Z
0
J ) ≤ 1 < ∞, we have an isomorphism between Tate cohomology groups

Ĥ0(H, ZJ ) ≃ Ĥ0(H,Zp).

For each j ∈ J , we have

Ĥ0(H, Z j) ≃ Ĥ0(H,Zp[G/Gj])
≃ Zp[G] ⊗Zp [GjH] Ĥ0(H,Zp[GjH/Gj])
≃ Zp[G] ⊗Zp [GjH] Ĥ0(H,Zp[H/Hj])
≃ Zp[G] ⊗Zp [GjH] Ĥ0(Hj,Zp).

Thus, we obtain ⊕
j∈J
Zp[G/GjH]/(#Hj) ≃ Zp/(#H).
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Therefore, there exists a single j0 ∈ J such that Hj0 = H and Gj0H = G, and Hj is

trivial for any other j . Then we indeed have Gj0 = G. Therefore, (c) holds. ■

Claim 3.15 Suppose that dimG = 2 and dimGj = 1 for any j ∈ J . Then (b) holds.

Proof It is enough to show thatH is isomorphic to Zp , since then G is p-torsion-free
and soHj must be trivial for any j ∈ J . LetN be any open subgroup ofH such thatN
is normal inG andN ≃ Zp . We shall show that the group∆ := H/N is cyclic. Then we

would deduce thatH is a pro-cyclic group (take the limit with respect toN , or consider

a single N that is contained in the Frattini subgroup of H ), which shows H ≃ Zp , as
desired.

By the assumption dimGj = 1, we see that Z j is finitely generated and free as a

Zp[[N]]-module. Also, we clearly have

(ZJ )N ≃ ZJ ,N :=
⊕
j∈J
Zp[G/NGj].

Therefore, taking theN-homology of (3.4), we obtain an exact sequence

0 → H1(N,Zp) → (Z0
J )N → ZJ ,N → Zp → 0

over Zp[[G/N]]. We have H1(N,Zp) ≃ N ab = N . We observe that the action

of ∆ on N is trivial, simply because the automorphic group of N is Z×p , which does

not have non-trivial finite p-group (since p ≥ 3). By pdZp [[G]](Z0
J ) ≤ 1, we have

pdZp [[G/N]]((Z0
J )N) ≤ 1 as well. Then, taking the ∆-cohomology, we have a long exact

sequence

· · · → Ĥi+1(∆,N) → Ĥi(∆, ZJ ,N) → Ĥi(∆,Zp) → · · ·

In particular, we obtain

Ĥ−2(∆,Zp) → Ĥ0(∆,N) → Ĥ−1(∆, ZJ ,N).

This is identified with ∆ab → Zp/(#∆) → 0. Therefore, we conclude that ∆ is a cyclic

group, as claimed. ■

This completes the proof of Proposition 3.11. This also completes the proof of

Theorem 3.6 and, equivalently, of Theorem 1.1.

3.5 A variant

In this subsection, we obtain a variant of Theorem 1.1 that is rather easier.

Suppose we are given a totally real field F ′ that is a finite abelian extension of

F whose degree is prime to p. Set L ′ = F ′L, so we have a natural isomorphism

Gal(L ′/L) ≃ Gal(F ′/F), which we write ∆. Let ψ be a (totally even) character of ∆. Set

Oψ = Zp[Im(ψ)] and we regard this as a Zp[∆]-algebra via ψ. For a Zp[[Gal(L ′/F)]]-
module M , we consider the Oψ[[G]]-module

Mψ := Oψ ⊗Zp [∆] M .
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This functor (−)ψ is exact since the order of ∆ is prime to p. When ψ is the trivial

character, we may identify XS(L ′)ψ with XS(L), which we studied in Theorem 1.1.

To state the result, we introduce the following:

• Let SS,ψ
ram = SS,ψ

ram (L ′/Fcyc) be the set of primes of Fcyc that are ramified in L/Fcyc,

totally split in Fcyc,ψ/Fcyc, and not lying above S. Here, Fcyc,ψ denotes the extension

of Fcyc cut out by ψ, that is, the extension corresponding to the kernel of ψ.
• Let λ

ψ
S
, µ

ψ
S
be the Iwasawa λ, µ-invariants of XS(F ′,cyc)ψ .

Theorem 3.16 Suppose ψ is non-trivial. Then the Oψ[[G]]-module XS(L ′)ψ is pseudo-null
if and only if λψ

S
= 0, µψ

S
= 0, and #SS,ψ

ram = 0.

Note that unlike Theorem 1.1, we do not have an upper bound on dimG.

Proof We use the exact sequence in Proposition 3.4(2) applied to L ′/F instead of

L/F . Then we still see that XS(L ′)ψ does not have nonzero pseudo-null submodules.

Therefore, the pseudo-nullity of XS(L ′)ψ is equivalent to its vanishing.

An easy step is to observe that, assuming #SS,ψ
ram = 0, we have XS(L ′)ψ = 0 if and only

if XS(F ′,cyc)ψ = 0. To show this, we only have to observe (XS(L ′)ψ)H ≃ XS(F ′,cyc)ψ
and use Nakayama’s lemma.

Now we only have to show #SS,ψ
ram = 0, assuming XS(L ′)ψ = 0. By XS(L ′)ψ = 0 and

the non-triviality of ψ, Proposition 3.4(2) shows

pdOψ [[G]](Zu(L ′)ψ) ≤ 1

for any u < S. This is a counterpart of (3.3). We have Zu(L ′)ψ , 0 if and only if

ψ is trivial on Gu . In this case, by (the obvious variant of) Lemma 2.4, the property

pdOψ [[G]](Zu(L ′)ψ) ≤ 1 means Gu ≃ Zp , that is, u is unramified in L/Fcyc. Thus,

#SS,ψ
ram = 0 holds. ■

4 Results for CM-fields

We keep the notation in §1.2. In §4.1, we prove Theorem 1.2 by using Theorems 1.1 and

3.16. In §4.2, we compare Theorem 1.2 with the work of Hachimori–Sharifi [6].

4.1 Proof of Theorem 1.2

We set L ′ = L(µp)+ and F ′ = F (µp)+. Let χ be the non-trivial character ofGal(F /F).
Letω be the Teichmüller character ofGal(F (µp)/F). Setψ = ωχ−1. Thenψ is a totally

real character of Gal(F (µp)/F), so it factors through Gal(F ′/F). Note that ψ is trivial

if and only if F = F(µp), that is, δ = 1.

Proposition 4.1 The following statements hold.

(1) We have λ− = λψ
Sp

and µ− = µψ
Sp
, where λψ

Sp
and µψ

Sp
are as in §3.5.

(2) The Zp[[G]]-module X(L)− is pseudo-null if and only if the Zp[[G]]-module
XSp (L ′)ψ is pseudo-null.
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Proof Claim (1) is well-known (see, e.g., [12, Corollary (11.4.4)]). Even claim (2) might

be known to experts, but the author has not found a reference (a close one is [16,

Theorem 4.9]), so we include the proof here.

As in the proof of Proposition 3.4, we consider the Selmer complex CSp over the

Iwasawa algebra Λ̃ := Zp[[Gal(L ′/F)]], defined by a triangle

CSp → RΓIw(LΣ/L ′,Zp(1)) →
⊕
v∈Sp

RΓIw(L ′
v,Zp(1))

with Σ = Sp ∪ S∞. We do not care whether this complex is perfect or not. Set C =
RΓIw(LΣ/L ′,Zp(1)). Then the Artin–Verdier duality implies CSp ≃ C(−1)∗,ι[−3],
where (−)∗ denotes the linear dual RΓ

Λ̃
(−, Λ̃) and (−)ι denotes the involution that

inverts the group elements of Λ̃ (see Fukaya–Kato [3, 1.6.12(4)]; for the commutative

case, see also Nekovář [11, §5.4] or [7, §3]). In particular, by taking the ψ-components,

we obtain

Cψ
Sp

≃ Cχ(−1)∗,ι[−3]. (4.1)

As in the proof of Proposition 3.4(1), we have Hi(Cψ
Sp
) = 0 for i , 2,3 and

H2(Cψ
Sp
) ≃ XSp (L ′)ψ, H3(Cψ

Sp
) ≃ (Zp)ψ ≃

{
Zp if δ = 1

0 if δ = 0.

In a similar way, we have Hi(Cχ) = 0 for i , 1,2,

H1(Cχ) ≃
{
Zp(1) if δ = 1

0 if δ = 0,

and an exact sequence

0 → X ′(L)− → H2(Cχ) → Z0
Sp
(L)− → 0,

where X ′(L) denotes the split Iwasawa module for L, which is defined as the quotient

of X(L) by requiring that all p-adic primes split completely. By [12, Lemma (11.4.9)],

we know an exact sequence 0 → ZSp (L)− → X(L)− → X ′(L)− → 0.
Note that, by applying the above argument to L = F cyc, we obtain

λ(H2(Cψ
Sp
)) = λψ

Sp
, µ(H2(Cψ

Sp
)) = µψ

Sp

and

λ(H2(Cχ)) = λ−, µ(H2(Cχ)) = µ−.
Also, we have λ(H3(Cψ

Sp
)) = λ(H1(Cχ)) = δ and µ(H3(Cψ

Sp
)) = µ(H1(Cχ)) = 0. Thus,

claim (1) follows from (14).

Let us show claim (2). We may assume that G is p-torsion-free so that the homolog-

ical dimension of Λ is finite. When dimG = 1, the claim follows at once from (1). Let

us assume dimG ≥ 2, so both H3(Cψ
Sp
) and H1(Cχ) are pseudo-null. Also, X(L)− is

pseudo-null if and only if so is H2(Cχ). Therefore, by (14), we only have to show that for

a perfect complexC whose cohomology groups are all pseudo-null, the same is true for

C∗. This claim follows from the Auslander regularity ([15, Definition 3.3(ii)]) of Λ and
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the fact that pseudo-nullity is closedunder taking submodules, quotients, and extensions

(see [15, Proposition 3.6(ii)]). ■

Proposition 4.2 We have S−
ram(L/Fcyc) = SSp ,ψ

ram (L ′/Fcyc), where SSp ,ψ
ram (L ′/Fcyc) is as

in §3.5.

Proof Let v be a non-p-adic prime of Fcyc that is ramified in L/Fcyc. We have to show

that v is split in F cyc/Fcyc if and only if v is totally split in Fcyc,ψ/Fcyc.

Since v is ramified in a p-extension, by local class field theory, the completion of

Fcyc at v contains µp . In other words, v is totally split in Fcyc(µp)/Fcyc, which is the

extension cut out byω. On the other hand, the extension of Fcyc cut out by ψ and χ are

Fcyc,ψ and F cyc respectively. Therefore, the claim follows. ■

Now Theorem 1.2 follows immediately from Theorems 1.1 and 3.16 applied to S =
Sp , taking Propositions 4.1 and 4.2 into account.

4.2 The work of Hachimori–Sharifi

We still keep the notation in §1.2.

Theorem 4.3 (Hachimori–Sharifi [6, Theorem 1.2]) Suppose that the extension L/F is
strongly admissible, which means that dimG ≥ 2 and G is p-torsion-free. Also, we assume
µ− = 0. Then

rankZp [[H]](X(L)−) = λ− − δ + #S−
ram.

In particular, X(L)− is pseudo-null over Zp[[G]] if and only if

λ− + #S−
ram = δ.

It is straightforward to deduce the final part of this theorem from Theorem 1.2. In

fact, Theorem 1.2 says much more: We have removed the “strongly admissibility” of

L/F and, moreover, we have shown that µ− = 0 follows from the pseudo-nullity of

X(L)−. This answers a question in [6, Example 5.3] affirmatively.

The original proof of Theorem 4.3 relies on Kida’s formula, which describes the rela-

tion between the Iwasawa invariants of X(F cyc)− and X(L)− when L/F cyc is a finite

extension. For strongly admissibleL/F , by applyingKida’s formula for the finite subex-

tensions of L/F cyc, they succeeded in determining the Zp[[H]]-rank of X(L)−. The
method in this paper cannot be used to recover this quantitative result, but the author

[8] recently obtained amore direct proof of Theorem 4.3 from the perspective of Selmer

complexes.
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