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We report a quantitative technique that can be used to measure nanometer-sized structural ordering 
by mapping the phase using holographic reconstruction. We apply this technique to study the 
important problem of charge ordering in manganese oxides which have many applications in 
spintronics and magnetic sensor. 
 
Doped La1-xCaxMnO3 (0.5 < x < 0.8) has complex temperature-dependent nanoscale structural 
features during the charge ordering transition. It has been studied by many different experimental 
techniques in the past several years [1-2], but the nature of charge ordering remains unknown. To 
quantify the temperature-dependent structure evolution, we study the phase transition by in-situ 
electron nanodiffraction and dark field lattice imaging of La0.33Ca0.67MnO3 at temperatures from 
100K-300K.  
 
La0.33Ca0.67MnO3 has a high-temperature cubic and room temperature distorted-perovskite structure 
(a ≈ c, b = 2 ap). At low temperature the ordered structure has a supercell along a-axis 3 times the 
orthorhombic cell. Electron diffraction pattern from single crystal domain of La0.33Ca0.67MnO3 
specimen at [010] zone axis show the superlattice reflections pointing out by arrows (Fig. 1a)).  
Quantitative analysis of the electron diffraction data shows a continuous commensurate-
incommensurate charge ordering transition during the melting process of charge ordering (Fig. 1b)). 
In real space, we observe this charge ordering structure as “stripes” using dark field imaging (Fig. 
1c)) at low temperatures. Using the superlattice reflections satellite on (202) reflection in the two-
beam diffraction condition shown as Fig. 1d), the intensity contrast of the image is directly from the 
charge ordering superstructure modulation. Charge ordering defects are clearly shown in these 
images. To map the distribution of defects, we extract the phase from the images by using 
holographic reconstruction. Fig. 2a)-d) show the schematic reconstruction process. A phase jump is 
used to describe a charge ordering defect between periodic commensurate stripes. We compare the 
evolution of the phase field with the electric property measurement and find a correlation between 
the rise of resistivity and the decreasing of defects density (Fig. 2e)) upon cooling. The results here, 
together with our previous electron microdiffraction study in La1-xCaxMnO3 with x=1/3 [3], shows 
the importance of charge ordering to the unusual properties of this material [4]. 
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Figure 1. a) Electron diffraction patterns at [010] zone axis of La0.33Ca0.67MnO3 at T = 100K. b) 
Wave vector q (circle dots) and halfwidth (square dots) versus temperature. A dark field image c) 
shows the stripe-like structure with defects for La0.33Ca0.67MnO3 at T = 98K. The image is taken 
under the diffraction condition d) with an aperture including (202) Bragg peak and the superlattice 
peaks around it shown inside the red circle. 
 
 

 
Figure 2. The left part is a schematic representation of the reconstruction process. a) A DF real space 
image with a crystal defect goes through it. b) The Fourier transformation of image a). There are three 
bands shown on b). We selected one of the side bands inside the dashed square area, cut it out and 
reconstructed the amplitude field c) and phase field d). Phase field evolution combined with the 
resistivity measurement is shown on right e). All the phase fields are reconstructed from real space 
images on a fixed area of La0.33Ca0.67MnO3 specimen taken with decreasing temperature at T = 295K, 
280K, 265K, 235K, 200K, 160K and 98K.   
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