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Abstract In this paper, we obtain the HP1 x HP2 x HP3 — HP boundedness for trilinear Fourier multiplier
operators, which is a trilinear analogue of the multiplier theorem of Calderén and Torchinsky [4]. Our
result improves the trilinear estimate in [22] by additionally assuming an appropriate vanishing moment

condition, which is natural in the boundedness into the Hardy space HP for 0 <p < 1.
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1. Introduction
For a function o on R™, let T, be the corresponding Fourier multiplier operator given by

~

T,f@) = [ o(©F Q=0 dg

for a Schwartz function f on R", where f(£):= Jon f(2)e?®8) dz is the Fourier transform
of f. The function o is called an LP multiplier if T, is bounded on LP(R") for 1 < p < oo.
For several decades, figuring out a sharp condition for ¢ to be an LP multiplier has been
one of the most interesting problems in harmonic analysis. Although there is no complete
answer to this question, we have some satisfactory results. In 1956, Mihlin [23] proved
that ¢ is an LP multiplier provided that

0% (€)] <€)7, e40 for any multi-indices |a| < [n/2]+ 1. (1.1)
This result was refined by Héormander [21] who replaced (1.1) by the weaker condition

o
21;12)”0(2 ')wHLg(R") < o0 for s>n/2,

where L2(R™) denotes the fractional Sobolev space on R” and 9 is a Schwartz function on
R™ generating Littlewood—Paley functions, which will be officially defined in Section 2.1.
We also remark that s > n/2 is the best possible regularity condition for the L?
boundedness of T,.

Now, we define the (real) Hardy space. Let ¢ be a smooth function on R™ that is
supported in {x € R" : |z| < 1}, and we define ¢; := 2!"¢(2!.). Then the Hardy space
HP(R™), 0 < p < 00, consists of tempered distributions f on R™ such that

If Nl ey := HSUP|¢l*f|’ (1.2)
lez

Lr(R™)
is finite. The space provides an extension to 0 < p <1 in the scale of classical L? spaces
for 1 < p < 0o, which is more natural and useful in many respects than the corresponding
L? extension. Indeed, LP(R™) = HP(R™) for 1 < p < co and several essential operators,
such as singular integrals of Calderén—Zygmund type, that are well-behaved on LP(R")
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only for 1 < p < oo are also well-behaved on HP(R™) for 0 < p < 1. Now, let S(R™) denote
the Schwartz space on R™ and 8y(R™) be its subspace consisting of f satisfying

/ 2% f(x)dx =0 for all multi-indices a.

Then it turns out that
So(R™) is dense in HP(R™) for all 0 <p < oc. (1.3)

We remark that S(R™) is also dense in HP(R™) = LP(R™) for 1 < p < oo, but not for
0 < p < 1. See [31, Chapter III, §5.2] for more details. Moreover, as mentioned in [31,
Chapter III, §5.4], if f € L'(R™)N HP(R") for 0 < p < 1, then

/ 2% f(x)dr =0 for all multi-indices |a| < L, (1.4)
n p

We refer to [2, 3, 7, 31, 33] for more details.

In 1977, Calderén and Torchinsky [4] provided a natural extension of the result of
Hormander to the Hardy space HP(R™) for 0 < p < 1. For the purpose of investigating
HP? estimates for 0 < p < 1, the operator T, is assumed to initially act on 8o(R™) and
then to admit an HP-bounded extension for 0 < p < oo via density, in view of (1.3). Then
Calderon and Torchinsky proved

Theorem A [4]. Let 0 <p < 1. Suppose that s >n/p—n/2. Then we have
< LR .
||T0fHHp(Rn) ~ iLEIIZ)HU(z )¢||L3(Rn)||f”HP(R »)
for all f € 8(R™).

For more information about the theory of Fourier multipliers, we also refer the reader
o [1, 13, 19, 20, 25, 28, 29, 30] and the references therein.

We now turn our attention to multilinear extensions of the above multiplier results. Let
m be a positive integer greater or equal to 2. For a bounded function ¢ on (R™)™, let T,
now denote an m-linear Fourier multiplier operator given by

To(fiveee ) @) = [

. E(Hf; (&) ETEET IO G E i (61, )

for fi1,...,fm € So(R™). The first important result concerning multilinear multipliers was
obtained by Coifman and Meyer [5] who proved that if N is sufficiently large and

|8am . aamo. 517--~a§m)| 50&1,...,0¢m |(§13 7£m)} (Joal- —Haml)? (515"'7£TYL) 7&6 (15)

for all |a |+ + || < N, then T, is bounded from LP*(R™) x --- x LPm(R™) into L?(R™)
for 1 < p1,...,pm <00 and 1 < p < oo. This result is a multilinear analogue of Mihlin’s
result in which Equation (1.1) is required, but the optimal regularity condition, such as
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|a] < [n/2]+1 in Equation (1.1), is not considered in the result of Coifman and Meyer.
Afterwards, Tomita [32] provided a sharp estimate for multilinear multiplier 7,, as a
multilinear counterpart of Hormander’s result. Let ¥("™) be a Schwartz function on (R™)™
having the properties that

supp(¥(m) € {€:= (€1,....6n) € (RY)™:1/2< €] <2}, Y Wim(277§) =1, €£0.

JEZ
For s > 0, we define the Sobolev norm
2212\ | B 2 ag) 2
1PNz qnymy = ( o (AT IPE) i) . (1.6)

Theorem B [32]. Let 1 < p,p1,...,pm <00 with 1/p=1/p1+---+1/pm. Suppose that

. k=\ g (m)
Z‘éIZ’HU(Z )i HLg((Rn)m) <0

for s >mn/2. Then we have

m

HTU (f12- s fm) HLP S i‘éfz’ HU(Qk?)@ HLg((Rn)m) H I1f5ll zrs ) (1.7)

=1
for fi,..., fm € 8o(R™).

The standard Sobolev space L2((R™)™) in Equation (1.7) is replaced by a product-type
Sobolev space in many recent papers.

Theorem C [14, 15, 18, 24]. Let 0 < p1,...,pm <00 and 0 <p < oo with 1/p=1/p1 +
<o« +1/pm. Suppose that

n s; 1 ) 1
S > 22 )s 2 1.8
Styeesm > 5 Z(n )= (1.8)
jeJ
for any nonempty subsets J of {1,...,m}, and

suplo(2+) 7,

rez 2 (mym) <O (1.9)

Then we have

o0

e o Tl

for fi,...,fm GSo(Rn)

2
(8150e0y8m

in which the norm is defined by replacing the term (1 -+ 472|€[?)

Here, the space L )( (R™)™) indicates the product type Sobolev space on (R™)™,

S

in Equation (1.6) by
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[T/, (1+4ng; 2)*. It is known in [27] that the condition (1.8) is sharp in the sense that
if the condition does not hold, then there exists o such that the corresponding operator T,
does not satisfy Equation (1.10). We also refer the reader to [6, 11] for weighted estimates
for multilinear Fourier multipliers.

As an extension of Theorem A to the whole range 0 < p1,...,p, < 00, in the recent paper
of the authors, Lee, Heo, Hong, Park and Yang [22], we provide a multilinear multiplier
theorem with standard Sobolev space conditions.

Theorem D [22]. Let 0 <pi, -+ ,pm <00 and 0 < p < oo with 1/p=1/p1+---+1/ppm.
Suppose that

mn 1 1 s 1 1
— d ——=-<— E (——7> 1.11
s> B an » 2<"+j T35 ( )

for any subsets J of {1,...,m}, and

k =y (m)
ilel§|‘0'(2 )l )HLE((R,L),”) < 0. (1.12)
Then we have
—_— m
HTa(fh s afm)HLP(R") 5 ilélz ||a(2k T’)\Ij(m) HL?((Rn)m) H ”f] ”Hpj (R™) (1'13)
j=1

fO’I" fl;---’fm S SO(Rn).

The optimality of the condition (1.11) was achieved by Grafakos, He and Hénzik [12]
who proved that if Equation (1.13) holds, then we must necessarily have s > mn/2 and
1/p=1/2<s/n+3 e, (1/p—1/2) for all subsets J of {1,...,m}.

We remark that in the bilinear case m = 2, Theorem D follows from Theorem C
as Equation (1.11) implies the existence of s; and sy, with s; + so = s, satisfying
Equation (1.8). This is well described in the first proof of Theorem D in [22]. However,
when m > 3, this inclusion is not evident even if similar types of regularity conditions are
required in both theorems.

Unlike the estimate in Theorem A, the multilinear extensions in Theorems C and D
consider the Lebesgue space LP as a target space when p <1 (recall that LP = HP for
1<p<oo).

If a function o on (R™)™ satisfies Equation (1.9) for si,...,8,, > n/2 or (1.12) for
s >mn/2, then Theorems C and D imply that T,(f1,...,fm) € L* for all fi,...,fm €
So(R™). Therefore, in order for T, (f1,...,fm) to belong to HP(R™) for 0 < p <1, it should
be necessary that

/a:aT,,(fl,...,fm)dz:O for |a|§%—n, (1.14)
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in view of Equation (1.4). However, this property is generally not guaranteed, even if all
the functions fi,..., f, satisfy the moment conditions, in the multilinear setting, while,
in the linear case,

/ 2 f(x)de =0, |a| <N implies / 2T, f(x)dx =0, |a] <N
for N > 0. Recently, by imposing additional cancellation conditions corresponding to
(1.14), Grafakos, Nakamura, Nguyen and Sawano [16, 17] obtain a mapping property
into Hardy spaces for T,.

Theorem E [16, 17]. Let 0 <p1,--,pm <00 and 0<p <1 with1/p=1/p1+---+1/pm.
Let N be sufficiently large and o satisfy Equation (1.5) for all multi-indices |oq|+---+
|am| < N. Suppose that

/ T, (al,...,am) (x)dx=0

for all multi-indices |a| < 3 —n, where a;’s are (p;,00)-atoms. Then we have
||T0’(fla cee 7fm)HHP(]R") SO’,N H ||fj||Hpj (R™) (115)
j=1

fO?” fl,...,fm S So(Rn)

Here, the (p,00)-atom is similar, but more generalized concept than HP-atoms defined
in Section 2, and we adopt the convention that (co,00)-atom a simply means a € L>°(R™)
with no cancellation condition. See [16, 17] for the definition and properties of the (p,o0)-
atom.

We remark that Theorem E successfully shows the boundedness into H?(R™), but the
optimal regularity conditions considered in Theorems C and D are not pursued at all as
it requires sufficiently large N.

The aim of this paper is to establish the boundedness into H? for trilinear multiplier
operators, analogous to Equation (1.15), with the same regularity conditions as in
Theorem D, which is significantly more difficult in general. Unfortunately, we do not
obtain the desired results for general m-linear operators for m > 4 and we will discuss
some obstacles for this generalization in the appendix.

To state our main result, let us write ¥ := ¥®) and in what follows, we will use the
notation

2 N
Lilo]:= i‘ég (2" )‘I’||Lg((Rn)3)
for a function o on (R")3. Let 0 < p <1, and we will consider trilinear multipliers o
satisfying

/ 2T, (f1,f2.f3)(z) dz =0 for all multi-indices |a| < L, (1.16)
" p

for all f1, fa, f3 € 8(R™). Then the main result is as follows:
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Theorem 1. Let 0 < p1,po,p3 <00 and 0 <p <1 with 1/p=1/p1+1/pa+1/ps. Suppose
that

3n 1 1 s 1 1
— d ~——= 7+§ (—77), 1.1
s> 3 an 2<n Z\p; B (1.17)

where J is an arbitrary subset of {1,2,3}. Let o be a function on (R™)? satisfying L2]o] < oo
and the vanishing moment condition (1.16). Then we have

1T (frs for f3)| o ny S L2ION 1l 1101 oy L2l o2 o WL f3 L v ) (1.18)
for f1,fa2, f3 € 8o(R™).

We remark that (1/p1,1/p2,1/p3) in Theorem 1 is contained in one of the following sets:

Ro = {(t1,t2,83) : 0 <ty ta,ty <1, 0 <ty +lo,ts +tg,ts+1 <3/2,1 <ty +tp+13 <2},
Ri == {( ):0<t; <1/2, 1<t <oo,j#i}, 1=123,

Ry o= {(t1,ta,13) 1 0<t3 <1/2, 1/2 <ty,t <00, 3/2 <t +1},

Rs = {( )0 <t1 <1/2, 1/2<ty,t5 <o, 3/2<ta+13},

Re == {( ):0<ty<1/2,1/2 <ty,t3<oo, 3/2<t1+13},

Rr = {(t1.t2,t3) : 1/2 < ty,ta,t3 < 00, 2< by +1la+13 < oo}

See Figure 1 for the regions R;. Then the condition (1.17) becomes

3n/2, (1/p1,1/p2,1/p3) € Rq,
n/pi+n/2, (1/p1,1/p2,1/p3) € Ry, i=1,2,3
n/p1+n/pa, (1/p1,1/p2,1/p3) € Ry,
n/p2+n/ps, (1/p1,1/p2,1/p3) € Rs,
n/ps+n/p1, (1/p1,1/p2,1/p3) € Re,
n/pi+n/p2+n/ps—n/2, (1/p1,1/p2,1/p3) € Ry.
In the proof of Theorem 1, we will mainly focus on the case (1/p1,1/p2,1/ps3) € Ry,

i=1,2,3, in which s > n/pi +n/2 is required. Then the remaining cases follow from
interpolation methods. More precisely, via interpolation,

5> (1.19)

the estimates (1.18) in R; and Ry = the estimate (1.18) in Ry,

the estimates (1.18) in Ry and R3 = the estimate (1.18) in Rs,

the estimates (1.18) in R3 and Ry = the estimate (1.18) in Rg,
the estimates (1.18) in Ry, Ry, and Rz = the estimate (1.18) in Ry,
the estimates (1.18) in Ry,Ry, and R3 = the estimate (1.18) in Ry,

where the case 1/p1 +1/pa+1/p3 =1 for (1/p1,1/p2,1/p3) € Ry will be treated separately.
Here, a complex interpolation method will be applied, but the regularity condition on s
will be fixed. Moreover, the index p will be also fixed so that the vanishing moment
condition (1.16) will not be damaged in the process of the interpolation. For example,
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ta

Figure 1. The regions R;, 0 <i< 7.

when (1/p1,1/p2,1/ps) € R4, we set s > n/p1 +n/pe and fix the index p with 1/p =
1/p14+1/p2+1/p3. We also fix o satisfying the vanishing moment condition (1.16). Now,
we choose (1/p?,1/p3,1/p3) € Ry and (1/p},1/p3,1/p3) € Ry so that

s>n/pl+n/2, s>n/py+n/2

1/p=1/pY+1/p3+1/ps =1/p1 +1/p3+1/ps.
Then the two estimates

1Tl < L3lo]

HPY 5 HPS x HPs — HP’ ”T"”Hpi X HP% x HP3 — HP ~
imply
||Tcr||HP1 X HP2 x HP3 — HP 5 ,Ci[(f]

The detailed arguments concerning the interpolation (for all the cases) will be provided
in Section 3.

The estimates for (1/p1,1/p2,1/p3) € R, i =1,2,3, will be restated in Proposition 3.1
below, and they will be proved throughout three sections (Sections 5-7). Since one of
p;’s is less or equal to 1, we benefit from the atomic decomposition for the Hardy
space. Moreover, for other indices greater than 2, we employ the techniques of (variant)
e-transform, introduced by Frazier and Jawerth [8, 9, 10] and Park [26], which will be
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presented in Section 2. Then T, (f1, f2, f3) can be decomposed in the form

Ty (f1,fa:f3) = Y T (fu, fo, f3)

reK

where K is a finite set, and then we will actually prove that each T*(f1, f2, f3) satisfies
the estimate

sup [y + (T (f1, 2, f3)) ()] S L3[o]ua (2)uz(2)us(2), (1.20)

leZ

where ||[ui|| Lot (mn) S || fill s rey for i=1,2,3. Since the above estimate separates the left-
hand side into three functions of z, we may apply Holder’s inequality with exponents
1/p=1/p1+1/pa+1/ps to obtain, in view of Equation (1.2),

||Tn(f17f27f3)||Hp(Rn) = H sup |¢l * (Tm(f17f2,f3)) “
ez

Lr(R")
S L2o])|| fill e @yl 2l ez (o) 3 £res () -

Such pointwise estimates (1.20) will be described in several lemmas in Sections 6 and 7,
and the proofs will be given in Section 9 separately, which is one of the keys in this paper.

Notation

For a cube @ in R" let x¢g be the lower left corner of @ and ¢(Q) be the side-length of Q.
We denote by Q* Q** and Q*** the concentric dilates of @ with £(Q*) = 10/nl(Q),

0Q*) = (10f) Q) and £(Q***) = (10\/>) 2(Q). Let D stand for the family of all
dyadic cubes in R™ and D; be the subset of D consisting of dyadic cubes of side-length
277, For each x € R™ and [ € Z, let B. := B(x,100n27!) be the ball of radius 10002~
and center x. We use the notation (-) to denote both the inner product of functions
and (y) := (1+47%|y[>)}/? for y e RM, M € N. That is, (f,g) = [g. f(z)g(z)dz for two

functions f and g, and (z1) == (1+4n2|z1[*)V/2, ((z1,22)) = (14 4x> (|a;1|2 + |@o]? ))1/2
for x1,29 € R™.
2. Preliminaries

2.1. Hardy spaces

Let 6 be a Schwartz function on R™ such that supp(6) C {¢ € R™ : |¢| < 2} and 6(¢) =
for [¢] < 1. Let ¢ :=0—2""0(27"), and for each j € Z we define §; := 2"0(27") and
¥j :=29")(27.). Then {¢;};ez forms a Littlewood-Paley partition of unity, satisfying

supp(v;) C {€€R™: 2771 < g <2F1} and D (€)= 1, ££0.

JEL
We define the convolution operators I'; and A; by

ij;: 9j*f7 Aij: ’(/)]*f
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The Hardy space HP(R™) can be characterized with the (quasi-)norm equivalences

||fHHP(R") ~ H{F.jf}jGZHLP(EDC)7 0 <p < oo (2'1>

and
Hf”HP(R”) ~ H{Ajf}jezHLp(zz)a 0 <p <o, (22)

which is the Littlewood—Paley theory for Hardy spaces. In addition, when p < 1, every
f € HP(R™) can be decomposed as

f= Z/\kak in the sense of tempered distributions, (2.3)
k=1

where ay’s are HP-atoms having the properties that supp(ar) C Qk, [lax|p=m@n) <

|Qx|71/P for some cube Q, [zYajp(r)dz =0 for all multi-indices |y| < M, and

(Z;il|)\k|p)l/p S |1 fll ey, where M is a fixed integer satisfying M > [n/p —n]y,
which may be actually arbitrarily large. Furthermore, each HP-atom ay, satisfies

k|l m @y S 1@l P

2.2. Maximal inequalities

Let M denote the Hardy-Littlewood maximal operator, defined by

1
M) = sup /Q F()ldy

for a locally integrable function f on R", where the supremum ranges over all cubes @

containing z. For given 0 < r < oo, we define M, f := (M (|f|r))1/r. Then it is well-known
that
Mo fi} el o ooy S I Fidrezllren (2:4)
whenever 7 < p < oo and 7 < ¢ < 0o. We note that for 1 <r < oo
Hf (m__t') <o M, f(z) i >/ (2.5)
(27 Nl @ny

For m € Z™ and any dyadic cubes ) € D, we use the notation
Q(m) :=Q+(Q)m.
Then we define the dyadic shifted maximal operator Mg, by
m 1
Miyaaf (x) ;== sup — |f ()] dy,
QEeD:zeQ |Q| Q(m)

where the supremum is taken over all dyadic cubes @ containing z. It is clear that
ngadf(x) < M f(z) and accordingly, ngad is bounded on LP for p > 1. In general, the
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following maximal inequality holds: For 1 < p < co and m € Z" we have

HMZlZadeLP Rn 5 (10g(10+ |m‘))"/P ||fHLP(R”)- (26)
®R™)

The inequality (2.6) follows from the repeated use of the inequality in one-dimensional
setting that appears in [31, Chapter II, §5.10], and we omit the detailed proof here. Refer
to [22, Appendix] for the argument.

2.3. Variants of ¢-transform
For a sequence of complex numbers b := {bg }gep, we define
||bequ = ng(b)HLP(Rn)
for 0 < p < 0o, where
g"(0)(@) = [{IballQI*xo(@)} geplles  0<g <00
Let % ‘=Yj_1+9;+1;j41 for j €7Z. Observe that {/J: enjoys the properties that supp(?Z) C
{€eR": 2072 < |¢| <2972} and 1p; = 1; x1b;. Then we have the representation

Ajf(x)= ) bau(a), (2.7)

QED;

where % (z) := |Q|"/?v;(x —xg), QZQ(Q:) = \Q|1/2%(a: —xq) for each Q € D;, and
bo = (f,1?). This implies that
F=Y M=) bou? in 8P,
= JEZQED;

where &’ /P stands for a tempered distribution modulo polynomials. Moreover, in this
case, we have

|‘b||fp,q ~ H{Ajf}jEZHLp(zq)' (28)

Therefore, the Hardy space HP(R™) can be characterized by the discrete function space
P2, in view of the equivalence in Equation (2.2). We refer to [8, 9, 10] for more details.
It is also known in [26] that I'jf has a representation analogous to (2.7) with
an equivalence similar to (2.8), while f # ZjeZij generally. Let 6 := 2"0(2:) and
0; :=2/m0(27.) = 0;,, so that 6, = 0, 0;. Let 62(x) := |Q|*/20,(x — xq), 09(z) :=

1Q|'/%0;(x —xgq), and bg = (f,09) for each Q € D;. Then we have
Dif(@)= Y bat?(x) (2.9)

QeD;

and for 0<p<oocand 0 <qg< o0
H{ij}jEZHLlJ((q) ~ ||bePwCI' (210)

We refer to [26, Lemma 3.1] for more details.
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3. Proof of Theorem 1: reduction and interpolation

The proof of Theorem 1 can be obtained by interpolating the estimates in the following
propositions.

Proposition 3.1. Let 0 < p1,p2,p3 <00 and 0 <p <1 with 1/p=1/p1+1/ps+1/ps.
Suppose that (1/p1,1/p2,1/p3) € Ry UR2UR3 and

>
min{p1,p2,ps} 2’

Let o be a function on (R™)? satisfying L2[c] < oo and the vanishing moment condition
(1.16). Then we have

|1 To (1 F2 f3) | gy ey S L2 01 frll o1 eny

fO?” f17f27f3 € SO(Rn)

Proposition 3.2. Let 0 < p < 1. Suppose that one of p1,p2,p3 s equal to p and the other
two are infinity. Suppose that s > n/p+n/2. Let o be a function on (R™)3 satisfying
L2[0] < 0o and the vanishing moment condition (1.16). Then we have

HTa(f1,f27f3)||H,,(R”) S L2 fill e @y || ol ree @) £3 | £res ()
for f1,f2, f3 € So(R™).

We present the proof of Proposition 3.1 in Sections 5, 6 and 7 and that of Proposition 3.2
in Section 8. For now, we proceed with the following interpolation argument, simply
assuming the above propositions hold.

Jall oz ey || f3]] m2es (7

Lemma 3.1. Let 0 < p{,p3,p3 < oo, 0 < pl,plpt < oo and 0 < p°p! < co. Suppose that
75| SA  1=0,1

l L L
HP1x HP2 x HP3 — Hp' ~

Then for any 0 <0 <1, 0 < p1,p2,p3 <00 and 0 < p < oo satisfying
/pj=1-0)/pj+0/p;  for j=123,
1/p=(1-0)/p"+0/p",
we have
1T | Eros s Erre s pres — mro S A

The proof of the lemma is essentially same as that of [22, Lemma 2.4], so it is omitted
here.

3.1. Proof of Equation (1.18) when (1/p1,1/p2,1/p3) € R4URsURg

We need to work only with (1/p1,1/p2,1/p3) € Ry since the other cases are just symmetric
versions. In this case, 2 < p3 < 0o and as mentioned in Equation (1.19), the condition
(1.17) is equivalent to

s>n/p1+n/pa.
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Now, choose p1,p2 < 1 such that
1pi+1/pa=1/p1+1/2=1/2+1/p>
and thus
s>n/p1+n/2, s>n/2+n/ps.
Let €1,62 > 0 be numbers with
s>n/(pr—e1)+n/2, s>n/24+n/(ps—e€2)

and select q1,q2 > 2 such that

Ip=1/(pr—e)+1/q1+1/p3=1/q2+1/(p2 —€2) +1/ps.
Then we observe that

Goa(~o L Ly gL L 1y_(L 11

P1—€1 q1 p3 G2 P2 —€2 P3 D1 P2 P3

for some 0 < 6 < 1. Let Cy :=(1/(p1 —e€1),1/q1,1/p3) and Cs := (1/g2,1/(p2 — €2),1/p3). Tt
is obvious that C7 € Ry, Cs € R, and thus it follows from Proposition 3.1 that

1 To | i -1 s pron s mres — bre S ['?[‘7] at Cy=(1/(p1—e1),1/q1,1/p3) € Ry,
”TUHH‘H x HP2 =<2 x HP3 — HP rg ['3[0] at CQ = (1/q271/(pN2 - 62)71/173) € :R2'

Finally, the assertion (1.18) for (1/p1,1/p2,1/p3) € Ry is derived by means of interpolation
in Lemma 3.1. See Figure 2 for the interpolation.

3.2. Proof of Equation (1.18) when (1/p1,1/p2,1/p3) € Rg

We first fix 1/2 < p <1 such that 1/p; +1/pa+1/ps = 1/p and assume that, in view of
Equation (1.19),

s>3n/2=n/14+n/2.

Then we choose 2 < pg < oo such that 1+1/2+1/py = 1/p. Then it is clear that
(1/p1,1/p2,1/p3) is located inside the hexagon with the vertices (1,1/po,1/2), (1,1/2,1/po),
(1/2,1,1/po), (1/p0,1,1/2), (1/po,1/2,1) and (1/2,1/po,1). Now, we choose a sufficiently
small € >0 and 2 < py < oo such that

1 1 1

1
+==c+—,
2+¢€ Po 2 Po

and the point (1/p1,1/p2,1/p3) is still inside the smaller hexagon with D :=
(1,1/po,1/(2+€)), D2 :=(L,1/(2+¢€),1/po), D3 = (1/(2+¢€),1,1/po), Ds:= (1/po,1,1/
(2+¢€)), D5 :=(1/po,1/(2+¢€),1), and D¢ := (1/(2+¢€),1/po,1). Now, Proposition 3.1
deduces that

L3[o]

<
HTaHqu x H92 x H43 — HP ~

https://doi.org/10.1017/51474748023000518 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000518

2230 J. B. Lee and B. J. Park
1 1

1
) (53@75)
p3 < | 1
(37557 35) € Ra

32902—((12 p2 o

e _ 1
'Cl_(m*q’ql Ps)e‘(Rl

1 1 1 1 1
aea) TG e s

L)y=(L,1,L)eRs

Figure 2. (1 *9)(;;”1761 ’q17 p3

D4:(p07 72+5)€:R2 )
D3 = (g2, 1, po) € Rz
7 11 1
// r1’ p2’ p3) € Ro
/ Xy Dy = (1 € Ry
R39D5:(%,ﬁ’1) / /f ( 72+67p0)
J g I)«\
/ | I~ D1=(1, 5, 3c) € R
< L 3

R33D6:(2+57‘ 1) — ]

Figure 3. (% ' pa? E) € Ro.

for (1/q1,1/q2,1/q3) € {D1,D2,D3,D4,D5,D¢}, as Dy1,Dy € Ry, D3,D4 € Ry and Ds,

Dg € R3. This implies, via interpolation in Lemma 3.1
HTa(fl,f2,f3)HHp(Rn) < L2[oW full zer oy | f2ll e ey || 5 | s (e
See Figure 3 for the interpolation.
For the case p =1, we interpolate the estimates in Proposition 3.2. To be specific, for
any given 0 < p1,p2,p3 < 0o with 1/p1 +1/ps+1/p3 =1, the estimate (1.18) with p=1

) 1fsll oo ey,

follows from interpolating
HT f17f2>f3 HHI(]R") 5L:g[o—]”fl”Hl(]R”)Hf2||H°° R™

S L2ol f1ll e @my | foll ey | 3l oo )

1o (fro o f3) | i ey S
1T o ) sy S L2000l oy ol ey ol e
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Ey = (%7 p01,67 %) € Ro

i . 11 1 R
18 N (372520 75) €7

Figure 4. 01 (52,1, 1) 42 (2, Lo 1) g5 (L1 )= (L L 1) cp,.

po—€’q’q q’po—€c’q

3.3. Proof of Equation (1.18) when (1/p1,1/ps2,1/p3) € R
Let 0 < p <1/2 be such that 1/p=1/p1 +1/p2+1/p3, and assume that

s>n/p—n/2.
We choose 0 < po < 1, satisfying 1/pg+1=1/p, so that
s>mn/po+n/2.

Then there exist € >0 and 2 < ¢ < oo so that s > n/(pg—¢€)+n/2 and 1/p =1/

(po —€)+2/q. Let Ey := (1/(p0 —E),l/q,l/q)7 Ey = (1/q,1/(p0 —e),l/q), and Ej3 :=
(1/¢,1/¢,1/(po —€)). Then it is immediately verified that E; € Ry, E> € Ry, F3 € Rs,

and
1 11 1 1 1 11 1 1 1 1
01 (77777) +02 <73777) +93<77777> = <7a777)
(Po—¢€)'q’q 7 (po—¢€)'q 7 q (po—e) P1 P2 P3
for some 0 < 61,605,035 < 1 with 61 4+ 605+ 63 = 1. Therefore, Proposition 3.1 yields that
||T0||HP0*f><HQ><Hq—>HP 5 ‘C?[U] at Eq = (1/(p0 - G)vl/%l/q) € Ry,

||TU||H‘1XHPU_‘XH‘14)HP 5 ‘CE[J] at FEp = (1/%1/(290 _6)71/Q) € :RQa
”TU”HQXH‘ZXHPO*EHHP S EE[O'] at E3 = (1/(]71/Qa1/(p0 _5)) € Rs,

and using the interpolation method in Lemma 3.1, we conclude the estimate (1.18) holds
for (1/p1,1/p2,1/p3) € R7. See Figure 4 for the interpolation.

4. Auxiliary lemmas

This section is devoted to providing several technical results which will be repeatedly
used in the proof of Propositions 3.1 and 3.2.
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Lemma 4.1. Let N € N and a € R™. Suppose that a Schwartz function f, defined on R™,
satisfies

/ 2 f(x)dx =0 for all multi-indices o with |a < N. (4.1)
Then for any 0 <e <1, there exists a constant C. >0 such that
60l ny < €225 [y al¥1 50 .
Proof. Using the Taylor theorem for ¢;, we write

ale—y= Y LAy

1 ! N-19«a «
+N Y a(/0 1-t)N-19 qbl(xfath(afy))dt)(afy) .
Then it follows from the condition (4.1) that

e s@lsn 3| [ ([ a-0" 0ot tla-)a)av i) ]

la|=N

[/0 (1-t)N 10 (v —a+tla—y)) dt

—/01(1 )N 0%z~ a)dt} (a—y)*f(y) dy’
2/ 06 (x—at ta—v) — P en(z—a )|ty —al™ £ ()] dy.
o =N TE" 0
For |a| = N, we note that
|01 (z —a+t(a—y)) —0"¢i(x—a)| S 2Ny —ql (4.2)
and
|0%¢1(x—a+tla—y)) —0i(z—a)|
<|0%¢i(z —a+tla—y))|+|0%¢i(x —a)| S 2"V, (4.3)
Then by averaging both Equation (4.2) and Equation (4.3), we obtain that
0%¢1(z—a+tla—y) =0 (x—a)| S 2Ty —al,  0<e<,
which completes the proof. O

Now, we recall that ¢J i1 +vY;+ 141 and HNJ =2"0;(2-), and then define ]’\;g =
w x¢g and F]g —9 *g.
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Lemma 4.2. Let 2<qg< o0, s >n/q, and L >n,s. Let ¢ be a function on R™ satisfying

1

lp(@)| Sm W

for all M > 0.
For j € Z and for each Q € D;, let

(@) = 2"20(2 (2 —xq)),

and for a Schwartz function g on R™ let

— 9in/2 — 9in/2
2alo) = {Rish i —eqye) o A9 gy )
Then we have
| 3= ottt
QGD 2j Jj XQ Lq(z)
1/q
< 2j"/<1< B *1/2M q) '
St QZD (1Bl e )
Proof. For 2 < ¢ < 0o, we have
(Z Bl 2JXQc( | Q( Dq
QGD 1’ XQ
/2 xq: () 2 Q a2
s(Q;ijQ(g)q Ermem el Ol) (Q;)jw ()"

where Holder’s inequality is applied if 2 < ¢ < oo. Clearly,

(2 |@Q(z)|)q_2 w2 (Y W)q_2

QEDJ' QGDj

— 22 3 M)H < 4y 20(a-2)/2
P

mezm™

for sufficiently large M > n. Therefore, the left-hand side of the claimed estimate is less
than a constant times

27n(1/2-1/0)|| § B (g)[1/2 Xq- ()

Ermemre !\
Gem, (r—x

(4.4)

The L? norm is dominated by

XQe<(x) /2 1 0 R 1/2
Balo)"* G 3 Bal) " (901 )
O ) @y 7
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Note that
1
(27 (xq —xp))3Fa/?

(%L 1e™) Sq.r

and thus the preceding term is controlled by a constant multiple of

q Q- () 1 1/2
(& 129 o 2 o)

QED XQ XR

Here, we used the facts that

‘BR(Q)’
(1+27]xq —xr|)

57 < |BQ(9)’

and
1 < 1
(2(z —xR))19/2(2 (xq —xp))Fe/2 ~ (2/(x —xq))?3/?

Since the sum over R € D; converges, we deduce

(4.4) 52—jﬂ/4< Z (|BQ(g)’Q|_1/2M)q)1/q

QeD;

and thus the desired result follows.

O

Lemma 4.3. Let 2 <p,qg < oo, s>n/min{p,q} and L >n,s. For j €Z and Q € D;, let

Boly <|A39| W2Q)>L>v

where g is a Schwartz function on R™. Then we have

H(ZZ 1Bo( )||Q|—1/2M)q>1/q

JELQED;

S HQHLP(R")-
Lp(Rn)

Proof. It is easy to verify that for Q € D;

1
MXQC (x) < MgXQ(l")

and thus the left-hand side of Equation (4.5) is less than a constant multiple of

H (QZE; (|%(9)\IQ|—1/2M:XQ(.))C,) 1/4

’( > (‘BQ(Q)HQ_UZXQ(.))(J) 1/q

QeD

Lp(R™)

<

~

Lr(R")

https://doi.org/10.1017/51474748023000518 Published online by Cambridge University Press

(4.5)


https://doi.org/10.1017/S1474748023000518

Trilinear Fourier multipliers on Hardy spaces 2235

by virtue of the maximal inequality (2.4) with s >n/min{p,q}. We see that

( 2 (|BQ<9>\IQI‘”2><Q<x>)q)Uq < ( > (IBQ@!Q|—1/2XQ<x>)2>l/2

QeD QeD

— Jn o\ 1/2
= (;@;ij(@(/}Rn }Ajg(y)|<2j(yz_w dy) )
1/2

(S ot g an)) = Mg}

~ iI\Y) | o5 NL y) ~ ig\x)y

jez “JR" ! (29(y — )L ! jerlle

since ¢ < (4, L >n and (2/(y —xq)) = (27(y — x)) for Q € D; and x € Q. Using
Equation (2.4) again, the left-hand side of Equation (4.5) is less than a constant times

H{Ajg}jeznm(p) ~ ||9HLP(]RW)- O

Lemma 4.4. Let 1 <g<oo, s >n/q and L>n,s. For j €Z and Q € D;, let
Bals) = {|Froh s
9) =059 5777 )
¢ PRI~ o))t

where g is a Schwartz function on R™. Then for 1 <p < oo with ¢ < p we have

sup ( Z <|BQ(9)HQ1/2<23‘(._10Q)>5)(1)

I€% \ e,

1/q

S gllze ey (4.6)
Lr(R™)

Proof. For any j € Z and Q € Dy, there exists a unique lattice m¢g € Z" such that xg =
27Img. For any j € Z and x € R", let Qj,= be a unique dyadic cube in D; containing z.
Then we have the representations xq, , =2 7my, , for mq, , € Z" and

r=2"7(mg, , +uy) for some wu, € [0,1)".
Now, for @ € D;, we write

2jn 2jn

Bal@llQ ™2 5o [ 1Mo i orr S | 1Mo e

2im
= | [Mgy)]— - dy
Rn <2J(y—ac)—|—mQj)z —mg —|—uz>

2in
<L /Rn {Mg(y)’ <2j(y7x)+mQj,m —mQ>

mq iz —mgqg
,S Mdyacjl' /\/lg(x),

T dy
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where the penultimate inequality follows from the fact that w, € [0,1)™. This deduces

g\ 14
(3 (1me@lor o =gy )')

QeD;
p—— 1 o\ /4
S (mZ (Maa™ " Mo ) )
1 q 1/q
<m%n (MdyadMg )W) )

Therefore, the left-hand side of Equation (4.6) is less than a constant times

s 1/q s n 1/q
( > (m) qHMg;adMgH‘;p(R,,,)) ,§||Mg\|Lp(Rn)< > (m)~*(log (10+ |m]))* /p)
mezn mezZn
S lgllee @)
as sq > n, where we applied Minkowski’s inequality if p > ¢ and the maximal inequality

(2.6). This completes the proof.

Lemma 4.5. Let a be an HP-atom associated with @, satisfying

/ 2Va(x)de =0  for all multi-indices |y] < M, (4.7
and fix Lo > 0. Then we have
n . ; M4n+1 1
|Aja($)| S UQ) /pmm{l,(QJl(Q)) }<XQ*($)+X(Q*)C($)<2J»($_)@)>LO>7
(4.8)
and
—n . i M+n+1 1
Tja(@)| Seo Q) Pmin {1,(21(Q)) }(XQ*(m)-i-X(Q*)c(fﬂ)W)-
(4.9)
Moreover, for 1 <r < oo,
1A ]l £ @y, [T g0l ey S UQ) P4 min{L, (271(@)) M+ /741, (4.10)

Proof. We will prove only the estimates for Aja, and the exactly same argument is
applicable to I'ja as well. Let us first assume 27¢(Q) > 1. Then we have

[A0(2)| < €@ (xo- @Il +xi@1+(0) | et dy)

gin 1
Sto Z(Q)n/p(XQ*(J?)JrX(Q*)“(i?)/yeQ 2 (z—y))" L (2 (z —y)) ko dy)

SUQ)TY (XQ* () + MQ*MI)W)

since |z —y| 2 |z —xg| for € (Q*)¢ and y € Q.
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Now, suppose that 27¢(Q) < 1. By using the vanishing moment condition (4.7), we
obtain
{(M-+n+1) ! 1 M+1
Aja(z)] < 2+ // | ly— xIM*[a(y)| dtdy.
[4s0()] ol @la—t—(—txg)m X

If x € @Q*, then it is clear that

[Aja(@)] £ (70@)" U@
If x € (Q*)°, then we have

(P (z—ty—(1-t)x@)) ™ S (2 (z—xq)) ",
which implies

M+n+1

oQ)~m/P.

‘Aja(m>‘ 5[/0

2z —xg)ko (2UQ))

This proves Equation (4.8).
Moreover, using the estimate (4.8), we have

HAJ“I’ L (Rn) S HAJ“I’ T HAN’ L ((Q*)°)
<@ @10 (0 |t )
SUQ T min {1, (21Q) T (14 (274@) )
< 0(Q) /P min {1, (271(Q)) MY
This concludes the proof of Equation (4.10). O

5. Proof of Proposition 3.1: Reduction

5.1. Reduction via paraproduct

Without loss of generality, we may assume

I fill eres @@y = || f2ll mrre ey = | f3ll s ey =1 and  L3[o] =1.

We first note that T, (f1, f2,f3) can be written as

Ta(flvaaf?)): Z TU(Aj1f17Aj2f27Aj3f3)'

J1,72,J3€Z

We shall work with only the case j; > jo > j3 as other cases follow from a symmetric
argument. When j; > jo > js, it is easy to verify that

To (g, fro Mgy fo, N f3) = To, (Mg, f1, 0, f2, A, f3)
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. o~

where o (£) =0 (£)O(£/27) and O(€) := Zl LU U (2L€) so that O(€) =1 for 272 < |€] < 22
and supp(0©) C {€ € (R")3:273 < |€] < 23}. Then we observe that

k- 2 _
zléIZ)HUk(Z Mz (@nys) < Lalol =1 (5.1)

by virtue of the triangle inequality. Moreover, using the fact that I'; f =", - j Aif, we
write -

Z Z To'jl (Aj1f17Aj2f27Aj3f3)

J1EZ j2,j3€L:j3<j2<j1

9
= ZTUJ- (A f1.T510f2.0-10f3) + Z ZTUJ- (Aj fr. Ak f2. Tk f3)

JEZ k=0j€Z
9
= To('l)(fhf%f?)) +ZTO(-2)7k(flaf27f3)a
k=0

and especially, let T, ) T(z) Then it is enough to prove that

HTO('M)(flaf27f3)HHp(Rn) Sla M:LQ (52)

since the operator TC(,Q)’]C7 1<k <9, can be handled in the same way as T§2).
It should be remarked that the vanishing moment condition (1.16) now implies

/’ 2Ty, (f1,f2.f3)(x) dz =0  for all multi-indices || < % —n. (5.3)

5.2. Proof of (5.2) for p=1

In this case, we may simply follow the arguments used in the proof of Theorems B and D.
The proof is based on the fact that if g is supported in {£ € R™: C’0_12k < €| < Co2F}
for Cy > 1, then

(5],

k€EZ

S H{gj }jezum(zq)' (5.4)
P (0a)

The proof of Equation (5.4) is elementary and standard, simply using the estimate

A, (ng) (x)

keZ

j+h

=18( X 9)@

k=j—h

Sﬂ,h Mrgj(m)

for all 0 < r < 0o and for some h € N, depending on Cj, and the maximal inequality (2.4).
We refer to [34, Theorem 3.6] for details.
By using the equivalence in Equation (2.2),

780G o)y~ | {85 (o (e D00}
JEZ

keZ Lr(e2)
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We see that the Fourier transform of 75, (Akfl,Fk_10f2,Fk_1of3) is supported in
{€eR™: 2872 <|¢| <2772} and thus the estimate (5.4) yields that

Lr(R")

1/2
|‘To(_1)(f1?f2)f3)HHp(Rn) S H (Z |Ts, (A f1.T5—10.f2,Lj—10f3) ’2) ‘
jez

Then it is already proved in [14, (3.14)] that the preceding expression is dominated by
the right-hand side of Equation (5.2) for s > n/min{p1,p2,p3} + n/2, where we remark
that min{p1,p2,p3} < 1. This proves Equation (5.2) for pu=1.

5.3. Proof of Equation (5.2) for p=2
Recall that

TP (fr,forfs) =Y Toy (A f1. 0 2,15 f3) (5.5)

JEL
and observe that

Ta'j (A]flaA]f%F]f?))(x) = 0-;'/ *3n (A]fl ®A]f2 ®ij3)($,$,$),

where %s,, means the convolution on R3".

It suffices to consider the case when (1/p1,1/p2,1/ps) belongs to Ry or Rs, as the
remaining case is symmetrical to the case (1/p1,1/p2,1/p3) € Ry, in view of Equation (5.5).
We will mainly focus on the case (1/p1,1/p2,1/p3) € Ry, while simply providing a short
description for the case (1/p1,1/p2,1/p3) € R in the remark below as almost same
arguments will be applied in that case.

Therefore, we now assume 0 < p; <1 and 2 < pa,p3 < 00, and in turn, suppose that
s >n/p1 +n/2. By using the atomic decomposition in Equation (2.3), the function
f1 € HP(R™) can be written as fi =Y ;- ; Apag, where ay’s are HP'-atoms associated
with cubes @, and

()™ <. (56)
k=1

As mentioned before, we may assume that M is sufficiently large and [27ax(z)dz =0
holds for all multi-indices |y| < M.
By the definition in Equation (1.2), we have

HTU(Q) (f17f27f3)HHp(Rn) ~

er ‘ i Ak * (ZTaj (AjahAjfvaij)) ‘
k=0

jGZ Lp(]Rn)
and thus we need to prove that
oo
sup ‘ > Ak (ZTaj (AjakaAjf27ij3)) ’ SL (5.7)
1€z 2o jez Lp(R™)
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The left-hand side is less than the sum of

1 := ||sup ‘ > Nexqp bk (ZToj (AjakaAjf%ijS))‘
€2 2o jez Lp(R™)
and
j:: sup‘Z)\kX(sz)c(bl* (ZTUj(AjakaAjf27ij3))’ s
S jez Lr(R")

recalling that Q;** is the dilate of Qj, by a factor (10y/n)3. The two terms Z and J will
be treated separately in the next two sections.

Remark. When (1/p1,1/p2,1/p3) € Rz (that is, 0 <p3 <1, 2 < p1,p2 < 00), we need to
prove

<1
Lr(R™)

)

sup | Y et (32T (s i )|
k=0 jez

IEZ

where ay, is the HP3-atom associated with f3. This is actually, via symmetry, equivalent
to the estimate that for 0 < p; <1 and 2 < pg,p3 < 0,

S, (5.8)
Lp(Rn)

sup ‘ i Ay * (ZTaj (FjakvAjfz,Ajfff)) ‘
k=0

lez jez

where ay, is the HP'-atom for f;. The proof of Equation (5.8) is almost same as that of
Equation (5.7) which will be discussed in Sections 6 and 7. So this will not be pursued in
this paper, just saying that Equation (4.9) will be needed rather than Equation (4.8), and
the estimate H {I‘jak }jeZHLT(ZN) ~ ||ak || g~ wny Will be required in place of the equivalence

{808} ;s

Lre2) ™ Hak”HT(R")~

6. Proof of Proposition 3.1: estimate for 7

For the estimation of Z, we need the following lemma whose proof will be given in
Section 9.

Lemma 6.1. Let 0 < p; <1 and 2 < pa,p3 < 0o, and suppose that | fi|lpri(mn) =
| foll ez ®ny = [ f3llgra@ny = 1 and L2[o] =1 for s > n/p1+n/2. Then there exist
nonnegative functions uy, us and ugz on R™ such that

lluillLos @y S1 - for i=1,2,3,
and for x € R"
sup ‘ Z/\kXQ;**(»’U)(/)l * (ZT@- (Ajak»Ajf%ij?)))(x)‘ S ur () uz(z)us(z). (6.1)
€& k=0 JEZ

This lemma, together with Holder’s inequality, clearly shows that

T 5 ||U1||Lp1 (R™) u2||LP2 (R")||u3HLT’3 (R™) S 1.
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2241

Recall that for each Q; and [ € Z, B:lch = B(xg,,100n27") stands for the ball of radius

100n2~" and center XQ, - Simply writing B! := Bl xq,» We bound J by the sum of

j sup’Z)\kX(Q***) X Bl ¢l* (ZTGJ A ak,A fQ,F fg))
L (R)
and
Jo: sup’Z)\kX @iy Xp 00+ (3 To, (Ajan A fo.T fg))H
JEZ Lp(R™)

and treat them separately.

7.1. Estimate for J;

Using the representations in Equations (2.7) and (2.9), we write

Ajfa()i= Y bpwP(e),  Tifse):= ) bRo"(x)

PeD; ReD;

where we recall ¥ (z) = |P|'/24;(x —xp) and 0% (z) = |R|}/?0;(x —xg) for P,R € D;.

Then it follows from Equations (2.8), (2.10), (2.1) and (2.2) that

{65} pen || joae ~ [[{As fo} s enll 1o oy ~ I fall mro2 ey = 1
and
H{b }ReDprs o H{F f3}]€Z”LP3(€°°) /3]l res (meny = 1.
We write
o1 * (ZT07 (Ajar,Ajf2,1; f3) ) Z¢l* (z),
JEZL
where
PNR v=1
O, (P,R) = P‘NR v=2
PNR¢ v=3
P‘NR¢ v=4
and

:Z Z Z b2PbdRTO'J (Aja’k71/}PaoR)(y)XQV(P,R)(‘T)? v= 1727374'

jEZ PED; RED;

Then we have

T Sp T+ TR+ T2+ T4,
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where

&

. v=1,234.
Lr(z)

sup \Zm 0 (@)X (2)61 % (U 2,)) ()|

Now, we will show that
JU S, v=1234. (7.5)
7.1.1. Proof of Equation (7.5) for v =1. We further decompose U (x,y) as
Uy (2,y) =Uy" (2,y) + U (2,),

where

)= >0 N 0BT, (xo Ajart” 0%) (W)xpan(@),

JEZPeD; RED;

U™ (ayy) =D > > bpbRT, (XiepeAsane”,0%) () xpar(@),

JEZ PED; RED;

(7.6)

and accordingly, we define

1 1n/out _
1

s | Mxap e @)Xy @ U (@) @)
k=0

LP(QE)'
Then we claim the following lemma.

Lemma 7.1. Let 0 < p; <1 and 2 < po,p3 < o0, and let Z/Im/oUt be defined as in
Equation (7.6). Suppose that || fi||rres wn) = [ f2ll ez vy = || f3 rra (n) = 1 and L2o]=1
for s >n/p1+n/2. Then there exist nonnegative functzons ui, u‘f“t, ug and ug on R"

such that

H in/out

Iy L luillze@ny ST for i=23,

and for x € R"
sup | Zm@ﬂw e (@) (U () )| S @ (s (). (77)

The proof of Lemma 7.1 will be given in Section 9. Taking the lemma for granted and
using Holder’s inequality, we can easily show that

1,i 1
jll S,p J1,1n+j1,out ,S 1.
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7.1.2. Proof of Equation (7.5) for v=2. For PeD and | € Z let By, :=BL =
B(xp,100n27). By introducing

21m Z Z Z bhbi T, XQkA ar, "0 )( )XPcm(B;)cmR(x%

JEZ PED; RED;

Uy ™ (a, Z Z Z bpbE Ty, (X(@pye Njars ¥ ,0%) (Y) X per (L )enr (),

JE€EZ PeD; RED;

(7.8)
Uy™(zy) =D > D bpbET, (xop Ajar¥™.0%) ()X perpy nr(@),
JEZ PED; RED;
Uy " (z,y) Z Z Z bEbRTy, (X(qp)-Ajar,v",0%) (y )Xpenptnr(®),
JEZ PED; RED;
. __741in 1,out 2,in 2,0out
we write Us =Uy " +Uy" " +Uy " +Uy " and consequently,
j12 < j12,1,in+j12,1,011t+j2 2, 1n+j12 2,out
~p ’
where
2,n,in/ou ,in/ou
A (ZM@*** DXy (@) o U @)@ =1
Lr(z)

Then we apply the following lemma that will be proved in Section 9.

Lemma 7.2. Let0<p; <1 and2 < ps,p3 < oo, and let L{n’in/out be defined as in Equation
(7.8). Suppose that || f1| grer (mny = || f2|| ez mn) = ||f3||Hp3(Rn =1 and L3[o] =1 for s >

n/p1+n/2. Then there exist nonnegative functions ul®, u$", us and uz on R™ such that

H m/outH 1

LP1(R™) 5 ’ ”ui”LPi(R") 5 1 for i=23,

and for each n=1,2
sup \mec( P e () e QU 2,)) )| Sl s (s (). (79)

Then Lemma 7.2 and Hélder’s inequality yield that J7 is controlled by the sum of four
terms in the form
|| in/out

| Lov gy 2l 22 oy [[us [ £os (),

which is obviously less than a constant. This proves Equation (7.5) for v = 2.
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7.1.3. Proof of Equation (7.5) for v =3. This case is essentially symmetrical to
the case v =2. For R€ D and | € Z, let BY := B. = B(xg,100n27"). Let

U?} n (z,y) Z Z Z beRTJ] XQ*A a, "0 )( )XPORCO(BfQ)C(x)v

JEZ PED; RED;

Uy (z,y) ::Z Z Z bpb%T,, (X(Q;)cAjakﬂ/fPa@R)(y)XPchm(Bg)c(x)a

JEZ PED; RED;

(7.10)
U™y =3 D D bEbR T, (xopAsar ¥ 07) (W)X prpensy, (@),
jEZ PED; RED;
L{§ () Z Z Z beRTJa X(@p)-A akﬂﬁ 0 )( )XPchmBg(bT)v
JjEZ PED; RED;
and then we write
\713 ,Sp L713,1,in_’_k713,1,out_"_k713,2,i1r1_’_‘h713,2,0ut7
where
jl&fl,in/out — sup ‘ZAkX(Q***) X(Bl)c( )¢l* (ug,in/out(x,.))(x)’ , n=12
Lr(z)

Now, Equation (7.5) for v =3 follows from the lemma below.

Lemma 7.3. Let 0 < py <1 and 2 < pa,p3 < o0, and let Z/l3’m/0Ult be defined as in
Equation (7.10). Suppose that || f1[| ey ey = || f2ll ez () = [ f3]| rea () =1 and L2[o] =
for s >n/p1 +n/2. Then there exist nonnegative functions ul®, uS", us, and uz on R™
such that

H 111/0ut||Lp1 &) 5 1, ||Ui||LT’i(]R") S 1 fO?” i= 2,3,

and for each n=1,2
sup \Zm @iy (@)X (e (@) (U™ (@) (@) S W () ua (s ().

The proof of the lemma will be provided in Section 9.

7.1.4. Proof of Equation (7.5) for v =4. In this case, we divide U, into eight types
depending on whether z belongs to each of pr and Bﬁ% and whether Ajay is supported
in Q5. Indeed, let

PenReN(BL)N(BL)e, n=1
PeNRN(BL)°N B, n=2
PN RN BLN(BYL)C, n=3
PNR°NBLNBL, n=4

2, (P,R,1) = (7.11)
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and we define

UP™ (@) =30 D7 D T, (xop Ayana 0" )xz, (),

JEZ PED; RED;

nout Z Z Z b Tg7 Q;)cAjak,wP,aR)(y)XEn (3'5)

JE€Z PED; RED;

(7.12)

for n=1,2,3,4.
Then we use the following lemma to obtain the desired result.

Lemma 7.4. Let 0 < p; <1 and 2 < po,p3 < 0o, and let Uf’in/out be defined as in
Equation (7.12). Suppose that || f1[| ey ey = || f2ll ez () = || f3]| rpa () =1 and L2[o] =
for s >n/p1+n/2. Then there exist nonnegatwe functions ul™, u", uz, and uz on R™
such that

[ ey ST illzmeey ST for i=23, (7.13)

and for each n=1,2,3,4,
sup \Zm @ty (@)X - (1) (U™ (2,)) ()| S ™ (@ us(). - (7.14)

We will prove the lemma in Section 9.

7.2. Estimate for 75

Let z € (Q7**)°N By,. For v =1,2,3,4, let Q,(P,R) be defined as in Equation (7.3).
Then as in the proof of the estimate for J;, we consider the four cases: x € Q(P,R),
x € Qo(P,R), z € Q3(P,R) and x € Q4(P,R). That is, for each v =1,2,3 4, let U, be
defined as in Equation (7.4) and

oo
T3 = |sup| S Mexazere (2)xy @)+ Uy () @)]|
IEZ k—0 Lr(z)
Then it suffices to show that for each v =1,2,3,4,
Jy <L (7.15)

7.2.1. Proof of Equation (7.15) for v =1. In this case, the proof can be simply
reduced to the following lemma, which will be proved in Section 9.

Lemma 7.5. Let 0 <p; <1 and 2 < ps,p3 < oo, and letU; be defined as in Equation (7.4).

Suppose that || f1l|ger ve) = || fol ez ey = || f3l| zrra ey =1 and L2[o] =1 for s >n/p1 +
n/2. Then there exist nonnegative functions uy, us and ug on R™ such that

||Ui||Lpi(Rn) 51 fOT‘ i:1,2,3,
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and for x € R"
sup \Zxkx Q) (@)X, (@)1 % (Us (2,2) ()] € s (@) (@)us (). (7.16)

Then it follows from Hélder’s inequality that
T3 S uallpes @y el ez ey llus || Les zey S 1.

7.2.2. Proof of Equation (7.15) for v=2. For P€D and l € Z, let Bl := Bl be
the ball of center xp and radius 100n2~" as before. We define

Us () Z Z Z bF b‘rzs%T A‘akawpveR)(y)XPcm(B;)cmR(x)»

JjEZ PED; RED;

U3 (z,y) Z Z Z b% (A jar,w”,0%) (y Y)Xpenp,nr(T)

JEZ PED; RED;

(7.17)

and write
2,1 2,2
j22 ST+ Ts

where

T3 = . n=1.2.

Lr(x)

sup | Y- Mgz« (2)xg (@) (U () ()|
leZ ' 7

Then we need the following lemmas.

Lemma 7.6. Let 0<p; <1 and 2 < py,p3 <oc and let U3 be defined as in (7.17). Suppose

that || f1ll ges vy = | foll ez vy = || f3 ]l ges (mey =1 and L2[0] =1 for s >n/p1+n/2. Then
there exist nonnegative functions uy, us and uz on R™ such that

||ui||Lp;(]Rn) = 1 fOT‘ i= ].,2,3,

and
sup | 3° Mix(aze e (@)X (2)ors (U3 (@) )| S () ua (@) (). (7.18)
€2 k=0

Lemma 7.7. Let 0 < p; <1 and 2 < pa,p3 < 0o, and let U3 be defined as in
Equation (7.17). Suppose that || f1 | mrs (rny = || f2ll mro2 ey = || f3]| s ey = 1 and L2[o] =
for s >n/p1+mn/2. Then there exist nonnegative functions uy, us and uz on R™ such
that

||ui||Lpi(]R") ~ 1 fOT i= 172737

and

SUP ‘ZMX Q***) XBL (w) ey * (UQQ(JCa))(x)’ Sur(x)uz(z)us(x).
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The above lemmas will be proved in Section 9. Using Lemmas 7.6 and 7.7, we obtain
T3 S lull o ey w2l poe oy usl es ey S 1, n=1,2,

which finishes the proof of Equation (7.15) for v = 2.

7.2.3. Proof of Equation (7.15) for v =3. We use the notation B} := Bl for
R €D and | € Z as before and write

31, 3.2
Iy STy +T57

where
U (z,y) Z Z Z bF b?szoJ A akﬂﬁ 0 )( )XPHRCH(B%)C(x)v
JEZ PED; RED;
(7.19)
Z Z Z bp S (Ajar, ", 0%) (y )XPnrenst, (2),
JEZ PED; RED;
and

3,
jgn —

, n=12.
Lr(z)

sup ‘ Z )‘kX(Q;**)C(x)XB;C (z)y* (U3 (w,-)) (x)‘
LEZ k=0

As in the proof of the case v = 2, it suffices to prove the following two lemmas.

Lemma 7.8. Let 0 < p; <1 and 2 < pa,p3 < 00, and let Ui be defined as in
Equation (7.19). Suppose that || f1|| rrer ey = || foll ez ey = || f3 ]| ps mny = 1 and L2[o] =
for s >n/p1+n/2. Then there exist nonnegative functions uy, us and uz on R™ such
that

||ui||Lpi(R”) S 1 fOT i= 132737 (720)

and
sup )ZMX Qpr)e (X)X gt (%) * (Us‘}(%'))(ﬂ?)‘ S ur(z)uz(z)uz(z). (7.21)

Lemma 7.9. Let 0 < p; <1 and 2 < pa,p3 < 0o, and let Uz be defined as in
Equation (7.19). Suppose that || f1 | mes gy = | f2 | mrr2 ey = || f3]| o5 rn) = 1 and L2[0] =
for s >n/p1+n/2. Then there exist nonnegative functions uy, us and uz on R™ such

that
||ui||L”i(R”) S 1 f07" i= 172737 (722)

and
bup )Z)\kx Qi) XBl () * (Ug(x,))(x)’ S g (z)us(z)us(z). (7.23)

The proof of Lemmas 7.8 and 7.9 will be provided in Section 9.
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7.2.4. Proof of Equation (7.15) for v =4. Let By := B!, and B} := Bl for
P,ReD and !l €Z, and let Z,(P,R,l) be defined as in Equation (7.11). Now, we write

Uy =UL +UT+US + UL,
where

Ui (wy) = > > bpbiTs, (Aja ", 0%) (W)x=,p.roy (@), n=1234. (7.24)

jE€Z PED; RED;

Accordingly, we define

, n=1234.
Lr(x)

4,
JQ "=

sup | 3 Mexazeoye (o) (2) = (U3 () ()]
IEZ k=0

Then we obtain the desired result from the following lemmas.

Lemma 7.10. Let 0 <p; <1 and 2 < pa,p3 < 00, and let U], n=1,2,3, be defined as in
Equation (7.24). Suppose that || f1|| e () = || f2ll ez (me) = | f3]| es (mey = 1 and L2[o] =1
for s>n/p1+n/2. Then there exist nonnegative functions ui, ue and ug on R™ such that

||'U,i||LPi(]Rn) S 1 fO’i‘ i= 1,2,3,

and for each n=1,2,3

Slug ‘Z)\kX(Q:**)”(x)XBL (z) (Uf(ﬂfa'))(m)‘ S ui(@)uz(z)us(z). (7.25)
€4 k=0

Lemma 7.11. Let 0 < p; <1 and 2 < pa,p3 < oo, and let U} be defined as in
Equation (7.24). Suppose that || f1 | gey gy = || f2ll rro2 ey = || f3]| ores rey = 1 and L2[0] =1
for s>n/p1+n/2. Then there exist nonnegative functions ui, ue and ug on R™ such that

||ui||Lpi(]R") S/ 1 fO’f‘ i= 172737 (726)

and

Slug ‘ZAI@X(Q;**)C(-T)XB}C () (Uf(@"")) (33)) S ur(w)ug(w)uz(w). (7.27)
€4 k=0

The proof of the lemmas will be given in Section 9.

8. Proof of Proposition 3.2

We need to deal only with, via symmetry, the case when 0 < p; =p <1 and ps = p3 = c0.
As before, we assume that || f1] ge®n) = | f2]| Lo @) = || f3]| Lo (rn) = 1 and L2[o] =1 for
s>n/p+n/2. In this case, we do not decompose the frequencies of fs, f3 and only make
use of the atomic decomposition on fi. Let ap’s be HP-atoms associated with @y so that

J1="00 1 Meay and (Y57, |)\k|p)1/p < 1. Then we will prove that
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SHP‘Z)\MQ;** ol *To’(ak7f27f3)‘ <1 (8.1)
lez k=1 L»(R™)
and
sup‘ZAkX(Q;M)C o] *Tg(ak,fzyf:a)‘ <1 (8.2)
tez | = Lo

8.1. Proof of Equation (8.1)
Since
’(bl *Ta(akaf2af3)(x)| 5 MTU(ak7f2af3)(m)7
the left-hand side of Equation (8.1) is controlled by
> » p 1/p
<Z|/\k| ||MT0'(ak7f27f3)HLP(Q***)) .
k=1
Using Hélder’s inequality, the L? boundedness of M and Theorem D, we have

|MT (an, fo, )| o eney S 1Qu 72| T (ke o, f3) | o gy S QI 772 k]| 2 rny S 1
and thus Equation (8.1) follows from (> 72, |/\k|p)1/p <1,

8.2. Proof of Equation (8.2)

Let B! = B(xg,,100n27") as before. We now decompose the left-hand side of Equa-
tion (8.2) as the sum of

V) = SUP‘ZAkX(Q,’;**)LX(B,ﬂ)C (bl*Ta(akquva)‘ ’
ez Lr(R™)
Vy = sup‘z)\kX(QZ**)CXBL ¢z*Ta(akaf2»f3))‘ ’
ez Pt LP(RH)

and thus we need to show that
Vi, Vo 5 1.

Actually, the proof of these estimates will be complete once we have verified the following
lemmas.

Lemma 8.1. Let 0 < p < 1. Suppose that || fi| gewr) = | f2llmo@®e) = | f3ll g @®n) =1

and L%[c] =1 for s >n/p+n/2. Then there exist nonnegative functions uy, us and us
on R™ such that

lluille@®ny S 1, lluil| Lo mry S 1 for i=2,3,
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and
wﬂ}:MXwa(hwud)@*%ﬁth@@ﬂSuﬂ@m@Wﬂ@~ (8.3)

Lemma 8.2. Let 0 <p < 1. Suppose that || fil[memn) = || foll e @n) = || f3ll e @n) = 1
and L%[o] =1 for s >n/p+n/2. Then there exist nonnegative functions uy, us and us
on R™ such that

||u1||Lp(Rn) N 1 ||Ui||Loo(Rn) = 1 fOT’ 1= 2,3,

and
Sup ‘ Z)‘kX(Q*** XBl (x) oy T, (ak,fg,fg)(x)’ S (z)ug(z)us(z). (8.4)
The proof of the two lemmas will be given in Section 9.

9. Proof of the key lemmas

9.1. Proof of Lemma 6.1
Let 1 <7 < 2 such that s > 3n/r > 3n/2, and we claim the pointwise estimate

|To, (Njar, A £2,05 f3) (y)| S MeAjan(y) My A; fo(y) Mo T f3(y). (9.1)

Indeed, choosing ¢ so that 3n/r < 3t < s, we apply Holder’s inequality to bound the
left-hand side of Equation (9.1) by

[ oyl oyl Ffs 2
(Rm)?

(272)t (2729)" (27 23)"
< ) / Ajarly=-) Ajfaly—+) Lifsly—1) .
= L ((R™)3) (27.) L7 (R7) (27:)f L7 (R™) (27) Lr(R™)

We observe that

3jn/r i
L7 (Rn)3) 5 2% / ||0(2]')

1€27)%o |

5 (@) S 2o (@) 2wy S 2T
using the Hausdorff-Young inequality, Equation (5.1) and the inclusion
L2 (A) < L (A)  for sg > s1, to > t,

where A is a ball of a constant radius, whose proof is contained in [19, (1.8)]. Applying
Equation (2.5) to the remaining three L™ norms, we finally obtain Equation (9.1).

Now, we choose 7 and ¢ such that 2 <7 < pg,ps and 1/¢+2/7 = 1. Finally, using the
estimate (9.1) and Holder’s inequality, we have
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‘ > AkxqQie+ (@) (ZTUJ- (Ajak7Ajf27rjf3)) (3?)‘
k=0 JEL

S Aexop (ﬂ?)Zln/

k=0 |z—y|<2-!

EMeAgax(®)} jeall o [ {MAA 20 e

x H{MT-ij?)(y)}jQZHZOO dy
5 ’u,l(.’I})UQ(ZL')u?)(x)’
where we choose

ZAI«XQ*** My ([{Mrdjart; |l 2) (),

u(z) == F(”{MTAij}jGZ"EQ)(x)’
uz(x) = MF(H{MTij?)}jezugoo)(x)

and this proves (6.1). Moreover,

oar || pon () < (ZWI’“

where the last inequality follows from Equation (5.6) and the estimate
< |Qk|1/1)1—1/7"0

HMq(H{MrAJ‘“k}jezHez) Lr (@) ™ Ma([iMrAsantscoll) L7o (R™)
SIQEMP {80k} gl oy ~ 1@ T ko ey S 1

for ¢ < rg < co. Here, we applied Holder’s inequality, the maximal inequality (2.4), the
equivalence in (2.2) and properties of the HP*-atom ay. It is also easy to verify

||U2HL1’2(R”) S H{Ajf?}jeZHLm(Z?) ~1

P1 1/p1
) s
LP1(Qp**)

H{M Aj “k}]ez||e2>

and

[usll Lrs &) S H{ijg}jeZHLPS(ZOO) ~1
using Equations (2.4), (2.1) and (2.2).
9.2. Proof of Lemma 7.1
Since
s>n/p1+n/2=(n/p1—n/2)+n/2+n/2,

we can choose s1,89,83 such that s; >n/p; —n/2, s2,83 >n/2, and s = $1 + s2 + s3.
Using the estimates

||’l/}PHL°°(]R") < ‘P|71/2 and ||0R||L°°(]R") < |R|71/2’
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we have

)] <X (X IR 2xr@) (3 BRIR 2 xn(a)

jeL " PeD; ReD,
X/ ‘0}/(31—21,22,23)"Ajak(fh)‘XQ;(m)dZ
(Rm)3

< ¢ ({t2} pep) ()9 ({b%} rep) (z)
o\ 1/2
X (z:(/(m)3 ‘O-_;‘/(y_21’22723)|’Ajak(21)’XQ2 (1) dZ) ) . (9.2)

jEL
We observe that for |z —y| <27! z € (Q;**)°N(BL)° and z; € Q},
|z —xQu| S ly— 21 (9-3)

and thus, by using Lemma 4.5,

(27 (x —xq, )™ /(R ; o)/ (y— 21,22, 23) || Ajar(21) | xq: (21) dZ

SUQy) M min{1»(2jf(Qk))M}/ (2 (y—21))° o) (y — 21,22, 23) | x @z (1) dZ
< @0 # i {1,(2(@0)) " ]2 rrm(Rn>||<zj->—ss||L2<Rn>2j” £, 0)

~ £(Qr) TP min {1, (276(Q1)) M VIR
for sufficiently large M, where

L. s(y) :2—”/@ (29 (y— 21),27 22,27 23)" |0 (y — 21,22, 23) \‘ Loy 410 (9.4)
This proves that
/(Rn)S 0 (5 — 21,72,28) || Ak (1) |z (1) d

S Q)T min {1, (270Qi) "} (1 — %)) T L (W), (9.5)

and therefore, we obtain
U (@.9)] S 9* ({3} pep) ()™ ({b re) (@)0(Q1) 77 & —xq, | (9.6)

x (Z(2 “Imin {1,(26Qu) " i, (1)) )1/2.
JEL

Similar to Equation (9.2), we write

U (z,y)| S 9° ({0p} pen) ()9 ({03} rep) (2)
1/2
X (Z (/(R")B |ajv(y—21,zg,z3)|}Ajak(zl)|X(QZ)C(21)d2>2> .

jez
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Instead of Equation (9.3), we make use of the estimate

(2 (2 =%q,)) £ (2 (y —%xQ.)) < (27 (y — 21))(2" (21 —%q,)) (9.7)

for | —y| <27! and z € (Q}**)°N(BY)°. Then, using the argument that led to Equation
(9.5), we have

/(]Rn)3 |ij(y* 21722’23)||Ajak(zl)}X(Qz)C(Zl) dz

SUQ) ™ min {1, (276(Q0) " 12 (v —x0,)) R W), (9.8)
where M, Lq are sufficiently large numbers and
ou “jn (270(Qr))"
Ik jts( ) =277 / 2 _ Lo—s1 (99)
@) (27 (21 —xq,))
X H<2j(y— 21),2 22,27 23)%| 0} (y — 21722,23)” - dz.
22,23

Now, we deduce

U™ ()| S 9% ({03} pen) (2)9 ({0} ren) (2)0(Q)) /P! o —xq, |~ (9.10)
] ) 1/2
(X (i @Q0) zw))

JEZ

According to Equations (9.6) and (9.10), the estimate (7.7) follows from taking

m/out Z‘)\klg Qk /pIX(QZ**)C($)|$_XQk|_Sl

M| (3 (o min 1 @e@u) 22 0) ) W] (2,

jez
us(z) == g* ({bp} rep) (z),
uz(z) == g% ({b% }rep) (7).

It is clear that

Hu2”LP2(R") = H{b?)}PeDHf'pw ~1 (9.11)

||U3||LP3(JR") = H{b%}REDH‘fP&OO ~1 (9.12)

in view of Equations (7.1) and (7.2). To estimate ui and u$"*, we note that

‘ 1/2
11325, S1HL2(R") < 2JH/Q (/n dy> dz
k

0= 277 0Qu)" (270 2 oy < 220" .19

<2jy72j22a2jz3 |U yaZQaZS |‘

L2(22,Z3)
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where we applied Minkowski’s inequality and a change of variables, and similarly,

Jou —Jin (2J€(Qk))n =\ S
1755l 2 any £ 277 /(QZ)C (27 (21 — xg, ) Lo a1 [[(277)* 0 || Lo qanys)
S 2jn/2£(Qk)n(2j€(Qk)>—(Lo—81—") (9.14)
for Ly > s+n. Now, we have
oy < D@0 [ g,
k=0 (Qp**)e
) ) o\ 1/2 p1
x <M KZ (2—Swmin{1,(2w(Qk )y, ) ) }(x)) da
JEL
and the integral is dominated by
H‘ —xqQ,|” HL(2/m) (Qz*)e)
, , 2\ 1/27\ P
X <M|:<Z(2_Sljmin{17(2]£(Qk ) }ijsl ) ) :|> .
JEZ L2/P1(Rn)

The first term is no more than a constant times £(Qy,) 71 (s1=("/P1=7/2)) "and the second
one is bounded by

, , 2\ P1/2
<Z(2—31Jmin{1,(23f(Qk) }| kj,81HL2(R")) )

JEL

. . Mo 2\ P1/2
< Q)" <Z (2_8” min{l, (QJE(Qk)) }Qﬂn/Q) ) < E(Qk)‘91p1+p1"/27

JEL

due to Equation (9.13). This proves

) 1/p
[ P S(Z\Akl’“) <L (9.15)

In a similar way, together with Equation (9.14), we can also prove

o0 1/
18" | s o S (Sl ) 7 S0 (9.16)
(R™)
k=0

choosing M > Lo —3n/2.
9.3. Proof of Lemma 7.2

As in the proof of Lemma 7.1, we pick s1,s9,s3 satisfying s; >n/p1 —n/2, s9,s3 >n/2,
and s = s1+s2+ 853 >n/p1+n/2.
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We first consider the case n = 1. For z € P°N(B%)¢ and |z —y| <27, we have

(27(x—xp)) S (2 (y —xp)) < (2(y —22))(2’ (22 —xp))- (9.17)
By using
6% e ey < 1RITH,
we have
@ (X BRIR @) [l sy @19
JEZ " ReED; (R™)?

X |Ajak(21)|XQ,:(Zl)( Z 0% [x pe ()X (1, )e () |7 (22 |) dz.
PEDj

Using Equations (9.3) and (9.17) and Lemma 4.5, the integral in the preceding expression
is bounded by

Q)P min {1,(270(Q) M 12 (@ — g, )) ™ /( P @z

<oyt s nlasen) (3 Wbl 7 )
PeD;

< UQx) ™™/ min {1, (274( Qk»M}w (z—%xQ)) M I, .(y)
oxee(r) %
Z|b2 2] . )> |1/’P(')|

PeD;

2jn/2

L2(R™)

for sufficiently large M > 0, where '(//;\ﬁ(zg) (29(z2 —xp))*2pF (22) for P€D; and I
is defined as in Equation (9.4). Note that

kjs

jn/2
<(2—7XP)>L> for L >n,s, (9.19)

and thus it follows from Lemma 4.2 that the L? norm in the last displayed expression is
dominated by

031 S BE(f2) = (|8 £al

2 (PZD (13321121 <2<XP§<13>> )2) R

This yields that

| _ _ 1/2
™ )] Q)T e —equl = (3 (270" min {1, (26(@0)) 11 (0) )

JEZ

(z o\ 1/2
(3 (e gy ) o (G ne) @) 020

PeD
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Similarly, using Equations (9.7) and (9.17), Lemma 4.5 and Lemma 4.2, we have

| 210ut Z( Z |b3 ||R|I~ 1/2XR( ))/( |0jv(y—21,y—22,23)|

JEZ ReED;
}A ak z1 |X(Q *)e Zl ( Z |b |ch Bl )L |1/J Z9 |) dz
PED;
A , 1/2
Sg(Qk)in/pl‘xfokrSl(Z(27]51 min{l’(ng(Qk ) }Il(cﬂ;ts ) )
JEL
(Z (|32 )||P|71/? xpe(2) )2>1/2 > ({bh}rep) (2),
X —_—
pep (27 (x—xp))* fep
(9.21)
where Ip%' s defined as in Equation (9.9).
When 1 = 2, we use the inequality
(2 (2 —xq,)) " < (2 (z—xp))”! (9.22)

for x € (BL)°N BL. Then, similar to Equation (9.18), we have

e S 3 IR uae) [ =m0

jE€EZ ReD;

X\Ajak(zl)bccz;(zl)( > b3 Ixpe (@)xp (@) |7 (22 D
PGDj

and the integral is dominated by a constant times

€Qu) /P min{1,(276(Q) 2 (@ x0,)) 1 [ (gt

(Rm)?

X’U}/(ZU—217y—z2723)|XQ;(21)( Z |b IxPe () XBl W z2 D zZ

PeD;
< QO min(1L(20Q0) Y@ - xe) 7 [ s
o (y— 21,y — 22,2 z __xpelw) Pz Z
><| 7 ( 1LY — 22,23 |XQ 1 (P; | P|<2J( Xp))2 W (2)|)d

<Q) P min {1, (270(Qr)) M 12 (2 — x0,)) " I (1)

8 (Z (|3?3(f2)||P|_1/2M)2>1/2

PeD
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due to Equations (9.3) and (9.22), Lemma 4.5 and Lemma 4.2, where I,"; - and B%(f2)
are defined as in Equations (9.4) and (9.19). Therefore,

457 )| S @)= (30 (277 min {1, (2(Q0) V2 0))
JEZ
2 12 Xpe(w) 2\ 1/2
’ (%OBP%)“P' / m> ) > ({bh}rep) (). (9.23)

Similarly, we can also prove that

t B - ‘ . 1/2
|u22,ou (m y)| (Qk) n/:D1|1, XQ, ‘ 51<Z(2 Js mln{l,(ng(Qk) }IELBS ) )

JEz
2 —1/2 xpe () 2\ /2 o (f13
X (Z (|Bp(f2)“P| W) ) g ({bR}RGD)(m)o
PED
(9.24)
Combining Equations (9.20), (9.21), (9.23) and (9.24), the estimate (7.9) holds with
m/out Z‘)\kw Qk /plX(QZ**)C(x)m_karm
k=0 ) o\ 1/2
x M KZ (2-811' min{1,(2j£(Qk))M}1,§jj/f;“t(.)) ) ] (z),
JEZ
2) e (Z > (123 (fz)\lPI_l/QW)z)l/z
jEZ PED; i (27 (x —xp))* ’

us(w) = 9> ({Vk} rep) ().
Clearly, as in Equations (9.15), (9.16) and (9.12),

H m/OUtHLm (R™) S, ||U3||LP3(]R") S1

and Lemma 4.3 proves that

|uzllLr2 @ny S 1.

9.4. Proof of Lemma 7.3

The proof is almost same as that of Lemma 7.2. By letting M > 0 be sufficiently large
and exchanging the role of terms associated with fo and f3 in the estimate (9.18), we
may obtain

;m (z,y) <Z( Z bBIPI 2 xp (2 ))/( }U}/(y_zlvz%y_zfi)’

JEZ PeD;

X |Ajar(z1)|xQ;: (21) ( > bhIxre(@)x(s, c($)|93(23)|> dz
RED;
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1/2
§£(Qk)‘"/1’l|x—xc;k‘“(2(2 ot min {1, (276(Qu)) " I, (v )2)

JEZ

x g°({bp} pep) (x)sup ( Z (’(B?é(f?’)“Rl_l/Q-l»)Q) 1/2’

€2 \ fep, (27(z —xp))®
(9.25)
where I},  is defined as in Equation (9.4), 57%(23) = (27 (23 —xR))*0%(23) for R € D,
and
Br(fs): <|F f3, £> for L > sn. (9.26)
(27(-—xgr))*
Similarly,

1/2
|Z/{§ out ZE y)| (Qk) n/P1|x XQy | S1 <Z (27j51 min{17(2j£(Qk ) }Ilcf)ujta )2>

JEZ

1/2
< () ren)@sup (3 (IBRUIIR 2 o))

X X
JE€Z \ Rep, R

where Ip%' s defined as in Equation (9.9).

For the case = 2, we use the fact that for z € (BL)¢N B,

(2 (z—xq,)) " < (2 (z—xp)) ",

instead of Equation (9.22). Then we have

7 0)| £ Q)7 o xg, |7 (3 (277 min {1,(2/6(Qu) 11y ()?)
JEZL
1 o 1/2
xg2({b%}P€D)(aﬂ)§1€1§<R§j(|B3 3)| IR~ 1/2W> )

and

o\ 1/2
U™ (2y)| < £(Qu) "7 <Z (min {1, (276Qu) " } (27 (@ = %)) ™ [ (1)) )

JEZ
> (|3%(f3)||R|1/2M>2>1/2

RED,

x g*({b3}pep) sup (
JEZ

which are analogous to Equations (9.25) and (9.27).
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Then Lemma 7.3 follows from Equations (9.15), (9.16) and (9.11) and Lemma 4.4 by
choosing

uyO (@) =3 RIUQi) TP X (e ()] — x| T
k=0

- j njout, )2\ 2
xM[(%(rmmm{l,m Qo)) @
us(z) = ¢2({3) peo) (x)

o\ 1/2
uz(z) == S_UP( Z (|B%(f3)||R|fl/2ﬁ> > / .

J€Z \ ReD, (& —xp

9.5. Proof of Lemma 7.4

Let 1" ., IR% ., BE(f2) and BR(f3) be defined as before. Let M > 0 be a sufficiently
large number. We claim the pointwise estimates that for each n=1,2,3,4,

1/2
}Un 1n/out 1: v |<€(Qk) n/p1|x za, | s1 (Z(Q Js1 mln{l (ZJK )M}IJI:J/OSM y))2>

X(%(@ﬁhﬂprlﬂm)jw
x ?lép <P§j (|B%(f3)||R|1/2M)2)1/2'

The proof of the above claim is a repetition of the arguments used in the proof of
Lemmas 7.2 and 7.3, so we omit the details. We now take

uy /M (@) = i IARIO(QrR) TP X @renye (@) |2 — X, |7
k=0
1 . v in/out 2 1/2
xM[(%(rswmm{uz fQuzlro)) @
oz o\ 1/2
(X;PZD (mhalir e Gaee))
o\ 1/
) ::3‘212( > (e o))

RED,

Then it is obvious that Equations (7.13) and (7.14) hold.

9.6. Proof of Lemma 7.5
We choose 0 < € < 1 such that

Np, == [n/p1—n] <n/p1—n < [n/p1—n]+e<s—3n/2. (9.28)
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We note that
o' <l —xq, |7t for x€ B

By using Lemma 4.1 with the vanishing moment condition (5.3), we have
g+ (U (")) ()] SZ Z Z 162, ||6% | x pra ()21 N )
jEZ PED; RED;

s /R ly = xQu ™ 7| To, (Ajan, 7,07 ()] dy

D XY Blbhlxenn()

~ _ n
| —%q, | JEL PED; RED;

X (IR (Qu PR+ KE (QuPoR) ),

where

gcg\};ri +5(QkaP7R) = \/Q** |y7XQk|Np1 +6|To'j (AjakawpaaR) (y)| dya

k

and

jcg\}zlllie(Q/wP;R) = /(Q**) |y_XQk|Npl +€|T0'j (Ajakawp?9R> (y>‘ dy
k

Now, the left-hand side of Equation (7.16) is dominated by ™ (z) + g°“!(x)

) e 1
infout (). — A wenve (T
e kZ:O‘ R )IHC*XQk\“N“*E

<30S ST BBl xpnr(@) KR (Qn P R).

jEZ PED; RED;

To estimate Hi“, we first see that

K3 4o (Qr, P.R)

SE(Qk)NW1+€|P|_1/2|R|_1/2/ . /(R )3’U;/(y_zlaz%zi’))"Ajalc(zl)’dZdy
I

S Q)N PITV2 IR A jar ] o e,

using the Cauchy—Schwarz inequality with s > 3n/2, and thus
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ST ST BRbEIXear(@)XE" L QP R)

jEZ PeD; RED;
5K(Qk)Nm“H{A'ak}]eznu(p)g ({b }PeD) ({b }Rep)

S1QkI TP Qi) g ({03} pep) (@) ({b Y rep) (@) (9:29)
by using the fact that
(A s} el ey ~ ey S £6Q) 4
For the other term J°“*, we choose s; such that
Ny, +n/24+€e<s1 <s—n, (9.30)
which is possible due to Equation (9.28), and s3,s3 > n/2 such that
s1+n < s+ s2+s3=s. (9.31)
We observe that, for y € (Q%*)¢,
(2 (y = x@u)) ™ [Ajan(21)|
n M
<U(Qy) "/ mm{l (2J£ Qr)) }(2 (y—%xqQ,))
(270(Qr)"
X (XQ;;(Zl)‘i'X(Q;)c(ZﬂW)

S UQr) ™™ min {1, (270(Qx) (y—21))
(w(Qk)) )
21 —xq,)) o

where Lemma 4.5 is applied in the first inequality. Here, M and Lq are sufficiently large
numbers such that Lo —s; >n and M — Lo+ 3n/2 > 0. By letting

(276(Qr)"

X (XQ,’;(ZI) + X(@pe(21) (27 (

Ajqi(21) = xqz (21) + x(@1)-(21) (1 —xq ) E (9.32)
we have
T, (Ajarv.0%) ()| x (01 ()
< UQr) "7 min {1,(276(Qx)) "' } ! |P|~V2| R (9.33)

(27 (y —xqi))™
<[ @)oY - )| Ao () 42
( n)B
and the integral is, via the Cauchy-Schwarz inequality, less than
le.

27]71/1; |A]7Qk (Zl)|||<2J(y_217227Z3)>80j\/(y_21722723)HL2(

22,23)
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This deduces that

x;\,{ouie (kaP’ R)

SE(Qk)fn/pl min{l’(QjK(Qk))M}|P|71/2‘R|71/227j5127jn/ |Aj,Qk (21)}
R”'L

1
(o s I =m0 o 12020 s )
S Qr)™™P min {1, (274(Q ) HP[TY2|R|TY227551270M | A; o, || 1 gy
1 =\ S
X [¢27) U;/HLQ((]R"P)

|- =xq [t | 2 ey

5 E(Qk)*"/ler”Jer te (2j€(Qk))*(81fn/2) min{L (ng(Qk))MfLoJrern}|P|,1/2‘R|,1/2
since
lAs.u ey S L@ (14+(20Qe) ™ E= =) for Lo—s1>n.

Therefore, by using the Cauchy—Schwarz inequality

Z Z Z 63| %X g (z )fK?\fouiE(Qk,P,R)

JEZ PED; RED;

S1Qk TP Q)N g ({03} pep) (@)9™ ({BR) pep) (@)

x (Z ((ZjZ(Qk))_(sl_n/m min {1, (M(Qk))M_Loﬂﬁn})g) 1/2

JEZ
S|Qk|—1/p1g(Qk>n+Np1+592({b }PGD) ({b }RGD) (9.34)

where the last inequality holds due to s; >n/2 and M — Ly+3n/2 > 0.
In conclusion, the estimate (7.16) can be derived from Equations (9.29) and (9.34),
using the choices of

0 _ EQ n+Np, +e
()= 3 RIIQk 7 x (@)

wr() -=§<{b2 oo ).
(z) ({b }RED)

It is obvious from Equations (7.1) and (7.2) that |luz||prz ®&n),||us]|Les @ny S 1. Further-

more,
> _ K(Qk)(n+Np1 +e)p1 1/p
1
ol € (S hepin™ T

T —xqy T Ne e

w)e |$ —XQg |(n+

0o /p1
< (Qw)l "<t (9.35)

This completes the proof.
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9.7. Proof of Lemma 7.6

Choose s1, s2, and s3 such that s; > n/p; —n/2, so >n/2, s3 >n/2 and s = s1 + s2 + s3.
For x € BLN(BL)¢ and |z —y| < 27!, we have

|z —xq.| <[z —xp| S ly—xpl. (9.36)
This implies
(27 (x = xq, )" (2 (& —xp))*2 |1 * Ty, (Ajar, ", 0%) ()]

s [ @y
|lz—y|<2-t J(R™)3

X |o}/(yfz1,y 29,2 3)||Ajak 21 ||1/) 29 |dz dy
< |R|’1/22l"/ 2a))r o
le—y|<2-t J(R")
X |ajv(yle7 722,23)||A3ak 21 ||¢P 22 |dz dy,
where
P (22) 1= (2 (22 = xp)) 720" ().
By using the Cauchy—Schwarz inequality and Lemma 4.2, we obtain

o0 (U 0.)) @)
D D I e R 3 e LI

JjEZ PEDj RED;

[ P e syl st | a2y
T—Yy "

< [ sy
~9 Y— 22
( }RGD % 2'7 J: XQk > |lz—y|<2-t J(Rn)3

X ’aj\/(y—zl,y 22,23 HA ak(z1) ( Z ‘ P‘ = xP)CX x) ‘wP 2’3)’) dzdy
PED; r)

S0 (1) o) @) (S @7 ML @))

|I_XQ1¢|51 jez

(Z > (\32 )||P| I/QM)Q)W, (9.37)

JEZ PED;

where B%(f2) is defined as in Equation (9.19) for some L > n,sq, and

dz1. (9.38
L2(22,23) ' ( )

Jli»j,s(y) = 27jn/R |Ajak(21)’H<2j(y*21,22,23)>80jv(y*21722723)’
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Now, we choose

) /
wa@m D (Y @Ml @)°)

|l‘ — XQg |S1 jez

- o\ 1/2
(}: }: (1B3(f HP|1”<ZK§Pfq$ym) ) ,

= ({bk }Rep)

Clearly, Equation (7.18) holds and ||ua||ze2 rn),||us]|zrs@n) S 1 due to Lemma 4.3 and
Equation (7.2). In addition,

e s sy 2 Pl/2
e B ey S S Il / 2 =xq, |7 (D @ ML, (@)°) da
k=0 (QF)e JEL

and the integral is controlled by

I =xQul ™ [ parnr (o) L2 /71 (R")

(Z (2*m/\/1J,§7jys(x))2)m/2
JEZ

QU I (2 L )

JEZ

by using Holder’s inequality and the L? boundedness of M. It follows from Minkowski’s
inequality and Lemma 4.5 that

[ Asan|

e

||Jli7j75}|L2(R") S2 (R™) L2((R™)3)

SUQy) P22 min {1, (270(Qx)) MY,

and this finally yields that

e 1/P1
gy S (D Il) S 1. (9.39)

k=0

9.8. Proof of Lemma 7.7
For x € B. N BL,

o' <z —xq, | Hr—xp| 7. (9.40)
Since s > n/p1 +n/2, there exist 0 < eg,e; < 1 such that

n/p1+n/p2<[n/p1+n/p2]+eo and [n/p1+n/p2]+60+61<s—(n/2—n/p2).
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Choose t1 and to satisfying 1 > n/pi1, ta > n/ps and t1 +1to = [n/pl —l—n/pg] + €9, and let

No := [n/p1+n/p2] —n. Then Lemma 4.1, together with the vanishing moment condition
(5.3), and the estimate (9.40) yield that
‘qsl * Ta'j (Ajakawp70R) ({E) ‘

< 2!Notnteo) / ly—xp[Note | T, (Ajar,v”,0%) (y)| dy
]R'n,

1 . )
<|R|~1/2 27](t17n)/ / 2 (1 — No+eo
N‘ | ‘.’E—XQk|t1 nJe ")3< (y Z2)>

>
X‘Ujv(y—zl,y—zz,za)HAjak(zl)\< W7 (z2)] dzdy,

2i(x —xp))t

where
VP (22) 1= (m2 = xp) N0 0pP (25).
This deduces
| (U3 () ()|
0% ({3} pep) (@ %ZQ*j(h*n)/n ( (29 (y — z)) Mo+

Xpe (T
X |oj(y — 21,y — 22,23) | | Ajar(21) ( Z b2 | e z)

0P (2)|) dZdy. (9.41)
o= xp))tz | |> Y

Using Hélder’s inequality with £ + W + p% =1 and Lemma 4.2, we see that
2

xpe(x
0i(y—z1,y — 22,23) (Z b3 | PIE ) tzWP z2)‘) dzo

PeD;

| @i

< || <2j22>s—n—510.;/(y _ 21722723)}’112 (s2) H 21.>—(S—t1—t2—61) HL<1/P’2*1/2)71(JR")

X c
” Z |b (279 xP xp)) t2|¢P )”

<27 <2J‘z2>5*”*flajv(y —2122,28) | 2y

x ( Z <|B§D(f2)||P|1/2<2j();li()ZZ)>t2)p2)l/p2

PeD;

Lr2 (R™)

because s —n—€; =s—1t1 —ta —e1 + Nog+e€g, s—t1 —ta— €1 > n(1l/ph —1/2). This shows
that the integral in the right-hand side of Equation (9.41) is dominated by a constant
times
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> (VB§4JE)HIﬂ—4/2<2jéifjgiz»t2)p2>

PED;,

x 2—jn/2/( )2 [(2722) "= 0 (4, 22,23) | 2., B s
RTL

1/p2

HAjak”Ll(R") (

x P2 1/p2
QU min (1,(20Qu) L X (1P g ) )

PeD; (2(
where B%(f2) is defined as in Equation (9.19) and M is sufficiently large. Consequently,

|gux (U3 (2,)) (@)
Lip xpe(z)  \p\VP
7 (el s (3 (BRGIP G )" )

J€4 N\ pep;
1 —n n —j(t1—n . i M
lz—x |t1€(Qk) fprt 22 o )mln{l,(Zjé(Qk)) }
Qr jez

1/p2

—1/py H&g) 2.( 12 Xpe(z) p2
sl (%PZD (s 2 0e)") o
9% ({Vk} rep) (@)

Now, we are done with

un(a) = S llQel e AL @ (@)

= |z —xq,
. 5\ 1/P2
(ZPZD (e o))

9= ({b&} pep) (@)

as ||ui|Lei(rry S 1, 1= 1,2,3, follow from Lemma 4.3, Equation (7.2) and the argument
that led to (9.35) with ¢; > n/p;.

9.9. Proof of Lemma 7.8
Let s1, so and s3 satisfy s; > n/p1 —n/2, so >n/2, s3>n/2 and s = s1 + s2 + s3. By
mimicking the argument that led to Equation (9.37) with

|z —xq,| < |r—xr| S|y —xr|

for z € BLN(BL)¢ and |z —y| < 27!, instead of Equation (9.36), we can prove
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|¢l*(u§($a'))($) <;<Z( ]51MJ]€]<S ) ) ({b }PGD)

= |z —xq, |51
5 —1j2_ Xre(®) 2)1/2
X?E‘Z’(R;j (Bl G S ) )

where J,%,jys and B%(f3) are defined as in Equations (9.38) and (9.26) for some L > n,s3.
Now, let

Z|)\k|X(Q***)c )‘x ; | . (Z(Q_j‘ﬁ_/\/l,]]i’j’s(x))?) 1/2
JEZ
= ({b }Pep)

PeD;
Then the estimate (7.21) is clear and it follows from Equations (9.39) and (7.1) and
Lemma 4.4 that Equation (7.20) holds.

9.10. Proof of Lemma 7.9
Let 0 < €g,€1 < 1 satisfy

n/pr+n/ps < [n/p1+n/ps]+e and  [n/pr+n/ps]+e+er <s—(n/2—n/ps),

and select t1,t3 so that t1 > n/p1, t3 >n/ps and t1 +t3 = [n/pl +n/p3] +€9. Let Ny :=
[n/p14n/ps] —n and B3(f3) be defined as in Equation (9.26). Then, as the counterpart
of Equation (9.42), we can get

60 U3 () @] S Q™M == Qs (1) )0
su 3 *1/2XR07(55) ps\ 1/P3
XjGIZ(Réj (|BR(f3)HR| <2j(gj—XR)>t3) > )

where the embedding % < ¢ is applied. By taking

> l
u(z) = Z|>\k||Qk|_1/pl@q)|X(Q***) (z)

= |z —x¢

ug(x) = 92({1)?’}1%1)) (z),
ugz(x) :=su 3 —1/2XRC7(JC) ps\ 1/Ps
o= ( 2 (S g iw)”)

ReD;

we obtain the inequality (7.22) and Equation (7.23).
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9.11. Proof of Lemma 7.10

The proof is almost same as that of Lemmas 7.6 and 7.8. Let s1, so and s3 be numbers
such that s; > n/p; —n/2, so >n/2, s3>n/2 and s = s1 + s2 + s3. We claim that for

n=123,
o+ U) (0] £ e (S (27 MU (@)) (9.83
k JEL
2 e xpe(@) 2\
(S 3 (i ot 2))

JEL PED;
3 —1/2_ XRe(2) N
Xil&llZ)(ReZDj <|33(f3)||R| W) ) ’

where Ji ; ., B%(f2) and By (f3) are defined as in Equations (9.38), (9.19) and (9.26),
respectively. Then we have Equation (7.25) with the choice

uy (z) = i|)\k|x ()m(Z(2—i81MJ;1,j,s(x))2)1/27
k=0 @ JeL
o 1/2
ug(z) = jlelIZ)< Z (|B?é(f3)||R|_1/2<2j(>ﬁ§2)>53>2> 1/2'

PeD;

The estimates for uy,us,us follow from Equation (9.39), Lemma 4.3 and Lemma 4.4.
Now, we return to the proof of Equation (9.43). For = € BL N (BL)°N (BL)¢ and
|z —y| < 27!, we have

o —xq,| < |e—xp| Sly—xp| and |z —xz| S |y—xal. (9.44)
Then we have
(29 (2~ %)) (2 (& — xp))*2 (27 (2 — x1))** |61+ T, (Ajar, 0" ,07) (2)]
N 21”/ / (27 (y — 22))"°2(27 (y — 23))°* |0} (y — 21,y — 22,y — 23))|
|z—y|<2-1 J(R")3
% |Ajar(21)| |0 P (22)| |07 (25)| dZdy,
where
PP (22) 1= (2 (22— xp))* o297 (22),
O (23) := (2 (23 — x)) 20" (23).

Now, using the method similar to that used in the proof of Equation (9.37), we obtain
Equation (9.43) for n=1.
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For the case n =2, we use the fact, instead of Equation (9.44), that for z € BL N (B%)°N
BY and |z —y| <27

|$_XQk|,|$—XR| < |x_XP| ,S |y—Xp|.
This shows that
(2 (2~ x, )™ (2 (& = xp)) " (2 (2 = xR)) 60 T, (Ayan, 7,07 (2|
52”1/ / <2j(y_2’2)>5|o';/(y—2’1,y—22,y—z3)|
|lz—y|<2-1 J(R™)3
x| Ajag(21)||F (22)] |07 (23)| dZdy,
where
QZI/)(ZZ) = <2j(22 —Xp)>swp(22)’

and then Equation (9.43) for n =2 follows.
Similarly, we can prove that for z € BL N BL N (BYL)¢ and |z —y| <27,

(27 (z —xq, )" (27 (x —xp))**(2 (x —xR)) " |f1+ Ty, (Ajar, " ,0%) ()]
s [ )l s e )
le—y|<27t J(R™)3
x |Ajai (1) [ (22)| |07 (23)| dZdy,
where
OR (23) = (2 (2 —xR)) 0" (23).
This proves (9.43) for n = 3.
9.12. Proof of Lemma 7.11
We first note that
2 S|z —xq, | e —xp| 7! |z —xa|T (9.45)

for z € BL N BLN BY,. Since n/p < s— (n/2—n/p2 —n/p;g)7 there exist 0 < €p,e; < 1 such
that

n/p<[n/p]+eo and [n/p]+€o+61<s—(n/2—n/p2—n/p3).

Choose t1, to, and t3 satisfying t1 > n/p1, ta > n/ps, t3 >n/ps, and t1 +ta+t3 = [n/p] +e€o
and let Ny := [n/p] —n. Then it follows from Lemma 4.1 and the estimate (9.45) that

|¢l * Ty, (Ajak,wP,HR) (x)}

< 9l (otnteo) / ly = xp N T, (A, P,0%) (4)| dy

n
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9—i(ti—n) _ No+eo| 5V (4 _ _ _
|:c XQy I“ o /n/n)s 2))" T o) (y— 21y — 22y — )

[P ()] 167 (23)] dzdy

X |Ajak(21)| <2j(.1‘—Xp)>t2 <2j(.1‘—XR)>t3

where
VP (22) 1= (20 — xp)M0HOpP (25).
This deduces that

| * (u;*(xf)) (z)]

S—— t1 2 itta= ")/ / Y — 22 >N0+60|Uj(y_Zlay_z%ZS)HAjak(Zl)‘
“T XQk| jGZ " n)S
( §:|b *“”)>Q|J?@2 )( §:|b Xﬂz)ygwRﬁgﬂ)dzﬁL
PED; xp) RED; Xp)
(9.46)

Since s — [n/p| +n/2—ey—e1 > (n/2—n/p2) + (n/2—n/p3), there exist po and p3 such
that ps > n/2—n/pa, pg >n/2—n/ps, and py +ps = s— [n/p} +n/2—¢€y—e€1. Using
Holder’s inequality with

1 1 1 1 1 1

sttt =5t gt =1
2 (pe=1/2)7" " pa 2 (1/p5=1/2)7" ps

)

we have

e e )
R"n

< > b3 X’JC;WW(@ >< > b e Xre(@ ) |0R z3)|) dzodzs

PeD; ReD;

< H <2JZ2>N0+60+#2 <2jz3>#30';/ (y — Zl,ZQ,Zg) ||L2(Z2)Z3) H <2j.>*#2 ||L(1/p/271/2)71 ®")

3 g

x|yl

(t/p5—1/2)71 (R™)

LP2 (22)

b
LP2(z3)

XRe R
| 2 i e

https://doi.org/10.1017/51474748023000518 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000518

Trilinear Fourier multipliers on Hardy spaces 2271

and then Lemma 4.2 yields that the preceding expression is less than a constant times

2_jn||<2j(22723)>N0+60+#1+#2U;/(y_Zlaz2vz3)HL2(Z27Z3)
1/p2

RB2 pl-1/2 ‘ch(x) p2

(PZD (13 P2t
1/ps3

because 2 >n(1/ph—1/2) and ps >n(1/ps—1/2), where B%(f2) and Br(f3) are defined
as in Equations (9.19) and (9.26).
Now, the integral in the right-hand side of Equation (9.46) is dominated by a constant

times
2 ol [ 12 ()2 ) e
1/?2
c p2
% (.BQ p|-1/2___XP (z) ) )
(X (e o
1/P3

S (RZD e I

and this is no more than
E(Qk)_n/pﬁ-”min{l,(zje(Qk))M}
_ xpe(@) \r)”
" ( > (183117 lﬂm) )

PeD;
1/ps

. (RZD e I

n__

where No +e€g + p2 + 13 = s — 5 — €1. Hence, it follows that

| (U (z,)) ()]
L K(Qk)_"/p1+7L22_j(tl_”) min{l,(2jf(Qk))M}

~ |17")((?k|t1

JEL
x?glz)(p;j (|3?9(f2)||P—1/2<2j(>f§)))>t2>p2)1/p2
) jlelg <R;>j <|B§2(f3)||R|—1/2<2j(>§f(X$;)>t3)p3> 1/ps
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1/P2
< —1/py _“\%k) ‘B2 P 1/2% p2>
S Q| |x XQ \tl (;P;:) (' 2)||P|” <2J(x_xp)>t2>
xsup< Z (\33 (f )|R|1/2)<Rc(f£))p3)1/p3
J€Z \ Rep, R\J3 (27(x —xp))ts .

Now, let
Qw)"
ZlA 1Qut /7 Ay ),

1
(z 5 (mhuaier Ay
jez Pe; (27 (z—xp))t 7
. ps\ 1/Ps
us(x) :=su 33 R —1/2.XR¢ ) .
(o) = sup (RZD (1R )
Then it is easy to prove Equations (7.26) and (7.27).
9.13. Proof of Lemma 8.1
Using the fact that ZjEZ\TI(Q*JE) =1 for g;é 0, we can write
To(akaf27f3) = ZTﬁ\;(a’thva)a (947)
jEz
where UNJ(E) = o(&)W(277€) so that
sup ||o 2((Rn) £2
rer H K HL (R lo] =

Moreover, due to the support of 7},
155 (ak, f2, f3) = To; (Uj1an, f2, f3)- (9.48)
Now, the left-hand side of Equation (8.3) is less than
sup ‘ Z)\kX(QZ**)C(x)X(BL)C(x)Qﬁl * (ZTE; (Fj+1@k7f27f3)<x))($>‘-
lez ' jez
Let s1,892,83 be numbers such that s; >n/p—n/2, so,83 >n/2, and s = s1 + s2 + s3. For
z € (Q*)°N(By)° and |z —y| <27,
|$_XQ1C‘ 5 |y_XQk"

In the same argument as in the proof of Equations (9.5) and (9.8), with Equation (4.8)
replaced by Equation (4.9), we can get

<2J (l’ - XQk)>81 |TE; (Fj+1akaf2af3) (y)|

S fellnee ey | fll Loe () (27 (@ — %, )) ™ /(R o ‘Ejv(y—21722,23)||Fj+1ak(21)| dz

S HQy) P min {1,(270(Q1)) " M s (v)
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where I}"; _and I3%  are defined as in Equaitons (9.4) and (9.9), respectively, and

Iig,s(y) = I o () + IR o ()
This yields that
‘(bl * (ZTaj (Fj+1ak7f21f3)) (ff)’
JEL

S UQ) e —xq 7 M (Y27 min {1, (20@Qu) " Mo ()) (@)

JEZ

and thus Equation (8.3) follows from choosing us(z) = ug(x) :=1 and
un(e) = 30 ez (2) Qi) T = xqu] ~
k=1

Cs1j o ; M
x M (ZQ 517 min {1, (2J€(Qk)) }Ik,j,s(-)) (x).
JET
Now, it is straightforward that ||u1||z»®n) is less than

(e

k=1

|+ =xq, |7 M( D027 min {1, (26Qu) " My ()

JEZ

P )l/p
LP((Qg**)e)

and the LP-norm in the preceding expression is less than

M (Zz*sw' min {1, (2J'£(Qk))M}Ik,j,81 (-))

I =% ™ [ oo ((pye)

jEZ L2(R™)
—(s1—(n/p—m —517 113 j M
SUQp) ™= /pmn 2NN P91 min {1, (270(Qk)) ™ ksl 22 ()
€z
S UQy)~Crm /o2 gy N9 min {1,(270(Qi)) ™} < Qi)™

=

where Equations (9.13) and (9.14) are applied in the penultimate inequality for sufficiently
large M. This concludes that

> 1/p
leallznn S (D Il) S0
k=1

9.14. Proof of Lemma 8.2
Select 0 < € < 1 such that

N,:=[n/p—n]<n/p—n<[n/p—n]+e<s—3n/2.
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Then Lemma 4.1 yields that

|¢l * Ty (akaf27f3)(x)| S 2l(Np+n+e)‘/R |y_XQk ‘Np+€|Ta(ak7f2vf3)(y)| dy

1
S JW/W ly — %@, [* | Ty (an, fo, £3) ()| dy

1 . )
< g e (KR el foofo) KRG (00 f £2).

where we applied 2! < |z — xq,| for z € B,lC in the penultimate inequality and

i1§p+e(akaf2af3) = /Q** ‘y_XQk|Np+€‘To'(ak7f27f3)(y)’ dy7

k

Ko fofo) = [ Iyl T o o S )] o
-

Now, we claim that
IR X (s fon f3) S L(Qu) Ve /PAm e, (9.49)
Once Equation (9.49) holds, we obtain

3 K(Qk)NernJrE
1/p_*\%k) =~
|¢Z*To(ak7f27f3)(z)| 5 |Qk‘ plx_ka|Np+n+e’

which implies (8.4) with uz(x) = ug(z) :=1 and

e} _ K(Qk)Np—o—n—o—e
= 3 NllQel M S e @ (@),

—1 |m_ka
Moreover,
S -1 (Np+n-te) (Np+nte) 1/p
[utllze@n)y < <I;|/\k|p|Qk 0Qr)" - —xq. 1~ ||Lp((Q***) )>
> 1/p
() st
k=1

because Np+n+e€>n/p.
Therefore, it remains to show Equation (9.49). Indeed, it follows from Theorem D that

Nyt (an, 2, £3) S UQR)™ | T (ars fou f3)| 1
S Q) llarl|pr ey S €Qk) NI,

For the other term, we use both Equations (9.47) and (9.48) to write

Ry c(ar, fo, f3) S 277Nt / (27 (y =)V | T5; (Tjsran, fo, f3) (v)] dy.

e

JEL (9
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Let s1,s92,83 be numbers satisfying
Ny+n/2+e<s1<s—n, S2,83>n/2, s1+n<s1+S2+83=5,

similar to Equations (9.30) and (9.31). Then, using the argument in Equation (9.33), we
have

T (Tj41ak, f2, f3) (1) |X(Q;*)c(y) SUQr) TP min {1, (2j£(Qk))M} !

(27(y —xq.))™
X 273‘”/ |Aj7Qk (21)] H <2j (y— Zl7z2az3)>5@v(y — 21,22,23) HL2(Z2’Z3)lev
R”L

where A; g, is defined as in Equation (9.32). This finally yields that

KR o ) S 6@ 52 i 1,2Q0) ) [ s (o)

JEL
1 J s~V
X( @) <2j(y_XQ )>51,(Np+€) H<2 (y_Z15227Z3)> j (y_21732723)’|L2(22723)dy) dz
E)C k

<0QK) P27 ) min {1,(270(Q1)) M HIAj 04 11 e

JEL
x H<2P S~VHL2((R") )H| ka‘i(Sli(Np“))HLZ(Rn)
§4(Qk)—n/p+ng(Qk)—(51 (Np+n/2+6))22 ](Sl_"/g)min{L(2j€(Qk)>M*(L0*51*n)}
JEL

< e(Qk)Np—n/p-Fn-&-e

for M and L satisfying M > Lo — s1 — n, which completes the proof of Equation (9.49).

Appendix A. Bilinear Fourier multipliers (m = 2)

We remark that Theorem 1 still holds in the bilinear setting where all the arguments
above work as well.

Theorem 2. Let 0 < p1,ps <oo and 0 <p <1 with 1/p=1/p1+1/p2. Suppose that

1 1 1 1
s>n  and f—§<§+2(f—§)7
p " Ger b

where J is an arbitrary subset of {1,2}. Let o be a function on (R™)? satisfying

SupHa(2k7')\Il( < oo
k

K H L3 ((R™)?)

and the bilinear analogue of the vanishing moment condition (1.16). Then the bilinear
Fourier multiplier T, , associated with o, satisfies

HTU(flan) HHP(R") 5 Sl}ip Ho-(Qk?)\I/’i;) HLg((Rn)z) ||f1 ”le (R™) ||f2||H1’2 (R™)

for fi1,f2 € 8o(R™).
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The proof is similar, but much simpler than that of Theorem 1. Moreover, unlike
Theorem 1, Theorem 2 covers the results for p; = oo, j = 1,2, which follow immediately
from the bilinear analogue of Proposition 3.2.

Appendix B. General m-linear Fourier multipliers for m >4

The structure of the proof of Theorem 1 is actually very similar to those of Theorems C

and D, in which T, (f1,...,fm) is written as a finite sum of T%(fy,..., fn,) for some variant
operators T", and then
’TK (f17 s afm) (l')’ 5 ?Hz) HU(Qk?)\II(m) HLZ((Rn)m)ul(x) o um(x), (B'l)
c 2

where [|u; | 1ri ny S | fill rs eny for 1 < j <m. Compared to the HP* x --- x HPm — LP
estimates in Theorems C and D, one of the obstacles to be overcome for the boundedness
into Hardy space HP is to replace the left-hand side of Equation (B.1) by

Sup‘qﬁl*Tm(fh'"vfm)(x)
IeZ

b

and we have successfully accomplished this for m = 3 as mentioned in Equation (1.20).
One of the methods we have adopted is

XQ;* (CU)QM/ Fi(y)Fa(y) F3(y) dy < Xz (2) Mg Fi(z) MeFo (2) MzF3(2),

lz—y|<2-!
where 2 < 7 < pa,ps and 1/¢+2/7 = 1. Then we have
[MeFy|Les mry S HFjHLl’j(Rn), j=23

by the LPi boundedness of Mz with ¥ < p;. Such an argument is contained in the proof
of Lemma 6.1. However, if we consider m-linear operators for m > 4, then the above
argument does not work for ps,...,p, > 2. For example, it is easy to see that 1/q+3/7
exceeds 1 if 7 > 2 is sufficiently close to 2. That is, we are not able to obtain m-linear
estimates for 0 < p; <1 and 2 < pg, -+ ,pm < 00, m > 4. This is critical because our
approach in this paper highly relies on interpolation between the estimates in the regions
R1,Ro,R3, which are trilinear versions of {(1/p1, -+ ,1/pm) :0<p1 < 1,2 <po, -+ ,pm <
oo}
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