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Abstract

We develop methods for testing factor models when the weights in portfolios of factors and
test assets can vary with lagged information. We derive and evaluate consistent standard
errors and finite sample bias adjustments for unconditional maximum squared Sharpe ratios
and their differences. Bias adjustment using a second-order approximation performs well.
We derive optimal zero-beta rates for models with dynamically trading portfolios. Factor
models’ Sharpe ratios are larger but standard test asset portfolios’maximumSharpe ratios are
larger still when there is dynamic trading. As a result, most of the popular factor models are
rejected.

I. Introduction

Classical tests of asset pricing models examine portfolio efficiency by com-
paring squared Sharpe ratios (e.g., Sharpe (1988)), the ratios of expected excess
return to standard deviation. The tests ofGibbons, Ross, and Shanken (GRS (1989))
compare the maximum squared Sharpe ratio, S2(r,f), of a portfolio formed from test
assets r and factors f, to that of the portfolio of factors, S2(f). The difference between
S2(r,f) and S2(f) is a quadratic form in the factor model’s alphas for the test assets.
If the two Sharpe ratios are equal, the test assets have 0 alphas in the factor
model and the factor portfolio is mean–variance efficient. Dividing the difference
of the squared Sharpe ratios by [1 + S2(f)] leads to a test statistic with an exact
F-distribution when normality is assumed.

Barillas and Shanken (BS (2017)) further point out that when comparing two
models’ factors the model with the higher S2(f) produces smaller pricing errors for a
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given set of test asset returns. Barillas, Kan, Robotti, and Shanken (BKRS (2020))
provide asymptotic standard errors for inference about squared Sharpe ratios and
their differences. Kan, Wang, and Zheng (2019) provide exact and asymptotic
standard errors for out-of-sample Sharpe ratios. Fama and French (2018) present
an empirical evaluation of alternative factor models using squared Sharpe ratios.

The previous articles restrict their analyses in two important dimensions. First,
the portfolios of the factors and test assets whose Sharpe ratios are compared must
have fixed weights over time. This is not realistic, as most portfolio weights vary
over time. Second, these studies measure returns in excess of a short-term Treasury
bill rate, pinning the zero-beta rate to the average bill rate. This is not realistic either,
and many studies find zero-beta rates larger than the average bill rate. This article
removes both of these unrealistic restrictions.

We allow stylized “dynamic trading” in a discrete-time model, using monthly
returns and lagged instruments. As the lagged instruments vary over the months the
portfolio weights change month-to-month as functions of the lagged information
variables. We derive estimates of an optimal zero-beta rate for squared Sharpe ratio
differences in this setting. We derive asymptotic standard errors, recognizing that
the zero-beta rate is estimated with sampling error.

We develop a simple approach to testing factor models, with or without
dynamic trading. Maximized Sharpe ratios are biased in finite samples, so we
provide methods for bias adjustment when there is dynamic trading. Bias-
adjusted squared Sharpe ratios or their differences, divided by asymptotic stan-
dard errors, form a “t-ratio.” The absolute t-ratio is asymptotically distributed as a
χ(1) variable and simulations show that it may be evaluated using standard rules of
thumb (e.g., approximate significance at the 5% level if the t-ratio is larger than 2).

We illustrate applications with tests on the capital asset pricingmodel (CAPM;
Sharpe (1964)), the Fama and French (1996) 3-factor model (FF3), the Fama and
French (2016) 5-factor model (FF5), a 6-factor model that appends a momentum
factor (FF6), the 4-factor investment model (Q4) of Hou, Xue, and Zhang (2015),
and a 5-factor extension (Q5) from Hou, Mo, Xue, and Zhang (2021) that adds an
expected growth factor. In the Supplementary Material, we provide results for
mimicking portfolios when factors are not traded, and evidence for the Chen, Roll,
and Ross (1986) nontraded factors, consumption growth and a broker-dealer lever-
age factor from Adrian, Ettula, and Muir (2014).

We find that dynamic trading improves the maximum Sharpe ratios of
portfolios of the models’ factors. The Q4 and Q5 model factors are the least
affected. The larger impact of dynamic trading is to jack up the maximum Sharpe
ratios of the most popular portfolio designs (courtesy of Kenneth French), when
treated as the test assets. All of the factor models listed previously are rejected in
these portfolios, implying that no portfolio of the model factors is minimum-
variance efficient, even with dynamic trading. Direct comparisons reveal that the
Q4 model outperforms the FF5 model with or without dynamic trading, and Q5
beats FF6. The evidence for pricing improvement by adding a momentum factor
to the FF3 model is strong, but the evidence for adding momentum to the FF5
model appears weak.

When the zero-beta rate is estimated using the factor models and the standard
test portfolios, its value is larger than the historical average of a U.S. Treasury bill
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return. TheCAPMproduces a larger zero-beta rate than the other factormodels. The
zero-beta rate can reflect borrowing costs or the premiums of missing factors in the
models. The results are consistent with missing factors in the CAPM.

The rest of the article is organized as follows: Section II presents an overview of
Sharpe ratio comparisons. Section III develops our asymptotic results and bias cor-
rection for squared Sharpe ratios. The data are described in Section IV. Section V
presents simulation results. Section VI presents empirical tests and comparisons of
factor pricing models. Section VII concludes the article. An appendix provides addi-
tional material, and the Supplementary Material presents the longer proofs and more.

II. Testing Asset Pricing Models with Squared Sharpe Ratios

Asset pricing models identify a portfolio that is minimum-variance effi-
cient.1 In a multiple-factor model, this is a combination of the model’s K traded
factors, f, or their mimicking portfolios. Classical tests reject the model if the
factor portfolio lies significantly inside a sample minimum variance boundary
of factors and test assets (see Gibbons (1982), Stambaugh (1982), MacKinlay
(1987), or GRS (1989).)

Let the N test assets’ excess returns be r. Classical tests compare a maximum
squared Sharpe ratio formed from the test assets and the factors, S2(r,f), to one
using only the factors, S2(f). If the two squared Sharpe ratios are equal, the factor
portfolio is efficient and the vector of the f-model’s average pricing errors or
alphas (α) for the test assets is 0. The alphas are the regression intercepts when the
test assets’ excess returns, r, are regressed over time on those of the benchmark
factors, f.

The difference between S2(r,f) andS2(f) is the squared Sharpe ratio of the optimal
orthogonal portfolio (OOP), a quadratic form in the f-model’s alphas for the test assets:

α’Σ uð Þ�1α= S2 r, fð Þ�S2 fð Þ,(1)

where Σ(u) is the covariancematrix of the residuals of the test asset excess returns, r,
regressed over time, on the f-model’s factors. The OOP has the maximum mispri-
cing using the f-model’s factors,2 equation (1) is called a “law of conservation of
squared Sharpe ratios” by Ferson (2019). The maximum squared Sharpe ratio in all
of the assets, S2(r,f) is equal to that in the tested factor portfolios, S2(f), plus that of
the OOP.

A quadratic form in the alphas using the covariance matrix of the alphas in
place of Σ(u) is equal to [S2(r,f) � S2(f)]/[1 + S2(f)]. Multiplying by a degrees-of-
freedom adjustment [(T�N�K)/N] produces the exact F test of GRS (1989). This

1The capital asset pricing model (CAPM; Sharpe (1964)) implies that the market portfolio should
be mean–variance efficient. Multiple-beta asset pricing models such as Merton (1973) imply that a
combination of the factor portfolios is minimum-variance efficient (Chamberlain (1983), Grinblatt and
Titman (1987)). The consumption CAPM implies that a maximum correlation portfolio for consumption
growth is minimum-variance efficient (Breeden (1979)). A stochastic discount factor model implies that
a maximum correlation portfolio for the stochastic discount factor is minimum-variance efficient
(Hansen and Richard (1987)).

2The OOP maximizes its squared alpha divided by its residual variance, thus ArgMinx x’Σ(u)x for a
given x’α, with solution x = (λ/2)Σ(u)�1α, where λ is the Lagrange multiplier. The maximized squared
Sharpe ratio is (x’α)2/x’Σ(u)x = α’Σ(u)�1α.
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article shows how to conduct tests for factor-model efficiency that accommodate
dynamic trading.

BS (2017) consider the comparison of models with different factors, say f1 and
f2, whichmight overlap. Amodel is better when the quadratic form in the test assets’
alphas using its factors is smaller. For example, model 1 is better than model 2 if
S2(r,f1,f2) � S2(f1) < S2(r,f1,f2) � S2(f2). Equivalently, model 1 is better if the
maximum squared Sharpe ratio of its factors is larger: S2(f1) > S2(f2). This article
shows how to conduct such direct factor model comparisons in terms of squared
Sharpe ratios when there is dynamic trading.

Tests with Dynamic Trading

Consider a stochastic discount factor model:

E mt + 1Rt + 1jZtð Þ= 1,(2)

where R represents the gross (one plus the rate of) return on the test assets, m is the
stochastic discount factor (SDF), Zt is the conditioning information, and 1 is an
n-vector of ones. Linear factor models assume that the SDF is linear in the factors.
When the SDF is linear in the factors, a linear combination of the factor portfolios is
minimum variance efficient (Ferson (1995), Cochrane (1996)). This motivates tests
comparing the squared Sharpe ratios of factor portfolios with those of test assets.
This article shows how to conduct such tests when there is dynamic trading. The
conditioning information Zt is measured using lagged instruments, and portfolio
weights may vary as a function of these instruments.3 We use monthly data so the
weights can vary monthly.

In principle, one could use conditionalmoments for the tests, as in early studies
of conditional asset pricing (e.g., Hansen and Hodrick (1983), Gibbons and Ferson
(1985), and Harvey (1989)). These tests impose strong restrictions on the forms of
the conditional first and second moments of the factors and test asset returns.
Instead, we follow Ferson and Siegel (2009), who derive implications of equation
(2) for the unconditionalmoments of dynamic trading portfolios. Thus, the tests are
based on unconditional squared Sharpe ratios, and the model comparison logic of
BS (2017) applies using unconditional squared Sharpe ratios. As shown by Bekaert
and Liu (2004) and Ferson and Siegel (2003), such tests are inherently robust to
misspecification of the conditional moments used in their construction.

Ferson and Siegel (2009) use an implication of equation (2) for unconditional
moments:

E mt + 1w
0 Ztð ÞRt + 1½ �= 1 ∀w Ztð Þ :w0 Ztð Þ1= 1:(3)

As an implication of equation (2), equation (3) is less general, but not bymuch.4

3The chosen Z is not likely to be the full information set used bymarket participants, but equation (2)
may be arrived at by applying iterated expectations to a version of the equation conditioned on a finer
public information set. We must restrict ourselves to models that are testable, in the sense that mt+1

depends only on the observable data and parameters that we can estimate.
4Equation (2) is equivalent to the unconditional expectation E{mt+1Rt+1 f(Zt)} = E{1 f(Zt)} holding

for all bounded integral functions, f(.). Equation (3) restricts to portfolio weight functions that sum to 1.0.
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The tests examine unconditional efficiency (UE), which we now define. A set
of dynamically trading portfolio returns determines a mean–standard deviation
frontier, as shown by Hansen and Richard (1987), depicting the unconditional
means versus the unconditional standard deviations. A portfolio Rp is defined to
be UE with respect to the information Zt when it is on this frontier. Thus, equation
(4) is satisfied (equivalently, there exists constants γ0 and γ1 such that equation (5) is
satisfied) for all x Ztð Þ such that the weights sum to 1 almost surely and the relevant
unconditional moments exist and are finite:

var Rp,t + 1

� �
≤ var x0 Ztð ÞRt + 1½ � if E Rp,t + 1

� �
=E x0 Ztð ÞRt + 1½ �,(4)

E x0 Ztð ÞRt + 1½ �= γ0 + γ1Cov x0 Ztð ÞRt + 1,Rp,t + 1

� �
:(5)

Equation (4) states that Rp,t + 1 is on the minimum variance boundary.
Equation (5), shown by Hansen and Richard (1987), states that the expected
return–covariance relation from Fama (1973) and Roll (1977) holds for the uncon-
ditional moments of dynamic portfolios. In equation (5), γ0 and γ1 are fixed scalars
that do not depend on the functions x �ð Þ or the realizations of Zt.

UE portfolios have proven useful in asset-pricing tests, in forming hedging
portfolios and other portfolio management problems (e.g., Abhyankar, Basu, and
Stremme (2012), Chiang (2015), and Ehsani and Linnainmaa (2020)). Siegel
(2021) provides a review. We develop asymptotic standard errors and bias correc-
tion for the squared Sharpe ratios of UE portfolios.

Ferson and Siegel (2009) show that, given an SDF such that equation (3) is
satisfied, a portfolio with maximum correlation to m with respect to Z must be
UE. The maximum correlation is among all portfolios of the test assets that may
trade dynamically using the information, Z.5 This result provides the foundation for
Sharpe ratio difference tests with dynamic trading. To implement the tests with
dynamic trading, we use closed-form solutions for UE portfolio weights, which
exist for three relevant cases.6

Ferson and Siegel (2015) generalize the law of conservation of squared Sharpe
ratios (1) for dynamic trading. The dynamic OOP trades as a function of the lagged

Thus, e.g., with equation (3) it is not possible to expand the scale of the risky investments without
borrowing or lending at the risk-free rate.

5Formally, a portfolio RP is maximum correlation for a random variable, m, with respect to Z, if:

ρ2 RP ,mð Þ≥ ρ2 w0 Zð ÞR,m½ � ∀w Zð Þ :w0 Zð Þ1= 1,

where ρ2(.,.) is the squared unconditional correlation coefficient and we restrict to functions w(.) for
which the correlation exists. Ferson, Siegel, and Xu (2006) present closed-form solutions for maximum
correlation portfolios with respect to Z.

6In the first case, there is a fixed risk-free rate, and in the second case, there is no risk-free asset.
Solutions are provided by Ferson and Siegel (2001). In the third case, there is a conditionally time-
varying risk-free asset whose return Rft+1 = Rf(Zt) is measureable and known as part of the information
set Zt so that var{Rft+1|Zt} = 0, but which is unconditionally risky in the sense that var{Rft+1} > 0. The
solution is provided by Ferson and Siegel (2015) and Penaranda (2016). The same solution can be
obtained using the expression from Ferson and Siegel (2001) for no risk-free asset, applied to the
expanded return vector (Rt+1,Rft+1) (see Section 3 of the Supplementary Material). Penaranda (2016)
also describes residual efficiency, where the expected conditional variance is minimized for a given
unconditional mean return.
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information to maximize the square of its unconditional alpha on a benchmark factor
model divided by its unconditional variance of return.7 A version of equation (1)
holds, with the unconditional squared Sharpe ratio of the dynamic OOP on the left-
hand side. The maximum unconditional squared Sharpe ratio of portfolios of the test
assets and the factors that trade with the information, SUE

2(r,f), replaces S2(r,f).
The maximum squared Sharpe ratio of the factor benchmark with dynamic

trading depends on the model. With dynamic trading using lagged instruments Z,
there are three ways to specify a linear factor model for the SDF (suppressing the
time subscripts):

(i) m = a + b’f, with fixed (a,b),
(ii) m = a + b(Z)’f, with fixed a, and
(iii) m = a(Z) + b(Z)’f.

In cases (ii) and (iii), the SDF is conditionally linear in the factors. There can be
an error term uncorrelated with the test assets in each of these equations for m.

Case (i). Ifm = a + b’fwith fixed (a,b) parameters then b’f is maximum correlation
to m and therefore is UE in the test asset returns r. Asking the model to price the
excess returns of its own factors, E(mf) = 0 identifies b =�a E(ff’)�1E(f) as a fixed
minimum variance efficient portfolio weight for the factors. This motivates testing
the hypothesis that S2fix(f) = S2UE(r).

Case (ii). The portfolio b(Z)’f is maximum correlation to m when a is a constant,
and therefore it must be UE. E(mf|Z) = 0 identifies b(Z) =�a E(ff’|Z)�1 E(f|Z) as UE
weights for the factors. This motivates testing the hypothesis that S2UE(f) = S2UE(r).

Case (iii). We call this a “fully conditional model.” The maximum correlation
portfolio to a(Z) + b(Z)’f, with respect to Z, should be UE in r. E(mf|Z) = 0 identifies
b(Z) = �a(Z) E(ff’|Z)�1 E(f|Z) and b(Z)’f is conditionally minimum variance in f
but need not be UE. We can find a(Z) assuming a conditionally risk-free rate that is
known given Zt from E{mRft|Zt} = 1, as a(Z) = (1/Rft)/[1� E(f|Z)’E(ff’|Z)�1 E(f|Z)].
Using this to construct the maximum correlation portfolio to m, we can test the
hypothesis that is UE by comparing squared Sharpe ratios.

III. Main Results

A. Asymptotic Variances

The asymptotic variance of an estimator θ̂, that depends on the conditional
mean vector and covariance matrix estimators, such as a squared Sharpe ratio, may
be characterized in terms of two canonical matrices C (L × N) and D (N × N) that
capture the sensitivity of the estimator to uncertainty in the conditionalmeans and in

7Theremay be time-varying conditional alphas in this setting, but an unconditional regression is used
to define the unconditional alphas.
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the conditional covariance respectively.We first present a general theorem, and then
derive special cases. The proofs are provided in the Supplementary Material.

Our analysis is based on the following assumptions. The conditional expected
returns are described by a linear regression:

Rt = δ
0Zt�1 + εt:(6)

The return vector for N assets at time t is Rt and the L lagged instruments
(including a constant) are Zt�1 for t = 1,…,T. The coefficient δ is an L ×Nmatrix of
regression coefficients. The conditional mean returns at time t are δ’Zt�1.
The regression errors εt are independent and identically distributed (IID) N × 1
vectors with mean zero and nonsingular conditional covariance matrix

V =E Rt�δ0Zt�1ð Þ Rt�δ0Zt�1ð Þ0��Zt�1

� �
=E εtε0t

��Zt�1

� �
:

We estimate the OLS regression (6) and express

δ̂�δ=A�1 1

T

XT
t = 1

Zt�1ε
0
t

 !
=Op 1=

ffiffiffiffi
T

p� 	
,(7)

where the L× L matrix A = E(Z’Z/T) is assumed to be nonsingular. We define
the estimated covariance matrix as V̂ � 1

T

PT
t = 1 Rt� δ̂

0
Zt�1

� 	
Rt� δ̂

0
Zt�1

� 	0
=

1
T

PT
t = 1ε̂t ε̂

0
t, using the estimated residuals, ε̂t �Rt� μ̂t =Rt� δ̂

0
Zt�1:

Theorem 1. Consider a scalar estimator of the form:
θ̂ = θ +

PT
t = 1C

0
t μ̂t�μtð Þ+ tr D V̂ �V

� �� �
+Op 1=Tð Þ, whereC1,…,CT areN ×

1 vectors that depend on {Zt} and D is a fixed N × N matrix. Defining the L × N
matrix C�A�1PT

t = 1Zt�1C
0
t, where A = E(Z’Z/T). The unconditional asymptotic

variance of θ̂ is estimated as

AVAR θ̂
� 	

ffi tr ĈV̂ bC0A
� 	

� tr D̂V̂
� �� �2

+
1

T

XT
t = 1

2 Z 0� Ĉε̂t + bε0tD̂ε̂t
 � bε0tD̂ε̂t� 	
,(8)

where Ĉ and D̂ are consistent estimates for the canonical matrices C and D,
respectively, and Z

�� 1
T

PT
t = 1Zt�1: Let ᴪt = Zt�1’Cεt + εt’ Dεt. The unconditional

variance of θ̂ may be estimated as the sample variance of the ᴪt:

√T 1=Tð ÞΣtψt
2� 1=Tð ÞΣtψt½ �2

n o
,(9)

where consistent estimates of C and D can replace the true parameter values in ᴪt.

Squared Sharpe ratios are a natural special case of Theorem 1, as their sam-
pling errors depend on the sampling errors in a vector of mean returns and a
covariance matrix. The asymptotic variance of a function of two estimators may
be found by using estimates Ĉ and D̂ of the canonical matrices associated with each
estimator. For example, the asymptotic variance of the difference between two
squared Sharpe ratios, θ̂ = Ŝ

2
rð Þ and θ̂

∗
= Ŝ

2
rp
� �

has canonical matrices equal to
the differences in the two canonical matrices, Ĉ�C* and D̂�D*. Using the
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differences allows for dependence. For example, the (C� C*)’V (C� C*) A in the
first term of (8) accounts for the covariance due to common dependence on the
estimation error in the conditional means. The third term of (8) involves higher

comoments. The asymptotic variance of the ratio θ̂=θ̂
∗
has canonical matrices

θ̂
∗
Ĉ�θ̂Ĉ

∗

θ̂
∗2 and θ̂

∗
D̂�θ̂D̂

∗

θ̂
∗2 . The asymptotic variance of θ̂�θ̂

∗

1 + θ̂
∗ has canonical matrices

½ð1 + θ̂∗ÞĈ�ð1 + θ̂ÞĈ∗�=ð1 + θ̂∗Þ2 and ½ð1 + θ̂∗ÞD̂�ð1 + θ̂ÞD̂∗�=ð1 + θ̂∗Þ2:
Our main results assume a constant covariance matrix, V, but stock returns are

known to be conditionally heteroscedastic through time. The SupplementaryMate-
rial presents an extension of the Theorem 1 that allows for heteroscedasticity. But
the results will depend on the particular model used for the time-varying covari-
ances, and we leave the full development of this case for future research.

Tests such as case (i) above require comparing Sharpe ratios for fixed-weight
portfolios with those that use the information. Theorem 1 can be applied to such
cases, as described in the Appendix as Corollary A1.

B. Distributions of the Test Statistics

Our suggestion is to test models with a “t-ratio,” dividing the bias-adjusted
squared Sharpe ratio or difference by its asymptotic standard error. We first argue
that the estimated squared Sharpe ratios are consistent and asymptotically normal.
The argument uses the generalized method of moments (Hansen (1982)), similar to
BKRS (2019) for the fixed-weight case.

Define the moment conditions g1t = Vec([rt – δ’Zt�1]Zt�1’) and g2t = Vech
(εtεt’–V). Stack them into gt = (g1t’,g2t’)’ and let g = (1/T)Σtgt. For any quadratic
form E(g)’W E(g), the GMM estimates for the parameters φ = (Vec(δ)’,Vech(V)’)’
are found by setting E(g) = 0, as the problem is exactly identified. The GMM
estimates are the OLS estimates, and they are the same when a consistent estimate
for the asymptotic covariance matrix of g is used for the weighting matrix, W.
Hansen’s (1982) Theorems 2.1 and 3.1 show that the estimates of φ are consistent
and asymptotically normal on the assumptions that {gt} is strictly stationary and
ergodic, g has continuous derivatives with respect to the parameters in a neighbor-
hood of the true values, and the parameters lie in a compact set. Given these results
we argue that the estimated squared Sharpe ratios less their true values are asymp-
totically normal.We can express the squared Sharpe ratio or difference as a function
θ = θ(δ,V) and take the first-order derivatives to find Avar(θ) ≈ (∂θ/∂φ) Avar(φ)
(∂θ/∂φ)’. Our Theorem 1 presents asymptotically equivalent expressions for stan-
dard errors.

A quadratic form in the estimated squared Sharpe ratio differences, using a
consistent estimator of their variance as the inverse matrix in the form, is asymp-
totically distributed as a chi-squared random variable. Since the squared Sharpe
ratio or difference is a scalar, the square of the t-ratio that we propose is asymptot-
ically distributed as χ2(1). The absolute value of the t-ratio is therefore asymptot-
ically distributed as a χ(1), or half-normal random variable. In most applications
positive Sharpe ratio differences are examined, so our simulations evaluate the
absolute t-ratios relative to a chi distribution with one degree of freedom. The
critical values of this density are similar to the standard rules of thumb used with
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t-ratios. For example, the critical value for 5% significance is 1.96 and for 10%
significance it is 2.33.

We use T-consistent estimates for a finite number of assets, N. It is therefore
important to understand how the estimators perform when confronted in practice
with relatively large values ofN. Factor model comparisons are typically conducted
using portfolios, so we present simulations using up to 99 portfolios.

C. Asymptotic Variances for UE Portfolio Squared Sharpe Ratios

We start with results from Ferson and Siegel ((2001), Theorem 3), who derive
the portfolio weights of the UE portfolio when there is no risk-free asset. The
portfolio has target unconditional mean μp and the weight is

w0
t �

10Λt

10Λt1
+
μp�α2
α3

μ0t Λt�Λt110Λt

10Λt1


 �
,(10)

where: Λt � μtμ
0
t +V

� ��1
, and the efficient set constants α1, α2, and α3 are defined

in Ferson and Siegel (2001) and in our Supplementary Material. The portfolio
unconditional variance is σ2p = α1 +

α22
α3

� 	
� 2α2

α3
μp +

1�α3
α3

μ2p: The estimators based
on μ̂t and V̂ are denoted Λ̂t, ŵt, α̂1, α̂2, and α̂3. Our goal is to estimate the asymptotic
variance of the estimated maximized squared Sharpe ratio of the portfolio.

Corollary 1. The asymptotic variance of the squared Sharpe ratio of the UE
portfolio with the weights in equation (10), when μp corresponds to the zero-beta
rate φ, may be obtained using Theorem 1 with canonical matrices:8

C =
� α2�ϕ 1�α3ð Þ½ �2Cα1 + 2 α1�ϕα2ð Þ α2�ϕ 1�α3ð Þ½ �Cα2 + α1�ϕα2ð Þ2Cα3

α1 1�α3ð Þ�α22
� �2 and

D =
� α2�ϕ 1�α3ð Þ½ �2Dα1 + 2 α1�ϕα2ð Þ α2�ϕ 1�α3ð Þ½ �Dα2 + α1�ϕα2ð Þ2Dα3

α1 1�α3ð Þ�α22
� �2 ,

,

(11)

where the component matrices Cα1, Dα1, Cα2, Dα2, Cα3, and Dα3 and their
consistent estimates are provided with the proof in the Supplementary Material.

Corollary 1may be used to comparemodels with dynamic trading by using the
differences in the portfolios’ canonical matrices. For example, in the nested tests
where model 1 adds factors to those of model 2, the matrices C1 and D1 are formed
using the larger model 1 factors, and the model 2 matrices are computed by filling
the positions for the additional factors with zeros.

8When we say that μp corresponds to the zero-beta rate φ, we mean that a tangent line drawn to the
minimum standard deviation boundary at the portfolio with mean μp intersects the y-axis at the point φ.
For a given boundary, only one of the two parameters (μp, φ) need be specified. The variance of a
minimum variance efficient portfolio is a quadratic function of its mean: σp

2 = a� 2bμp + cμp
2. The slope

of the line from a zero-beta rate, φ, to this boundary, ∂μp/∂σp= (μp�φ)/σp.Thus, the targetmean is related
to the zero-beta rate as μp = (a � bφ)/(b � cφ).
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D. Zero-Beta Rates

The analyses of BS (2017), Fama and French (2018), BKRS (2020), and others
assume that the average short-term Treasury rate is the zero-beta rate. However,
models and evidence often imply zero-beta rates in excess of a short-term Treasury
return (e.g., Black, Jensen, and Scholes (1972), Frazzini and Pedersen (2014), and
Lewellen, Nagel, and Shanken (2010)). The difference between the zero-beta rate
and the Treasury rate can reflect the costs of borrowing against the underlying assets
(Black (1972), Frazzini and Pedersen (2014)). Because the zero-beta rate is the
expected return on assets that have zero covariance with the factors in a model, if
there are missing priced factors the zero-beta portfolio may embed a premium
because of its correlation with the missing priced factors.

We consider three alternative treatments for the zero-beta rate. The first is to
work with returns in excess of a Treasury bill, as in most of the recent work on
Sharpe ratio comparisons. Themean value of the Treasury bill return is the expected
zero-beta rate. The second approach is to allow independent dynamic trading in the
Treasury bill; viewed as a time-varying risk-free asset return, which is conditionally
known at the beginning of the period. This approach is implemented using the
solutions provided by Ferson and Siegel (2015). Our third approach is to estimate
the zero-beta rate while assuming that no risk-free asset exists.

We estimate a zero-beta parameter following Kandel (1986), who worked in a
normal, maximum likelihood setting. Kandel derived the zero-beta rate that max-
imizes the log likelihood ratio, the difference between the log likelihood function
that imposes the null hypothesis and the log likelihood for the unrestricted data. The
null hypothesis is S2(r,f) = S2(f), so the optimal zero-beta rate minimizes the
difference between the two maximum squared Sharpe ratios. The following
proposition provides the solution, exploiting the fact that the maximum squared
Sharpe ratio of any portfolio is a quadratic function of the zero-beta rate:
θ φð Þ = a�2bφ+ cφ2, where the coefficients (a, b, and c) depend on the situation.

Proposition 1. The zero-beta rate φ that minimizes the difference between the
maximum squared Sharpe ratio of a portfolio with squared Sharpe ratio
θ φð Þ = a�2bφ+ cφ2 and that of another with maximum squared Sharpe ratio
θ∗ φð Þ= a∗�2b∗φ+ c∗φ2, is foundbyminimizing (a*�a)�2(b�b*)φ+(c�c*)φ2

and the solution is

φ= b�b∗ð Þ= c� c∗ð Þ:(12)

The zero-beta rate in the case of a normalized difference, like the test of GRS
(1989), should minimize: 1 + θ φð Þ

1 + θ∗ φð Þ =
1+ a�2bφ+ cφ2

1 + a∗�2b∗φ + c∗φ2. The first-order condition
delivers the quadratic expression:

b∗�bð Þ+ ab∗�a∗bð Þ + �2 a + 1ð Þc∗ + 2 a∗ + 1ð Þcð Þφ + �3bc∗ + 3b∗cð Þφ2 = 0:
There are two solutions to this equation, one representing the local maximum

and one the minimum. The consistent estimates are found by substituting consistent
estimates of the (a,b,c) parameters into equation (12) or the solution to the quadratic
equation.
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When the optimal zero-beta rate from Proposition 1 is used in the comparison
of squared Sharpe ratios, we accommodate the estimation error in the common zero-
beta rate as another special case of Theorem 1, given in Corollary 2.

Corollary 2. Two maximum squared Sharpe ratios can be written as θ = a�
2bϕ+ cϕ2 and θ∗ = a∗�2b∗ϕ+ c∗ϕ2. By Proposition 1, the optimum zero-beta rate
is ϕ= b�b∗

c�c∗ : The difference between two squared Sharpe ratios is θ�θ∗. Assume the
estimator for a, â, can be expanded as in the Theorem 1, with canonical matricesCa

andDa.Make the same assumption for b̂, ĉ, â∗, b̂
∗
, and ĉ∗. Then, the estimated value

of the difference between two squared Sharpe ratios with a common estimated
optimal zero-beta rate can be written as in the Theorem 1, with canonical matrices:

C =Ca�Ca∗ �2ϕ Cb�Cb∗ð Þ�2 b�b∗ð ÞCϕ + 2ϕ Cc�Cc∗ð Þ+ 2ϕ c� c∗ð ÞCϕ,(13)

D=Da�Da∗ �2ϕ Db�Db∗ð Þ�2 b�b∗ð ÞDϕ + 2ϕ Dc�Dc∗ð Þ+ 2ϕ c� c∗ð ÞDϕ,(14)

where

Cϕ =
1

c� c∗
Cb� 1

c� c∗
Cb∗ � b�b∗

c� c∗ð Þ2Cc +
b�b∗

c� c∗ð Þ2Cc∗ ,

Dϕ =
1

c�c∗
Db� 1

c� c∗
Db∗ � b�b∗

c� c∗ð Þ2Dc +
b�b∗

c� c∗ð Þ2Dc∗ :

The expressions are evaluated at consistent estimates of (a,b,c) and (a*,b*,c*).
The Supplementary Material presents the matrices for cases where one of the
portfolios is a maximum correlation portfolio with respect to Z, as in models with
nontraded factors.

E. Bias Correction

Jobson and Korkie (1980) provide a bias adjustment for sample squared
Sharpe ratios based on the assumption that returns are normally distributed and
the optimal portfolios have fixed weights. This adjustment is used by Ferson and
Siegel (2003) and BKRS (2020). The bias-corrected estimate, improving the biased
estimate θ̂ is given by

θ̂
∗
= θ̂

T �N �2

T


 �
�N

T
,(15)

where N is the number of assets and T is the number of time-series observations.
Ferson and Siegel (2003) find that the bias adjustment in (15) does not control

the bias very well for dynamic portfolios, so we evaluate alternative bias adjust-
ments. One is based on the noncentral chi-square distribution, assuming that
the sample covariance matrix is at its probability limit. A second is based on the
noncentral F distribution, which considers estimation error in the covariance
matrix. A third is based on the odd-month, even-month approach of Jegadeesh,
Noh, Pukthuanthong, Roll, and Wang (2019), which attempts to control for
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correlated errors. A fourth, and it turns out the best approach, is based on a second-
order Taylor expansion.

Our preferred bias adjustment is based on the exact expectation of the second-
order Taylor series expansion of the estimate minus its true value. The results are
T-consistent when consistently estimated values are substituted for the unknown
parameters. The bias correction is expressed in a proposition, where we define the
squared Sharpe ratio in terms of the coefficients (α1,α2,α3) as in Proposition 1.

Proposition 2. The approximate bias of the estimated maximized squared Sharpe

ratio at zero-beta rate φ: Ŝ
2
φ =

α̂1�2φα̂2 + φ2α̂3
α̂1α̂3�α̂22

�1with respect to the true (but unknown)

maximized squared Sharpe ratio S2φ =
α1�2φα2 +φ

2α3
α1α3�α22

�1 may be expressed using the

expectation of its second-order Taylor Series expansion:

BIAS =E Ŝ
2
φ�S2φ

� 	
ffi

X3
i = 1

E α̂i�αið Þ∂S
2
φ

∂αi

 !

+
X3

i,j = 1

E α̂i�αið Þ α̂j�αj
� �� �

2

∂
2S2φ

∂αi∂αj

 !
:

(16)

As in Siegel andWoodgate (2007a), (2007b)), we use the method of statistical
differentials to find Taylor-series approximations to expectations of random vari-
ables. The partial derivatives in Proposition 2 are presented in the Supplementary
Material. Note that the α̂i are not necessarily unbiased, so their expectations are
necessary in the expression (16).

IV. The Data

We follow Cooper and Maio (2019) in the selection of six lagged information
variables. These are a short-termTreasury bill rate, a value spread (Cohen, Polk, and
Vuolteenaho (2003)), a measure of stock return dispersion following Stivers and
Sun (2010), net equity expansion following Boudoukh, Michaely, Richardson, and
Roberts (2007), and the investment to capital ratio following Cochrane (1991). We
also present some results using a set of “classical” lagged instruments following
Fama and French (1989) and a more “modern” set of instruments following Goyal,
Welch, and Zafirov (2021).

The lagged conditioning variables in much of the literature are highly persis-
tent. We assume that they are stationary, but if they are unit root processes, the
distribution of the sample squared Sharpe ratios will be nonstandard (e.g., Phillips
(2014)). We address this by following the suggestion of Ferson, Sarkissian, and
Simin (2003). We subtract a 12-month trailing average from each of the lagged
instruments to stochastically detrend them when the first-order autocorrelation
exceeds 0.95.9 All of the autocorrelations of the stochastically detrended series

9One exception is the investment-to-capital ratio, which is available quarterly. Cooper and Maio
(2019) fill in for monthly data, assuming a constant value for the months within a quarter. This produces
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are well below values that Ferson, Sarkissian, and Simin find raise concern over
spurious regression bias.

Standard test portfolio returns are monthly data from Kenneth French’s data
library at Dartmouth. Individual stocks sorted in two or more dimensions to form
cross sections of portfolio returns. We use the 25 size × value portfolios, the
25 investment × profitability portfolios, 32 size × investment × profitability triple-
sorted portfolios, and 49 industry portfolios.

We compare a number of popular factor models. The factors include the CRSP
value-weighted stock market index, the Fama–French (1996) 3-factors (FF3), and
the Fama and French (2015) 5-factors (FF5). We also examine the 4-factor
(Q4) model of Hou et al. (2015), using data on the investment factors from Lu
Zhang, and the Q5 model of Hou et al. (2021), using data on investment growth. In
the Supplementary Material, we examine nontraded factors, following Chen et al.
(1986).

The summary statistics for the factors and conditioning information are pre-
sented in Table 1. Returns are measured in excess of a 3-month Treasury bill. The
first-order autocorrelations of the factors are 0.33 or below. Even with these small
values, Ehsani and Linnainmaa (2020) find that dynamic trading using lagged
factors as the information can materially increase Sharpe ratios. This is consistent
with the logic of Campbell (1996) and Cooper and Maio (2019).

V. Simulations

We use the parametric bootstrap to evaluate the corrections for finite sample
bias in estimated Sharpe ratios, the accuracy of our asymptotic standard errors, and
the finite sample distributions of the “t-ratios.”We model the Zs in the simulations
as a first-order autoregressive process to capture their persistence.

A. Simulation Methods

Assume that the portfolio returns and the factors in the model follow equations
(17) and (18):

Rt = δ
0Zt�1 + εt,(17)

f t = bF ’Zt�1 + εft,(18)

and the conditioning information (without the constant) Z follows an
AR(1) process:

Zt = δ0z + δ
0
1zZt�1 + εzt:(19)

We estimate the coefficients in the original data and calculate the regression
residuals. We keep the coefficients as “true” parameters in our simulations. At each
date in a simulation trial, we randomly choose a calendar date from the real data, and
select the regression residuals from equations (17)–(19) as a vector for that date to

high autocorrelation which the 12-month moving average does not correct. But a 6-month moving
average works for this series.
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preserve the correlations across the shocks. We take the sample average value of
each conditioning variable in the data as its starting value, and build up the
simulated instruments series recursively using the residuals and the regression
coefficients of equation (19). We discard the first 500 simulated samples to wash
out the initial conditions.

B. Simulation Results

1. Evaluating Bias Adjustments

The estimators are consistent, converging in probability to the true values as
the number of time-series observations, T, grows. We evaluate finite sample bias
relative to a “true” squared Sharpe ratio where the number of time series observa-
tions is T × 1,000, and T = 743 or 587. Informal experiments suggest that 1,000 × T
is larger than required to estimate the probability limits. In each of 5,000 artificial
samples with the same length as the original data samples, we estimate the bias--
adjusted squared Sharpe ratios. The expected adjusted squared Sharpe ratio in finite
samples is computed as the average value across the 5,000 trials.

Panel A of Table 2 evaluates bias adjustment for fixed-weight portfolios of test
assets and factors. The unadjusted squared Sharpe ratios are larger than the true
values, reflecting the finite sample bias. The Jobson and Korkie (1980) adjustment
works well when there is no dynamic trading. After adjustment, the remaining bias
is 5% or less of the true value. The bottom rows show results for N = 25, 49, and

TABLE 1

Summary Statistics of Factors and Lagged Information

Table 1 contains summary statistics for our sample of monthly traded factors from the French data library (Feb. 1959 to Dec.
2020), theQ factors fromHou, Xue, and Zhang (2015), and the nontraded factors. AR(1) is the first-order autocorrelation (after
stochastic detrendingwhen needed for the lagged instruments). Squared SR is the squared Sharpe ratio, where the zero-beta
rate is the average Treasury bill rate, equal to 0.39%per month. The R-square is obtained by regressing market excess return
on the lagged instruments. Returns, yields, and yield spreads are measured as percent per month.

Traded Factors Mean Std. Dev. AR(1) Squared SR

Market-risk free 0.57 4.43 0.066 0.016
SMB 0.2 2.96 0.064 0.005
HML 0.26 2.81 0.179 0.008
RMW 0.23 2.09 0.149 0.012
CMA 0.24 1.92 0.121 0.015
Momentum 0.61 4.06 0.047 0.022
Investment 0.29 1.77 0.099 0.027
Profitability 0.44 2.4 0.117 0.034
Investment growth 0.7 1.87 0.102 0.141

Nontraded Factors

Consumption growth 0.26 0.82 0.01 NA
Broker–dealer leverage 0.09 6.71 0.09 NA
Expected inflation 0.13 0.11 0.95 NA
Change expected inflation 0.00 0.03 0.19 NA
Industry production 0.10 0.47 0.33 NA
Real interest rate 0.32 0.25 0.98 NA
Unexpected inflation 0.00 0.12 0.18 NA

Lagged Instruments Mean Std. Dev. AR(1) R2 (%)

Short-term T-bill rate �0.03 0.87 0.82 1.12
Investment capital ratio 0.00 0.00 0.86 0.05
Value spread 0.00 0.08 0.73 0.18
Stock return dispersion 2.64 1.24 0.64 0.04
Net equity expansion 0.00 0.01 0.83 0.16
Relative bill rate 0.00 0.80 0.80 0.64

14 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S002210902400005X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S002210902400005X


99 portfolios. TheN= 25 portfolios are the 5 × 5 size × book/market sorts, theN= 49
are industry portfolios and the N = 99 combine the first two sets with 25 invest-
ment × profitability portfolios. The bias shows no obvious relation to N.

Panel B of Table 2 looks at UE portfolio squared Sharpe ratios. Comparing the
left-hand columns of Panels A and B of Table 2 fixed-weight portfolios, on the
“true”maximum squared Sharpe ratios. The impact is large for Rm, the FF6 squared
Sharpe ratio increases bymore than 50%with dynamic trading, and theQ5 by about
11%. The impact of dynamic trading on the standard portfolio designs is larger still,
and the maximum squared Sharpe ratios of the FF25 and the 49 industry portfolios
more than double.

Panel B of Table 2 addresses the various adjustments for finite sample bias
with dynamic trading. The unadjusted squared Sharpe ratios can have a large bias,
increasing when there are more assets or factors. The Q5 model, which delivers the
highest Sharpe ratios among the factormodels, has the smallest bias.While all of the
bias correctionmethods reduce the finite sample bias, the direct expansion approach
is clearly the most accurate. The remaining bias in the adjusted ratios is less than
3.2% of the true value in each case, and the percentage bias shows no obvious
relation to N. The direct expansion bias adjustment works as well on the UE
portfolios as the JK (1980) adjustment does on the fixed-weight portfolios. While
not shown in the table, we also find that the direct expansion method works well on
fixed-weight portfolios, but its calculation is not as simple as the JK adjustment in
such cases.

TABLE 2

Accuracy of Bias Adjustments for Squared Sharpe Ratios

The “true” squared Sharpe ratios shown in Table 2 are from simulations with a large number (1,000 × 743) of time series
observations. The values are stated in percent (multiplied by 100). The average values across 5,000 simulation trials are
shown for five alternative bias-adjustmentmethods. The number of time series observations in the finite samples is 743. The JK
uses the results of Jobson and Korkie (1980) and are based on a non-central F distribution. The four adjustments for dynamic
portfolios are the chi-square, non-central F, odd–even, and direct expansion. The adjustments are applied to the squared
Sharpe ratios of fixed weight portfolios in Panel A and to efficient with respect to Z portfolios in Panel B. The six lagged
instruments that comprise the vector Z are described in the text and Table 1. The N = 25 portfolios are the 5 × 5 size × book/
market sorts, the N = 49 are industry portfolios, and the N = 99 combine the first two sets with 25 investment × profitability
portfolios from Kenneth French.

Panel A. Fixed-Weight Factor Portfolios

TRUE JK % Diff

Rm 1.66 1.74 �5%
Sfix(FF3) 3.33 3.46 �4%
Sfix(FF5) 8.46 8.59 �2%
Sfix(FF6) 11.65 11.91 �2%
Sfix(Q5) 31.28 31.28 0%
Sfix(r) N = 25 16.35 16.55 �1%
Sfix(r) N = 49 32.21 32.60 �1%
Sfix(r) N = 99 77.19 78.23 �1%

Panel B. Efficient-with-Respect to Z Portfolios (% Indicates Differences from True)

TRUE No-Adj Chi-Square Non-Central F Odd–Even Direct Expansion

SUE(FF3) 6.02 31.9% 24.3% 13.6% 12.6% 3.2%
SUE(FF5) 13.38 26.7% 20.4% 13.2% 11.9% 1.7%
SUE(FF6) 17.78 25.3% 19.3% 8.5% 7.1% 2.0%
SUE(Q5) 34.81 10.6% 7.6% 2.6% 1.6% 1.0%
SUE(r) N = 25 39.63 52.8% 38.2% 6.1% 0.4% 2.5%
SUE(r) N = 49 90.2 47.1% 9.2% �0.6% 8.7% 1.5%
SUE(r) N = 99 184.07 58.9% 23.1% 1.5% 22.9% 2.7%
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2. Asymptotic Standard Errors

We examine the accuracy of our asymptotic standard errors for squared Sharpe
ratios and their differences. The standard deviations of the ratios estimated in finite
samples, and bias adjusted with the second-order expansion method, are taken
across 1,000 simulation trials. These empirical standard errors measure the sam-
pling variability in the estimates. Good asymptotic standard errors should predict
the empirical standard errors.

The average value of the asymptotic standard errors across the simulation trials
is shown as average asymptotic in Table 3. Panel A describes results for the levels of
squared Sharpe ratios. The asymptotic standard errors present an expected bias
averaging about 7% of the empirical overall, but as high as 11% (fixed-weight FF3
model). The asymptotics tend to understate the sampling variability. In the casewith

TABLE 3

Accuracy of Asymptotic Standard Deviations

A parametric bootstrap generates 1,000 simulation trials, each with 743 observations. Squared Sharpe ratios and squared
Sharpe ratio differences are estimated in Table 3, and the asymptotic standard deviations are calculated using the
propositions and Theorem 1. The first columns (empirical) are the standard deviations of the estimates across the 1,000
simulation trials. The average asymptotic are the averages of the estimated asymptotic standard deviations. Fix(r) or fix(f)
refers to a mean–variance efficient portfolio that ignores the conditioning information and uses fixed weights. UE is efficient
with respect to Z. The lagged instruments are described in the data section. The average return of a 3-month Treasury bill is
taken to be the zero-beta rate. The N = 25 portfolios are the 5 × 5 size × book/market sorts, the N = 49 are industry portfolios,
and the N = 99 combine the first two sets with 25 investment × profitability portfolios from Kenneth French.

Empirical Average FSW Average BKRS Difference FSW Difference BKRS

(Simulated) Asymptotic Asymptotic (% Empirical) (% Empirical)

Panel A. Standard Errors for Squared Sharpe Ratio Levels

Rm 0.28 0.28 0.28 �2% �1%
Sfix(FF3) 0.45 0.40 0.41 �11% �9%
Sfix(FF6) 0.87 0.80 0.81 �9% �7%
SUE(FF3) 0.60 0.58 �3%
SUE(FF6) 1.09 1.08 �2%
Sfix(r) N = 25 1.02 0.95 0.95 �7% �7%
Sfix(r) N = 49 1.25 1.24 1.30 0% 4%
Sfix(r) N = 99 2.33 2.48 2.54 7% 9%
SUE(r) N = 25 1.49 1.38 �8%
SUE(r) N = 49 1.91 1.79 �6%
SUE(r) N = 99 3.50 3.33 �5%

Panel B. Standard Errors for Squared Sharpe Ratio Differences (N = 25)

Sfix(r) – Rm 0.87 0.91 0.93 4% 6%
Sfix(r) – Sfix(FF3) 0.85 0.89 0.91 5% 7%
Sfix(r) – Sfix(FF5) 0.83 0.90 0.91 9% 10%
SUE(r) – Rm 1.39 1.41 2%
SUE(r) – SUE(FF3) 1.41 1.40 0%
SUE(r) – SUE(FF5) 1.41 1.43 1%
SUE(r) – Sfix(r) 1.06 1.04 �2%

Panel C. Standard Errors for Squared Sharpe Ratio Differences (N = 99)

Sfix(r) – Rm 2.37 2.45 2.50 4% 6%
Sfix(r) – Sfix(FF3) 2.38 2.44 2.49 3% 5%
Sfix(r) – Sfix(FF5) 2.34 2.39 2.43 2% 4%
SUE(r) – Rm 3.90 3.64 �7%
SUE(r) – SUE(FF3) 3.76 3.60 �4%
SUE(r) – SUE(FF5) 3.72 3.54 �5%
SUE(r) – Sfix(r) 2.90 2.97 2%

Panel D. Standard Errors for Squared Sharpe Ratio Differences (factors alone)

Sfix(FF5) – Sfix(FF3) 0.54 0.48 0.49 �11% �9%
Sfix(FF6) – Sfix(FF5) 0.52 0.47 0.47 �10% �9%
Sfix(FF6) – Sfix(Q5) 1.06 1.02 1.03 �4% �2%
SUE(FF5) – SUE(FF3) 0.63 0.68 8%
SUE(FF6) – SUE(FF5) 0.57 0.55 �3%
SUE(FF6) – Sfix(Q5) 1.15 1.40 21%
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fixed portfolio weights, our asymptotic standard errors (FSW) are very similar to
the BKRS standard errors. The FSW standard errors are typically more accurate in
the cases with dynamic trading than with fixed weights.

The rows in Table 3 for the fixed-weight efficient portfolios show that The-
orem 1may be used for the standard errors in this case. These simulations do reflect
the randomness of the conditioning information.10 We see no strong evidence that
the bias in the standard errors is larger when more portfolios are used.

Panels B–D of Table 3 examine standard errors for Sharpe ratio differences, as
used in tests of the models. The average asymptotic values are within 10% of the
empirical standard errors in most cases and there is no indication that the perfor-
mance degrades when more test asset portfolios are used. The accuracy of the
standard errors is somewhat worse when combinations of factors are compared
directly in Panel B, where the asymptotic standard error overstates the sampling
variability.

3. T-Ratios

We form “t-ratios,” dividing the bias-adjusted squared Sharpe ratio or differ-
ence by its standard error. Table 4 evaluates the sampling distributions of the
absolute t-ratios against their asymptotic distribution, a chi distribution with one
degree of freedom. The true values of the numerators are from simulations with
743,000 observations. Fractiles of the distribution of the t-ratios from the 1,000
simulation trials are shown. χ(1) are the critical values for the asymptotic distribu-
tion, which are very similar to the usual rules of thumb as can be seen in the table.

Panel A of Table 4 presents critical t-ratios for the levels of maximum squared
Sharpe ratios. Using the standard test portfolios (N = 25, 49, or 99) the t-ratios
appear reasonably well specified in the tails. When small numbers of factors are
used, the performance is worse and the empirical critical values are too large. In the
worst cases, however, a t-ratio of 2 is significant at the 10% level instead of the 5%
level. This is reminiscent of results fromGRS (1989), where theWald and Lagrange
multiplier tests rejected the CAPM too often in various test portfolio designs. Here,
the CAPM displays the largest bias.

Panels B–Dof Table 4 present results for squared Sharpe ratio differences. The
bias remaining in the bias-adjusted squared Sharpe ratio levels may be offsetting in
the differences. The table shows that the distributions of the sample t-ratios are close
to the χ(1) in most cases. This supports the validity of a standard rule of thumb
where a t-ratio of 2 is considered significant at the 5% level in a maximum squared
Sharpe ratio difference test between a factor model and the standard test asset
portfolios.

Panel E of Table 4 presents results for direct comparisons between the squared
Sharpe ratios of twomodels’ factors. In this application the t-ratios are the least well
specified and are expected to reject the hypothesis of no difference between the two
models too often. The fixed-weight cases are worse than the UE cases, but the Q5
model produces better specified t-ratios.

10To further explore the impact of the volatility of the conditioning information, we shut it off by
using the same values of the conditioning variables at each simulation trial. Otherwise, the simulations
are the same as before. We find that the average FSWasymptotic and the empirical standard deviations
are even closer to each other in this experiment.
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VI. Factor Model Tests and Comparisons

Table 5 presents tests of factor model efficiency in various test portfolio
designs. Returns are measured in excess of a 3-month Treasury bill rate. Its average
value, 0.39% per month, is the zero-beta rate. In Panel A, no conditioning infor-
mation is used. We include a factor model from Chen et al. (CRR (1986)), where
mimicking portfolios replace the nontraded factors for unexpected inflation,

TABLE 4

The Empirical Distributions of t-Ratios

Aparametric bootstrapgenerates 1,000 simulation trials. Each set of simulateddata has743observations. In Table 4, squared
Sharpe ratios, S(.), and their differences are estimated, bias adjusted using the second-order expansion method, and their
asymptotic standarddeviations are calculated. Squared t-ratios are formedas the squaredadjustedSharpe ratio or difference
less its “true” value, divided by its asymptotic standard error. The true values are from simulations with 743 × 1,000
observations. Critical values of the empirical distribution from the 1,000 simulation trials are shown. χ(1) are the values for a
chi distribution with one degree of freedom. Fixed weight portfolios ignore the conditioning information. UE is efficient with
respect to Z. The lagged instruments are described in the text. The average return of a 3-month Treasury bill is taken to be the
zero-beta rate. The N = 25 portfolios are the 5 × 5 size × book/market sorts, the N = 49 are industry portfolios and the N = 99
combine the first two sets with 25 investment × profitability portfolios from Kenneth French.

Fixed Weight Portfolios Dynamic UE Portfolios

Panel A. Critical Values for t-Ratios of Squared Sharpe Ratio Levels

Percentile 90% 95% 98% 90% 95% 98%
χ 1ð Þ 1.65 1.96 2.33 1.65 1.96 2.33
Rm 2.23 2.96 3.70 2.23 2.96 3.70
S(FF3) 1.76 2.22 2.72 1.59 1.91 2.29
S(FF5) 1.90 2.21 2.79 1.54 1.84 2.16
S(FF6) 1.85 2.24 2.50 1.60 1.88 2.17
S(Q5) 1.78 2.16 2.58 1.34 1.59 1.92
S(r) N = 25 1.62 1.97 2.21 1.62 1.97 2.21
S(r) N = 49 1.59 1.88 2.28 1.82 2.12 2.49
S(r) N = 99 1.65 1.95 2.24 1.85 2.18 2.56

Panel B. Squared Sharpe Ratio Differences (N = 25)

Percentile 90% 95% 98% 90% 95% 98%
χ 1ð Þ 1.65 1.96 2.33 1.65 1.96 2.33
S(r) – Rm 1.55 1.88 2.27 1.72 2.05 2.47
S(r) – S(FF3) 1.56 1.86 2.21 1.67 1.94 2.28
S(r) – S(FF5) 1.51 1.84 2.27 1.59 1.98 2.28
SUE(r) – Sfix(r) 1.62 1.87 2.26 NA NA NA

Panel C. Squared Sharpe Ratio Differences (N = 49)

Percentile 90% 95% 98% 90% 95% 98%
χ 1ð Þ 1.65 1.96 2.33 1.65 1.96 2.33
S(r) – Rm 1.57 1.91 2.27 1.77 2.15 2.52
S(r) – S(FF3) 1.58 1.91 2.13 1.85 2.16 2.51
S(r) – S(FF5) 1.57 1.90 2.22 1.82 2.16 2.58
SUE(r) – Sfix(r) 1.72 2.17 2.53 NA NA NA

Panel D. Squared Sharpe Ratio Differences (N = 99)

Percentile 90% 95% 98% 90% 95% 98%
χ 1ð Þ 1.65 1.96 2.33 1.65 1.96 2.33
S(r) – Rm 2.04 2.34 2.67 1.86 2.23 2.50
S(r) – S(FF3) 1.68 1.98 2.32 1.84 2.14 2.50
S(r) – S(FF5) 1.77 2.10 2.54 1.77 2.19 2.54
SUE(r) – Sfix(r) 1.65 2.01 2.51 NA NA NA

Panel E. Squared Sharpe Ratio Differences for Factors Alone

Fixed Weight Portfolios Dynamic UE Portfolios

Percentile 90% 95% 98% 90% 95% 98%
χ 1ð Þ 1.65 1.96 2.33 1.65 1.96 2.33
S(FF5) – S(FF3) 1.95 2.38 2.96 1.54 1.83 2.42
S(FF6) – S(FF5) 2.08 2.65 3.45 1.84 2.22 2.86
S(FF6) – S(Q5) 1.70 1.98 2.50 1.39 1.73 2.08

18 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S002210902400005X Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S002210902400005X


expected inflation, and industrial production.Most of the bias-adjusted Sharpe ratio
differences between test assets and factors are statistically significant (t-ratios of 2.2
or higher) except where the portfolios sort on profitability and the factor models
feature investment, profitability or production factors (FF5, FF6, Q4, Q5, and
CRR3). Using the value-weighted market index, the CAPM is rejected in all the
portfolio designs, and all the models are rejected in the size × value portfolios.

Given that factor models with fixed weights are rejected in test portfolios with
no dynamic trading, it is clear (andwe do find) that factormodels with fixedweights
can be rejected in test portfolios with dynamic trading. Thus, case (i) above for
linear factor models of the SDF with constant coefficients can be rejected. In Panel
B of Table 5, dynamically trading factor models face dynamically trading test
assets. The Sharpe ratio differences are larger than in Panel A, with large t-ratios
in almost all cases. This is because dynamic trading increases the Sharpe ratios of
the test assets more than factors. Thus, case (ii) for linear factor models of the SDF
can be strongly rejected.

In Panel C of Table 5, the fully conditional factor models of case (iii) are
tested, and rejected with t-ratios larger than 2.16 in every case. With the time-

TABLE 5

Tests of Factor Model Efficiency

The test statistic in Table 5 is the difference in the bias-adjusted squared Sharpe ratios (not multiplied by 100) for the test
assets and the factors versus the factors alone. The t-ratios are in parentheses. The factor model abbreviations and test asset
portfolios are described in the text. Monthly Sharpe ratios are computed using the average Treasury bill return of 0.39% per
month as the zero-beta rate. The dynamic models trade optimally using the lagged instruments. The sample period is Jan.
1967 to Dec. 2013.

Panel A. Fixed-Weight Models and Assets

CAPM FF3 FF5 FF6 Q4 Q5 CRR3

25 size × value portfolios 0.15 0.12 0.10 0.08 0.11 0.10 0.12
(3.92) (3.32) (2.80) (2.45) (2.99) (2.53) (3.45)

25 investment × profitability 0.07 0.05 0.00 �0.01 0.01 0.01 0.05
(2.34) (1.87) (�0.20) (�0.67) (0.34) (0.38) (1.43)

32 size × value portfolios × prod 0.10 0.07 0.05 0.05 0.06 0.06 0.07
(2.85) (2.27) (1.55) (1.45) (1.82) (1.56) (2.32)

49 industry 0.08 0.12 0.17 0.15 0.14 0.12 0.04
(2.48) (3.07) (3.78) (3.37) (2.88) (2.52) (1.28)

Panel B. Dynamic Models Versus Dynamic Assets

CAPM FF3 FF5 FF6 Q4 Q5 CRR3

25 size × value portfolios 0.31 0.28 0.28 0.27 0.29 0.27 0.22
(5.11) (4.67) (4.66) (4.61) (4.60) (4.03) (3.89)

25 investment × profitability 0.19 0.18 0.12 0.11 0.13 0.14 0.09
(3.64) (3.39) (2.75) (2.67) (2.91) (2.60) (1.73)

32 size × value portfolios × prod 0.22 0.18 0.15 0.15 0.19 0.19 0.15
(3.48) (3.03) (2.98) (3.00) (3.20) (2.90) (2.60)

49 industry 0.23 0.26 0.33 0.31 0.30 0.29 0.17
(3.86) (4.15) (4.63) (4.52) (4.14) (3.90) (2.89)

Panel C. Dynamic Assets Versus Full Conditional Models

CAPM FF3 FF5 FF6 Q4 Q5 CRR3

25 size × value portfolios 0.24 0.24 0.24 0.24 0.24 0.24 0.25
(4.13) (4.13) (4.13) (4.13) (4.13) (4.13) (4.22)

25 investment × profitability 0.11 0.11 0.11 0.11 0.11 0.11 0.13
(2.17) (2.17) (2.17) (2.17) (2.18) (2.18) (2.49)

32 size × value portfolios × prod 0.19 0.19 0.19 0.19 0.19 0.19 0.18
(3.16) (3.16) (3.16) (3.16) (3.15) (3.15) (3.08)

49 industry 0.19 0.19 0.19 0.19 0.19 0.19 0.20
(3.43) (3.43) (3.43) (3.43) (3.43) (3.43) (3.49)
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varying a(Z) term that does not depend on the factors, the models are less sensitive
to the choice of factors, and the Sharpe ratios and test statistics are similar across the
factor models.

The strong rejections of the models in Table 5 assume that the zero-beta rate is
the average Treasury bill rate of 0.39%. In Table 6, this assumption is removed, and
the zero-beta rate is estimated. Panel A uses fixed-weight portfolios. There are far
fewer rejections of the models allowing the more general zero-beta rates. T-ratios
larger than 2 only appear in the industry portfolio design. The CAPMproduces both
the largest t-ratio and the largest zero-beta rate among the factor models, with zero-
beta rates of 0.8% to 1.5% permonth. The zero-beta rate can reflect borrowing costs
or the average risk premiums for missing factors. It seems likely that the high zero-
beta rates for the CAPM reflect the impact of missing factors. For other models the
zero-beta rate is closer to the average bill rate.

In Panel B of Table 6, dynamic trading is used for both factors and test assets.
The zero-beta rate estimates are similar to those of Panel A, but we find more
frequent rejections of the models as dynamic trading increases the Sharpe ratios for
the test assets more than it does for the factors. All the models except CRR3 are
rejected in the industry portfolio design.

TABLE 6

Tests of Factor Models with an Estimated Zero-Beta Rate

The test statistic in Table 6 is thedifference inbias-adjusted squaredSharpe ratios for the test assets and the factors versus the
factors alone. The factor model abbreviations and test asset portfolios are described in the text. Monthly Sharpe ratios are
computed using the estimated zero-beta rate. The dynamic models trade optimally using the lagged instruments following
Cooper and Maio (2019), Jan. 1967 to Dec. 2013.

Panel A. Fixed-Weight Models

CAPM FF3 FF5 FF6 Q4 Q5 CRR3

25 size × value portfolios: 0.05 0.06 0.06 0.05 0.06 0.08 0.02
(1.94) (1.00) (0.69) (0.49) (0.95) (0.73) (0.63)

Zero-beta rate 0.0152 0.0040 0.0039 0.0038 0.0032 0.0028 0.0076
25 investment × profitability: 0.03 0.04 �0.01 �0.02 �0.01 �0.01 0.00

(1.18) (1.67) (�0.15) (�0.31) (�0.12) (�0.14) (0.12)
Zero-beta rate 0.0156 0.0054 0.0041 0.0039 0.0048 0.0047 0.0070
32 size × value portfolios × prod: 0.03 0.04 0.02 0.02 0.03 0.04 0.00

(1.39) (0.66) (0.26) (0.21) (0.55) (0.39) (0.00)
Zero-beta rate 0.0116 0.0044 0.0041 0.0039 0.0039 0.0036 0.0054
49 industry: 0.08 0.08 0.08 0.09 0.08 0.09 0.01

(2.51) (2.27) (1.73) (1.75) (2.14) (1.92) (0.35)
Zero-Beta rate 0.0083 0.0074 0.0066 0.0061 0.0080 0.0072 0.0050

Panel B. Dynamic Models

CAPM FF3 FF5 FF6 Q4 Q5 CRR3

25 size × value portfolios: 0.16 0.17 0.16 0.15 0.18 0.19 0.09
(2.96) (2.27) (1.67) (1.46) (2.23) (1.67) (1.82)

Zero-beta rate 0.0147 0.0041 0.0039 0.0038 0.0032 0.0028 0.0074
25 investment × profitability: 0.08 0.10 0.04 0.03 0.04 0.03 0.03

(1.76) (2.08) (0.61) (0.40) (0.70) (0.42) (0.62)
Zero-beta rate 0.0155 0.0054 0.0040 0.0039 0.0047 0.0046 0.0069
32 size × value portfolios × prod: 0.12 0.10 0.09 0.08 0.12 0.12 0.06

(2.17) (1.55) (0.90) (0.84) (1.68) (1.22) (1.13)
Zero-beta rate 0.0114 0.0044 0.0041 0.0040 0.0038 0.0036 0.0053
49 industry: 0.19 0.18 0.19 0.21 0.20 0.21 0.12

(3.25) (3.23) (3.16) (3.34) (3.59) (3.52) (1.89)
Zero-beta rate 0.0081 0.0074 0.0066 0.0061 0.0080 0.0071 0.0049
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Direct Factor Model Comparisons

Table 7 presents direct comparisons of the maximum squared Sharpe ratios for
twomodels’ bias-adjusted factors. In the first column, the factors are heldwith fixed
weights over time. The next 3 columns use dynamic trading with different choices
of lagged instruments, described in the data section. The results are similar for the
different instrument choices.

Table 7 shows that dynamic trading helps the FF3 factors beat the market
index, but makes less of a difference for the other model comparisons. The Sharpe
ratio performance of the Q models is striking. The Q5 model outperforms every
model to which it is compared. This includes a version of FF6, denoted FF6* in the
table, where a monthly rebalanced HML factor is used.

The FF5 model beats FF3 in Table 7, but the FF6 model (with a momentum
factor) only beats the FF5 when there is dynamic trading using the “modern”
instruments. Fama and French (2018) equivocate on whether the FF6 beats the
FF5 model. The Q4 model beats FF5 in a fixed-weight comparison, but the two are
not significantly differentwith dynamic trading. Dynamic trading improves the FF5
factors more than the Q4 factors.

The tests in Table 7 are based on returns in excess of the Treasury bill. We
conduct, but do not report in the tables, direct model comparisons where we
estimate an optimal zero-beta rate. In only one of the direct comparisons is the null
hypothesis rejected that the two Sharpe ratios are equal with dynamic trading.
Unlike in tests using the standard test asset portfolios, the optimal zero-beta rates
vary widely over these model comparisons, but they are not very sensitive to the
choice of instruments.

TABLE 7

Direct Factor Model Comparisons

The test statistic in Table 7 is the difference in bias-adjusted squared Sharpe ratios (not multiplied by 100) for the first model
less the second model. The factors are held with fixed weights over time (no instruments) or dynamically traded using the
various sets of instruments. The t-ratios in parentheses are the differences divided by the asymptotic standard errors for the
difference. The factor model abbreviations and test asset portfolios are described in the text. FF6* replaces the HML factor in
FF6 with a monthly rebalanced version. The sample period is Jan. 1967 to Dec. 2020.

No Instruments Classical Instruments Modern Instruments Cooper Miao

FF3 – Rm 0.03 0.05 0.06 0.04
(1.73) (2.45) (2.74) (1.96)

FF5 – FF3 0.06 0.08 0.08 0.08
(2.38) (2.74) (2.44) (2.04)

FF6 – FF5 0.03 0.03 0.06 0.04
(1.37) (1.46) (2.40) (1.54)

Q5 – Q4 0.20 0.20 0.21 0.20
(3.75) (3.80) (3.81) (3.52)

Q4 – FF5 0.08 0.03 0.06 0.07
(2.20) (0.81) (1.36) (1.65)

Q5 – FF6 0.25 0.21 0.20 0.23
(4.05) (3.23) (3.09) (3.46)

Q5 – FF6* 0.22 0.19 0.19 0.20
(3.27) (2.86) (2.81) (2.84)

Q5 – CCR3 0.31 0.26 0.32 0.32
(3.71) (3.07) (3.37) (3.40)
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VII. Conclusions

This article contributes to the literature on factor model tests and compar-
isons in three ways. First, we remove the limitation that optimal portfolios must
have fixed weights over time, allowing dynamic trading as a function of lagged
variables. Second, we develop finite sample bias adjustments for maximum
squared Sharpe ratios. Third, we allow general and optimal zero-beta rates in
the models.

We develop asymptotic standard errors and propose simple “t-ratios” that
our simulations show are reliable in most cases for realistic samples of stock
portfolio returns and popular factor models. This allows inferences without
simulation.

The impact of dynamic tradingwith the conditioning information is to raise the
maximum squared Sharpe ratios, and to a larger extent for popular portfolios sorted
on stock characteristics or industries than for portfolios of themodels’ factors. Most
of the popular factor models are thereby rejected, and the factors in the models
appear far from efficient even when the factors are traded dynamically. This pre-
sents the awkward situation where the factor models’ Sharpe ratios appear “too
large” from some perspectives, yet “too small” to be efficient in the standard
portfolio designs.

In factor model efficiency tests using standard test portfolios, we find that
the estimated zero-beta rate is the largest in the CAPM, at about 1.5% per month,
while the other factor models produce values closer to the average bill rate of
0.39% per month. This is robust to the choice of lagged instruments. The zero-
beta rate is almost twice as large in the industry portfolio design than in the other
portfolios.

In direct comparisons of factor models that do not use the test portfolios, we
find that the FF3 factors significantly beat the market index and the FF5 model
beats FF3, but the FF6 model with momentum only beats the FF5 when there is
dynamic trading using a “modern” set of lagged instruments. The Q4 model
beats FF5 in a fixed-weight comparison, but the two are not significantly
different with dynamic trading. Dynamic trading improves the FF5 factors more
than the Q4 factors. However, the Q5 model outperforms every model to which it
is compared.

Appendix

A.1. Special Cases Without Conditioning Information

Theorem 1 can be applied to cases with no conditioning information, such as fixed-
weight factor models, with the following corollary.

Corollary A1. The asymptotic variance of the maximal estimated squared Sharpe ratio
S2φ with fixedweightsw and zero-beta rateφ, withmean μφ, variance σ

2
φ and all estimated

from the data, may be obtained using the Theorem 1 together with the following
canonical matrices:
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C =
2 μφ�φ
� 	

A�1

Tσ2φ

XT
t = 1

Zt�1 1�μφ�φ

σ2φ
μ0tw�μφ
� 	" #

w0

=
2 μφ�φ
� 	

σ2φ
A�1Z�μφ�φ

σ2φ
δw�μφA

�1Z
� 	" #

w0

D = �
μφ�φ
� 	2

σ4φ
ww0 = �S2φ

σ2φ
ww0:

One example of using Corollary A1 is testing the CAPM using, say, the value-
weighted market portfolio. Corollary A1 delivers an asymptotic variance of the squared
Sharpe ratio for the market portfolio. The weights vector w is 1.0 on the market return
and zero on the other test assets.

A.2. Details for Corollary 2

The estimated squared Sharpe ratio is

Ŝ
2
φ =

α̂22 + α̂1α̂3�2φα̂2 + φ2 1�α̂3ð Þ
α̂1 1�α̂3ð Þ�α̂22

, which follows from maximizing

Ŝ
2
=

μ̂p�φð Þ2
σ̂2p

=
μ̂p�φð Þ2

α̂1 +
α̂2
2

α̂3

� 	
�2α̂2

α̂3
μ̂p +

1�α̂3
α̂3

μ̂2p

with respect to the mean μ̂p. The asymptotic

variance of Ŝ
2
φ follows from Theorem 1 together with the following choices for the

canonical matrices C and D:

C =
� α2�φ 1�α3ð Þ½ �2Cα1 + 2 α1�φα2ð Þ α2�φ 1�α3ð Þ½ �Cα2 + α1�φα2ð Þ2Cα3

α1 1�α3ð Þ�α22
� �2

D =
� α2�φ 1�α3ð Þ½ �2Dα1 + 2 α1�φα2ð Þ α2�φ 1�α3ð Þ½ �Dα2 + α1�φα2ð Þ2Dα3

α1 1�α3ð Þ�α22
� �2 :

A.3. Mimicking Portfolios and Cross-Sectional Fit

We use the same test assets whose cross section we wish to explain to form the
mimicking portfolios. One might think this will artificially improve the explanatory
power. We show here it does not do so in the fixed-weight case.

In this section, we redefine f and r to be the T × K and T × Nmatrices of factor and
test asset excess returns data. Represent the betas of the test assets on the factors as
β = (f’f)�1 f’r. (GLS works, too.) Mimicking portfolios are found by regressing the
factors on the test assets. Themimicking excess returns are f* = r (r’r)�1 r’f.The betas of
the test assets on the mimicking factor portfolios are

β∗ = f ∗’f ∗ð Þ�1f ∗’r = f ’r r’rð Þ�1r’f
h i�1

f ’r:

Thus, the mimicking betas are related to the factor betas by an invertible K × K
rotation: β* = Aβ. A cross-sectional regression of returns on the factor betas delivers a
coefficient λ’= (ββ’)�1βr’ and fitted values λβ.Across-sectional regression of returns on
the mimicking betas delivers a coefficient
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λ∗’ = β∗β∗’ð Þ�1β∗r’=A�1λ and fitted values λ∗β∗ = λβ:

With the same fitted values, there is no impact of usingmimicking portfolios on the
cross-sectional fit of the model.

If portfolios are formed tomaximize the Sharpe ratio, there is an upward bias in any
finite sample. This biaswill artificially inflate the explanatory power, asmeasured by the
fitted Sharpe ratio. One of our contributions, therefore, is bias adjustment for maximum
Sharpe ratios. The mimicking portfolios with dynamic trading do not maximize the
Sharpe ratio. We see no reason why they would artificially increase the explanatory
power in the cross section. Indeed, in Table 5, some of the mimicking portfolios display
a negative finite sample bias.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S002210902400005X.
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