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On the sum of chemical reactions
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It is standard in chemistry to represent a sequence of reactions by a single overall reaction, often
called a complex reaction in contrast to an elementary reaction. Photosynthesis 6CO2 + 6H2O −→
C6H12O6 + 6O2 is an example of such complex reaction. We introduce a mathematical operation
that corresponds to summing two chemical reactions. Specifically, we define an associative and non-
communicative operation on the product space Nn

0 ×N
n
0 (representing the reactant and the product of

a chemical reaction, respectively). The operation models the overall effect of two reactions happening
in succession, one after the other. We study the algebraic properties of the operation and apply the
results to stochastic reaction networks (RNs), in particular to reachability of states, and to reduction
of RNs.

Keywords: Reaction network, reduction, Markov chain, graph

2020 Mathematics Subject Classification: 37N25 (Primary), 92C42, 92E20 (Secondary)

1 Introduction

Systems of chemical reactions are commonly modelled by reaction networks (RNs) [16, 12]. RNs
provide a comprehensive mathematical framework for modelling systems of interacting species
that is used not only in chemistry and biophysics but also in mathematical genetics [11], epi-
demiology [32], cellular and systems biology [44] and sociology [43]. Notable examples include
the Lotka–Volterra predator–prey system [28] and the SIR model [1].

If a series of reactions occur one by one, it is natural to ask for the overall effect of the reac-
tions, that is, the sum (in some sense) of the reactions. In fact, it is standard in chemistry to
summarise reactions into a single overall or complex reaction, in contrast to elementary reac-
tions. As an example, photosynthesis consists of a sequence of reactions, summarised into the
complex reaction

6CO2 + 6H2O −→ C6H12O6 + 6O2

[38]. Graphical treatment of such sequences of reactions, that is of complex reactions, has a
long history in the chemical literature, see, for example, [8, 40, 41, 37]. Here, we provide the
mathematical framework for adding such sequences of reactions.

As an example, consider an RN describing single gene expression [42],
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where R denotes an mRNA molecule and P a protein. The mRNA is freely produced from a gene
(the reaction 0 −→ R), the protein is translated from the mRNA, and both protein and mRNA are
degraded. Modelled as a discrete system, the state space is N2

0, pairs of integers representing the
number of R and P molecules, respectively. Jumps between states are given by reaction vectors,
for example, a direct jump from (k, �) ∈N

2
0 to (k, � + 1) is possible by means of the reaction

R −→ R + P, if the number k of R molecules is ≥ 1. If k = 0, then the sequence of reactions
0 −→ R, R −→ R + P, R −→ 0 will take the system from the state (0, �) to the state (0, � + 1).
In that case, one might describe the overall effect (the sum) of the reaction sequence as 0 −→ P.
As the R molecule is created in the first reaction and degraded in the third, it cancels in the
sum. Using similar arguments, one can conclude that the set of reachable states from any state
(k, �) ∈N

2
0 is all of N2

0.
When the number of molecules of each species (here R, P) is low (as is often the case if the

system is embedded into a cellular environment), it is appropriate to consider the system as a
discrete stochastic system in N

n
0. If so, it is standard to model the changes in molecule counts by

a continuous-time Markov chain [27, 3]. For example, with stochastic mass-action kinetics, the
propensities for the reactions to take place have the form

λy→y′(x) = κy→y′
x!

(x − y)!1{z : z≥y}(x),

where κy→y′ is a positive rate constant and z! :=∏n
i=1 zi! for z ∈N

n
0. A first step in the analysis of

a stochastic dynamical RN is to understand the structure of the reachable sets and the irreducible
classes, that is, to understand whether the system is confined to subspaces of Nn

0, is absorbed in
certain states, etc., depending on the initial state of the system.

In the following, we examine a binary sum operation on N
n
0 ×N

n
0 that describes the addition

of two chemical reactions, as illustrated in the single gene expression RN above. We study the
operation’s algebraic properties and its applications. In terms of applications, we exhibit connec-
tions to discrete RNs and reachability properties and to reductions of discrete RNs. Common to
these applications is the idea of reactions happening in succession, one after the other.

Reactions often occur at different time-scales [24]. This has led to various methods for reduc-
tion of RNs, where fast reactions and/or species are eliminated (in a precise mathematical sense).
These methods are generally not qualitative (or graphical) per se, but quantitative, and depend on
whether the dynamics of the RN is stochastic [24, 6, 16] or deterministic [5, 13]. If the reactions
in a sequence occur at a fast rate (i.e. with high intensity), it is natural to assume no other reac-
tions take place before the last reaction of the sequence has occurred. Rather than describing the
entire sequence of reactions, one might summarise the sequence by a single complex reaction, the
overall effect. In a sense, this complex reaction is obtained by contraction. We define contrac-
tion of reactions through the defined sum operation and subsequently define reduced RNs. These
constructs are essentially graphical in nature. We show that they relate to stochastic approaches
for reduction of RNs, in particular to reduction by elimination of so-called intermediate and
non-interacting species [6, 21].

Furthermore, we study graphical properties of the state space of discrete RNs concerning the
operation we introduce. We show that reachability can be expressed via the sum operation, and
in particular that the closure of the sum operation determines reachability.

In Section 2, we define the sum of two reactions and study the properties of the operation.
In Section 3, we specialise to RNs and reachability properties. Finally, in Sections 4 and 5,
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we study reductions of RNs. In the latter section, we draw on Section 2 and study conditions that
ensure that the reduction leads to reversible (or weakly reversible, or essential) RNs.

2 Algebra on N
n
0 ×N

n
0

Denote by Z the set of integers, and by N0 the set of non-negative integers. Let n
be a positive integer. For x = (x1, . . . , xn), and y = (y1, . . . , yn) in Z

n, we write x ≤ y if
xi ≤ yi for i = 1, . . . , n, and x < y if x ≤ y and x �= y. We also use the notation x 	 y if
xi < yi for i = 1, . . . , n. Furthermore, we let x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) = (max{x1, y1}, . . . ,
max{xn, yn}) be the component-wise maximum, and let x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn) =
(min{x1, y1}, . . . , min{xn, yn}) be the component-wise minimum.

Definition 2.1. Let r1 = (y1, y′
1), r2 = (y2, y′

2) ∈N
n
0 ×N

n
0. Then r1 ⊕ r2 = (y, y′) is the element in

N
n
0 ×N

n
0 given by y = y1 + 0 ∨ (y2 − y′

1) and y′ = y′
2 + 0 ∨ (y′

1 − y2).

Proposition 1.
(
N

n
0 ×N

n
0, ⊕) forms a non-commutative monoid with identity (0, 0).

Proof. It is straightforward to see that ⊕ is a stable operation on N
n
0 ×N

n
0 with (0, 0) ⊕ r =

r ⊕ (0, 0) = r for all r ∈N
n
0 ×N

n
0. Let y1 �= y2 ∈N

n
0. Then

(y1, y2) ⊕ (y2, y1) = (y1, y1) �= (y2, y2) = (y2, y1) ⊕ (y1, y2),

hence ⊕ is non-commutative. To prove associativity, we assume without loss of generality, that
n = 1. For n > 1, it follows by looking at each coordinate independently. Let ri =

(
yi, y′

i

)
for

i = 1, 2, 3. Furthermore, let (y, y′) = (r1 ⊕ r2) ⊕ r3 and (̃y, ỹ′) = r1 ⊕ (r2 ⊕ r3).
Then,

y = y1 + 0 ∨ (y2 − y′
1) + 0 ∨ (y3 − y′

2 − 0 ∨ (y′
1 − y2)),

y′ = y′
3 + 0 ∨ (y′

2 + 0 ∨ (y′
1 − y2) − y3),

ỹ = y1 + 0 ∨ (y2 + 0 ∨ (y3 − y′
2) − y′

1),

ỹ′ = y′
3 + 0 ∨ (y′

2 − y3) + 0 ∨ (y′
1 − y2 − 0 ∨ (y3 − y′

2)).

By distinguishing the following three cases a) y2 ≥ y′
1, b) y2 < y′

1 and y3 ≥ y′
2, and c) y2 < y′

1

and y3 < y′
2, it is easy to verify that y = ỹ. A similar argument gives y′ = ỹ′. The proof is

complete. �

The sum operation reduces to standard addition in N
n
0 on the two axis, and it is the component-

wise maximum (addition in max-plus algebras) on the diagonal. The proof of the next result is
straightforward and omitted.

Proposition 2. Let r1 = (y1, y′
1), r2 = (y2, y′

2) ∈N
n
0 ×N

n
0. Then,

(1) If y1 = y2 = 0, then r1 ⊕ r2 = (0, y′
1 + y′

2).

(2) If y′
1 = y′

2 = 0, then r1 ⊕ r2 = (y1 + y2, 0).
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(3) If y1 = y′
1, y2 = y′

2, then r1 ⊕ r2 = (y1 ∨ y2, y′
1 ∨ y′

2).

(4) (y1, y′
2) ≤ r1 ⊕ r2 ≤ (y1 + y2, y′

1 + y′
2). Furthermore, the first equality holds if and only if

y′
1 = y2 and the second equality holds if and only if y′

1 ∧ y2 = 0.

The next statement characterises the sum operation.

Proposition 3. Let r1 = (y1, y′
1), r2 = (y2, y′

2) ∈N
n
0 ×N

n
0 and r1 ⊕ r2 = (y, y′). Then

(1) y′ − y = (y′
1 − y1) + (y′

2 − y2),

(2) For x ∈N
n
0 : x ≥ y if and only if x ≥ y1 and x + (y′

1 − y1) ≥ y2,

(3) For x ∈N
n
0 : x ≥ y′ if and only if x ≥ y′

2 and x + (y2 − y′
2) ≥ y′

1.

Oppositely, if (1) and (2), or alternatively, if (1) and (3), are fulfilled for some operation ⊕ on
N

n
0 ×N

n
0, then it is the sum operation in Definition 2.1.

Proof. (1) The claim follows from y′ − y = y′
2 + 0 ∨ (y′

1 − y2) − y1 − 0 ∨ (y2 − y′
1), as 0 ∨ (y′

1 −
y2) − 0 ∨ (y2 − y′

1) = y′
1 − y2. (2) It is a direct consequence of y = y1 + 0 ∨ (y2 − y′

1) = y1 ∨ (y1 +
y2 − y′

1). (3) follows similarly.
Oppositely, assume (1) and (2) are fulfilled for some operation ⊕. Then, for any (y1, y′

1) ⊕
(y2, y′

2) = (y, y′), it holds that x ≥ y if and only if x ≥ y1 and x + y′
1 − y1 ≥ y2, that is, x ≥ y2 −

y′
1 + y1. This implies that y = y1 + 0 ∨ (y2 − y′

1). Combining this fact with (1), we get y′ = y′
2 +

0 ∨ (y′
1 − y2). If (1) and (3) are fulfilled for some operation ⊕, the proof is similar. It completes

the proof. �

We next introduce an equivalence relation on N
n
0 ×N

n
0 under which the corresponding quotient

set is a commutative group.

Definition 2.2. Let r1 = (y1, y′
1), r2 = (y2, y′

2) ∈N
n
0 ×N

n
0. Then, r1 and r2 are equivalent, denoted

by r1 ∼ r2, if y′
1 − y1 = y′

2 − y2.

The following theorem follows by definition and Proposition 3(1).

Theorem 2.3.
((
N

n
0 ×N

n
0

)
/ ∼, ⊕) forms a commutative group.

The next proposition shows that subtraction might be defined on N
n
0 ×N

n
0 instead of the

quotient space, in some situations.

Proposition 4. Let r1 = (y1, y′
1), r̃1 = (̃y1, ỹ′

1), r2 = (y2, y′
2) ∈N

n
0 ×N

n
0. The following properties

hold.

(1) Suppose that r1 ⊕ r2 = r̃1 ⊕ r2 and y2 	 y′
1. Then, r1 = r̃1.

(2) Suppose that r2 ⊕ r1 = r2 ⊕ r̃1 and y1 	 y′
2. Then, r1 = r̃1.
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Proof. We show property (1). The proof of property (2) is similar. If y2 	 y′
1, then by definition

and the assumption that r1 ⊕ r2 = r̃1 ⊕ r2, we get

y1 = y1 + 0 ∨ (y2 − y′
1) = ỹ1 + 0 ∨ (y2 − ỹ′

1

)
and

y′
2 + y′

1 − y2 = y′
2 + 0 ∨ (y′

1 − y2) = y′
2 + 0 ∨ (̃y′

1 − y2
)

.

From the second equation, we have 0 	 y′
1 − y2 = 0 ∨ (̃y′

1 − y2
)
. Hence, y′

1 − y2 = ỹ′
1 − y2, which

implies ỹ′
1 = y′

1. As a result of the first equality, we have y1 = ỹ1. The proof is complete. �

The condition y2 	 y′
1 in Proposition 4(1) (as well as that in (ii)) cannot be weakened, which

can be seen by example.
Proposition 1 allows us to define the (non-commutative) summation of a finite sequence of

elements in N
n
0 ×N

n
0,

⊕m
i=1ri = r1 ⊕ r2 ⊕ · · · ⊕ rm.

For any r = (y, y′) ∈N
n
0 ×N

n
0, let r−1 = (y′, y) be the inverse of r. Then, r ⊕ r−1 = (y, y), and

r−1 ⊕ r = (y′, y′). The inverse is unique, and furthermore(⊕m
i=1ri

)−1 = ⊕m
i=1r−1

m+1−i

for r1, . . . , rm ∈N
n
0 ×N

n
0, m = 1, 2, . . . .

Corollary 1. If r1 = (y1, y′
1), . . . , rm = (ym, y′

m) ∈N
n
0 ×N

n
0 and ⊕m

i=1ri = (y, y′), then

(i) y′ − y =∑m
i=1 y′

i − yi,

(ii) For x ∈N
n
0 : x ≥ y if and only if x +∑k

i=1(y′
i − yi) ≥ yk+1 for k = 0, 1, . . . , m − 1.

Proof. Let r(m) = ⊕m
k=1rk . The corollary is then a consequence of Proposition 3 and induction

in m. �

A subset A ⊆N
n
0 ×N

n
0 is said to be closed (under ⊕) if for any r1, r2 ∈ A, r1 ⊕ r2 ∈ A as well.

Denote by cl(A) the closure of A, that is, the collection of all r ∈N
n
0 ×N

n
0 that can be represented

as a finite sum of elements in A, including the empty sum by convention, that is, (0, 0) ∈ cl(A).
Thus, cl(A) is the smallest closed set containing A ∪ {(0, 0)}, namely cl(A) is a subset of any
closed set A′ ∪ {(0, 0)} with A ⊆ A′.

We next introduce several notions related to reversibility. The concepts to be introduced
are analogous to concepts in RN theory, cf. [12, 7]. In particular, the term essential comes
from Markov chain theory, but it is also used in RN theory [7]. It is also equivalent to
recurrent, defined in [33] (see below), which is different from recurrent in Markov chain
theory.
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Definition 2.4. Let A be a subset of Nn
0 ×N

n
0. We say

(1) r ∈ A is reversible in A if r−1 ∈ A. The set A is reversible, if r ∈ A implies r−1 ∈ A.

(2) r ∈ A is weakly reversible in A, if there exist a sequence of elements r1 = (y1, y′
1), . . . , rm =

(ym, y′
m) ∈ A, such that y′

k−1 = yk for k = 2, . . . , m, and ⊕m
i=1ri = r−1. The set A is weakly

reversible, if for any r ∈ A, r is weakly reversible in A.

(3) A is essential, if cl(A) is reversible.

By Proposition 2(4), we have ⊕m
i=1ri = (y1, y′

m) in Definition 2.4(2). Clearly, the following
implications hold by definition.

Lemma 1. Let A be a subset of Nn
0 ×N

n
0. Then,

A is reversible =⇒ A is weakly reversible =⇒ A is essential.

3 RNs and reachability

In this section, we combine the algebra defined in Section 2 with RN theory and present some
reachability results. By definition, an RN is a subset R⊆N

n
0 ×N

n
0, containing no elements r

equivalent to (0, 0). For convenience, we allow R to be infinite, though this is not standard in the
literature [12]. We use standard terminology for RNs and refer to an element r = (y, y′) ∈R as a
reaction, y as the reactant and y′ as the product of this reaction. The species of y are degraded
and those of y′ are produced. Furthermore, as is standard in the literature, we consider an RN as
a graph, writing y −→ y′ for (y, y′) ∈R, and for (y, y′), (y′, y) ∈R.

For i = 1, . . . , n, we denote by Si the ith unit vector in N
n
0, such that S = {S1, . . . , Sn} forms

a complete basis of Nn
0. For y = (y1, . . . , yn) ∈N

n
0, we thus have y =∑n

i=1 yiSi. We refer to Si as
the ith species, and the component yi as the stoichiometric coefficient of the species Si in y.

Example 1. Consider a two-substrate mechanism [10],

where E is an enzyme catalysing the conversion of a substrate A to another substrate Q through
a third intermediate substrate P. The molecules EA and EQ are referred to as transient (or
intermediate) complexes.

Using the notation introduced above, let S1 = (1, 0, 0, 0, 0, 0) = E, S2 = (0, 1, 0, 0, 0, 0) =
A, S3 = (0, 0, 1, 0, 0, 0) = EA, S4 = (0, 0, 0, 1, 0, 0) = P, S5 = (0, 0, 0, 0, 1, 0) = EQ and S6 =
(0, 0, 0, 0, 0, 1) = Q. Then, we might write the reactions as follows:

For example, the species E has stoichiometric coefficient 1 in (1, 1, 0, 0, 0, 0) = S + E.

In the stochastic theory of RNs with finite number of reactions, the molecule counts follow a
continuous-time Markov process {X (t)}t≥0 with state space Nn

0. Jumps occur according to the ‘fir-
ing’ of reactions: The reaction y −→ y′ ∈R has transition intensity λy→y′(x) and when it occurs
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the process jumps from state x to state x + y′ − y, where y′ − y is the net gain of the reaction [3].
The Markov process satisfies the following equation:

P(X (t + �t) = x + ξ |X (t) = x) =
∑

y→y′∈R : y′−y=ξ

λy→y′(x)�t + o(�t), (3.1)

for ξ ∈Z
n and some initial count X (0) = x0 ∈N

n
0. As R is finite, then (3.1) defines the process

{X (t)}t≥0 (provided the chain does not explode).
Generally, the transition intensities λy→y′ : Nn

0 → [0, ∞), for y −→ y′ ∈R, are assumed to
satisfy the compatibility condition

λy→y′(x) > 0 ⇐⇒ x ≥ y, (3.2)

or the weaker condition

λy→y′ (x) > 0 =⇒ x ≥ y. (3.3)

These have natural interpretations: A reaction y −→ y′ can occur (if and) only if the molecule
counts are larger than or equal to y. Below, we adhere to (3.2) and note that similar statements
(one-way implications) to those we derive can be achieved assuming (3.3) only.

A reaction y −→ y′ ∈R is said to be active on a state x ∈Z
n if λy→y′(x) > 0, and an ordered

sequence of reactions y1 −→ y′
1, . . . , ym −→ y′

m ∈R is said to be active on x if

λyk→y′
k

(
x +

k−1∑
i=1

y′
i − yi

)
> 0, k = 1, . . . , m, (3.4)

that is, if the sequence of reactions can happen in succession, one after the other. After each step,
the molecule count is updated. In particular, an ordered sequence of reactions is active on x if and
only if there is a positive probability that the Markov chain performs this sequence of reactions
in the given order.

Assume the compatibility condition (3.2) holds. Then, (3.4) is equivalent to x +∑k−1
i=1 (y′

i −
yi) ≥ yk for k = 1, . . . , m. According to Proposition 3 and Corollary 1, this provides the following
interpretation of the sum operation.

Corollary 2. An ordered sequence of reactions y1 −→ y′
1, . . . , ym −→ y′

m ∈R is active on a
state x ∈N

n
0, if and only if x ≥ y, where (y, y′) = ⊕m

i=1(yi −→ y′
i).

For a stochastic RN, reachability to a state x′ ∈N
n
0 or the set of reachable states from an

initial state x ∈N
n
0 is often a main interest [39]. A state x leads to a state x′ via an RN

R, or equivalently, x′ is reachable from x if there is an active ordered sequence of m ≥ 0
reactions y1 −→ y′

1, . . . , ym −→ y′
m ∈R such that x′ = x +∑m

i=1 y′
i − yi. As a consequence of

Proposition 3 and Corollary 1, we can reformulate reachability of elements in N
n
0 via R as

follows.

Lemma 2. Let R be an RN. A state x ∈N
n
0 leads to x′ ∈N

n
0 if and only if there is (y, y′) ∈ cl(R)

with x ≥ y and x′ = x + y′ − y; equivalently (x, x′) ≥ (y, y′) and (x, x′) ∼ (y, y′).
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Denote by R(x) = {
x′ ∈N

n
0|xleads to x′} the set of reachable states of x ∈N

n
0 via R.

Corollary 3. For two RNs R1, R2 on the same set of species, we have

cl(R1) = cl(R2) =⇒ for all x ∈N
n
0, R1(x) =R2(x).

Hence, having the same cl(R) for two RNs is in general stronger than having the same reach-
ability sets for all initial states (in the latter case, the RNs are said to be structurally identical
[45]).

Say a reaction y → y′ ∈R has a catalytic species if there is a species Si such that
yi > 0, (y′)i > 0. Then an RN with no catalytic species is an RN where no reaction has a catalytic
species. For RNs without catalytic species, the previous corollary can be strengthened.

Theorem 3.1. For two RNs R1, R2 on the same set of species and without catalytic species, we
have

cl(R1) = cl(R2) ⇐⇒ for all x ∈N
n
0, R1(x) =R2(x).

Proof. We only need to prove the right to left implication. By symmetry it is sufficient to prove
cl(R1) ⊆ cl(R2). Consider the set B0 = {r ∈N

n
0 ×N

n
0|r ∼ r0}, r0 ∈R1. Any element of B0 takes

the form r = r0 + (y, y) ∈N
n
0 ×N

n
0 for some y ∈Z

n. As there are no catalytic species, then y ≥ 0
and r ≥ r0.

Let r0 = (y0, y′
0). By definition, y0 leads to y′

0 in R1. As R1(y0) =R2(y0), then also y′
0 ∈R2(y0).

Hence, y0 leads to y′
0 in R2, and by Lemma 2 there is an element r̃ ∈ cl(R2) that realises this.

By definition, r̃ ∼ r0 and r̃ ∈ B0, hence r̃ ≥ r0 from above. By Lemma 2, r0 ≥ r̃, hence r̃ = r0

and r0 ∈ cl(R2). Now consider an arbitrary element r̃ ∈ cl(R1), given as r̃ = r̃1 ⊕ . . . ⊕ r̃k with
r̃i ∈R1, i = 1, . . . , k. We have r̃i ∈ cl(R2) for i = 1, . . . , k, hence also r̃ ∈ cl(R2) by the closure
property. �

Finally, we characterise the property of being essential. Moreover, we prove the equivalence
between essential RNs defined in Definition 2.4(3) and recurrent RNs defined in [33].

Proposition 5. An RN R is essential if and only if for x, x′ ∈N
n
0, if x leads to x′, then x′ leads

to x.

Proof. If R is an essential RN, then as a consequence of Lemma 2, x leads to x′ whenever x′ leads
to x. Oppositely, assume that R is such that x leads to x′ whenever x′ leads to x for all x, x′ ∈N

n
0.

Then, for any r0 ∈ cl(R), let r∗ = (y∗, y′∗) ≤ r0 be a minimal element of {r ∈ cl(R)| r ∼ r0} (which
exists by Zorn’s lemma, but is not necessarily unique). Note that by Lemma 2 we have that y∗
leads to y′∗, hence by assumption also that y′∗ leads to y∗. Then by Lemma 2 there is r̃ ∈ cl(R)
with r̃ ≤ r−1∗ and r̃ ∼ r−1∗ , which is equivalent to r̃−1 ≤ r∗ and r̃−1 ∼ r∗. Similarly, we can find
r̂ ∈ cl(R) with r̂ ≤ r̃−1 and r̂ ∼ r̃−1. Thus, we have r̂ ≤ r∗ and r̂ ∼ r∗. As r∗ is chosen to be a
minimal element of {r ∈ cl(R)| r ∼ r0}, this implies r̂ = r∗ and thus r̃ = r−1∗ . Finally, as cl(R) is a
closed set, it is enough to check the equality r−1

0 = r−1∗ ⊕ r0 ⊕ r−1∗ , and so r−1
0 ∈ cl(R). The proof

of Proposition 5 is complete. �
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In particular, the result characterises and connects the property of R to be essential with the
geometry of cl(R). Considering the isometric involution defined by the inverse r−1 of a reaction,
we can equivalently say that R is essential if and only if cl(R) is symmetric with respect to the
above involution.

A semi-linear set is defined as a finite union of linear sets, where a linear set is a set generated
by a base vector b ∈Z

n and period vectors p1, . . . pk ∈Z
n as follows [30]:

L(b, p) =
{

b +
k∑

i=1

λipi

∣∣∣λ1, . . . λk ∈N0

}
.

Semi-linear sets are widely studied in computer science with applications in automata theory
[31], formal languages [17] and Presburger arithmetic [18], as well as in models of computation,
such as Petri nets and vector addition systems [9]. In terms of RNs, the discrete dynamics of
Petri nets and vector addition systems might equivalently be represented by the discrete dynam-
ics of RNs [9]. Consequently, the reachable sets of RNs are not semi-linear in general, as this
is known to be the case of Petri nets and vector addition systems [22, 46]. Here, we will be
concerned with a related question, namely whether the closure cl(R) of an RN R, consid-
ered as a subset of Nn

0 ×N
n
0 =N

2n
0 , is semi-linear. Simple examples suggest this might be so:

if , then cl(R) =N
2n
0 ; and if , then

cl(R) = {λ1(1, 0, 0, 1) + λ2(0, 1, 1, 0) + λ3(1, 0, 1, 0) + λ4(0, 1, 0, 1) | λ1, λ2, λ3, λ4 ∈N0} .

In both cases, the closure is semi-linear, in fact linear. The second example highlights the fact
that the closure is generally not contained in the linear set generated by the reactions.

Following the above discussion, we ask whether cl(R) is a semi-linear set. This is not the case,
as will be seen by example. For this, we need the following lemma.

Lemma 3. Assume A ⊆N
n
0 ×N

n
0 is semi-linear, and let x ∈N

n
0. Then Ax = {(a, b) ∈ A | a = x} is

empty or a semi-linear set as well.

Proof. It is enough to prove it for A a linear set, as semi-linear sets are finite unions of linear sets.
So assume A is linear and that Ax is non-empty. We want to show that Ax is semi-linear. Let A be
given by L(b, p) with base vector b ∈N

n
0 ×N

n
0 and non-zero period vectors p1, . . . pk ∈N

n
0 ×N

n
0.

Let proj(·) denote the projection onto the first n-coordinates.
Without loss of generality, we let p1, . . . , pm be the period vectors with non-trivial projection

onto the first n coordinates, that is, proj(pi) �= 0, i = 1, . . . , m and proj(pi) = 0, i = m + 1, . . . , k.
Then, there are finitely many vectors λ = (λ1, . . . , λm) ∈N

m
0 , such that proj(b +∑m

i=1 λipi) = x,
as all pi are non-zero and non-negative. Denote this finite set by B, that is,

B =
{

b +
m∑

i=1

λipi

∣∣∣λ ∈N
m
0 and proj

(
b +

m∑
i=1

λipi

)
= x

}
.

Furthermore, for the first n coordinates, if pi has a non-zero entry whenever x in B has a zero
entry, then necessarily λi = 0, i = 1, . . . , m.
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Finally, Ax might be written as

Ax =
⋃
c∈B

{
c +

k∑
m+1

λipi

∣∣∣λk , . . . λm+1 ∈N0

}
,

which is a finite union of linear sets, hence a semi-linear set. �

As it is onerous to prove that a set is not semi-linear, we consider a concrete RN. Using
Lemma 3, we reduce the RN to a known example originally given for a vector addition system,
which is not semi-linear [22].

Corollary 4. There exists an RN R such that the closure cl(R) of R is not a semi-linear set.

Proof. We will use that there exists a 6-dimensional vector addition system with a reachability
set that is not semi-linear [22]. To conclude we translate that example to the following RN:

S0 + S2 −→ S0 + S1, S0 −→ S3, , S3 + S1 −→ S3 + 2S2, S3 −→ S0 + S4,

such that the reachability set of [22, Lemma 2.8], which is not semi-linear, corresponds to
R(S0 + S2) (the reachability set R(x) with x = S0 + S2).

We construct a new RN, R̃= {S5 −→ S0 + S2} ∪R. Then, R̃(S5) = cl(R̃)S5 , where cl(R̃)S5 is
Ax with A = cl(R̃) and x = S5 (see Lemma 3), can be written as {S5} ∪R(S0 + S2). We note that
the union of a finite set with a non-semi-linear set is a non-semi-linear set, hence it follows by
contradiction and Lemma 3 that cl(R̃) is not semi-linear. �

4 Reduction of RNs

In this section, we study graphical reduction of an RN to a smaller (reduced) RN in terms of
the number of species, entirely based on the reactions alone and not their stochastic propensities
to occur. The number of reactions of the reduced RN might be bigger or smaller than the orig-
inal RN. Specifically, we provide a definition of eliminable species and that of a reduced RN,
obtained by removal of a set eliminable species.

The motivation comes from studying stochastic RNs with fast-slow dynamics [6, 21]. We
motivate with an example.

Example 2. A simple model of protein production is the following:

where G denotes the inactive state of a gene and G′ the active state, and P is a protein produced
while the gene is active [34]. The protein is subsequently degraded. One might interpret the RN
as modelling a single polyploid cell with K copies of the gene, some of which will be in the
active state, while the rest will be in the inactive state. Human cells are diploid and K = 2.

Assume the reactions involving the active gene in the reactant, G′ −→ G, G′ −→ G′ + P,
occur at a fast rate compared to the other two reactions. Then it is reasonable to assume that when-
ever a gene copy is activated, a sequence of fast reactions that eventually ends with deactivation
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of the gene copy again occurs before a protein is degraded or another gene copy is activated.
Such a sequence (including conversion of G into G′) takes the form

G −→ G′, G′ −→ G′ + P, . . . , G′ −→ G′ + P︸ ︷︷ ︸
k instances

, G′ −→ G.

The net effect of the sequence is simply the sum of the reactions: G −→ G + kP. It appears
that the active gene G′ has been eliminated from the RN through the fast reactions G′ −→ G,
G′ −→ G′ + P.

To formalise this, let U = {G′} and F = {G′ −→ G, G′ −→ G′ + P}. Then, we say U is
eliminable with respect to F , resulting in the reduced RN ,

R∗
U ,F = {P −→ 0} ∪ {G −→ G + kP|k ∈N0}.

The reduced RN has infinitely many reactions.

In the example above, any sequence of fast reactions (those of F) will eventually be ‘termi-
nated’ by G′ −→ G. If only G′ −→ G′ + P is fast, while G′ −→ G is not, then arbitrarily many
protein copies would be produced before the gene copy is deactivated again. In this case, the
reduced RN does not make sense. Thus, it should be a requirement that any such sequence of
fast reactions is eventually terminated. Oppositely, if only G′ −→ G is fast, then the reaction
G′ −→ G′ + P is essentially blocked from occurring as there will be no active gene copies. Thus,
it is reasonable to remove G −→ G + P from the reduced RN.

To formalise elimination and reduction, we introduce some notation. Let R⊆N
n
0 ×N

n
0 be an

RN and let U ⊆ S . Furthermore, let RU ⊆R and R′
U ⊆R be the subsets of reactions containing

species of U in the reactant and the product, respectively,

RU = {y −→ y′ ∈R | U ∩ supp(y) �= ∅},
R′

U = {y −→ y′ ∈R | U ∩ supp(y′) �= ∅}, (4.1)

where supp(x) = {Sk|k = 1, . . . , n, xk > 0} is the support of x ∈N
n
0. Let R= cl(R) for conve-

nience, and denote by RU and R′
U the collection of elements in R containing species of U in the

reactant and the product, respectively, analogously to (4.1). We also write R0 =R \ (RU ∪R′
U
)

and R0 =R \
(
RU ∪R′

U
)

. It is straightforward to see that R0 is a closed set (under ⊕),

R0 ⊇ cl(R0), and in general, R0 �= cl(R0).
We proceed by defining the reduction procedure and give further examples below.

Definition 4.1. Let R be an RN and U ⊆ S . The species in U are said to be eliminable (and the
set U also eliminable) in R with respect to a set of reactions F ⊆RU , if for any r0 ∈R′

U and any
r1 ∈ cl(F) such that r0 ⊕ r1 �∈RU , there exists r2 ∈ cl(F) such that r0 ⊕ r1 ⊕ r2 ∈R0.

The reduced RN associated with this elimination is R∗
U ,F =R0 ∪RU ,F , where

RU ,F = {r0 ⊕ r1 ∈R0| r0 ∈R′
U , r1 ∈ cl(F)} \ {r ∈N

n
0 ×N

n
0|r ∼ (0, 0)}. (4.2)

Recall that 0 ∈ cl(F) (see Section 2). As a consequence, if r0 ⊕ r1 ∈R0, then it follows that
r0 ⊕ r1 /∈RU . In that case, if we choose r2 = 0 ∈ cl(F), then r0 ⊕ r1 ⊕ r2 = r0 ⊕ r1 ∈R0. Thus,
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when verifying eliminability of a subset of species, we only need to consider the case r0 ⊕ r1 /∈
RU ∪R0, that is, r0 ⊕ r1 ∈R′

U \RU .
We provide the following interpretation of eliminability. If a set U is eliminable, then for any

reaction r0 that has species in U in its product, but not in its reactant, and any finite sum of
reactions from F , that is, any r1 ∈ cl(F), the following holds:

– either r0 ⊕ r1 is in R0, that is, it does not contain species in U in its reactant nor product,

– or there is a finite sum of reactions from F , which equals r2, and such that r0 ⊕ r1 ⊕ r2 is
in R0.

From Definition 4.1, it is clear that the reduced RN might be identified as a subset of Nn−d
0 ×

N
n−d
0 , with |U | = d ≤ n.

Example 3. We return to Example 2 with U = {G′} and F = {G′ −→ G, G′ −→ G′ + P}.
Choosing r0, r1 as in Definition 4.1, such that r0 ⊕ r1 �∈RU , then r0 = G −→ G′, and r1 is either
the sum of k instances of the reaction G′ −→ G′ + P or the sum of k instances of the reaction
G′ −→ G′ + P with an additional summation by G′ −→ G. In the first case, r0 ⊕ r1 = G −→
G′ + kP, and in the second, r0 ⊕ r1 = G −→ G + kP. In the latter case, Definition 4.1 is ful-
filled by choosing r2 = 0 ∈ cl(F), while in the former, the definition is fulfilled by choosing
r2 = G′ −→ G.

We might interpret Definition 4.1 in the following way. If r0 ⊕ r1 = (y, y′) �∈RU , then y′ can
be produced from y alone (which contains no species of U ). If y′ contains species of U , then these
can be degraded by reactions of F . This is guaranteed by the existence of r2. Thus, any species
of U produced in this way can subsequently be degraded again through fast reactions.

Example 4. A more realistic model of protein production is the following [23, 25]:

where G, G′ and P are as before, and R is an intermediate molecule (the mRNA), produced by
transcription of the gene. The mRNA is produced by the active gene, and each copy of the mRNA
is subsequently translated into protein. Both mRNA and protein might be degraded.

Take U = {G′, R} and

F =RU = {G′ −→ G, G′ −→ G′ + R, R −→ R + P, R −→ 0}.
Furthermore, R′

U = {G −→ G′, G′ −→ G′ + R, R −→ R + P}. If r0 ∈R′
U and r1 ∈ cl(F) are such

that r0 ⊕ r1 �∈RU , then it must be that r0 = {G −→ G′}. Examples of r1, fulfilling the requirement
r0 ⊕ r1 �∈RU , include

(i) r1 = G′ −→ G;, here r0 ⊕ r1 = G −→ G,

(ii) r1 = (G′ −→ G′ + R) ⊕ (R −→ R + P) ⊕ (R −→ R + P) = G′ −→ G′ + R + 2P; here r0 ⊕
r1 = G −→ G′ + R + 2P,

(iii) r1 = (G′ −→ G′ + R) ⊕ (R −→ R + P) ⊕ (R −→ 0) = G′ −→ G′ + P; here r0 ⊕ r1 =
G −→ G′ + P.

In either case, there exists r2 ∈ cl(F), such that r0 ⊕ r1 ⊕ r2 ∈R0: (i) r2 = G′ −→ G, (ii) r2 =
(G′ −→ G) ⊕ (R −→ 0), (iii) r2 = G′ −→ G.
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The set U is eliminable with respect to F , resulting in the reduced RN ,

R∗
U ,F = {P −→ 0} ∪ {G −→ G + kP|k ∈N0},

which is the same RN as in Example 2.

We elaborate further on the properties of elimination.

Lemma 4. Let R be an RN, and let U ⊆ S . If r0 ∈R′
U , r1 = ⊕m

i=1r1i, r1i ∈RU , i = 1, . . . , m, such

that r0 ⊕ r1 �∈RU , then r0 ∈R′
U \RU and r0 ⊕ (⊕k

i=1r1i

) ∈R′
U \RU for k = 1, . . . , m − 1. If

r0 ⊕ r1 ∈R0, then r1m ∈RU \R′
U and ⊕m

i=kr1i ∈RU \R′
U for k = 1, . . . , m.

Proof. Let
(
z0, z′

0

)= r0 and
(
zk , z′

k

)= r0 ⊕ (⊕k
i=1r1i

)
, k = 1, . . . , m. It follows from

Proposition 2(4) that z0 ≤ z1 ≤ . . . ≤ zm. As r0 ⊕ r1 �∈RU , then supp(zk) ∩ U = ∅ for k =
0, . . . , m. This implies that r0 = (

z0, z′
0

)
/∈RU , and thus r0 ∈R′

U \RU . On the other hand,
for k = 1, . . . , m, r1k = yk −→ y′

k ∈RU and by definition, zk = zk−1 + 0 ∨ (yk − z′
k−1

)
. As

supp(zk−1) ∩ U = supp(zk) ∩ U = ∅, we therefore necessarily have

∅ �= supp(yk) ∩ U ⊆ supp
(
z′

k−1

)∩ U ,

and hence r0 ⊕ (⊕k
i=1r1i

) ∈R′
U \RU .

For the second part of the lemma, we have r0 ⊕ r1 = r0 ⊕ (⊕m−1
i=1 r1i

)⊕ r1m. By

Proposition 2(4), if r1m ∈R′
U , then r0 ⊕ r1 ∈R′

U , which contradicts the assumption that
r0 ⊕ r1 ∈R0. Thus, r1m ∈RU \R′

U . Let
(̃
zk , z̃′

k

)= ⊕m
i=m−k+1r1i for all k = 1, . . . , m, and let(̃

zm+1, z̃′
m+1

)= r0 ⊕ (⊕m
i=1r1i

)
. Using Proposition 2(4) again, we get z̃′

1 ≤ z̃′
2 ≤ . . . ≤ z̃′

m+1. As

r0 ⊕ r1 = (̃
zm+1, z̃′

m+1

) ∈R0, we have supp(z′
k) ∩ U = ∅, and thus ⊕m

i=m−k+1r1i /∈R′
U for all k =

1, . . . , m. Finally, for any k ∈ {1, . . . , m}, as r1k ∈RU , Proposition 2(4) implies that
(̃
zk , z̃′

k

)=
⊕m

i=m−k+1r1i ∈RU . Therefore, ⊕m
i=m−k+1r1i ∈RU \R′

U for all k = 1, . . . , m. It completes the
proof. �

If r ∈R is such that x ∈N
n
0 is active on r and U ∩ supp(x) = ∅, then r �∈RU (cf. Corollary 2).

In particular, this applies to reactions r that appear as sums of reactions r = ⊕m
i=0ri with r0 ∈R′

U
and r1, . . . , rm ∈F .

Keeping the interpretation of fast-slow dynamics in mind, let F consist of the fast reactions and
R \F of the slow reactions. If currently in a state x ∈N

n
0 with no molecules of the species in U ,

that is, U ∩ supp(x) = ∅, and a reaction r0 ∈R′
U \RU occurs, producing one or more molecules

of the species in U , then usually a sequence of reactions takes place that degrades the molecules
of the species U again. Reactions in RU \F have a low probability of occurring [21].

We state some trivial cases of eliminable species.

(1) If U ⊆ S and R′
U \RU = ∅, then U is eliminable with respect to any F ⊆RU . In that case

RU ,F = ∅ and R∗
U ,F =R0 (cf. Lemma 4).

(2) If U = ∅, then RU =R′
U = ∅, and U is eliminable with respect to F = ∅, and R0 =R,

RU ,F = ∅ and thus R∗
U ,F =R.

(3) If U = S , then R0 = ∅, RU =R′
U =R and hence this is a special case of (i) with R∗

U ,F = ∅.
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If U is eliminable with respect to both F1 ⊆RU and F2 ⊆RU , then U is not necessarily
eliminable with respect to F1 ∪F2. The same is the case if disjoint sets U1 and U2 are eliminable
with respect to F1 and F2, respectively (potentially with empty intersection), then U1 ∪ U2 is
not necessarily eliminable with respect to F1 ∪F2. Here, it should at least be required that U2 is

eliminable with respect to F2 ⊆
(
R∗

U1,F1

)
U2

, see Proposition 7. An example of this is also given

below, where the two sets of eliminable species do not appear in the same reactions; hence, the
condition is trivially fulfilled.

Proposition 6. Let R be an RN, and let U = U1 ∪ U2 ⊆ S with U1 ∩ U2 = ∅. Suppose that U1 in
R is eliminable with respect to F1, that U2 is eliminable in R with respect to F2, and that(

RU1 ∪R′
U1

)
∩
(
RU2 ∪R′

U2

)
= ∅.

Then, U is eliminable in R with respect to F =F1 ∪F2.

Proof. Let r0 ⊕ r1 �∈RU with r0 ∈R′
U =R′

U1
∪R′

U2
, r1 ∈ cl(F). If r0 ⊕ r1 /∈R′

U , then we are

done. Otherwise, suppose that r0 ⊕ r1 ∈R′
U . Without loss of generality, assume that r0 ∈R′

U1
.

Let r1 = ⊕m
i=1r1i with r1i ∈F . As r0 ⊕ r1 /∈RU , then by Lemma 4, we have r0 ∈R′

U1
\RU

and r0 ⊕ (⊕k
i=1r1i

) ∈R′
U \RU for all k = 1, . . . , m. Note that R′

U1
∩R′

U2
= ∅, hence r0 has no

species of U2 in the product. We claim that r11 has no species of U2 in the reactant. If this is not
the case, then r0 ⊕ r11 ∈RU2 ⊆RU , which contradicts the fact that r0 ⊕ r11 ∈R′

U \RU . Thus,
r11 ∈F1.

Recall the assumption that RU1 ∩R′
U2

= ∅. It follows that r11 ∈RU1 \R′
U2

, and thus, by

Proposition 2(4), r0 ⊕ r11 ∈R′
U1

\R′
U2

. As a result, r12 has no species of U2 in the reactant as
well. This implies that r12 ∈F1. Iteratively, we can show that r1k ∈F1 for all k = 1, . . . , m.
In other words, r1 = ⊕m

k=1r1k ∈ cl(F1). Since U1 is eliminable with respect to F1, there exists

r2 ∈ cl(F1) ⊆ cl(F) such that r0 ⊕ r1 ⊕ r2 ∈R \
(
RU1 ∪R′

U1

)
. By assumption

(
RU1 ∪R′

U1

)
∩(

RU2 ∪R′
U2

)
= ∅, we have r0 /∈RU2 ∪R′

U2
and cl(F1) ∩

(
RU2 ∪R′

U2

)
= ∅. Thus, r0 ⊕ r1 ⊕

r2 /∈
(
RU2 ∪R′

U2

)
, which yields that

r0 ⊕ r1 ⊕ r2 ∈R0 =R \
(
RU ∪R′

U
)

=R \
(
RU1 ∪R′

U1
∪RU2 ∪R′

U2

)
.

This completes the proof of this lemma. �

We introduce some important classes of species that often appear in practice [14, 35, 36]. See
also Example 5.

Definition 4.2. Let R be an RN and U ⊆ S . Then,

(1) U consists of non-interacting species, if for any two species Si, Sj ∈ U and any reaction
y −→ y′ ∈R, the sum of the stoichiometric coefficients yi + yj and (y′)i + (y′)j in the reactant
and the product, respectively, are at most one.
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(2) U consists of intermediate species, if the species of U are non-interacting and further-
more, for Si ∈ U and y −→ y′ ∈R, whenever yi = 1, then y = Si, and whenever (y′)i = 1, then
y′ = Si.

Example 5 (Example 1 revisited). Recall the reactions

The set U = {EQ} consists of intermediate species and U is eliminable with respect to F =
{EQ −→ E + Q}. The reduced RN is . Similarly,
the set U = {EA, EQ} consists of non-interacting species and U is eliminable with respect to
F = {EA −→ E + A, EA + P −→ EQ −→ E + Q}. The reduced RN is R∗

U ,F = {E + A + P −→
E + Q}.

Lemma 5. Let R be an RN and U ⊆ S a set of non-interacting species. Furthermore, let r0 ∈R′
U ,

r1 = ⊕m
i=1r1i, r1i ∈RU , i = 1, . . . , m, such that r0 ⊕ r1 /∈RU . Then,

(1) r0 ∈R′
U \RU , r1i ∈RU ∩R′

U , i = 1, . . . , m − 1.

(2) Assume r0 = y0 −→ y′
0 and r1i = yi −→ y′

i, i = 1, . . . , m. Then, supp(yi) ∩ U = supp
(
y′

i−1

)∩
U �= ∅ for i = 1, . . . , m.

(3) If r0 ⊕ r1 ∈R0, then r1m ∈RU \R′
U .

Oppositely, let r0 ∈R′
U , r1 = ⊕m

i=1r1i, r1i ∈RU , i = 1, . . . , m. Suppose that both (1) and (2) hold.
Then, r0 ⊕ r1 /∈RU . If furthermore, r1m ∈RU \R′

U , then r0 ⊕ r1 ∈R0.

Proof. The backward direction of the lemma is straightforward, so we only need to prove the
forward direction. Note that Lemma 4 and (2) imply (1) and (3); hence, we are left to prove (2).
Assume m ≥ 2, as otherwise there is nothing to prove. Recall that U is a set of non-interacting
species. Since rk ∈F ⊆RU , k = 1, . . . , m, then each reactant yk contains exactly one species
in U with stoichiometric coefficient one. Let

(
zk , z′

k

)= r0 ⊕ (⊕k
i=1ri), k = 1, . . . , m. By repeat-

ing the proof in Lemma 4, we find that supp(y1) ∩ U = supp(y′
0) ∩ U and supp(y′

0 − y1) ∩ U = ∅.
Thus, supp(z′

1) ∩ U = supp(y′
1 + 0 ∨ (y′

0 − y1)) ∩ U = supp(y′
1) ∩ U is a singleton. Therefore,

supp(y′
1) ∩ U = supp(z′

1) ∩ U = supp(y2) ∩ U . The proof of this lemma can be completed by
iteration. �

The conclusion of Lemma 5 is not true in general, see Example 9.

Proposition 7. Let R be an RN and let U = U1 ∪ U2 ⊆ S be a set of non-interacting species such
that U1 ∩ U2 = ∅. Furthermore, assume U1 is eliminable with respect to F1 ⊆RU1 in R, and that

U2 is eliminable with respect to F2 =
(
R∗

U1,F1

)
U2

in R∗
U1,F1

. Then U is eliminable with respect

to F =F1 ∪RU2 in R.

Proof. We make use of the following notation: R̃=R∗
U1,F1

, R̂= cl(R̃), R̂0 = R̂ \(
R̂U2 ∪ R̂′

U2

)
, and R0 =R \

(
RU ∪R′

U
)

. Then, R̂ is a closed subset of R such that for
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any (y, y′) ∈ R̂, supp(y) ∩ U1 = supp(y′) ∩ U1 = ∅. Thus, R̂⊆R \
(
RU1 ∪R′

U1

)
. Furthermore,

by definition R̂0 consists of all (y, y′) ∈ R̂ such that supp(y) ∩ U2 = supp(y′) ∩ U2 = ∅, thus

R̂0 ∩
(
RU2 ∪R′

U2

)
= ∅. It follows that

R̂0 ⊆R \
(
RU1 ∪R′

U1
∪RU2 ∪R′

U2

)
=R0.

By definition, we need to verify that for any r0 ∈R′
U , r1 = ⊕m

i=1r1i, r1i ∈F , with r0 ⊕ r1 /∈RU ,
either r0 ⊕ r1 ∈R0, or there exists r2 ∈ cl(F) such that

r0 ⊕ r1 ⊕ r2 ∈R0. (4.3)

Before proving this property, we show that cl(F1) ⊆ cl(F) and cl(F2) ⊆ cl(F). The first inclu-
sion is trivial. Now we prove the second one. Let r ∈F2. Then, by definition either r ∈
F2 ∩

[
R \

(
RU1 ∪R′

U1

)]
or r ∈F2 ∩RU1,F1 . In the former case, we have r ∈F2 ∩RU2 ⊆F .

Thus, it suffice to consider the second case, for which, we can write r = r̂0 ⊕ r̂1 ∈RU1,F1 with
r̂0 ∈R′

U1
and r̂1 = ⊕m

k=1̂r1k , r̂1k = ŷ1k −→ ŷ′
1k ∈F1 ⊆RU1 . Thus, supp(y1k) ∩ U1 �= ∅, and by the

non-interacting property, it holds that supp(yk) ∩ U2 = ∅ for all k = 1, . . . , m. Therefore, due
to Proposition 2(4), we have r̂1 ∈RU1 \RU2 . Hence, by Proposition 2(4) again and because
r̂0 ⊕ r̂1 ∈F2 ⊆RU2 has a non-interacting species in U2 in the reactant, r̂0 ∈RU2 ⊆F . Thus,
r ∈ cl(F).

Suppose that r0 ⊕ r1 ∈R′
U \RU . Next, we show the existence of an r2 ∈ cl(F), such that

(4.3) holds. Recall r1 = ⊕m
i=1r1i, r1i ∈F such that r0 ⊕ r1 = r0 ⊕ (⊕m

i=1r1i

) ∈R′
U \RU . We claim

that r1m ∈R′
U . Otherwise, assume r1m ∈RU \R′

U . By the opposite part of Lemma 5, we have

r0 ⊕ r1 ∈R0, which contradicts the assumption that r0 ⊕ r1 ∈R′
U \RU . Thus, we have r1m ∈

RU ∩R′
U . Suppose that r1m ∈RU1 ∩R′

U1
. Let j be the largest index strictly smaller than m such

that r1j /∈RU1 (with r10 = r0). If j = 0, then r1i ∈ (RU1 ∩R′
U1

) ∩F ⊆F1, i = 1, . . . , m and, by
Lemma 4, r0 ∈R′

U1
\RU1 . As U1 is eliminable with respect to F1, there exists r̂2 ∈ cl(F1) such

that r̂ = r0 ⊕ r1 ⊕ r̂2 ∈ R̃. If r̂ /∈ R̃′
U2

, then (4.3) holds with r2 = r̂2. Otherwise, r̂ ∈ R̃′
U2

\ R̃U2 .

Since U2 is eliminable in R̃, with respect to F2, there exists r̂3 ∈ cl(F2) ⊆ cl(F) such that
r0 ⊕ r1 ⊕ r̂2 ⊕ r̂3 ∈ R̂0. Thus, we get (4.3) with r2 = r̂2 ⊕ r̂3.

On the other hand, if j > 0, then r1j ∈RU2 ∩R′
U1

and r1(j+1), . . . , r1m ∈F1. Thus, by elim-
inability of U1 in R with respect to F1, there exists r̂2 ∈ cl(F1) such that r1j ⊕ · · · ⊕ r1m ⊕ r̂2 ∈
R̃U2 . Let j′ be the largest index strictly smaller than j such that r1j′ /∈RU2 . If j′ = 0, then
r0 ∈R′

U2
\RU ⊆ R̃′

U2
\ R̃U2 . Otherwise, r1j′ ∈RU1 ∩R′

U2
and r1(j′+1), . . . , r1j ∈RU2 ∩RU ′

2
⊆

R̃U2 =F2. Let j” be the largest index strictly smaller than j′ such that r1j′′ /∈RU1 . By using the
opposite part of Lemma 5, we see that r1j′′ ⊕ · · · ⊕ r1j′ ∈ R̃U2 . By repeating the same argument,
we find that r0, r11, · · · , r1(j′′−1) can be divided into ordered groups such that the sum of the reac-
tions in each group, except the first group, is either in (RU1,F1 )U2 or RU2 ∩R′

U2
, which are both

in R̃U2 , and the sum of the reactions in the first group is in R̃′
U2

\ R̃U2 . Hence, the existence of

r2 follows from eliminability of U2 with respect to F2 = R̃U2 in R̃.
The other cases when r1m is in RU1 ∩R′

U2
, RU2 ∩R′

U1
or RU2 ∩R′

U2
are essentially proved

by the same means as above. The proof of the proposition is complete. �
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It is not sufficient that U2 is eliminable with respect to RU2 in R. For example, consider the
RN . Then U1 = {U1} is eliminable with respect to RU1 , and U2 = {U2}
is eliminable with respect to RU2 . However, U1 ∪ U2 is not eliminable with respect to RU1∪U2 .

We further note that several approaches to reductions of RNs derived from a deterministic
dynamical perspective have been studied both in terms of slow-fast dynamics [26, 13] and in
the context of steady states [19, 15, 14, 35, 29] for intermediates and non-interacting species
in general. In the case of intermediates, our reduced RN agrees with the one suggested in [15].
However, for non-interacting species the reduced RN we obtain differs from that of [13, 35]. This
is a consequence of the discrete nature of the state space in our case compared to the continuous
state space for deterministic reaction systems.

5 Reversibility analysis for reduced RNs

Reversibility (weak reversibility, essentiality) is an important property for an RN and often
implies strong properties on the dynamics, irrespectively whether the RN is modelled deter-
ministically or stochastically [2, 7, 12, 3, 4]. Therefore, we are interested in finding criteria for a
reduced RN to be reversible (weakly reversible, essential), provided the original RN is. However,
in general, this appears to be a challenging problem. Here, we provide sufficient conditions for
a reduced RN to be (weakly) reversible under the assumption that the eliminable species are
non-interacting species.

For a set A ⊆N
n
0 ×N

n
0, let A−1 = {r−1|r ∈ A}.

Theorem 5.1. Let R be an RN and U ⊆ S a set of non-interacting species. Assume U is
eliminable with respect to F ⊆RU , as in Definition 4.1, and define the condition

(∗)
(R′

U \RU
)−1 =F \R′

U and F ∩R′
U is essential.

Then,

(1) If
(R′

U \RU
)∪F is reversible, then (∗) holds.

(2) RU ,F is reversible if (∗) holds.

(3) R∗
U ,F is (weakly) reversible if R0 is (weakly) reversible and (∗) holds.

(4) R∗
U ,F is weakly reversible if there exists F0 ⊆ cl(R) such that (R \RU ) ∪F0 is weakly

reversible and (∗) holds.

Proof. (1) Firstly, note that
(R′

U \RU
)∪F can be decomposed into three disjoint sets R′

U \RU ,
F \R′

U ⊆RU \R′
U and F ∩R′

U ⊆RU ∩R′
U . Since for any (y, y′) ∈R′

U \RU , supp(y) ∩ U = ∅
and supp(y′) ∩ U �= ∅, it follows that (y′, y) /∈R′

U \RU . For the same reason, (y′, y) /∈F ∩R′
U ,

where F ∩R′
U ⊆RU ∩R′

U . Thus, we have(R′
U \RU

)−1 ∩ (R′
U \RU

)= (R′
U \RU

)−1 ∩ (F ∩R′
U
)= ∅. (5.1)

By reversibility of
(R′

U \RU
)∪F ,

(R′
U \RU

)−1 ⊆ (R′
U \RU

)∪F = (R′
U \RU

)∪ (F \
R′

U ) ∪ (F ∩R′
U
)
. Combining this fact with (5.1), we have

(R′
U \RU

)−1 ⊆F \R′
U . Similarly,

it holds that (F \R′
U )−1 ⊆R′

U \RU , which, together with
(R′

U \RU
)−1 ⊆F \R′

U , implies
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U \RU

)−1 =F \R′
U . For the same reason, we can show that

(F ∩R′
U
)−1 ⊆F ∩R′

U holds.
Hence, F ∩R′

U is essential. In other words, (∗) is true and the proof is complete.
(2) Let r0 ⊕ r1 ∈RU ,F , where r0, r1 are as in Definition 4.1, equation (4.2). Furthermore, there

exists r11, . . . , r1m ∈F , such that r1 = ⊕m
i=1r1i. By Lemma 5, r0 ∈R′

U \RU , r1m ∈ (RU \R′
U
)∩

F =F \R′
U and {r11, . . . , r1(m−1)} ⊆F ∩R′

U , assuming m ≥ 2. Therefore, under condition (∗),
we know that r−1

0 ∈F ∩ (RU \R′
U
)
, r′

0 := r−1
1m ∈R′

U \RU , and(⊕m−1
i=1 r1i

)−1 ∈ cl(F ∩R′
U ) ⊆ cl(F).

Therefore, r′
1 := (⊕m−1

i=1 r1i

)−1 ⊕ r−1
0 ∈ cl(F) and thus (r0 ⊕ r1)−1 = r′

1 ⊕ r′
0 ∈RU ,F . This proves

property (2).
(3) It is a direct consequence of (2) and the definition of R∗

U ,F .
(4) It suffices to show that every r = y −→ y′ ∈R0 is weakly reversible in R∗

U ,F . Note that
R0 ⊆R \RU ⊆ (R \RU ) ∪F0. Thus, by assumption, there exist reactions y′ −→ y1, y1 −→
y2, . . . , ym −→ y ∈ (R \RU ) ∪F0. If for k = 1, . . . , m, supp(yk) ∩ U = ∅, then r is weakly
reversible in R0 and thus in R∗

U ,F . Otherwise, let i = min{k|supp(yk) ∩ U �= ∅)}. Then

{y′ −→ y1, y1 −→ y2, . . . , yi−2 −→ yi−1} ⊆R0 ⊆R∗
U ,F ,

and yi−1 −→ yi ∈R′
U \RU (with y0 = y′). Let j = min{k > i|supp(yk) ∩ U = ∅)}. Then,

{yi −→ yi+1, . . . , yj−1 −→ yj} ⊆F0.

Therefore, (yi, yj) = ⊕j
�=i(y�−1 −→ y�) ∈ cl(F), which implies either (yi−1, yj) = yi−1 −→ yi ⊕

(yi, yj) ∈RU ,F or ∼ (0, 0), see Lemma 5. Repeating this process, we can find a sequence of reac-
tions r′

1, . . . , r′
p in the reduced RN R∗

U ,F (after removing elements equivalent to (0, 0)) such that
the product of r′

k coincides with the reactant of r′
k+1 for k = 1, . . . , p − 1, and ⊕p

k=1r′
k = y′ −→ y.

The proof of property (4) is complete. �

We present some examples that show the limitations of Theorem 5.1.

Example 6. Consider the RN

R= {S1 −→ U1, U1 −→ S2, S2 −→ S1}
with U = {U1}. Let F = {U1 −→ S2}. Then, the reduced network is
reversible. However,

(1) R0 = {S2 −→ S3 + S4} is not reversible,

(2)
(R′

U \RU
)−1 = {U1 −→ S1} �=F \R′

U = {U1 −→ S2}.

Example 7. Concerning Theorem (5.1)(4), consider the RN

R= {S1 + S2 −→ S3 + S4, S3 −→ U1, S4 + U1 −→ S1 + U2, U2 −→ S2}
with U = {U1, U2}. Let F = {S4 + U1 −→ S1 + U2, U2 −→ S2}. Then, the reduced network

is reversible. However,
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(1) R0 = {S1 + S2 −→ S3 + S4} is not reversible.

(2)
(R′

U \RU
)−1 = {U1 −→ S3} �=F ∩ (RU \R′

U
)= {U2 −→ S2}.

(3) There does not exist a subset F0 ⊆ cl(F) such that (R \RU ) ∪F0 is essential, because
U1 −→ S3 ∈ (R \RU )−1 cannot be represented as a sum of reactions in (R \RU ) ∪ cl(F).

Therefore, Example 6 and Example 7 imply that the conditions provided in Theorem 5.1 are
not necessary conditions for (weakly) reversibility of the reduced RN. The next example shows
that weak reversibility of

(R′
U \RU

)∪F in the case of non-interacting species does not ensure
weak reversibility of the reduced network, implying reversibility in Theorem 5.1(1) cannot be
replaced by weak reversibility and assumption (∗) cannot be removed in Theorem 5.1(4).

Example 8. Consider the RN

with U = {U1, U2}, F =RU . Then, (R \RU ) ∪F = (R′
U \RU

)∪F =R is weakly reversible,
but is not weakly reversible.

The example below shows that Theorem 5.1 is not true beyond non-interacting species.

Example 9. Consider the RN given by

with U = {U1, U2}, and let F =RU . Then, (R \RU ) ∪F =R is reversible,
(R′

U \RU
)−1 =

F ∩ (RU \R′
U
)=F and F ∩R′

U =R0 = ∅. In particular (1)–(4) with F0 =F of Theorem 5.1
are all fulfilled, but R∗

U ,F = {S1 −→ S2 + S3} is not weakly reversible.

The last theorem of this section concerns reachability of the original and reduced RNs.

Theorem 5.2. Let R be an RN and assume U ⊆ S is eliminable with respect to F ⊆RU , as in
Definition 4.1. Let x, x′ ∈N

n
0.

(1) If x leads to x′ via R∗
U ,F , then x leads to x′.

(2) Reversely, suppose that U consists of intermediate species and F =RU . Assume (supp(x) ∪
supp(x′)) ∩ U = ∅. Then if x leads to x′ via R, then x leads also to x′ via R∗

U ,F .

Proof. (1) It follows directly from the definition of the reduced RN.
(2) Suppose x leads to x′ in R and (supp(x) ∪ supp(x′)) ∩ U = ∅. Then by Lemma 2 there are

reactions r1 . . . , rm ∈R (possibly with repetitions) such that ⊕m
i=1ri ≤ (x, x′) and ⊕m

i=1rk ∼ (x, x′).
Without loss of generality, assume ⊕m

i=1ri = (x, x′). If this is not the case, then we proceed with
(z, z′) = ⊕m

i=1ri, rather than (x, x′), and show that (z, z′) ∈ cl
(R∗

U ,F
)
. This subsequently implies

that x leads to x′ via R∗
U ,F as ⊕m

i=1rk ∼ (x, x′).
If r1, . . . , rm ∈R0, then ⊕m

i=1ri ∈ cl(R∗
U ,F ), and we are done. Otherwise, since supp(x) ∩ U =

∅, by Lemma 5, the reaction in {r1, . . . , rm} ∩ (RU ∪R′
U
)

with the smallest index belongs
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to R′
U \RU . Without loss of generality, assume this reaction is r1 = x1 −→ u1, where u1 ∈ U

(U consists of intermediate species). Otherwise, if rk is the first one, then r1, . . . , rk−1 ∈R0 ⊆
R∗

U ,F , and we might define r′
1 = rk , r′

2 = rk+1, . . . , r′
m−k+1 = rm. Proceeding with the same argu-

ment as below, one can show that ⊕m−k+1
i=1 r′

i ∈ cl
(R∗

U ,F
)
, and thus r1 ⊕ · · · ⊕ rk−1 ⊕ r′

1 ⊕ · · · ⊕
r′

m−k+1 ∈ cl
(R∗

U ,F
)

as well. Hence, we take k = 1.
Since supp(x′) ∩ U = ∅, then there exists k ∈ {2, . . . , m}, such that u1 is the reactant of rk , but

not that of r2, . . . , rk−1. Let r2 : k−1 = (x2 : k−1, x′
2 : k−1) = ⊕k−1

i=2 ri. We claim that

r1 ⊕ rk ⊕ r2 : k−1 ≤ ⊕k
i=1riand r1 ⊕ rk ⊕ r2 : k−1 ∼ ⊕k

i=1ri. (5.2)

The equivalence in (5.2) is a consequence of Theorem 2.3. It suffices to show the inequality. Let
rk = u1 −→ x2, then r1 ⊕ rk = (x1, x2) and thus

r1 ⊕ rk ⊕ r2 : k−1 = (
x1 + 0 ∨ (x2 : k−1 − x2), x′

2 : k−1 + 0 ∨ (x2 − x2 : k−1)
)

.

On the other hand, by the choice of r1 and rk , we have

⊕k
i=1ri = r1 ⊕ r2 : k+1 ⊕ rk = (

x1 + x2 : k−1, u1 + x′
2 : k−1

)⊕ (u1, x2)

= (
x1 + x2 : k−1, x′

2 : k−1 + x2
)

.

This proves conclusion (5.2). Note that rk = u1 −→ x2 implies that either x2 = u2 ∈ U or
supp(x2) ∩ U = ∅. Thus, the procedure can be repeated to obtain rσ (1), . . . , rσ (m), where σ is a
permutation of {1, . . . , m}, such that

⊕m
i=1rσ (i) ≤ ⊕m

i=1ri = (x, x′), ⊕m
i=1rσ (i) ∼ (x, x′), (5.3)

which is implied by the fact that U consists of intermediate species. Moreover, there exist
0 = k0 < k1 < · · · < kj < kj+1 = m, such that for each i = 0, . . . , j, either rσ (ki+1), . . . , rσ (ki+1) ∈
R0 or rσ (ki+1) ∈R′

U \RU , rσ (ki+1), . . . , rσ (ki+1−1) ∈RU ∩R′
U and rσ (ki+1) ∈RU \R′

U with
rσ (ki+1) ⊕ . . . ⊕ rσ (ki+1) ∈R0. Therefore, rσ (ki+1) ⊕ · · · ⊕ rσ (ki+1) ∈ cl

(R∗
U ,F

)
for all i = 1, . . . , j.

This yields ⊕m
i=1rσ (i) ∈ cl

(R∗
U ,F

)
as well. Combining (5.3) and Lemma 2, it follows that x leads

to x′ via R∗
U ,F . The proof is complete. �

Theorem 5.2(2) does not hold in general, not even for non-interacting species. Consider the
following counterexample:

R= {S1 −→ S2 + U −→ S3, S2 −→ S4, S4 + U −→ S5}
with U = {U} and F =RU . Then,

R∗
U ,F = {S2 −→ S4, S1 −→ S3, S1 + S4 −→ S2 + S5}.

Note that (S1, S5) = (S1 −→ S2 + U) ⊕ (S2 −→ S4) ⊕ (S4 + U −→ S5). Thus, S1 leads to S5 via
R, but not via R∗

U ,F .

6 Discussion and conclusion

We introduced and analysed the properties of a sum operation on chemical reactions. Thereby,
we connect and characterise structural properties of RNs, such as reachability, (weakly)
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reversibility and being essential via the closure of the sum operation. This extends previous
characterisations [7, 33, 39] and connects such properties to the geometry of the closure cl(R)
in the product space N

n
0 ×N

n
0. In another direction, we defined reductions of RNs by elimina-

tion of species from an RN by adding reactions. Those reductions originate from connections to
the slow-fast limits of stochastic RNs [6]. Furthermore, we studied the conservation of (weakly)
reversibility, when reachability of the original and the reduced network coincide in some sense.

As the discrete dynamics of Petri nets and vector addition systems correspond directly to
dynamics of RNs [9], the developed theory pertains to those areas as well. Correspondingly,
problems and questions from theoretical computer science relate to the notions we have intro-
duced. As an example, an undecidable problem relating to Section 3 asks whether two RNs
given by their reaction sets R1, R2 with initial values x1, x2, respectively, have the same reacha-
bility sets, that is, whether R1(x1) =R2(x2) [20]. Another example is the decidable reachability
problem that asks whether given an RN and two states x1, x2, we can reach x2 from x1 [9, 39].

Furthermore, the closure cl(R) of an RN has only sometimes the structure of a semi-linear set.
This is not surprising as the set of reachable states of an RN directly relates to the closure cl(R)
of R, see Section 3. Reachability sets can be highly complex and are not necessarily semi-linear
[22, 46]. Nonetheless, it might be interesting to characterise and study the structure of RNs R
for which cl(R) is semi-linear.

Overall we hope that the sum calculus on reactions we have introduced will find further
applications, possibly even in areas which a priori are not directly linked to our areas of research.
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