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Abstract Let Kn = Q(αn) be a family of algebraic number fields where αn ∈ C is a root of the nth

exponential Taylor polynomial xn

n!
+ xn−1

(n−1)!
+ · · ·+ x2

2!
+ x

1!
+ 1, n ∈ N. In this paper, we give a formula

for the exact power of any prime p dividing the discriminant of Kn in terms of the p-adic expansion of
n. An explicit p-integral basis of Kn is also given for each prime p. These p-integral bases quickly lead
to the construction of an integral basis of Kn.
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1. Introduction and statements of results

The discriminant is a basic invariant associated with an algebraic number field. Its notion
was first introduced by Dedekind in 1871. The problem of effective computation of dis-
criminant as well as an integral basis of an infinite family of algebraic number fields which
are defined over the field Q of rational numbers by certain types of irreducible polyno-
mials has been tackled by several mathematicians (cf. [1, 2, 7, 10, 15, 17, 21]). In this
paper, we deal with the above problem for the family of exponential Taylor polynomials:

Tn(x) =
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x2

2!
+

x

1!
+ 1,

whose irreducibility over Q was proved by Schur in 1929 for n ≥ 1 (see [6, 19, 20]). Let
Kn denote the algebraic number field Q(αn), where αn ∈ C is a root of Tn(x). In this
paper, we calculate the discriminant of the field Kn and explicitly construct a p-integral
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Exponential Taylor polynomials 529

basis (defined below) of Kn for each prime number p and n ≥ 1. These p-integral bases
quickly lead to the construction of an integral basis of Kn as illustrated in Example 5.2.
Our proofs are theoretical without involving computer programming and we use several
well-known basic results of algebraic number theory besides the Theorem of Index of Ore.
We first introduce some notations. For an algebraic number field K, AK will stand for

its ring of algebraic integers and dK for its discriminant. If K = Q(θ) with θ an algebraic
integer having minimal polynomial f (x ) over Q, then the group index [AK : Z[θ]] will be
denoted by ind θ and the discriminant of the polynomial f (x ) by discr(f ). For a prime
number p, by Z(p) we shall denote the localisation of the ring Z at the prime ideal pZ. If
I(p) stands for the integral closure of the ring Z(p) in an algebraic number field K, then
I(p) = {α

a | α ∈ AK , a ∈ Z \ pZ } is a free Z(p)-module of rank equal to the degree of the
extension K/Q. A basis of I(p) as a Z(p)-module is called a p-integral basis of K. Note that
if K = Q(θ) with θ in AK and p is a prime number not dividing ind θ, then by Lagrange’s
theorem for finite groups, AK ⊆ Z(p)[θ] and hence I(p) = Z(p)[θ], i.e., {1,θ, . . . , θn−1} is
a p-integral basis of K, n being the degree of the extension K/Q. Throughout vp will
stand for the p-adic valuation of Q defined for any non-zero integer m to be the highest
power of the prime p dividing m. For a real number λ, we shall denote by bλc the largest
integer not exceeding λ.
With the above notations, we prove

Theorem 1.1. Let p be a prime number and let n ≥ 2 be an integer having p-adic
expansion:

n = c1p
m1 + c2p

m2 + · · ·+ csp
ms ,

with 0 ≤ m1 < m2 < · · · < ms and 0 < ci < p for each i. Let K = Q(θ) be an algebraic
number field with θ a root of the irreducible polynomial fn(x) = xn + n!

(n−1)!x
n−1 + · · ·+

n!
2!x

2 + n!
1!x+ n! belonging to Z[x]. Let dK stand for the discriminant of K and di for the

integer pmi−1
p−1 . Then vp(ind θ) and vp(dK) are given by:

vp(ind θ) =
1

2

s∑
i=1

[cidi (cip
mi + 2ci+1p

mi+1 + · · ·+ 2csp
ms − p)], (1)

vp(dK) = p
s∑

i=1

cidi +
∑

16i<j6s

cicj(p
mj − pmi)

p− 1
. (2)

The following corollaries will be quickly deduced from the above theorem.

Corollary 1.2. Let n and K = Q(θ) be as in the above theorem. Then a prime number
p divides [AK : Z[θ]] if and only if p2 divides n!. In particular, AK = Z[θ] if and only if
n is 2 or 3.

Corollary 1.3. With notations as in the above corollary, a prime number p divides
dK if and only if p divides n!.
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Recall that for a non-zero polynomial g(x) =
n∑

i=0

aix
i ∈ Z[x] with a0an 6= 0, the

Newton polygon of g(x ) with respect to a prime number p is the polygonal path along
the lower convex hull of the points in the set {(i, vp(an−i)) | 0 ≤ i ≤ n, an−i 6= 0} (see
Definition 2.1).

Theorem 1.4. Let K = Q(θ) and fn(x) be as in Theorem 1.1 and let p be a prime
number. For any integer j with 1 ≤ j ≤ n − 1, let uj(x) denote the polynomial xj +

n!
(n−1)!x

j−1 + · · ·+ n!
(n−j)! with coefficients in Z. Then a p-integral basis of K is given by

{1, β1, · · · , βn−1} with βj =
uj(θ)

p
byjc

for 1 ≤ j ≤ n− 1, where yj stands for the ordinate of

the point with abscissa j on the Newton polygon of fn(x) with respect to the prime p.

The following theorem proved in [10, Theorem 1.2] gives a method to construct an
integral basis of an algebraic number field using its p-integral bases.

Theorem 1.A. Let L = Q(ξ) be an algebraic number field of degree n with
ξ an algebraic integer. Let p1, . . . , ps be all the prime numbers dividing ind ξ and
{1, αr1, . . . , αr(n−1)} be a pr-integral basis of L, 1 ≤ r ≤ s with:

αri =
c
(r)
i0 + c

(r)
i1 ξ + · · ·+ c

(r)
i(i−1)ξ

i−1 + ξi

p
ki,r
r

, 1 ≤ i ≤ n− 1,

where c
(r)
ij and 0 ≤ ki,r ≤ ki+1,r are integers. If cij ∈ Z are such that cij ≡ c

(r)
ij

(mod p
ki,r
r ) for 1 ≤ r ≤ s and if ti stands for

s∏
r=1

p
ki,r
r , then {1, α1, . . . , αn−1} is an

integral basis of L where

αi =
ci0 + ci1ξ + · · ·+ ci(i−1)ξ

i−1 + ξi

ti
, 1 ≤ i ≤ n− 1.

It may be pointed out that for any algebraic number field L = Q(ξ), a p-integral
basis of the type given in the above theorem always exists for each prime p in view of
[11, Theorem 2.34]. We shall illustrate Theorems 1.4 and Theorem 1.A by constructing
an explicit integral basis of K = Q(θ) when θ is a root of f6(x) or f7(x) in Example 5.2.

2. Preliminary results

The following lemma is essentially proved in [6, p. 187]. For reader’s convenience, we
prove it here.

Lemma 2.A. Let n ≥ 2 be an integer. Then the discriminant of the polynomial

fn(x) = xn + n!
(n−1)!x

n−1 + · · ·+ n!
2!x

2 + n!
1!x+ n! is (−1)

n(n−1)
2 (n!)n.
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Proof. It can be easily seen that:

f
′
n(x) = nfn−1(x), fn(x) = xn + nfn−1(x). (3)

Let β1, β2, . . . , βn be the roots of fn(x) in C. Then the discriminant of fn(x) is given by:

discr(fn) = (−1)
n(n−1)

2

n∏
j=1

f
′
n(βj).

Therefore using (3), we see that:

discr(fn) = (−1)
n(n−1)

2

n∏
j=1

(nfn−1(βj)) = (−1)
n(n−1)

2

n∏
j=1

(
−βn

j

)
= (−1)

n(n−1)
2 (n!)n.

�

The following simple result is well known (see [3, p. 122], [6]). Its proof is omitted.

Lemma 2.B. Let p be a prime number and m be a positive integer. If m = a0+a1p+
· · ·+ arp

r with 0 ≤ ai < p for each i, then

vp(m!) =
m− (a0 + a1 + · · ·+ ar)

p− 1
.

The elementary lemma stated below is also well known (cf. [14, Problem 435]).

Lemma 2.C. Let t, n be positive integers. Let P denote the set of points in the plane
with positive integer entries lying inside or on the triangle with vertices (0, 0), (n, 0), (n, t)
which do not lie on the line x= n. Then the number of elements in P is 1

2 [(n − 1)(t −
1) + gcd(t, n)− 1].

For proving Theorem 1.1, we will use the classical Theorem of Index of Ore (stated
as Theorem 2.E below) in addition to carrying out several simplifications. To state this
theorem, we introduce the notions of valuation, Gauss valuation, φ-Newton polygon,
φ-index of a polynomial, where φ(x) belonging to Z[x] is a monic polynomial which is
irreducible modulo a given prime p.
As usual, by a valuation v of a field K, we shall mean a mapping v : K −→ R ∪ {∞}

which satisfies the following properties for all α, β in K.
(i) v(α) = ∞ if and only if α = 0,
(ii) v(αβ) = v(α) + v(β),
(iii) v(α+ β) ≥ min{v(α), v(β)}.
The subring Rv of K defined by Rv = {α ∈ K | v(α) ≥ 0} is called the valuation ring

of v. It has a unique maximal ideal Mv = {α ∈ K | v(α) > 0} and Rv/Mv is called the
residue field of v. A valuation v ′ of an overfield K ′ of K is said to be an extension or a
prolongation of v to K ′ if v ′ coincides with v on K.
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Notations. For a prime number p, as usual Zp will stand for the ring of p-adic integers
and Qp for its quotient field. We shall also denote by vp the unique prolongation of the
p-adic valuation to the field Qp of p-adic numbers. If v1 denotes the prolongation of vp to
a finite extension of Qp, then for any polynomial g1(x) with coefficients in the valuation
ring of v1, g1(x) will stand for the polynomial obtained by replacing each coefficient of
g1(x) by its image under the canonical homomorphism from the valuation ring of v1 onto
its residue field.
We shall denote by vxp the Gaussian valuation of the field Qp(x) of rational functions

in an indeterminate x which extends the valuation vp of Qp and is defined on Qp[x] by:

vxp

(∑
i

cix
i

)
= min

i
{vp(ci)}, ci ∈ Qp.

If φ(x) is a fixed monic polynomial with coefficients in an integral domain R, then
any polynomial g(x) ∈ R[x] can be uniquely written as a finite sum

∑
i

gi(x)φ(x)
i with

deg gi(x) < deg φ(x) for each i ; this expansion will be referred to as the φ-expansion of
g(x ).
The following definition extends the notion of Newton polygon of a polynomial with

respect to a prime p.

Definition 2.1. Let φ(x) ∈ Z[x] be a monic polynomial which is irreducible mod-
ulo a given prime p. Let g(x) belonging to Zp[x] be a polynomial having φ-expansion
n∑

i=0

gi(x)φ(x)
i with g0(x)gn(x) 6= 0. Let Pi stand for the point in the plane having coor-

dinates (i, vxp (gn−i(x))) when gn−i(x) 6= 0, 0 ≤ i ≤ n. Let µij denote the slope of the line
joining the points Pi and Pj if gn−i(x)gn−j(x) 6= 0. Let i1 be the largest index 0 < i1 ≤ n
such that:

µ0i1
= min{µ0j | 0 < j ≤ n, gn−j(x) 6= 0}.

If i1 < n, let i2 be the largest index i1 < i2 ≤ n satisfying:

µi1i2
= min{µi1j

| i1 < j ≤ n, gn−j(x) 6= 0},

and so on. The φ-Newton polygon of g(x) with respect to p is the polygonal path having
segments P0Pi1

, Pi1
Pi2

, . . . , Pik−1
Pik

with ik = n. These segments are called the edges of

the φ-Newton polygon of g(x) and their slopes from left to right form a strictly increasing
sequence. In particular when φ(x) = x, the φ-Newton polygon of g(x) with respect to p
will be referred to as the Newton polygon of g(x) with respect to p.

Definition 2.2. Let φ(x) and g(x) be as in Definition 2.1. Let N denote the number
of points with positive integer coordinates lying on or below the φ-Newton polygon of g(x)
away from the vertical line passing through the last vertex of this polygon. As in [13], the
φ-index of g (with respect to p) is defined to be N deg φ(x) and will be denoted by iφ(g).

The following example illustrates the above definition.
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Example 2.3. Let g(x) = f4(x) = x4+ 4!
3!x

3+ 4!
2!x

2+ 4!
1!x+4!. Consider φ(x) = x. Note

that the φ-Newton polygon of g(x ) with respect to the prime 2 being the lower convex hull
of the points (0, 0), (1, 2), (2, 2), (3, 3) and (4, 3) consists of a single edge joining the point
(0, 0) with (4, 3). Thus iφ(g) = 3 (with respect to 2). Next consider φ1(x) = x+1. It can
be easily checked that g(x) = (x+1)4+6(x+1)2+8(x+1)+9. So the φ1-Newton polygon
of g(x ) with respect to 3 being the lower convex hull of the points (0, 0), (2, 1), (3, 0) and
(4, 2) consists of two edges; the first edge joins the point (0, 0) with (3, 0) and the second
edge is the line segment joining the points (3, 0) and (4, 2). Thus iφ1(g) = 0 (with respect
to 3).

We now state a theorem originally proved by Ore (see [13, Theorem 1.2], [18]).

Theorem 2.D. Let L = Q(ξ) be an algebraic number field with ξ satisfying a monic
irreducible polynomial g(x) ∈ Z[x] and p be a prime number. Let φ1(x)

e1 · · ·φr(x)
er be the

factorization of g(x) modulo p into a product of powers of distinct irreducible polynomials
over the finite field Fp of p elements, where each φi(x) 6= g(x) belonging to Z[x] is monic.

Then, vp(ind ξ) ≥
r∑

j=1

iφj (g).

Ore also gave a sufficient condition so that the inequality in the above theorem becomes
equality. For this, he associated with each edge Sij of the φi-Newton polygon of g(x )
having positive slope, a polynomial Tij(Y ) in an indeterminate Y with coefficients from
the field Fq having q = pdegφi(x) elements described in the following definitions.

Definition 2.4. Let φ(x) ∈ Z[x] be a monic polynomial which is irreducible modulo a
given prime p having a root α in a finite extension of Qp. Let g(x) ∈ Zp[x] be a monic
polynomial not divisible by φ(x) with φ-expansion φ(x)n + gn−1(x)φ(x)

n−1 + · · ·+ g0(x)
such that g(x) is a power of φ(x). Suppose that the φ-Newton polygon of g(x) consists of
a single edge, say S having positive slope denoted by d

e with integers d, e coprime, i.e.,

min{vxp (gn−i(x))

i | 1 ≤ i ≤ n} =
vxp (g0(x))

n = d
e so that n is divisible by e, say n= et and

vxp (gn−ej(x)) ≥ dj for 1 ≤ j ≤ t. Thus the polynomial hj(x) :=
gn−ej(x)

pdj
has coefficients

in Zp and hence hj(α) ∈ Zp[α] for 1 ≤ j ≤ t. The polynomial T(Y) in an indeterminate

Y defined by T (Y ) = Y t +
t∑

j=1

hj(α)Y
t−j having coefficients in Fp[α] is said to be the

polynomial associated to g(x) with respect to (φ, S).

The example given below illustrates the above definition.

Example 2.5. Let g(x) = f4(x) = x4 + 4!
3!x

3 + 4!
2!x

2 + 4!
1!x + 4!. Clearly g(x) ≡ x4

(mod 2). Consider φ(x) = x. One can check that the φ-Newton polygon of g(x ) with
respect to the prime 2 consists of a single edge S joining the points (0, 0) and (4, 3).
With notations as in the above definition, we see that d =3, e =4 and the polynomial
associated to g(x ) with respect to (φ, S) is T (Y ) = Y + 1 belonging to F2[Y ].

We now extend the notion of associated polynomial when g(x ) is more general.

Definition 2.6. Let p, φ(x) and α be as in Definition 2.4. Let G(x) ∈ Zp[x] be a monic
polynomial not divisible by φ(x) such that G(x) is a power of φ(x). Let λ1 < · · · < λk be
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the slopes of the edges of the φ-Newton polygon of G(x) and Si denote the edge with slope
λi. In view of the Theorem of Product by Ore (cf. [ 5, Theorem 1.5], [ 12, Theorem 1.1]),
we can write G(x) = H1(x) · · ·Hk(x), where the φ-Newton polygon of Hi(x) ∈ Zp[x] has
a single edge, say S′

i which is a translate of Si. Let Ti(Y ) belonging to Fp[α][Y ] denote
the polynomial associated to Hi(x) with respect to (φ, S′

i) described as in Definition 2.4.
The polynomial G(x) is said to be p-regular with respect to φ if none of the polynomials
Ti(Y ) has a repeated root in the algebraic closure of Fp, 1 ≤ i ≤ k. In general, if g(x)
belonging to Zp[x] is a monic polynomial and g(x) = φ1(x)

e1 · · ·φr(x)
er is its factoriza-

tion modulo p into irreducible polynomials with each φi(x) belonging to Z[x] monic and
ei > 0, then by Hensel’s Lemma [ 4, Chapter 4, Section 3], there exist monic polynomials
G1(x), . . . , Gr(x) belonging to Zp[x] such that g(x) = G1(x) · · ·Gr(x) and Gi(x) = φi(x)

ei

for each i. The polynomial g(x) is said to be p-regular with respect to φ1, . . . , φr if each
Gi(x) is p-regular with respect to φi.

We give below a simple example of a p-regular polynomial with respect to any monic
polynomial φ(x) ∈ Z[x] which is irreducible modulo a given prime p.

Example 2.7. If p, φ(x) are as above and G(x) 6= φ(x) belonging to Zp[x] is a monic
polynomial with G(x) = φ(x), then the φ-Newton polygon of G(x ) with respect to p
is a line segment S joining the point (0, 0) with (1, c) for some c> 0. Consequently,
the polynomial associated to G(x ) with respect to (φ, S) is linear and iφ(G) = 0. In
particular, G(x ) is p-regular with respect to φ.

We now state a celebrated result to be used in the sequel known as the Theorem of
Index of Ore (cf. [13, Theorem 1.4], [18]).

Theorem 2.E. Let L = Q(ξ), g(x), p and φ1(x), . . . , φr(x) be as in Theorem 2.D. If

g(x) is p-regular with respect to φ1, . . . , φr, then vp(ind ξ) =
r∑

j=1

iφj (g).

Keeping in mind Example 2.7, the following corollary is an immediate consequence of
Theorem 2.E.

Corollary 2.8. Let L = Q(ξ), g(x), p, φ1(x), . . . , φr(x) and e1, . . . , er be as in
Theorem 2.D. If ei = 1 for each i> 1 and g(x) is p-regular with respect to φ1, then
vp(ind ξ) = iφ1(g).

Let g(x), p, φ1(x), . . . , φr(x) be as in Theorem 2.D. Then by Hensel’s Lemma, we
can write g(x) = G1(x) · · ·Gr(x) where Gi(x) ∈ Zp[x] is a monic polynomial with
Gi(x) = φi(x)

ei . If S is an edge of the φi-Newton polygon of Gi(x), then for conve-
nience, the polynomial associated to Gi(x) with respect to (φi, S) will be referred to
as the polynomial associated to g(x ) with respect to (φi, S′) where S ′ is the edge of
the φi-Newton polygon of g(x ) which is a translate of S, because the φi-Newton polygon
of g(x ) can be obtained from the φi-Newton polygon of Gi(x) by giving a horizontal
translation in view of the following simple lemma proved in [5, Proposition 1.2, Theorem
3.2] and [12, Corollary 2.5].

Lemma 2.F Let φ(x) ∈ Z[x] be a monic polynomial which is irreducible modulo a
given prime p and f(x), g(x) belonging to Zp[x] be two monic polynomials not divisible by
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φ(x). If φ(x) does not divide g(x), then the φ-Newton polygon of g(x) is either a point or
a horizontal line segment and the φ-Newton polygon of f(x)g(x) is obtained by adjoining
to the φ-Newton polygon of g(x) a translate of the φ-Newton polygon of f(x).

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided in four steps.
Step I. In this step, we prove that for any prime p less than or equal to n, x is the
only repeated factor of fn(x) modulo p. In view of Lemma 2.A and a well-known result
[11, Corollary 2.16], we have

(−1)
n(n−1)

2 (n!)n = discr(fn) = (ind θ)2dK . (4)

So if a prime divides ind θ or dK, then it divides n!. Let p be a prime dividing n!. Let k
be the smallest non-negative integer not exceeding n − 2 such that p divides n − k. Then

fn(x) ≡ xn−k

(
xk +

n!

(n− 1)!
xk−1 + · · ·+ n!

(n− k)!

)
(mod p).

Denote the polynomial xk + n!
(n−1)!x

k−1 + · · · + n!
(n−k)! by h(x ). Note that h(x ) is not

divisible by x modulo p in view of the choice of k and h(x) ≡ xk + h′(x) (mod p).
So h(x ) and h′(x) are coprime modulo p, i.e., h(x ) has no repeated factor modulo p.
Consequently x is the only repeated factor of fn(x) modulo p.
Step II. In this step, we prove that fn(x) is p-regular with respect to φ(x) = x for
each prime p dividing n!. Let p be such a prime. Keeping in mind that x is the only
repeated factor of fn(x) modulo p in view of Step I, it would follow from Corollary 2.8
that vp(ind θ) = iφ(fn) where φ(x) = x, i.e.,

vp(ind θ) = N, (5)

where N is the number of points with positive integer coordinates lying on or below the
Newton polygon of fn(x) with respect to p away from the vertical line passing through
the last vertex of this polygon.
By definition, the Newton polygon of fn(x) with respect to p is the polygonal path

formed by the lower edges along the convex hull of points of the set P defined by

P = {(i, vp(n!/(n− i)!)) | 0 ≤ i ≤ n}.

Recall that

n = c1p
m1 + c2p

m2 + · · ·+ csp
ms ,

where 0 ≤ m1 < m2 < · · · < ms and 0 < ci < p for each i. Set z0 = 0 and

zi = c1p
m1 + · · ·+ cip

mi , 1 ≤ i ≤ s. (6)

https://doi.org/10.1017/S0013091524000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000105


536 A. Jindal and S. K. Khanduja

As in [6], making use of Lemma 2.B, it can be easily shown that the Newton polygon
of fn(x) with respect to p consists of s edges; the ith edge from left to right is the line
segment joining the points:

(zi−1, vp(n!/(n− zi−1)!)), (zi, vp(n!/(n− zi)!)).

Therefore using Lemma 2.B, we see that the slope λi of the ith edge of the Newton
polygon of fn(x) with respect to p is given by:

λi =
−vp((n− zi)!) + vp((n− zi−1)!)

zi − zi−1

=
zi + (ci+1 + · · ·+ cs)− zi−1 − (ci + · · ·+ cs)

(zi − zi−1)(p− 1)
.

So

λi =
cip

mi − ci
cipmi(p− 1)

=
pmi − 1

pmi(p− 1)
.

Note that fn(x) has an edge with slope zero if and only if m1 = 0, which happens only
when k > 0 where k is as in Step I. In view of Hensel’s Lemma and the Theorem of product
by Ore (cf. [5, Theorem 1.5], [12, Theorem 1.1]), we can write fn(x) = G1(x) · · ·Gs(x)
where Gi(x) ∈ Zp[x] has degree zi− zi−1 = cip

mi and the Newton polygon of Gi(x) with
respect to p consists of only one edge Si (say) having slope λi. When λi > 0, let Ti(Y )
belonging to Fp[Y ] denote the polynomial associated to Gi(x) with respect to (φ, Si) as
described in Definition 2.6, where φ(x) = x. Note that the degree of Ti(Y ) is ci ≤ p− 1;
consequently Ti(Y ) is a separable polynomial. This proves that fn(x) is p-regular with
respect to φ(x) = x.
Step III. In this step, we prove that

N =
1

2

s∑
i=1

[cidi (cip
mi + 2ci+1p

mi+1 + · · ·+ 2csp
ms − p)], (7)

where N is as in (5). This will prove (1) at once.
Set ti = vp(n!/(n − zi)!) for 0 ≤ i ≤ s. Using Lemma 2.B, it can be easily seen that

vp(n!/(n− zi)!) = vp(zi!) for 0 ≤ i ≤ s. So t0 = 0 and

ti = vp(zi!) = c1d1 + · · ·+ cidi, 1 ≤ i ≤ s. (8)

As pointed out in Step II, the Newton polygon of fn(x) with respect to p consists of s
edges; the ith edge from left to right is the segment joining the points (zi−1, ti−1), (zi, ti)
and N is the number of points with positive integer coordinates lying on or below this
Newton polygon which do not lie on the line x = zs. We now count these points.
For 1 ≤ i ≤ s, the number of points with positive integer coordinates lying on or in

the triangle joining the points (zi−1, ti−1), (zi, ti−1), (zi, ti) away from its vertical side
is same as number of such points in the case of the triangle joining (0, 0), (zi − zi−1, 0),
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(zi−zi−1, ti−ti−1). It is immediate from (6) and (8) that zi−zi−1 = cip
mi and ti−ti−1 =

cidi. In view of Lemma 2.C, this number is given by:

1

2
[(cip

mi − 1) (cidi − 1) + ci − 1] =
1

2
[c2i dip

mi − cidi − cip
mi + ci] =

1

2
cidi[cip

mi − p].

For 2 ≤ i ≤ s, the number of points with positive integer coordinates lying in or on
the rectangle joining the points (zi−1, 0), (zi, 0), (zi, ti−1) and (zi−1, ti−1) which do not
lie on the line x = zi is (zi − zi−1)ti−1 = cip

mi(c1d1 + · · · + ci−1di−1) by virtue of (6)
and (8). Therefore

N =
1

2

s∑
i=1

cidi[cip
mi − p] +

s∑
i=2

[cip
mi(c1d1 + · · ·+ ci−1di−1)]

=
1

2

s∑
i=1

cidi[cip
mi − p] +

s∑
i=1

[cidi (ci+1p
mi+1 + · · ·+ csp

ms)]

=
1

2

s∑
i=1

[cidi (cip
mi + 2ci+1p

mi+1 + · · ·+ 2csp
ms − p)].

This proves (7) and hence (1) is proved.
Step IV. In this step, we prove (2). It is immediate from (4) that vp(dK) = nvp(n!) −
2vp(ind θ). Using Lemma 2.B, we see that

nvp(n!) = (c1p
m1 + · · ·+ csp

ms) (c1d1 + · · ·+ csds) =
s∑

i=1

[cidi(c1p
m1 + · · ·+ csp

ms)].

(9)

It is immediate from (1) and (9) that

vp(dK) = nvp(n!)− 2vp(ind θ)

=
s∑

i=1

[cidi(c1p
m1 + · · ·+ csp

ms)]−
s∑

i=1

[cidi (cip
mi + 2ci+1p

mi+1 + · · ·+ 2csp
ms)]

+ p
s∑

i=1

cidi

=

s∑
i=1

[cidi(c1p
m1 + · · ·+ ci−1p

mi−1 − ci+1p
mi+1 − · · · − csp

ms)] + p

s∑
i=1

cidi.

(10)

Keeping in mind that di =
pmi−1
p−1 , it can be easily seen that: djp

mi−dip
mj = p

mj−pmi
p−1

for 1 ≤ i < j ≤ s. Using this equality, the first summand in (10) can be rewritten as:∑
1≤j<i≤s

(cicjdip
mj )−

∑
1≤i<j≤s

(cicjdip
mj ) =

∑
1≤i<j≤s

[cicj(djp
mi − dip

mj )]
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=
∑

16i<j6s

cicj(p
mj − pmi)

p− 1
.

The desired inequality (2) now follows from (10).

4. Proof of Corollaries 1.2, 1.3

Proof of Corollary 1.2. Let p be a prime number. In view of (1), vp(ind θ) = 0 if
and only if the p-adic expansion of n is of the type n = c1 or n = p or n = c1 + p with
0 < c1 < p, which is equivalent to saying that n < 2p. This proves the first assertion of
the corollary. The second assertion follows immediately from the first. �

Proof of Corollary 1.3. In view of (2), vp(dK) = 0 for a prime p if and only if the
p-adic expansion of n is of the type n = c1 with 0 < c1 < p, or equivalently n is less than
p. This proves the corollary. �

5. Proof of Theorem 1.4

The following proposition to be used in the sequel is proved as Proposition 3.A in [10].

Proposition 5.A. Let L = Q(ξ) be an algebraic number field of degree n with ξ an
algebraic integer and let p be a prime number. Let α1, α2, . . . , αn−1 be p-integral elements

of L of the type αi =
ci0+ci1ξ+···+ci(i−1)ξ

i−1+ξi

pki
where cij , ki are in Z with 0 ≤ ki ≤ ki+1

for 1 ≤ i ≤ n − 2. Then {1, α1, . . . , αn−1} is a p-integral basis of L if and only if

vp(ind ξ) =
n−1∑
i=1

ki.

Recall that an algebraic number η is integral over the localisation Z(p) of Z at a maximal
ideal pZ if and only if w(η) ≥ 0 for all prolongations w to Q(η) of the p-adic valuation
of Q (cf. [4, Chapter 3, Theorem 6]). Keeping this in mind the next proposition follows
immediately from Proposition 2.2 of [13]. Its proof is omitted.

Proposition 5.B. Let Q(ξ) be an algebraic number field, where ξ is a root of a monic
irreducible polynomial g(x) belonging to Z[x]. Let φ(x) ∈ Z[x] be a monic polynomial
different from g(x) which divides g(x) modulo a given prime p and is irreducible modulo

p. Let g(x) =
d∑

i=0

gi(x)φ(x)
i be the φ-expansion of g(x) with gd(x) 6= 0. Let qj(x) denote

the quotient obtained on dividing g(x) by φ(x)j, 1 ≤ j ≤ d. If yd−j stands for the ordinate
of the point with abscissa d− j on the φ-Newton polygon of g(x) with respect to p, then

qj(ξ)/p
byd−jc is integral over Z(p).

The result stated below is an immediate consequence of Corollary 2.8 and Propositions
5.A, 5.B.

Proposition 5.1. Let L = Q(ξ) be an algebraic number field with ξ satisfying a
monic irreducible polynomial g(x) ∈ Z[x] of degree n and let p be a prime number.
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Let φ1(x)
e1 · · ·φr(x)

er be the factorization of g(x) modulo p into a product of powers of
distinct irreducible polynomials over Fp, where each φi(x) 6= g(x) belonging to Z[x] is
monic. Assume that φ1(x) = x, ei = 1 for each i> 1 and g(x) is p-regular with respect to
φ1. Let qj(x) denote the quotient obtained on dividing g(x) by xj, 1 ≤ j ≤ n− 1. If yn−j

stands for the ordinate of the point with abscissa n− j on the φ1-Newton polygon of g(x)
with respect to p, then {1, q1(ξ)/pbyn−1c, . . . , qn−1(ξ)/p

by1c} is a p-integral basis of L.

Proof of Theorem 1.4. In view of Steps I and II of the proof of Theorem 1.1
given in § 3, we see that fn(x) satisfies the hypothesis of Proposition 5.1. Therefore,
Theorem 1.4 follows immediately from Proposition 5.1, because with notations as
in Proposition 5.1, we have qn−j(x) = xj + n!

(n−1)!x
j−1 + · · · + n!

(n−j)! = uj(x) for
1 ≤ j ≤ n− 1. �

Example 5.2. Let K = Q(θ) where θ is a root of the polynomial,

f6(x) = x6 +
6!

5!
x5 +

6!

4!
x4 +

6!

3!
x3 +

6!

2!
x2 +

6!

1!
x+ 6!.

Then by (2), v2(dK) = 10, v3(dK) = 6 and v5(dK) = 6. So dK = −2103656 in view of
Lemma 2.A. By virtue of Corollary 1.2, we see that vp(ind θ) > 0 only when p=2 or 3.
For these two primes, we first find p-integral bases. Keeping the notations uj(x) and yj
of Theorem 1.4, we have

uj(x) = xj +
6!

5!
xj−1 + · · ·+ 6!

(6− j)!
, 1 ≤ j ≤ 5.

The Newton polygon of f6(x) with respect to the prime 2 has two edges joining the
points (0, 0) with (2, 1) and (2, 1) with (6, 4). So by1c = 0, by2c = by3c = 1, by4c = 2 and
by5c = 3. Therefore applying Theorem 1.4, we see that

{
1, θ,

θ2

2
,
θ3

2
,
θ4 + 2θ3 + 2θ2

22
,
θ5 + 6θ4 + 6θ3

23

}

is a 2-integral basis of K.
By looking at the Newton polygon of f6(x) with respect to the prime 3 and applying

Theorem 1.4, it can be easily seen that
{
1, θ, θ2, θ3

3 , θ4

3 , θ5

3

}
is a 3-integral basis of K.

Therefore, using Theorem 1.A and Chinese Remainder Theorem, we see that:

{
1, θ,

θ2

2
,
θ3

6
,
θ4 + 6θ3 + 6θ2

12
,
θ5 + 6θ4 + 6θ3

24

}
,

is an integral basis of K.
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Example 5.3. Let K = Q(θ) where θ is a root of the polynomial:

f7(x) = x7 +
7!

6!
x6 +

7!

5!
x5 +

7!

4!
x4 +

7!

3!
x3 +

7!

2!
x2 +

7!

1!
x+ 7!.

Then by (2), v2(dK) = 14, v3(dK) = 8 and v5(dK) = v7(dK) = 7. So dK = −214385777

by virtue of Lemma 2.A. In view of Corollary 1.2, vp(ind θ) > 0 only when p=2 or 3.
For these two primes, we first find p-integral bases. With notations as in Theorem 1.4,
we have:

uj(x) = xj +
7!

6!
xj−1 + · · ·+ 7!

(7− j)!
, 1 ≤ j ≤ 6.

Keeping in mind that the Newton polygon of f7(x) with respect to 2 is the polygonal
path joining the points (0, 0), (1, 0), (3, 1), (7, 4) and using Theorem 1.4, it can be checked
that: {

1, θ, θ2,
θ3 + θ2

2
,
θ4 + θ3

2
,
θ5 + 3θ4 + 2θ3 + 2θ2

22
,
θ6 + 7θ5 + 2θ4 + 2θ3

23

}
,

is a 2-integral basis of K. By similar arguments, we can show that{
1, θ, θ2, θ3, θ4+θ3

3 , θ5+θ4

3 , θ6+θ5

3

}
is a 3-integral basis of K. Therefore, it follows

from Theorem 1.A that:{
1, θ, θ2,

θ3 + 3θ2

2
,
θ4 + θ3

6
,
θ5 + 7θ4 + 6θ3 + 6θ2

12
,
θ6 + 7θ5 + 18θ4 + 18θ3

24

}
,

is an integral basis of K.
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(9) Kenzô Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math.
1975(278–279) (1975), 137–144.

(10) S. Kaur and S. K. Khanduja, Discriminant and integral basis of sextic fields defined by
x6 + ax+ b, Commun. Algebra 50 (2022), 4401–4436.

(11) S. K. Khanduja, A Textbook of Algebraic Number Theory, Unitext series 135, (Singapore:
Springer, 2022).

(12) S. K. Khanduja and S. Kumar, On prolongations of valuations via Newton polygons and
liftings of polynomials, J. Pure Appl. Algebra 216 (2012), 2648–2656.

(13) S. K. Khanduja and S. Kumar, A generalization of a theorem of Ore, J. Pure Appl.
Algebra 218 (2014), 1206–1218.

(14) J. M. de Koninck and A. Mercier, 1001 Problems in Classical Number Theory, American
Mathematical Society, Providence, RI, 2007.

(15) P. Llorente, E. Nart and N. Vila, Effective determination of the decomposition of rational
primes in a cubic field, Amer. Math. Soc. 87 (1983), 579–585.

(16) P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials,
Acta Arith. 43 (1984), 367–373.

(17) P. Llorente, E. Nart and N. Vila, Decomposition of primes in number fields defined by
trinomials, J. Theor. Nr. Bordx. 3 (1991), 27–41.

(18) Ø. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99
(1928), 84–117.

(19) I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen, I,
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