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Abstract

We discuss the p-adic Weierstrass zeta functions associated with elliptic curves defined over the field of
algebraic numbers and linear relations for their values in the p-adic domain. These results are extensions
of the p-adic analogues of results given by Wüstholz in the complex domain [see A. Baker and G.
Wüstholz, Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9 (Cambridge
University Press, Cambridge, 2007), Theorem 6.3] and also generalise a result of Bertrand to higher
dimensions [‘Sous-groupes à un paramètre p-adique de variétés de groupe’, Invent. Math. 40(2) (1977),
171–193].
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1. Introduction

Let K be a subfield of the field of complex numbers C. Let E be an elliptic curve
defined over K by the Weierstrass form

Y2Z − 4X3 + g2XZ2 + g3Z3 = 0,

where g2, g3 are elements in K satisfying g3
2 − 27g2

3 � 0. Let e1 and e2 be two roots
among the three (distinct) complex roots of the polynomial 4X3 − g2X − g3. Put
Λ = Zω∗1 + Zω

∗
2 with

ω∗1 =

∫ ∞
e1

dx√
4x3 − g2x − g3

and ω∗2 =

∫ ∞
e2

dx√
4x3 − g2x − g3

.

ThenΛ is a lattice in C. The elliptic function ℘ : C \ Λ→ C relative toΛ is defined by

℘(z) = ℘(z;Λ) :=
1
z2 +

∑
ω∈Λ\{0}

( 1
(z − ω)2 −

1
ω2

)
.

This research has been done under the research project QG.23.48 ‘Some selected topics in number theory’
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[2] Weierstrass zeta functions and p-adic linear relations 235

This function is called the Weierstrass elliptic function associated with the elliptic
curve E and Λ is called the lattice of periods of ℘ (or the lattice associated with
E). The Weierstrass zeta function associated with E (or relative to Λ) is the function
ζ : C \ Λ→ C defined by

ζ(z) = ζ(z;Λ) :=
1
z
+
∑
ω∈Λ\{0}

( 1
z − ω +

1
ω
+

z
ω2

)
.

The Weierstrass zeta function is related to the Weierstrass elliptic function by ζ′ = −℘
and one can write the Laurent expansion at zero of ζ as

ζ(z) =
1
z
−
∑
k≥1

G2k+2(Λ)z2k+1,

where G2k+2(Λ) is the Eisenstein series of weight 2k + 2 (with respect to the lattice Λ).
By induction, G2k+2(Λ) can be represented as a polynomial in g2, g3 with rational
coefficients (see [5, Ch. IV]). In other words,

ζ(z) =
1
z
+
∑
k≥1

αkz2k+1

with αk ∈ Q[g2, g3] for all positive integers k.
Since ℘ is a periodic function, it follows that ζ is a quasiperiodic function, that is,

for each ω ∈ Λ, there exists a complex number η = η(ω) satisfying ζ(z + ω) = ζ(z) + η
for all z ∈ C \ Λ. The number η is called a quasiperiod of the elliptic curve E. If
(ω1,ω2) is a pair of fundamental periods of Λ (that is, ω1 and ω2 are complex numbers
generating Λ over Z), one can show that η(aω1 + bω2) = aη1 + bη2 for any integers
a, b, where η1 = η(ω1) and η2 = η(ω2). Furthermore, in the case when the ratio ω2/ω1
has positive imaginary part, we obtain the Legendre relation between the periods and
the quasiperiods:

ω2η1 − ω1η2 = 2πi.

Schneider was the first to give a transcendence result concerning linear relations
between periods and quasiperiods, by showing that any nonvanishing linear com-
bination of ω and η over Q is transcendental (see [12]). The result was extended
by Coates to pairs of fundamental periods. He obtained a similar result for the
numbers 2πi,ω1,ω2, η1, η2, where (ω1,ω2) is a pair of fundamental periods (see [6]).
Masser established the dimension of the vector space generated by 1, 2πi,ω1,ω2, η1, η2
over Q, proving that this dimension is either 4 if the elliptic curve E has complex
multiplication, or 6 otherwise.

In the 1980s, Wüstholz formulated and proved a celebrated theorem in complex
transcendental number theory which is called the analytic subgroup theorem (see [1]
or [15]). The theorem states that an analytic subgroup defined overQ of a commutative
algebraic group defined over Q contains a nontrivial algebraic point if and only if
it contains a nontrivial algebraic subgroup defined over Q. The analytic subgroup
theorem has many significant consequences, some of which concern elliptic curves.
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In particular, Wüstholz himself used the theorem to deduce a result on linear relations
for the values of the Weierstrass zeta function ζ at algebraic points of the Weierstrass
elliptic function ℘. Here, a complex number u ∈ C \ Λ is called an algebraic point of
℘ if ℘(u) ∈ Q. Let End(E) denote the ring of endomorphisms of E. Then it is known
that K := End(E) ⊗Z Q (the field of endomorphisms of E) is either Q or an imaginary
quadratic field. The following theorem was given by Wüstholz (see [1, Theorem 6.3]).

THEOREM 1.1. Let E be an elliptic curve defined over Q and γ1, . . . , γn algebraic
points of ℘. Denote by W the vector space generated by γ1, . . . , γn over K and by V
the vector space generated by 1, 2πi, γ1, . . . , γn, ζ(γ1), . . . , ζ(γn) over Q. Then

dim
Q

V = 2 dimK W + 2.

It is natural to extend this result to the p-adic case and the main goal of this paper
is to establish an extension of the p-adic analogue of Theorem 1.1. To state it, let E be
an elliptic curve given by

Y2Z − 4X3 + g2XZ2 + g3Z3 = 0,

now defined over Cp (that is, g2, g3 ∈ Cp). Here, Cp denotes the completion of Qp with
respect to the p-adic absolute value | · |p as usual. Let ℘p be the (Lutz–Weil) p-adic
elliptic function associated with the elliptic curve E (see [9, 14]). The function ℘p is
analytic on the set Dp \ {0}, where Dp is the p-adic domain of E defined by

Dp := {z ∈ Cp : |1/4|p max{|g2|1/4p , |g3|1/6p }z ∈ B(rp)}

with B(rp) the set of all p-adic numbers x in Cp such that |x|p < rp := p−1/(p−1). As in
the complex case, we say that a nonzero p-adic number u ∈ Dp is an algebraic point of
℘p if ℘p(u) ∈ Q. Let ζp be the p-adic Weierstrass zeta function (p-adic analogue of the
Weierstrass zeta function ζ) associated with E which is, by definition, the (unique) odd
p-adic meromorphic function on Dp satisfying ζ′p = −℘p. Let Logp : Cp \ {0} → Cp be
the Iwasawa logarithm (see [11, Ch. 5, Section 4.5]). We now state our main theorem.

THEOREM 1.2. Let E be an elliptic curve defined over Q. Let u1, . . . , ul be nonzero
algebraic numbers and v1, . . . , vn algebraic points of ℘p. Denote by U the vector space
generated by Logp(u1), . . . , Logp(ul) over Q and by V the vector space generated by
v1, . . . , vn over the field K of endomorphisms of E. Then the dimension of the vector
space W generated by 1, Logp(u1), . . . , Logp(ul), v1, . . . , vn, ζp(v1), . . . , ζp(vn) over Q is
determined by

dim
Q

W = 1 + dimQU + 2 dimK V .

In the case when l = n = 1, we deduce at once from Theorem 1.2 the follow-
ing result which is an extension of a result given by Bertrand in 1977 (see [2,
Proposition 1]).
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COROLLARY 1.3. Let E be an elliptic curve defined over Q. Let u be a nonzero
algebraic number with Logp(u) � 0 and v an algebraic point of ℘p. Let α, β and
γ be algebraic numbers not all zero. Then the number αLogp(u) + βv + γζp(v) is
transcendental.

2. Extensions of commutative algebraic groups

In this section, let K be a fixed algebraically closed field of characteristic 0. Let
A and B be commutative algebraic groups defined over K. A commutative algebraic
group C defined over K is called an extension of A by B if there is an exact sequence
of commutative algebraic groups

0 ��B i ��C π ��A ��0.

To give an extension C of A by B is equivalent to giving a pair (i, π) ∈ Hom(B, C) ×
Hom(C, A) for which the above sequence is exact. Let

0 ��B i ��C π ��A ��0

and

0 ��B′ i′ ��C′ π′ ��A′ ��0

be extensions of commutative algebraic groups. A homomorphism between the above
two extensions is a triple of homomorphisms ϕ : C → C′,α : A→ A′, β : B→ B′ of
algebraic groups such that the diagram

0 �� B

β

��

i �� C

ϕ

��

π �� A

α

��

�� 0

0 �� B′ i′ �� C′ π′ �� A′ �� 0

commutes. Clearly, ϕ is an isomorphism if and only if α and β are isomorphisms. In
the case A = A′, B = B′ and α = idA, β = idB, we say that the two extensions C and
C′ are equivalent if there is a homomorphism between them. The set of equivalence
classes [C] of extensions forms a commutative group Ext1(A, B) with the neutral
element [A × B] (via the Baer sum). We write C for its equivalence class [C] by
abuse of notation. The bi-functor Ext1 which assigns to the pair (A, B) the group
Ext1(A, B) is contravariant in the first variable and covariant in the second one. This
means that if α : A′ → A and β : B→ B′ are homomorphisms between commutative
algebraic groups, then they induce homomorphisms α∗ : Ext1(A, B)→ Ext1(A′, B)
and β∗ : Ext1(A, B)→ Ext1(A, B′). The two homomorphisms α∗ and β∗ make the
diagram
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Ext1(A, B)

β∗
��

α∗ �� Ext1(A′, B)

β∗
��

Ext1(A, B′) α∗ �� Ext1(A′, B′)

commute. Furthermore, Ext1 is additive in both variables, which implies that

Ext1(A1 × A2, B) = Ext1(A1, B) × Ext1(A2, B)

and

Ext1(A, B1 × B2) = Ext1(A, B1) × Ext1(A, B2).

For example, we describe the exponential map of G in the case where G is an extension
of an elliptic curve by the additive group Ga defined over Q as given in [4]. (We refer
the reader to [7] for the general case.) Let E be an elliptic curve defined over Q and let
G be an extension of E by Ga. By compactification,

0 ��P1
i ��G π ��E ��0.

Denote by 0 the identity element in E. The divisor D = (G − G) + 3π∗(0) is very
ample for G and l(D) = 6. Hence, there is an embedding of G into P5, and one can
express the exponential map of G in terms of the Weierstrass elliptic and zeta functions
℘(z), ζ(z) associated with E. One can identify the Lie algebra Lie(G(C)) with C2 and
the exponential map of G is expressed by

expG(C)(z, t) = (1 : ℘(z) : ℘′(z) : f1(z, t) : f2(z, t) : f3(z, t)) for z � Λ

and exp(z, t) = (0 : 0 : 1 : 0 : 0 : t + bη(z)) for z ∈ Λ, where

f1(z, t) = t + bζ(z), f2(z, t) = ℘(z) f1(z, t) +
b
2
℘′(z), f3(z, t) = ℘′(z) f1(z, t) + 2b℘2(z)

for some algebraic number b.

3. Analytic representation of exponential maps

In this section, we discuss the analytic representation of the complex and p-adic
exponential maps of a commutative algebraic group defined over Q (with respect to
a fixed basis for its Lie algebra). Let G be a commutative algebraic group defined
over Q of positive dimension n. It is known that, by a compactification constructed
by Serre, there is an embedding defined over Q from G into the projective space PN

with projective coordinates X0, . . . , XN for some positive integer N (see [13]). One can
now describe the exponential maps of G (over C and Cp) by analytic functions as
follows. Let G denote the Zariski closure of G in PN and let G0 be the open affine
subset defined by G ∩ {X0 � 0}. Then the affine algebra Γ(G0, OG) of G0 is generated
over Q by ξi = Xi/X0 (the affine coordinates on G0) for i = 1, . . . , N, and we write it
as Q[ξ1, . . . , ξN]. It is known that any element in the Lie algebra Lie(G) of G maps
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Q[ξ1, . . . , ξN] into itself. In particular, for each D ∈ Lie(G), there exist polynomials
P1,D, . . . , PN,D in N variables with algebraic coefficients such that

Dξi = Pi,D(ξ1, . . . , ξN) for i = 1, . . . , N.

Let v be a place of Q. Then there is a natural embedding from Q into Cv, where Cv = C

if v is infinite, and Cv = Cp if v is finite and lies above p. The set G(Cv) is a v-adic
Lie group whose Lie algebra Lie(G(Cv)) = Lie(G) ⊗

Q
Cv, and it is known that the

v-adic exponential map expG(Cv) of the Lie group G(Cv) is a local diffeomorphism
defined on a subgroup Gv of Lie(G(Cv)) (see [3]). From now on, we fix a basis
D1, . . . , Dn for the Q-vector space Lie(G) which is also a basis for the Cv-vector space
Lie(G(Cv)) (by the identifications Di = Di ⊗ 1 for i = 1, . . . , N). Let δ1, . . . , δn denote
the canonical basis of Lie(Cn

v ), that is, ∂ixj = δij for i = 1, . . . , n and for j = 1, . . . , N,
where δij is Kronecker’s delta and x1, . . . , xn are the coordinate functions of Cn

v . There
exists an isomorphism φ : Cn

v → Lie(G(Cv)) with the property that the differential of
the composition map expG(Cv) ◦φ satisfies

d(expG(Cv) ◦φ)(∂i) = Di for i = 1, . . . , n.

Put fi,v = ξi ◦ expG(Cv) ◦φ for i = 1, . . . , N. The functions f1,v, . . . , fN,v are analytic on
a neighbourhood Cv of the origin in Cn

v , and the system { f1,v, . . . , fN,v} is called the
(normalised) analytic representation of the exponential map expG(Cv) (with respect
to D). By convention, for each i ∈ {1, . . . , N}, we write fi,p for fi,v and Cp for Cv if
Cv = Cp, and we write fi for fi,v and C for Cv if Cv = C. (Note that in the complex
case, the functions f1, . . . , fN can be extended as meromorphic functions on the whole
space Cn.) For i = 1, . . . , N and j = 1, . . . , n,

∂j( fi,v) = ∂j(ξi ◦ expG(Cv) ◦φ) = (d(expG(Cv) ◦φ)(∂i)ξi) ◦ expG(Cv) ◦φ
= (Djξi) ◦ expG(Cv) ◦φ = Pi,Dj (ξ1, . . . , ξN) ◦ expG(Cv) ◦φ = Pi,Dj ( f1,v, . . . , fN,v).

By induction, one can show that for j = 1, . . . , N and for nonnegative integers i1, . . . , in,
there exists a polynomial Pi1,...,in,j in N variables with coefficients in Q such that

(∂i1
1 · · · ∂

in
n ) fj,v = Pi1,...,in,j( f1,v, . . . , fN,v).

Since expG(Cv)(0) = e ∈ G(Q) (where e denotes the identity element of G), it follows
that fi(0) = fi,p(0) ∈ Q for i = 1, . . . , N. Using the Taylor expansions of f1,v, . . . , fN,v at
0, we get the following proposition.

PROPOSITION 3.1. There exist formal power series F1, . . . , FN ∈ Q[[X1, . . . , XN]]
converging both in C and Cp such that

f1(x) = F1(x), . . . , fN(x) = FN(x) for all x ∈ C

and

f1,p(x) = F1(x), . . . , fN,p(x) = FN(x) for all x ∈ Cp.
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4. Proof of the main theorem

This section is devoted to the proof of Theorem 1.2 which follows that of
Theorem 1.1 with some extensions.

PROOF OF THEOREM 1.2. Without loss of generality, we may assume that the
elements Logp(u1), . . . , Logp(ul) are linearly independent over Q and the elements
v1, . . . , vn are linearly independent over K, that is, dimQU = l and dimK V = n. It is
clear that there exists a positive integer r sufficiently large for which wi := upr

i ∈ B(rp)
for all i = 1, . . . , l. Let logp denote the p-adic logarithm function. Then

logp(wi) = Logp(wi) = Logp(upr

i ) = prLogp(ui) for i = 1, . . . , l.

We have to show that the elements

1, logp(w1), . . . , logp(wl), v1, . . . , vn, ζp(v1), . . . , ζp(vn)

are linearly independent over Q. Suppose that this is not true. Then there exists a
nonzero linear form L in l + 2n + 1 variables T0, T1, . . . , Tl, T ′1, . . . , T ′n, T ′′1 , . . . , T ′′n with
coefficients in Q such that L vanishes on 1, logp(w1), . . . , logp(wl), v1, . . . , vn, ζp(v1),
. . . , ζp(vn). We write L in the form L = L0 + L′ + L′′, where L0 = αT0 + β1T1 + · · · +
βlTl with α, β1, . . . , βl ∈ Q and where L′, L′′ are linear forms in T ′1, . . . , T ′n and
T ′′1 , . . . , T ′′n , respectively. Let G ∈ Ext1(Gl

m × En,Ga) be the extension of Gl
m × En by

Ga determined by L′′. The components of the complex exponential map expG(C) of G
are give by the functions

x0 + L′′(ζ(y1), . . . , ζ(yn)), ex1 , . . . , exl ,℘(y1),℘′(y1), . . . ,℘(yn),℘′(yn)

for complex variables x0, x1, . . . , xl, y1, . . . , yn. By Proposition 3.1, the corresponding
components of the p-adic exponential map expG(Cp) are given by the functions

z0 + L′′(ζp(t1), . . . , ζp(tn)), ep(z1), . . . , ep(zl),℘p(t1),℘′(t1), . . . ,℘p(tn),℘′p(tn)

for p-adic variables z0, z1, . . . , zl, t1, . . . , tn, where ep denotes the p-adic exponential
function. Consider the point

ε = (β1 logp(w1) + · · · + βl logp(wl) + L′(v1, . . . , vn), logp(w1), . . . , logp(wl), v1, . . . , vn).

Then the point γ := expG(Cp)(ε) is

(β1 logp(w1) + · · · + βl logp(wl) + L′(v1, . . . , vn) + L′′(ζp(v1), . . . , ζp(vn)),

w1, . . . , wl,℘p(v1),℘′p(v1), . . . ,℘p(vn),℘′p(vn)).

Since

L(1, logp(w1), . . . , logp(wl), v1, . . . , vn, ζp(v1), . . . , ζp(vn)) = 0,

it follows that

β1 logp(w1) + · · · + βl logp(wl) + L′(v1, . . . , vn) + L′′(ζp(v1), . . . , ζp(vn)) = −α ∈ Q.
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In particular, this means that the point γ is an algebraic point of G. Let logG(Cp) be

the p-adic logarithm map of G and let S be the Q-vector subspace of Lie(G) (which is
identified with Q

l+n+1
) given by

S = {(s0, s1, . . . , sl+n) ∈ Ql+n+1
: s0 − β1s1 − · · · − βlsl − L′(sl+1, . . . , sl+n) = 0}.

We see that

logG(Cp)(γ) = logG(Cp)(expG(Cp)(ε)) = ε ∈ S ⊗
Q
Cp.

Thanks to the p-adic analytic subgroup theorem (see [8] or [10]), there exists a
nontrivial connected algebraic subgroup H of G defined over Q such that γ ∈ H(Q)
and Lie(H) ⊆ S. Let π be the composition of the homomorphism G→ Gl

m × En and
the canonical projection Gl

m × En → En. Then the algebraic subgroup E := π(H) is
isogenous (over Q) to Em with m ≤ n. This gives a corresponding element p : En →
E ↪→ En in End(En). Note that π : G→ En induces the differential dπ from the Lie
algebra of G to that of En and the algebra of endomorphisms End(En) ⊗Z Q is identified
with the matrix algebra Mn(K). This means that the endomorphism idEn − p can be
written as an n × n matrix with entries in K. Furthermore, since γ ∈ H, one has

ε = logG(Cp)(γ) = logH(Cp)(γ) ∈ Lie(H) ⊗Q Cp.

It follows that the point (v1, . . . , vn) = dπ(ε) ∈ Lie(E) which turns out to be the kernel
of the endomorphism given by the above matrix. However, the elements v1, . . . , vn
are linearly independent over K, so that this matrix must be trivial. In other words,
p = idEn , that is, E = En.

Next, we see that G � Gl
m × G0, where G0 ∈ Ext1(En,Ga) since Ext1(Gm,Ga) is

trivial (in fact, it is known more generally that the group extension of linear algebraic
groups is trivial). Hence, without loss of generality, we may assume that the algebraic
numbers β1, . . . , βl are not all zero (since, if not, one can take the quotient of G by the
multiplicative group Gm, and we are in a simpler case with G0). The intersection of
H with Ga × Gl

m is an algebraic subgroup of Ga × Gl
m, and therefore has the form

Ha × Hm, where Ha and Hm are (connected) algebraic subgroups of Ga and Gl
m,

respectively (see [1, Proposition 4.3]). This leads to

Lie(Ha) × Lie(Hm) = Lie(Ha × Hm)

= Lie(H) ∩ (Lie(Ga) × Lie(Gl
m)) = Lie(H) ∩ (Q × Ql

).

If Hm is a proper algebraic subgroup of the torus Gl
m, it follows from [1, Lemma 4.4]

that the Lie algebra Lie(Hm) is given by L1 = · · · = Ld = 0, where d = l − dim Hm ≥ 1
and L1, . . . , Ld are nonzero linear forms in n variables with integer coefficients. In
particular, this means that logp(w1), . . . , logp(wl) are linearly dependent over Q, or
equivalently, Logp(u1), . . . , Logp(ul) are linearly dependent over Q. This contradiction
shows that Hm = G

l
m and then Ha must be trivial (since dim H ≤ dim

Q
S = n + l). This
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enables us to conclude that β1s1 + · · · + βlsl = 0 for all s1, . . . , sl ∈ Q and this happens
if and only if β1 = · · · = βl = 0, which is a contradiction. The theorem is proved. �

As in the complex case, it is also possible to slightly extend the main theorem to the
case of several p-adic Weierstrass zeta functions as follows. Let E1, . . . , En be elliptic
curves defined over Q. For each i ∈ {1, . . . , n}, denote by ℘p,i and ζp,i the p-adic elliptic
function and the p-adic Weierstrass zeta function associated with the elliptic curve Ei,
respectively. Let vi be an algebraic point of ℘p,i for i = 1, . . . , n. Let Iν (ν = 1, . . . , k)
be maximal sets of indices such that Ei are pairwise isogenous (over Q) for all i ∈ Iν.
Fix an element E(ν) in the set {Ej : j ∈ Iν}. The field of endomorphisms of E(ν) is the
same as that of Ej for any j ∈ Iν, and we denote it by Kν. Let Vν be the vector space
generated by the set {vj : j ∈ Iν} over Kν. Then we obtain the following theorem which
is an extension of the p-adic analogue of [1, Theorem 6.4].

THEOREM 4.1. Let u1, . . . , ul be nonzero algebraic numbers and U the vector space
generated by Logp(u1), . . . , Logp(ul) over Q. Then the dimension of the vector space
W generated by 1, Logp(u1), . . . , Logp(ul), v1, . . . , vn, ζp,1(v1), . . . , ζp,n(vn) over Q is
determined by

dim
Q

W = 1 + dimQU + 2(dimK1 V1 + · · · + dimKk Vk).
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