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We present a versatile method to generate asymmetric profiles and use it to create Gaussian-like,
Cauchy-like, and Pseudo-Voigt-like profiles in terms of elementary functions. Furthermore, this
method guarantees that the position and magnitude of the global maximum are independent of the
asymmetry parameter, which substantially facilitates the convergence of an optimizer when fitting
the peaks to real data. This investigation shows that the method developed here exhibits favorable
practical properties and is particularly well suited for various applications where asymmetric peak
profiles are observed. For example, in X-ray diffraction (XRD) measurements, the use of asymmetric
profiles is essential for obtaining accurate outcomes. This is because diffractometers can introduce
asymmetry into the diffraction peaks due to factors such as axial divergence in the beam path. By
taking this asymmetry into account during the modeling process, the resulting data obtained can be
corrected for instrumental effects. The results of the study show that the evaluation of XRD using
nearly defect-free LaB6 allows a precise characterization of the peak broadening caused by the diffrac-
tometer itself. Additional size-strain effects of ZnO are determined by considering the asymmetric
peak profile of the diffractometer.
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Centre
for Diffraction Data.
[doi:10.1017/S0885715624000587]
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I. INTRODUCTION

X-ray diffraction (XRD) is a widely used technique used
in material characterization, particularly for polycrystalline
materials. The microstructure of such materials strongly
affects their mechanical properties, among others, and can
be determined using XRD (Mittemeijer and Scardi, 2013).
One important aspect of XRD analysis is the determination
of the line profile shapes of individual diffraction peaks. For
example, the peaks’ positions, together with Bragg’s equation
(Bragg and Bragg, 1913), provide information about the mate-
rials contained in the sample, while peak areas are used to
determine phase quantities using the Rietveld method
(Rietveld, 1967, 1969). It is worth mentioning that the relative
intensity ratio (RIR) method can alternatively be used to deter-
mine the quantitative phase content, where the peak areas are
referenced relative to the corundum. For further details, please
refer to the literature (e.g., Hubbard et al., 1976; Davis, 1989,
1992).

Other properties of the profiles, such as peak broadening
and asymmetry, also provide valuable information: the peak
broadening is related to the lattice defect density
(Alexander, 1954; Balzar and Ledbetter, 1994) and the asym-
metry is connected to the instrumental broadening (Cheary
et al., 2004).

In XRD , different methods are available for representing
asymmetric peaks. The “Fundamental Parameter Model” by
Cheary and Coelho (1998), is commonly used to characterize
the broadening effect caused by the slit system, which is then
convoluted with the peak broadening effects of the specimen.
This convolution is often implemented in software packages
such as TOPAS (Coelho, 2018) or GSASII (Toby and Von
Dreele, 2013; Denney et al., 2022). Alternatively, phenome-
nological presentations, such as the use of split-peaks, are
also available in software packages like HighScore (Degen
et al., 2014) for representing asymmetric peaks. In this
work, we propose a novel elementary method for generating
representative asymmetric profiles that capture the line profile
shapes of individual diffraction peaks. The method described
herein can be applied to elementary profiles. Symmetric ele-
mentary profiles are extended for the asymmetric case. It is
noteworthy that when the asymmetry parameters used in this
work are set to 0, the asymmetric profiles transform into
their corresponding symmetric versions.

The presented method offers an alternative approach to
fitting measurements, resulting in precise determinations of
peak positions and peak broadening caused by the instrument
itself and caused by lattice defects within the phases. The main
advantage of the method presented in this paper is the clear
relationship between the parameters that define the profiles
and their properties; in particular, the construction method
keeps the position and magnitude of the global maximum,
independent of the asymmetry parameters (The independence
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of the position and magnitude of the global maximum with
respect to the asymmetry parameter is something that, to our
best knowledge, is not found in the mathematical or physics
literature concerning elementary asymmetric profiles e.g.
(Cheary et al., 2004; Gupta et al., 2004; Huang and Chen,
2007; Korepanov and Sedlovets, 2018). There are, however,
non-elementary profiles that fulfill the property (e.g. Kern,
1998) but are hard to work with in practice.), see
Propositions 2, and 3. The low correlation among the profile’s
parameters is particularly useful when fitting XRD’s data with
many peaks, because it substantially facilitates the conver-
gence of the optimizer. Furthermore, the profiles that are
showcased in this paper [see Eqs (5), (6) and (8)] are con-
structed with elementary functions. This eases the numeric
calculations that are needed to extract additional mathematical
properties of the profiles (e.g., area, FWHM, and convolution –
see subsections III.C, III.D, and III.E ), from which, physical
properties of the examined material can be retrieved.

The paper is organi zed as follows: Section II ,
Proposition 2 describes the general method for the construc-
tion of profiles with convenient properties on the global max-
ima. In Section III, we apply Proposition 2 to construct
asymmetric Gaussian, Cauchy, and Pseudo-Voigt profiles. In
Section IV, we fit real XRD data with the Pseudo-Voigt-like
profile, analyze the quality of this fit with various metrics,
and compare it with the fit of the symmetric Pseudo-Voigt pro-
file. Finally, in Section V , we discuss the results and provide a
summary of the paper.

II. GENERAL METHOD TO CONSTRUCT PROFILES

In this section, we present a general method to construct
new functions with desirable properties on their global max-
ima and their magnitudes. We begin by introducing some def-
initions and a proposition that will be used in the subsequent
analysis.

Definition 1.

“Iff” stands for “if and only if,” which is used to denote a
necessary and sufficient condition. That is, the statement “P iff
Q” means “P is true if Q is true, and P is true only if Q is
true”.

Definition 2.

The empty set is denoted as ∅. In particular, if a set A has
at least one element, we denote this as A = ∅.

Definition 3.

A function f taking an input from a set A and returning an
output in a set B will be denoted as f :A→ B, and it is also said
to be a function from A to B . In particular, a function f with an
input and output in the real numbers R will be denoted as f :
R→ R, and it is said to be a function from R to R .

The notation in Definition 3 means that f is a function that
maps elements from the set of real numbers (input) to the set
of real numbers (the output).

Definition 4.

Let f :R → R be differentiable. A critical point x 0 of f is a
point such that f ′(x0) = 0 . Furthermore, the (possibly empty)
set of critical points of f will be denoted as C( f ).

In mathematics, a critical point of a function is a point
where the derivative is zero. Critical points are important in
analyzing the behavior of functions because they can indicate
locations of local maxima, local minima, or saddle points.

Definition 5.

Let f :D→ R be a function. A global maximum x m of f is
an element of D such that f (x m)≥ f (x) for any x ∈D . We
denote the (possibly empty) set of global maxima of f as
M( f ) . Notice there might be more than one global maximum.
Also, notice that every global maximum has the same magni-
tude; this magnitude will be referred as max( f ).

Definition 6.

Let f :D→ R be a function. A point x m in D is called the
absolute maximum of f iff x m is the only global maximum of f.

Definition 7.

Let f :D→ R be a function and A be a set of real values.
The preimage of A under f is the (possibly empty) set {r∈
D:f (r)∈ A} and will be denoted by f −1(A) . Notice that the
preimage always exists, which is not the case with the inverse
function.

For Definition 7, the term “preimage” should be clarified:
The preimage of a function is the set of all input values that,
when passed through the function, produce a specific output
or range of outputs. It can be thought of as working backward
from the output to find all possible inputs that could have
resulted in that output.

The following elementary proposition will be used later in
this section and it is written for the sake of completeness. It
states that if you have two smooth (differentiable) functions,
f and w, that take real numbers as inputs and outputs, then
you can determine the critical points of the combined function.

Proposition 1

Let f and w be differentiable functions from R to R , then

C( f ◦ w) = w−1(C(f ))< C(w) (.)
Proof.

Applying the chain rule, we get the following expression
(f ◦ w)′(x) = f ′(w(x))w′(x), which is zero iff w(x)∈C( f ) or
x∈ C(w). In other words, the expression is zero iff.
x [ w−1(C(f ))< C(w) ■

Proposition 1 can be described in words as follows: Given
f and w, two differentiable functions, then the preimage under
w of the critical points of f, i.e. w −1(C( f )) union the set of crit-
ical points of w, i.e. C(w) is equal to the set of critical points of
f composed with w, i.e. C( f° w).

The next proposition is the main point in this section and
can be informally described as a set of conditions to construct
new functions with “good” behaviors on the global maxima
and their magnitudes. The importance of this proposition
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will be clear when we apply it (see Proposition 3) to prove the
independence of the global maxima and their magnitudes from
the asymmetry parameter a of the showcased profiles [see Eqs
(5), (6), and (8)]. As stated in Definition 4, the set of critical
points of f will be denoted as C(f), and as defined in
Definition 5, the set of global maxima of f will be denoted
as M(f).

Proposition 2.
(Profile Construction Method). Let f :R→ R be a function

with M(f ) = ∅ (with at least one global maximum) and let w:
R→ R be a function such that w−1(M(f )) = ∅ (the preimage
of w contains at least one critical point of f ), then f° w:R→ R
satisfies:

• max(f ◦ w) = max(f )
• M(f ◦ w) = w−1(M(f ))

In particular, if f and w are differentiable and C(w) = ∅
(i.e. w has no critical points) and there is a μ ∈ R + such
that M(f ) = C(f ) = {m} (i.e. μ is the only critical point and
the absolute maximum of f ) and the preimage
w−1({m}) = {m} (where {μ} is a set with the single element
μ ), then we have that C(f ◦ w) = M(f ◦ w ) = {m} , i.e. μ is
the only critical point and the absolute maximum of f ° w.

Proof.
Let f and w be functions from R to R in the first part of the

proposition. Now, let x ∈ R , then by definition we have that
f ◦ w(x) = f (w(x)) ≤ max f and equality is valid iff x ∈ w
−1(M( f )), which proves that M(f ◦ w) $ w−1(M(f )). By
assumption, M(f ) = ∅ and w−1(M(f )) = ∅, therefore there
is x 0∈ R such that f ◦ w(x0) = max f which proves that
max(f ◦ w) = max f and that M( f° w)⊆ w −1(M( f )). The last
two contentions prove that M(f ◦ w ) = w−1(M(f )). This con-
cludes the proof of the first part of the proposition.

Let f and w be as in the second part of the proposition.
Then, by Proposition 1, we get that C(f ◦ w) = w−1(C(f ))
<C(w) = {m}, since w−1(C(f )) = {m} and C(w) = ∅, by
assumption. Furthermore, by the first part of the current proposi-
tion, we have that M(f ◦ w) = w−1(M(f )) = w−1({m}) = {m}
and this implies that of μ is the absolute maximum of f° w
because M( f° w) has a single element. This concludes the
proof of the proposition.■

Proposition 2 allows us to construct new profiles from old
ones by using “asymmetry functions”. A detailed description
of the method is given below.

1. Choose profile:We choose a function f :R→ Rwith a
point x m that satisfies the following:

• f is differentiable;

• x m is the only critical point of f ;

• x m is the absolute maximum of f .

2. Choose asymmetry function: Let A be a non-empty
set of R . We choose a function w:R × A→ R , such that
for any fixed choice of a in A , the function w( ⋅ , a):R→
R denoted as w a , satisfies the following:

• w a is differentiable;

• w a has no critical points;

• The preimage of x m (the global maximum of f)
under w a is the point x m itself. Formally written,
w−1
a ({xm}) = {xm}.

3. New profile: For any fixed choice of a∈ A , the new
function f° w a:R→ R satisfies the following properties:

• f° w a is differentiable;

• x m is the only critical point of f° w a ;

• x m is the absolute maximum of f° w a ;

The magnitude of the absolute maximum of f° w a is
independent of the value a . More precisely, f ° w a(x
m) = f (x m);

The magnitude of the absolute maximum of f ° w a is
equal to the magnitude of the absolute maximum of f
. Formally written, max(f ◦ wa) = max f .

III. SHOWCASED PROFILES

In this section, we define the proposed asymmetric pro-
files [see Eqs (5), (6), and (8)] and study different properties
of them with respect to the asymmetry parameter: position
of the global maxima and magnitude (see subsection III.B ),
area (see subsection III.C ), FWHM (see subsection III.D ),
and convolutions (see s ubsection III.E ). The asymmetric
Pseudo-Voigt-like profile is later used to fit XRD data (see
subsection IV.B and IV.C ).

A. Symmetric and asymmetric profiles

Let us briefly recall the symmetric Gaussian g, Cauchy c,
and Pseudo-Voigt p (approximation of the Voigt profile) dis-
tributions :

g(x, m, s) = 1

s
����
2p

√ e−
1
2(t

w(x))
2 (1)

c(x, m, g) = 1

pg[1+ (t†(x))2]
(2)

p(x, h, m, s, g) = hg(x, m, s)+ (1− h)c(x, m, g) (3)
where η∈ [0, 1], σ, γ,∈ , R + , and μ∈ R and

t∗(x) := x− m

s
and t†(x) := x− m

g
(4)

Concrete examples of symmetric profiles will be pre-
sented later in section III.E.3 . We now define the asymmetric
profiles, where a is the asymmetry parameter: Eq. (5) defines
the asymmetric Gaussian-like profile ĝ, Eq. (6) defines the
asymmetric Cauchy-like profile ĉ , and Eq. (8) defines the
asymmetric Pseudo-Voigt-like profile p̂.

ĝ(x, m, s, a) := 1

s
����
2p

√ e−
1
2

t∗(x)
h(t∗ (x), a)
( )2

(5)
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ĉ(x, m, g, a) := 1

pg 1+ t†(x)
h(t†(x), a)

( )2
⎡
⎣

⎤
⎦

(6)

where t∗, t† are defined in Eq. (4) and

h(u, a) := 1+ au����������������
1+ (1+ a2)u2

√ (7)

The function h(u,a) in Eq. (7), which uses the dimension-
less asymmetry parameter a, is used to generate these asym-
metric functions. It is crucial that the variable a remains
dimensionless to ensure consistency and independence from
the coordinate system. As a consequence, any variable like
u introduced in subsequent equations, such as in Eq. (7),
must also maintain this dimensionless property.

It is worth noting that when a = 0, the asymmetric profiles
convert into the corresponding symmetric versions.

Finally, we define the asymmetric Pseudo-Voigt-like pro-
file, wherein both the Gaussian-like and Cauchy-like profiles
share the asymmetry parameter a:

p̂(x, h, m, s, g, a) :

= hĝ(x, m, s, a)

+ (1− h) ĉ(x, m, g, a) (8)

where η ∈ [0, 1], σ, γ, ∈ R + , and μ, a∈ R . It is worth noting
that the profiles from Eqs (5), (6), and (8) satisfy:

ĝ(m+ x, m, s, a) = ĝ(m− x, m, s, − a) (9)
ĉ(m+ x, m, g, a) = ĉ(m− x, m, g, − a) (10)

p̂(m+ x, h, m, s, g, a) = p̂(m− x, h, m, s, − a) (11)

In other words, the profiles that are generated when
changing a for −a are reflections of each other from the ver-
tical axis passing through the global maximum, which is allo-
cated at x = μ (see Proposition 3). In subchapter “Illustration of
Pseudo-Voigt profiles modified by asymmetry according to
Eq. (8)”, concrete examples of the asymmetric profiles can
be seen.

B. Global maximum and magnitude of the showcased

profiles

In Proposition 3, we prove that the proposed profiles
defined by Eqs (5), (6), and (8) exhibit a distinctive property:
they possess a unique critical point, which is an absolute max-
imum. Remarkably, the position and magnitude of this critical
point remain invariant, irrespective of changes in the asymme-
try parameter a. This property accelerates the convergence of
the optimizer when fitting data with these profiles. In contrast,
the general construction methods for asymmetric probabilistic
distributions in the mathematical literature (e.g. Gupta et al.,
2004; Huang and Chen, 2007) seem to lead to non-elementary
profiles where the position and magnitude of the global max-
imum, strongly depend on the asymmetry parameter (We
encountered difficulties in our attempts to construct an ele-
mentary asymmetric probabilistic distribution with the desired

properties using these methods). The profiles in physics liter-
ature also exhibit these dependencies (see e.g., Kern, 1998;
Korepanov and Sedlovets, 2018). This characteristic is not
necessarily detrimental; if the dependencies accurately
model the physical phenomenon under study, they can con-
tribute positively to the fitting procedure.

It must be said that there are non-elementary profiles
whose position and magnitude of the global maximum are
independent of the asymmetry parameter e.g. (Kern, 1998).
However, these non-elementary profiles add significant com-
plexity when working with them in practice. The choice of
asymmetric fitting functions for practical applications should
be based on several criteria (see e.g., Korepanov and
Sedlovets, 2018), such as a simple analytical form, the use
of a minimum number of parameters, a description of the sym-
metric shape as a “zero case”, the ability to estimate desired
peak parameters in a straightforward way, and, most impor-
tantly, an adequate description of the experimental
data.Proposition 3.

Let g, seR+, he[0, 1] andm, aeR be arbitrary but
fixed. Then, the profiles in Eqs (1)–(3),(5),(6) and (8) satisfy
the following:

• max(ĝ) = max(g) = 1
s

���
2p

√ ;
• C(ĝ) = M(ĝ) = M(g) = {m};
• max(ĉ) = max(c ) = 1

gp ;
• C(ĉ) = M(ĉ) = M(c) = {m};
• max(p̂) = max(p) = h 1

s
���
2p

√ + (1− h) 1
gp ;

• C(p̂) = M(p̂) = M(p) = {m}.

The proof is an application of Proposition 2 over appropri-
ately chosen functions.Proof.

We only prove statements two, four and six since the
remaining statements follow immediately from these ones.
Let us recall h(x, a) from Eq. (7). It is easy to see that h(x,
a) > 0 for any x, aeR, which implies that the function

ra(x): = x

h(x, a)

is well defined over all
R for every aeR. Furthermore, it is clear that r a is a differ-

entiable function over all R and with elementary calculations it
is easy to verify that r−1

a ({0}) = {0}, thus if ra(x) = 0 then
x = 0. In addition to this, elementary calculations show that
r′a.0 for every a∈ R , which in particular implies that C(r
a) is empty, i.e. it does not have critical points for every a∈
R .

Let us introduce the following auxiliary functions:

g0 = 1

s
����
2p

√ · e−1
2x

2
;

c0 = 1
gp(1+ x2)

,

where μ, γ∈ R +. These functions are clearly differentiable and
it is easy to see that M(g0) = C(g0) = {0}, i.e. g 0 has a
unique critical point and this point is its absolute maximum,
and likewise M(c0) = C(c0) = {0}. It follows directly from
Proposition 2 that the functions g0 ◦ ra and c0 ◦ ra have a
unique critical point located at x = 0 and this point is an
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absolute maximum. We also observe that

ĝ = (g0 ◦ ra) ◦ tw;

ĉ = (c0 ◦ ra) ◦ t†,
where t∗ = x−m

s and t†(x) = x−m
g . These equations and some

elementary calculations show that ĝ and ĉ have a unique crit-
ical point at x = m and this point is an absolute maximum.
This proves statements two and four in the proposition.

To prove the last statement of the proposition, we first see
that p̂ has an absolute maximum and it is located at x = μ .
Indeed, let x [ R\{m}, then

p̂(x) = h · ĝ(x)+ (1− h) · ĉ(x),h · ĝ(m)+ (1− h) · ĉ(m)
= p̂(m).

Thus, μ is the absolute maximum of p̂ . Now, we check
that μ is the only critical point of p̂. Elementary calculations
show that the signs of ĝ′(x) and ĉ′(x) coincide. This means
that the only way to satisfy the equation

p̂′(x) = h · ĝ′(x)+ (1− h) · ĉ′(x) = 0

where 0 ≤ η ≤ 1 is when ĝ′(x) = ĉ′(x) = 0. And this hap-
pens if and only if x = m. Therefore x = m is the only critical
point of p̂ and with this, the proof of the proposition is com-
plete. ■

C. Area of the showcased profiles

In general, the areas of the asymmetric profiles in Eqs (5),
(6), and (8) depend on the asymmetry parameter a and the mix-
ing parameter η (as shown in Figure 1 ) ; therefore, these profiles
are not probabilistic distributions (https://github.com/
schnirelmann/AsymmetricProfilesFunctions). The area of
these profiles can, however, be calculated efficiently and with
good precision via numeric integration due to the elementary
nature of the profiles. The area of the Cauchy-like profile [Eq.
(6)] can even be calculated exactly using elementary complex
analysis. In Figure 1, the area variation of the Pseudo-Voigt pro-
files with respect to the asymmetry parameter a is shown for η =
0.0, η = 0.5, and η = 1.0: more specifically, the y-axis shows the

area of the asymmetric profile divided by the area of the sym-
metric profile and the x-axis shows the asymmetry parameter a.

Actually, the showcased profiles can be turned into prob-
abilistic distributions by simply dividing the equations by the
area of the profile, since their areas are finite. This would how-
ever make the peak’s magnitude depend on the asymmetry
parameter a but the highest point’s position would remain
intact. Nonetheless, the exact calculation of these areas is in
some cases non-elementary and in many cases, it is not even
clear if they can be calculated in closed form.

The general construction methods for asymmetric probabi-
listic distributions in the mathematical literature ( e.g., Gupta
et al., 2004; Huang and Chen, 2007 ) , deliver profiles with
fixed area (and equal to one). However, these methods seem to
lead to distributions where the position and magnitude of the
global maximum, strongly depend on the asymmetry parameter,
which is not suitable for the applications we are pursuing.

D. FWHM of the showcased profiles

The FWHM (full width at half maximum) of the profiles
in Eqs (5), (6) and (8) is dependent on the asymmetry
parameter a and mixing parameter η (see Figure 2 ) but since
we know the magnitude of the profiles and the half maxi-
mum’s magnitude exactly (see Proposition 3), the FWHM
can be retrieved efficiently and with high accuracy with a
simple binary search (https://github.com/schnirelmann/
AsymmetricProfilesFunctions).

It is also worth mentioning that the FWHM of the profiles
in the mathematical and physics literature often depends on
the asymmetry parameter and is in general not easy to get in
closed form. This makes the precision of a binary search for
the FWHM depend on the precision of the estimation of the
peak’s magnitude; meaning, if we have a bad estimate of the
peaks’ magnitude, we also get a bad estimation of the
FWHM by using a binary search.

E. Convolutions of symmetric and asymmetric profiles

In this subsection, we analyze how to approximate the
convolutions of different combinations of symmetric and
asymmetric profiles. Let us start with the symmetric case:

Figure 1. The y-axis shows the area of the asymmetric Pseudo-Voigt-like
profile divided by the area of the symmetric Pseudo-Voigt profile, with the
asymmetry parameter a varying along the x-axis. The different curves
represent η = 0.0 (Cauchy-like), η = 0.5, and η = 1.0 (Gaussian-like).

Figure 2. The y-axis shows the FWHM of the asymmetric Pseudo-Voigt-like
profile divided by the FWHM of the symmetric Pseudo-Voigt profile, while
the x-axis represents the asymmetry parameter a. The curves correspond to
different values of η: η = 0.0 (Cauchy-like), η = 0.5, and η = 1.0
(Gaussian-like).
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1. Approximated convolution of symmetric profiles

The Gaussian and Cauchy functions, as well as their con-
volution, effectively describe symmetric profiles.
Additionally, they possess certain properties that are useful
for calculations, as discussed in detail by Balzar and
Ledbetter (1994) . For example, the convolution of two
Gaussian functions results in another Gaussian function with
a combined variance given by with s2

result = s2
1 + s2

2, and
the convolution of two Cauchy functions results in another
Cauchy function with a combined width of
gresult = g1 + g2. The convolution of a Gaussian and a
Cauchy function results in the Faddeeva function (Faddeeva
and Terent’Ev, 1961), which can be approximated by a
Pseudo-Voigt. This approach is less computationally intensive
than a true convolution, yet provides an accuracy within 1% of
the exact solution (Thomson et al., 1987) . We outline how the
parameters of the Pseudo-Voigt approximating the Faddeeva
function are calculated: given a Gaussian and Cauchy curves
characterized by σ and γ, respectively, it’s known that their
peak widths can be characterized by the FWHM equations:

fg = 2s
�������
2ln(2)

√
, fc = 2g. (12)

In the next step, the parameters of the symmetric
Pseudo-Voigt [see Eq. (3)] are calculated, which provide a
good approximation of the convolution between the
Gaussian and the Cauchy curves. The relevant equations for
FWHM f and ηp and the methodology have been adopted
from (Thomson et al., 1987):

f =
(
f 5g + 2.69269f 4g fc + 2.42843f 3g f

2
c + 4.47163f 2g f

3
c

+0.07842fgf
4
c + f 5c

)1/5
(13)

1− hp = 1.36603
fc
f

( )
− 0.477163

fc
f

( )2

+ 0.11116
fc
f

( )3

(14)

A specific example is presented in which a Gaussian curve
with σ = 1, μ = 0, corresponding to a FWHM of fg = 2.35482,
is convolved with a Cauchy function with γ = 1, μ = 0, corre-
sponding to a FWHM of fC = 2. Using Eqs (13) and (14), the
symmetric Pseudo-Voigt FWHM is calculated to be f =
3.59225, and the Cauchy content is 1-ηp = 0.631811. The cor-
responding parameters of the Gauss and Cauchy components
are: sp = f

2
�����
2ln(2)

√ = 1.52549 and, respectively, gp = f
2 =

1.79613. Figure 3 shows the Gaussian (with σ = 1) and
Cauchy (with γ = 1) profiles and the result of their convolution,
approximated with the procedure of Thomson et al. (1987).

2. Illustration of Pseudo-Voigt profiles modified by

asymmetry according to Eq. (8)

In Figure 4, we present some examples of
Pseudo-Voigt-like for a = 0 (symmetric case), a = 0.5, a =
1.0, and a = 2.0. We set sp = f

2
�����
2ln(2)

√ = 0.42466 and
gp = f

2 = 0.5 so that f equals 1.0.

3. Convolution of the showcased profiles with

symmetric and asymmetric versions

In the measured diffractograms, a considerable part of the
peak broadening can be attributed to the measurement system
itself. The diffractogram can be represented as a convolution
of a diffractometer-dependent part G and the sample-
dependent part S. The diffractometer- dependent part G can
now be represented as a convolution integral of the emission
profile of the tube W and the slit system B (Cheary and
Coelho, 1992).

Y(u) = G∗S = B∗W∗S (15)

The emission profile can be represented as a finite sum of
symmetric Pseudo-Voigt profiles, with the Gaussian compo-
nent typically neglected. The contribution caused by the slit
system is asymmetrical (Cheary and Coelho, 1998). As
shown in Wießner et al. (2005) , the device-dependent peak
broadening can be determined by almost defect-free LaB6.
We can calculate this convolution with a reasonable precision
10−2 by simple numeric integration. Figure 5 shows the con-
volution between a symmetrical Pseudo-Voigt and an asym-
metrical Pseudo-Voigt-like peak.

Figure 6 shows that the convoluted curve from Figure 5,
along with three additional representative examples, can be
accurately approximated (within a precision of 10−2) by an
asymmetric Pseudo-Voigt-like profile. For Figure 5, the fol-
lowing parameters were obtained: σ = 0.87478, γ = 1.02997
(resulting in f = 2.05994), Cauchy-like component1–η = 1,
asymmetry parameter a = 0.3676, and a peak shift of Δx =
+0.2203. The four results are summarized in Table I . In
practical applications, considering the peak shift is crucial
when calculating the lattice plane spacing Δd from the peak
position 2θ.

IV. APPLICATION OF AN ASYMMETRIC PROFILE FOR

XRD ANALYSIS

A. Materials and method

In the suggested approximation, the measured diffraction
peak is represented as a convolution of the instrumental and

Figure 3. Examples of symmetrical distributions: Gaussian function with σ
= 1, μ = 0; Cauchy function with γ = 1, μ = 0; Pseudo-Voigt function with σp =
1.52549, γp = 1.79613, Cauchy part 1–ηp = 0.63181, and μ = 0, which
approximates the convolution of the Gaussian and Cauchy functions.
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sample broadening. XRD data were collected using a
XRDynamic 500 from Anton Paar, Austria (Anton Paar,
2021). To accurately determine the instrumental broadening,
which may include some degree of asymmetry, a nearly defect-
free reference sample such as LaB6 was used. This broadening is
solely attributed to the diffractometer, allowing for the neglect of
any broadening caused by deviations from an ideal lattice struc-
ture. The significance of this section lies in its relevance to s
ection IV.C , where the method for isolating sample broadening
from the overall profile will be detailed. Therefore, estimating

the instrumental broadening is the primary focus of this section,
with the instrumental broadening, as a function of 2θ, serving as
input for further analysis.

The XRD measurements were performed using a
Bragg-Brentano geometry, equipped with a primary beam
monochromator to suppress Kβ radiation and reduce back-
ground caused by Bremsstrahlung. The detector employed
was a Pixos 2000 solid-state hybrid detector from Advacam,
based on the Timepix3 chip architecture developed by
CERN. It operated in 1D mode by summing signals from
the 2D array. A step-scan procedure was used to accumulate
the signals, resulting in the final diffractogram, as described
by Cheary and Coelho (1994). The primary divergence slit
was set to 0.25°, and no Soller slits were used.

The X-ray generator was configured to operate at 50 mA
and 40 kV, with a goniometer radius of 400 mm. Scans were
conducted over a 2θ range of 18.000° to 128.000° at a step size
of 0.01° and a count time of 1.31 s per step. The experiment
was carried out at ambient conditions (22 ± 1 °C) using Cu
Kα radiation.

The sample used in this study was LaB6 (NIST 660c), as
specified by Black et al. (2020). The peak parameters of the
LaB6 standard were determined using XRDanalysis 1.2, soft-
ware that we co-developed (Wiessner et al., 2023) . The
following parameters were extracted: peak position (2θ),
FWHM , left and right half-width at half maximum (Left
HWHM and Right HWHM), the Cauchy-like part (1–η), and
the asymmetry parameter (a).

The peak area takes into account the combined contribu-
tions of the Kα 1 and Kα 2 components. The peak height is
measured at the position corresponding to the Kα1 peak, and

Figure 4. Asymmetric Pseudo-Voigt-like profiles with σp = 0.42466, γp = 0.5, μ = 0 for different asymmetry parameters a, where for a = 0.0 the profile is the
symmetric Pseudo-Voigt profile. The figure also shows profiles for different values of η: η = 0.0 (Cauchy-like), η = 0.5, and η = 1.0 (Gaussian-like).

Figure 5. Convolution between symmetrical Pseudo-Voigt and
asymmetrical Pseudo-Voigt-like peaks, each having an area equal to one.
(Peak 1: area p1 = 1.0, σ p1 = 0.425, γ p1 = 0.5, i.e. f p1 = 1.0, Cauchy part
1–η p1 = 1.0, a p1 = 0.0; Peak 2: area p2 = 1.0, σ p2 = 0.425, γ p2 = 0.5,
i.e. f p2 = 1.0, Cauchy-like part 1–η p2 = 1.0, a p2 = 1.0).
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represents the sum of the intensities of both Kα 1 and Kα 2

components at this position. Further details are provided in
the following section.

B. Peak profile analysis of Lanthanhexaboride

(NIST 660c)

Instrumental broadening is caused by the limitations of the
diffractometer itself, including the axial divergence. The axial
divergence function is determined by the geometrical dimen-
sions of the diffractometer system, such as the axial lengths of
the X-ray source, sample, and receiving slit, as well as the angu-
lar apertures of the incident and diffracted Soller slits. More
information can be found in Cheary and Coelho (1998) . If the
divergence of the beam is high, it causes asymmetric instrumen-
tal broadening of the diffraction peaks. The work (Cheary and
Coelho, 1998) describes how the diffractometer design and the
extent of the axial divergence influence the shape of the axial
divergence aberration function. However, it is important to
note that reducing the divergence of the beam reduces the inten-
sity of the diffraction pattern, so trade-offs may need to be made
depending on the specific needs of the experiment.

In this section, we analyze the diffraction peaks of LaB6

(NIST 660c) powder measured by the XRDynamic 500
diffractometer.

For the analyses, both symmetric and asymmetric
Pseudo-Voigt functions are used. The Cauchy-like component
(1–η) and the Gaussian-like component (η) are defined by the
parameter η, which ranges between 0 and 1. In the case of
asymmetry, no constraints are imposed on the asymmetry
term a during the optimization.

In the first part, symmetrical Pseudo-Voigts are used to
model the measurement. The background is represented by
Chebyshev polynomials. The residuals, or differences between
the model and the measured data, are also plotted. The plot of
the residuals allows us to assess the quality of the fit between

Figure 6. Asymmetric peak fits using asymmetric Pseudo-Voigt-like profiles (red) for the convoluted curves (black) from Figure 5 and three other representative
examples. The difference between the fitted and convoluted peaks is shown in blue.

TABLE I. Optimized fitting parameters for approximating convoluted peaks
using asymmetric Pseudo-Voigt-like profiles.

Description FWHM
1–η (Cauchy-like
component) a

Shift:
Δx

Variant 1:
Peak 1 1 1 0 0
Peak 2 1 1 1 0
Approximated
convolution

2.059 1 0.368 0.220

Variant 2:
Peak 1 0.2 0.5 0 0
Peak 2 1 0.5 1 0
Approximated
convolution

1.096 0.563 0.710 0.055

Variant 3:
Peak 1 1 0 0 0
Peak 2 0.2 0.5 1 0
Approximated
convolution

1.065 0.140 0.056 0.088

Variant 4:
Peak 1 1 0.5 −1 0
Peak 2 0.2 0 1 0
Approximated
convolution

1.047 0.496 −0.767 0.039

The table presents the parameters full width at half maximum (FWHM),
Cauchy-like component (1−η), asymmetry parameter (a), and peak shift
(Δx) for the convoluted curve from Figure 5 and three additional
representative examples.
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the measured data and the model. When the fit is good, the
residuals are small and randomly distributed around zero, indi-
cating that the model accurately describes the data.

1. Symmetric peak profile analysis of Lanthanhexaboride

(NIST 660c) using Pseudo-Voigt Profiles

In this section, the measured diffraction pattern of LaB6 is
analyzed using symmetric Pseudo-Voigt profiles. Figure 7
illustrates the measurement, simulated diffraction patterns,
and the residuals.

In the case of the symmetrical model, the fitting quality is
poor, and the residuals are conspicuously large and systemati-
cally distributed. This indicates that the peak model inade-
quately represents the measured data. Particularly, for low
2θ values, such as 2θ = 21.3° [see Figure 7(b)], the agreement
is unacceptably low for many applications.

The parameters of the modeled symmetric Pseudo-Voigt
peaks are summarized in Table II. One selected result from
Table II is now also presented graphically. The broadening
of the diffraction peaks, as a function of 2θ, is depicted in
Figure 8. This graphical representation offers a clear visualiza-
tion of the 2θ-dependent resolution of the diffractometer. It
reflects the instrument broadening in this study, assuming
that the peaks are symmetric, which is not the case.

2. Asymmetric peak profile analysis of

Lanthanhexaboride (NIST 660c) using

Pseudo-Voigt-like Profiles

To address the asymmetry in the diffraction peaks, we uti-
lize the asymmetric peak fitting model (asymmetric

Pseudo-Voigt-like profiles) described in Section III.A ,
which provides a more precise description of the peak
shape. The result of the fitting procedure is presented in
Figure 9.

As depicted in Figure 9, the application of an asymmetric
Pseudo-Voigt-like profile model for XRD peak broadening, as
shown, demonstrates strong agreement with the measured
data. This is demonstrated by the small residuals and the visu-
ally good fit between the measured data and the model. The
observed agreement between the model and data suggests
that the asymmetric peak model is a reliable representation
of this measurement. The parameters of the modeled peaks
are summariz ed in Table III.

The broadening of the diffraction peaks, as a function of
2θ, is depicted in Figure 10. This representation allows a
clear visualisation of the 2θ dependent resolution of the
diffractometer for the used instrument settings in this
study. The 2θ dependent behavior can be simulated using
a polynomial fit, for example, a third-order polynomial

Figure 7. Measured LaB6 powder (black curve (NIST 660c)) by a
XRDynamic 500 from Anton Paar using a Cu Kα emission profile. The
simulated diffractogram is represented by a symmetric peak fit model (red
curve). The difference between the model and the measurement is in blue.
In Figures 7(b) and 7(c) , we see two sections of Figure 7(a), where
Figure 7(b) contains one diffraction peak with hkl = (1 0 0) and Figure 7(c)
contains one diffraction peak with hkl = (2 2 1).

TABLE II. Table of symmetric diffraction peaks using symmetric
Pseudo-Voigt profiles for LaB6.

2θ (°) FWHM (°) η (rel.) Height (cts.) Area (cts.⋅°)

21.353 0.031 0.931 63 756 4365
30.381 0.033 0.792 102 827 7166
37.440 0.044 0.417 36 101 2869
43.506 0.033 0.855 21 675 1567
48.958 0.035 0.847 47 107 3594
53.990 0.038 0.819 24 022 1923
63.219 0.041 0.866 7927 701.1
67.548 0.041 0.908 22 075 2021
71.746 0.042 0.961 15 009 1422
75.844 0.043 0.971 9590 943.4
79.869 0.051 0.710 1502 155.0
83.845 0.053 0.831 5211 589.7
87.791 0.054 0.877 5212 1235
95.669 0.055 1.000 1712 216.8
99.639 0.059 0.991 8005 1099
103.658 0.062 1.000 6426 929.6
107.746 0.070 0.908 2576 399.7
111.931 0.071 0.988 3588 586.8
116.242 0.075 1.000 7447 1298
120.719 0.083 0.976 3491 661.9

Figure 8. Full width at half maximum (FWHM) of the LaB6 diffraction
peaks using symmetric Pseudo-Voigt profiles (blue crosses).
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(2θ in deg):

FWHM = 4.9278 · 10−8 · (2u)3 − 3.9390 · 10−6 · (2u)2
+ 2.2250 · 10−4 · 2u+ 2.831 · 10−2

(16)

This polynomial fit is also presented in Figure 10.
The 2θ dependent asymmetry a of the diffraction peaks is

shown in Figure 11 . This asymmetry is primarily caused by

axial divergence. To model this effect, it can be approximated
using a polynomial fit, specifically a fourth-order polynomial
(with 2θ in degrees, Eq. 17):

a = −2.4523 · 10−8 · (2u)4 + 8.0699 · 10−6 · (2u)3
− 9.7554 · 10−4 · (2u)2 + 5.2716 · 10−2 · 2u
− 1.0673+ 5.2716 · 10−2 · 2u− 1.0673

(17)

Additionally, the parameter 1–η, which indicates the pro-
portion of the Cauchy component, is shown in Figure 12. The
dominant component in Figure 12 is the Cauchy component.
As described in section III.E.3 , the emission profile is mod-
eled using a Cauchy profile. For the selected diffractometer
settings (e.g., slit system), the resulting instrumental function,
represented as a convolution, is dominated by the Cauchy part.

The error bars in Figure 12 are roughly approximated
from the fluctuations in the data points. Additionally, the con-
straints that η lies between 0 and 1 are considered in the error
bar estimation.

The simplest model to describe 1–η (Cauchy- like compo-
nent) across the entire 2θ range is to use a constant value (mean
value), 1–η = 0.938. This approach is justified because this param-
eter has only a minor influence during the convolution with peak
broadening. Moreover, 1–η = 0.938 is within the error bars.

3. Comparison symmetric and asymmetric peak profile

analysis of Lanthanhexaboride (NIST 660c) using

Pseudo-Voigt and Pseudo-Voigt-like profiles

In addition to the model parameters, it is also useful to
consider other goodness-of-fit measures as the residua, such
as the R-values (Toby, 2006), in order to assess the overall
quality of the fitted model. The values are presented and sum-
marized in Table IV :

For simulation using asymmetry peaks, χ is found to be
1.64 for the asymmetrical analysis which substantially
exceeds the theoretical limit of 1.0.

Figure 9. Measured LaB6 powder (black curve (NIST 660c) by a
XRDynamic 500 from Anton Paar using a Cu Kα emission profile. The
simulated diffractogram is represented by an asymmetric Pseudo-Voigt-like
fit model (red curve). The difference between model and measurement
(residuals) is in blue. In Figures 9(b) and 9(c) , we see two sections of
Figure 9(a), where Figure 9(b) contains one diffraction peak with hkl
= (1 0 0) and Figure 9(c) contains one diffraction peak with hkl = (2 2 1).

TABLE III. Table of asymmetric diffraction peaks using asymmetric Pseudo-Voigt-like profiles for LaB6.

2θ (°) a (rel.) FWHM (°) Left HWHM (°) Right HWHM (°) η (rel.) Height (cts.) Area (cts.⋅°)

21.356 −0.310 0.033 0.020 0.013 0.895 63 186 4388
30.384 −0.186 0.030 0.017 0.013 1.000 104 232 7103
37.441 −0.049 0.033 0.017 0.016 0.826 43 820 3108
43.507 −0.037 0.033 0.017 0.016 0.857 21 673 1551
48.958 −0.025 0.035 0.018 0.017 0.850 47 109 3551
53.990 −0.012 0.037 0.019 0.018 0.834 24 022 1915
63.219 0.003 0.040 0.020 0.020 0.861 7927 699.9
67.548 0.001 0.040 0.020 0.020 0.913 22 076 2020
71.745 0.010 0.042 0.021 0.021 0.963 15 010 1415
75.843 0.023 0.043 0.021 0.022 0.985 9589.9 938.7
79.867 0.089 0.049 0.023 0.026 0.814 1502 156.9
83.844 0.063 0.048 0.023 0.025 0.974 5418 593.6
87.790 0.025 0.050 0.024 0.026 0.997 10 783 1239
95.667 0.072 0.055 0.026 0.029 1.000 1712 215.6
99.639 0.030 0.059 0.029 0.030 1.000 8007 1093
103.656 0.063 0.064 0.031 0.034 1.000 6167 915.9
107.744 0.088 0.067 0.032 0.036 0.998 2569 398.5
111.929 0.085 0.074 0.035 0.039 0.990 3437 580.6
116.239 0.074 0.078 0.037 0.041 1.000 7077 1278
120.717 0.071 0.085 0.040 0.045 0.995 3364 656.0
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C. Size-strain analysis of standard reference material

“ZnO 60nm” from NIST 1979

In this chapter, asymmetric Pseudo-Voigt-like peaks are
utilized for two specific examples. The first example uses
these asymmetric peaks to determine peak positions and
peak areas, which are then employed for qualitative phase
analysis. In this case, the peak broadening effects caused by
the diffractometer itself are not directly considered. The sec-
ond example involves a size-strain analysis, where the peak
broadening due to the diffractometer must be accounted for
to obtain accurate values. The influence of the instrumental
broadening is described in chapter IV.2.2 and considered for
the size-strain analysis.

In the first example, the qualitative analysis is demon-
strated in the following subchapter.

1. Qualitative analysis of “ZnO 60nm” from NIST 1979

For qualitative analysis, it is sufficient to use asymmetric
Pseudo- Voigt-like profiles for direct fitting to the powder pat-
tern of the sample under investigation. Peak areas and posi-
tions can be determined from these fits. However, it must be

noted, as demonstrated in s ection III.E.3 (convolution of
the showcased profiles with symmetric versions), that peak
positions may undergo slight shifts. In section III.E.3 , it is
shown that this effect can be of magnitude 20% of the
FWHM of the asymmetric peak broadening of the diffractom-
eter, for a = 1. This means that for a typical instrument broad-
ening of FWHM = 0.1° in 2θ and a strong asymmetry (a = 1), a
peak shift of 0.02° can be expected. Typical matching algo-
rithms that search for possible candidates in databases e.g.,
in the Powder Diffraction File from ICSD (Gates-Rector and
Blanton, 2019) handle this well. One qualitative phase analy-
sis result of “ZnO 60nm”, generated with XRDanalysis 1.2, is
depicted in Figure 13.

For the next example in the next section, however, deter-
mining the instrumental broadening is mandatory.

2. Size-strain analysis of “ZnO 60nm” from NIST 1979

This section demonstrates the process of performing a
size-strain analysis on the reference material ZnO from
NIST 1979, which has a nominal particle size of 60 nm.
The results obtained from this analysis are then compared
with those reported in the literature (Cline et al., 2020).

The diffractometer configuration used here is identical to
that for the LaB6 example in s ection IV.B . The LaB6 (NIST
660c) sample used was practically defect-free, so the observed
broadening is attributed solely to instrumental effects. It’s
important to note that peak broadening data – specifically,
these asymmetric Pseudo-Voigt profiles – are only available
at the 2θ positions corresponding to the diffraction peaks of
LaB6. Therefore, the interpolation method described in section

Figure 11. Asymmetric parameter a of the LaB6 diffraction peaks using
asymmetric Pseudo-Voigt-like profiles (blue crosses). The polynomial fit for
a, as described in Eq. (17), is shown by red points.

Figure 10. Full width at half maximum (FWHM) of the LaB6 diffraction
peaks, fitting using asymmetric Pseudo-Voigt-like profiles (blue crosses).
The polynomial fit for FWHM, as described in Eq. (16) is represented by
red points.

TABLE IV. R-values for symmetric and asymmetric peaks.

Symmetric case Asymmetric case

Rp (%) 5.44 4.24
Rwp (%) 7.51 5.60
Rexp (%) 3.41 3.41
χ (rel.) 2.20 1.64

Figure 12. Cauchy component (1–η) and its associated error bars for the
LaB6 diffraction peaks, fitted using asymmetric Pseudo-Voigt-like profiles
(with blue crosses representing the data points and lines indicating the
estimated standard errors). The mean value for (1–η) is indicated by red points.
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IV.B (polynomial fits) is used to estimate the relevant instru-
mental broadening across the entire measurement range.

Lattice strain and size effects induce peak broadening,
which is described by symmetric Pseudo-Voigt functions.
As previously described, the total broadening can be repre-
sented as a convolution of the instrumental broadening, mod-
eled by asymmetric Pseudo-Voigt functions, with symmetric
Pseudo-Voigt functions whose width depends on lattice strain
and size effects. The following approach was used to deter-
mine the sample-dependent peak broadening:

The sum of squared errors is used as a metric to assess the
deviation between the measured and simulated diffractogram.
Using XRDanalysis 1.2, the background of the ZnO diffracto-
gram was determined, described by Chebyshev polynomials,
and subtracted from the measurement.

In the second step, initial values for the sample-dependent
Pseudo-Voigt functions were determined. For this, FWHM,
1–η (Cauchy component), peak positions 2θ, and peak areas
A were obtained using the peak search algorithm of
XRDanalysis 1.2.

Figure 13. Result of the qualitative phase analysis by using XRDanalysis 1.2 (2023) with PDF-4 Axiom 2024 from ICSD (Gates-Rector and Blanton, 2019), for
ZnO.

Figure 14. Optimized peak fitting results for ZnO at three different 2θ positions (31.763°, 67.938°, and 121.545°). The top section illustrates the two convoluted
components contributing to the overall peak profile: the instrument-dependent asymmetric broadening (Kα 1 and Kα 2 components shown in magenta) and the
sample-dependent broadening (green), illustrating the contributions from both the instrument and the sample to the overall peak profile.

12 Powder Diffr., 2024 Gutierrez and Wiessner 12

https://doi.org/10.1017/S0885715624000587 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715624000587


In the third step, the symmetric Pseudo-Voigt parameters
are optimi zed using the Optimization Toolbox from Matlab
2023b (The MathWorks Inc., 2023). The optimizer adjusts
the symmetric Pseudo-Voigt parameters that are influenced
by size and strain effects. The resulting Pseudo-Voigt func-
tions are then convoluted with the instrument-dependent
asymmetric Pseudo-Voigt-like function. As a result, the
optimized sample-dependent Pseudo-Voigt parameters are
obtained.

Some results after the optimization are shown in Figure 14
for three peaks at 2θ = 31.763°, 67.938°, and 121.545°. The
figure is divided into three sections.

In the upper section, the two convoluted components are
presented, specifically the instrument-dependent asymmetric
broadening (consisting of two components – Kα 1 and Kα2)
and the sample-dependent contribution.

In the middle section, the measured peak and the simu-
lated peak are displayed.

In the lower section, the residuals between the measure-
ment and simulation are shown to assess the fit.

The middle section compares the measured diffraction
peaks (black) with the simulated peaks (red) after
optimization.

The bottom section displays the residuals (i.e., the differ-
ences between the measured and simulated peaks), providing
an assessment of the fit quality.

To compare the results with the literature (Cline et al.,
2020), the FWHM is converted into an integral breadth IB.
In this transformation, the Pseudo-Voigt function corresponds
to a rectangle with the same height and area as the
Pseudo-Voigt function. The width of the rectangle aligns
with IB. All determined values for the evaluation are presented
in Table V . In the size-strain analysis conducted here, instead
of the FWHM, IB is multiplied by cos(θ) and compared with
4sin(θ) – see Figure 15.

Now, a linear fit, including error propagation (one sigma)
using the formula from Wolberg (2006), is applied to the 23
data points in Figure 15 to determine the strain component
from the slope and the size component from the y-intercept
(e.g., Zak et al., 2011). Starting with the optimal linear fit,
the sum of squared residuals is SSR = 2.3558× 10−6.

The estimated variance s is calculated as:

s = 2.3558× 10−6

23− 1
= 1.12183× 10−7

The y-intercept is 0.00126 ± 0.00025 and the estimated
slope is 0.000294 ± 0.000095.

According to Cline et al. (2020), the volume-weighted
domain size L vol is calculated using the wavelength λ and
the intercept from the Williamson– Hall plot, substituting
the IB for FWHM:

Lvol = l

intercept

In this analysis, the volume-weighted L vol is calculated as
L Vol = 0.154059 nm/1.26⋅10-3≈ (122 ± 24) nm. The

error is approximated by

122 nm
0.00025
0.00126

= 24 nm

This value is in good agreement with those reported by
Cline et al. (2020), who found L vol = (138.9 ± 0.6) nm using
a high-resolution powder diffractometer at the 11-BM beam-
line at the Advanced Photon Source, and L vol = (128.3 ±
25) nm using a Siemens D500 diffractometer equipped with
a Johansson Ge 111 IBM, sample spinner, and scintillation
detector with Cu Kα 1 radiation.

V. CONCLUSIONS

In this study, we developed a general method to construct
asymmetric peaks. One of the main qualities of the construc-
tion method is that the magnitude and position of the global
maximum of the constructed peaks are independent of the
asymmetry parameter (see Propositions 2 and 3). With this

TABLE V. Peak analysis of NIST 1979 “ZnO 60nm” for the Williamson–
Hall analysis.

2θ (°) FWHM (°) η (rel.) IB (°)

31.763 0.0573 0.818 0.0828
34.415 0.0584 0.940 0.0892
36.247 0.0635 0.877 0.0942
47.532 0.0819 0.956 0.1260
56.588 0.0697 0.803 0.1001
62.848 0.0861 0.918 0.1301
66.366 0.0833 1.000 0.1308
67.938 0.0767 1.000 0.1205
69.075 0.0934 1.000 0.1467
72.552 0.0938 1.000 0.1473
76.948 0.0938 1.000 0.1473
81.374 0.1276 1.000 0.2004
89.597 0.1042 0.959 0.1605
92.777 0.1103 1.000 0.1733
95.290 0.1046 0.928 0.1589
98.598 0.1075 1.000 0.1689
102.916 0.1361 1.000 0.2138
104.113 0.1359 1.000 0.2135
107.416 0.1950 1.000 0.3063
110.368 0.1137 0.984 0.1772
116.254 0.1370 0.960 0.2112
121.544 0.1329 0.990 0.2078
125.126 0.1933 1.000 0.3036

Figure 15. Williamson– Hall Plot using integral breadth IB instead of
FWHM for NIST 1979 “ZnO 60nm”. The determined intercept corresponds
to 1.256 ⋅ 10−3.
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method, we create an asymmetric Pseudo-Voigt-like profile
[see Eq. (8)].

We fit real diffraction data measured on LaB6 (NIST 660c)
and ZnO 60 nm (NIST 1979) using an Anton Paar XRDynamic
500 diffractometer (Austria), with Cu Kα radiation.

The setup included a goniometer with a 400 mm radius, a
Pixos 2000 solid-state hybrid detector, and a primary diver-
gence slit set to 0.25°. See s ubsection IV .A for details on
the diffractometer setup.

Additionally, we fit real data LaB6 powder, see s ubsec-
tion IV.B with the classic symmetric Pseudo-Voigt profile
[see Eq. (3)] and the asymmetric Pseudo-Voigt-like profile
(see Figures 7 and 9). The quality of the fit was prominently
better for the asymmetric function than for the symmetric
function in the presented example. The Pseudo-Voigt-like pro-
file is constructed with elementary functions, which facilitates
the extraction of further mathematical properties of it (e.g.
area, FWHM, convolutions) from which further physical
information can be extracted. It must also be mentioned that
the areas and FWHMs of the constructed profiles depend on
the asymmetry parameter up to 10%, but they can be effi-
ciently and accurately calculated using numeric methods.

In the end of this work, the asymmetric Pseudo-Voigt pro-
file was still used in practical examples.

The asymmetric Pseudo-Voigt profile was commonly
used in practical cases:

In s ection IV.B , the 2θ-dependent instrumental broaden-
ing was determined using a nearly defect-free NIST660c
(LaB6) standard.

In s ection IV.C.1 , NIST 1979 (“ZnO 60nm”) was qual-
itatively analyz ed using the XRDanalysis 1.2 software pack-
age, in conjunction with the PDF database from the ICDD.

Peak positions and peak areas are determined using asym-
metric pseudo-Voigt profiles. However, instrumental broaden-
ing was not considered in this case.

In s ection IV.C.2 , the instrumental broadening charac-
teriz ed in s ection IV.B was analyzed using asymmetric
Pseudo-Voigt profiles.

For the size-strain analysis, this was convoluted with sym-
metric Pseudo-Voigt profiles resulting from phase defects.
Through inverse modeling, the 2Theta-dependent peak broad-
ening was determined. A comparison with the volume-
weighted domain size demonstrates good agreement with
the findings of NIST.

In these three examples, it is demonstrated that the pre-
sented asymmetric Pseudo-Voigt profiles are practical and
effective. Through their application, accurate characterizations
of various materials and phenomena were achieved, showcas-
ing their utility and reliability in real-world scenarios.

To provide an outlook: the Voigt profile, which is often
approximated by a Pseudo-Voigt function, is widely employed
to represent spectral line shapes in various fields of physics,
including astrophysics, atmospheric spectroscopy, and plasma
physics (Sampoorna et al., 2007). The method described can
be applied in scenarios where peaks exhibit asymmetric behav-
ior, and the function can be replaced by asymmetric
Pseudo-Voigt-like functions, which are presented in this work.
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