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Stringy Hodge numbers and p-adic Hodge theory

Tetsushi Ito

Abstract

The aim of this paper is to give an application of p-adic Hodge theory to stringy Hodge
numbers introduced by V. Batyrev for a mathematical formulation of mirror symmetry.
Since the stringy Hodge numbers of an algebraic variety are defined by choosing a resolu-
tion of singularities, the well-definedness is not clear from the definition. We give a proof
of the well-definedness by using arithmetic techniques such as p-adic integration and
p-adic Hodge theory. Note that another proof of the well-definedness was obtained by
V. Batyrev himself by motivic integration.

1. Introduction

Let X be an irreducible normal algebraic variety over C with at worst log-terminal singularities.
Let ρ : Y → X be a resolution of singularities such that the exceptional divisor Exc(ρ) is a normal
crossing divisor whose irreducible components D1, . . . ,Dr are smooth. Let KY = ρ∗KX +

∑r
i=1 aiDi

with ai ∈ Q, ai > −1, I := {1, . . . , r}, D◦
J :=

(⋂
j∈J Dj

)\( ⋃
j∈I\J Dj

)
for a nonempty subset J ⊂ I,

and D◦
∅ := Y \Exc(ρ). We define the stringy E-function Est(X;u, v) of X by the formula

Est(X;u, v) :=
∑
J⊂I

E(D◦
J ;u, v)

∏
j∈J

uv − 1
(uv)aj+1 − 1

,

where E(D◦
J ;u, v) :=

∑
k(−1)k

∑
i,j hi,j(GrW

i+j Hk
c (D◦

J , Q))uivj is the generating function of the
Hodge numbers of D◦

J (for details, see § 2). The aim of this paper is to give an alternative proof of
the following theorem by using arithmetic techniques such as p-adic integration and p-adic Hodge
theory.

Theorem 1.1 [Bat98, Theorem 3.4]. The stringy E-function Est(X;u, v) defined as above is inde-
pendent of the choice of a resolution of singularities ρ : Y → X.

Assume that Est(X;u, v) is a polynomial in u, v. We define the stringy Hodge numbers hi,j
st (X)

of X by the formula

Est(X;u, v) =
∑
i,j

(−1)i+j hi,j
st (X)uivj .

Therefore, by Theorem 1.1, we establish the well-definedness of stringy Hodge numbers (also see
[Bat98]).

Here we briefly recall a motivation of stringy Hodge numbers. A mathematical formulation of
mirror symmetry predicts a symmetry between Hodge numbers of mirror varieties [Bat98, Mor99].
However, some examples discovered by physicists show that the mirror of a smooth variety is
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not necessarily smooth. In some cases, usual Hodge theory does not work well. To overcome this
difficulty, Batyrev introduced stringy Hodge numbers as above [Bat98]. Note that, for proper smooth
varieties, stringy Hodge numbers coincide with usual Hodge numbers (Corollary 2.7). Today, several
examples of stringy Hodge numbers are computed from the viewpoint of mirror symmetry [BB96,
BD96, BM01].

There is an interesting history about the proofs of Theorem 1.1. First of all, Batyrev proved that
birational Calabi–Yau manifolds have equal Betti numbers by using arithmetic techniques such as
p-adic integration and the Weil conjecture [Bat99]. Batyrev’s method was generalized to birational
smooth minimal models by Wang [Wan98]. The author obtained the equality of Hodge numbers by
using p-adic Hodge theory [It01, It03]. Wang informed the author that he also obtained the same
result independently [Wan2a, Wan2b]. On the other hand, in order to generalize Batyrev’s work on
Betti numbers to Hodge numbers, M. Kontsevich (in a lecture at Orsay on 7 December 1995) and
Denef and Loeser [DL99] developed the theory of motivic integration, which is a geometric analogue
of p-adic integration. Then, Batyrev introduced stringy Hodge numbers and proved Theorem 1.1
by using motivic integration [Bat98]. In this paper, we give an alternative proof of Theorem 1.1 by
using arithmetic techniques such as p-adic integration and p-adic Hodge theory. In some sense, this
paper goes back to Batyrev’s original arithmetic approach to Theorem 1.1 by using p-adic Hodge
theory.

It is worth mentioning that Theorem 1.1 has nontrivial applications to birational geometry.
Firstly, for an algebraic variety X over C with a crepant resolution ρ : Y → X, the Hodge numbers of
Y are independent of the choice of crepant resolution ρ : Y → X (Corollary 2.8). This is an important
fact in the study of McKay correspondences in higher dimensions [BD96]. Secondly, birational
smooth minimal models (e.g. Calabi–Yau manifolds) have equal Hodge numbers (Corollary 2.9).
Note that, in dimension �3, this can also be proved by the minimal model program [KMM85,
Kaw88, Kol89]. Recently, a new proof valid in any dimension was given by the weak factorization
theorem of birational maps [AKMW02, Vey01, Vey03].

This work is a continuation of the author’s previous works [It01, It03]. Here we note the new
ingredients of this paper. Basically, the main ideas are the same as before. However, to treat stringy
Hodge numbers rather than usual Hodge numbers, we calculate some p-adic integration explicitly
(Proposition 3.4). Furthermore, to treat combinations of cohomology groups of open varieties, we
generalize arithmetic techniques to open varieties by a method of Deligne [Del71a, Del71b] and work
on the level of a Grothendieck group of Galois representations rather than individual cohomology
groups (see § 5).

2. Stringy Hodge numbers

In this section, we recall the definition of stringy E-functions and stringy Hodge numbers as in
[Bat98].

For an algebraic variety X over C, the cohomology groups with compact support Hk
c (X, Q)

have canonical mixed Hodge structures by Deligne [Del71b, Del74b]. Let W be the weight filtration
on Hk

c (X, Q). Each graded quotient GrW
l Hk

c (X, Q) has a pure Hodge structure of weight l. Let
hi,j(GrW

i+j Hk
c (X, Q)) be the dimension of the (i, j)th Hodge component of GrW

i+j Hk
c (X, Q) for each

i, j.

Definition 2.1. We define the E-function of X as follows:

E(X;u, v) :=
∑

k

(−1)k
∑
i,j

hi,j(GrW
i+j Hk

c (X, Q))uivj .
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For a proper smooth variety X over C,

E(X;u, v) =
∑
i,j

(−1)i+jhi,j(X)uivj ,

where hi,j(X) := dim Hj(X,Ωi
X) are the Hodge numbers of X as usual.

Remark 2.2. The E-function satisfies the following properties:

1) for Z ⊂ X, we have E(X;u, v) = E(X\Z;u, v) + E(Z;u, v);
2) for X,Y , we have E(X × Y ;u, v) = E(X;u, v) ·E(Y ;u, v).

These two properties imply that it is natural to consider the E-function as a ring homomorphism
from a Grothendieck group of algebraic varieties over C to Z[u, v] [DL98, DL99, DL01].

Let X be an irreducible normal algebraic variety over C, and ρ : Y → X be a resolution of
singularities such that the exceptional divisor Exc(ρ) is a simple normal crossing divisor (SNCD).
Recall that a normal crossing divisor (NCD) is simple if its irreducible components are smooth.
Let the irreducible components of Exc(ρ) be D1, . . . ,Dr.

Definition 2.3 [Bat98, Definition 2.2]. The variety X is said to have at worst log-terminal singu-
larities if the following conditions are satisfied:

1) the canonical divisor KX is a Q-Cartier divisor (i.e. X is Q-Gorenstein);
2) we have

KY = ρ∗KX +
r∑

i=1

aiDi (ai ∈ Q),

with ai > −1 (note that this condition is independent of the choice of resolution ρ : Y → X).

Let X,Y be as above and X have at worst log-terminal singularities. Let I := {1, . . . , r}. For any
subset J ⊂ I, we set

DJ :=


⋂
j∈J

Dj J �= ∅,

Y J = ∅,
D◦

J := DJ

∖ ⋃
j∈I\J

Dj .

Definition 2.4 [Bat98, Definition 3.1]. We define the stringy E-function of X as follows:

Est(X;u, v) :=
∑
J⊂I

E(D◦
J ;u, v)

∏
j∈J

uv − 1
(uv)aj+1 − 1

,

where E(D◦
J ;u, v) is the E-function of a smooth variety D◦

J defined at the beginning of this section.

Remark 2.5. Since X has at worst log-terminal singularities, ai + 1 > 0 and hence the denominator
of Est(X;u, v) does not vanish (also see Remark 3.7). In general, Est(X;u, v) is an element of
Q(u1/d, v1/d) ∩ Z[[u1/d, v1/d]], where d is the least common multiplier of the denominators of ai.

Definition 2.6. Assume that Est(X;u, v) is a polynomial in u, v. Then we define the stringy Hodge
numbers hi,j

st (X) of X by the formula

Est(X;u, v) =
∑
i,j

(−1)i+j hi,j
st (X)uivj .

Theorem 1.1 claims that Est(X;u, v) is independent of the choice of resolution ρ : Y → X.
Once we know the well-definedness, we can prove some fundamental properties of Est(X;u, v) as
in [Bat98].

Here we list some immediate corollaries of Theorem 1.1.
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Corollary 2.7 [Bat98, Corollary 3.6]. If X is smooth, then we have Est(X;u, v) = E(X;u, v).

Proof. This is clear because the identity map id : X → X is a resolution of singularities.

Corollary 2.8 [Bat98, Theorem 3.12]. Let X be a projective algebraic variety over C which has
a crepant resolution ρ : Y → X (i.e. ρ : Y → X is a resolution of singularities with ρ∗KX = KY ).
Then the stringy Hodge numbers of X are equal to the Hodge numbers of Y :

hi,j
st (X) = hi,j(Y ) for all i, j.

In particular, the Hodge numbers of Y are independent of the choice of crepant resolution ρ : Y →X.
Moreover, we can compute the Hodge numbers of a crepant resolution of X via any resolution of
singularities which is not necessarily crepant.

Proof. This is clear because we have Est(X;u, v) = E(Y ;u, v) by Definition 2.4.

Corollary 2.9 [Bat99, Bat98, Vey01, Vey03, Wan98, Wan2a, Wan2b, It01, It03]. Let X,Y be
projective smooth algebraic varieties over C whose canonical bundles are NEF (i.e. X,Y are minimal
models). Assume that X,Y are birational. Then X,Y have equal Hodge numbers:

hi,j(X) = hi,j(Y ) for all i, j.

Proof. Let f : X ��� Y be a birational map. Then we can find a projective smooth algebraic variety
Z over C and birational morphisms g : Z → X, h : Z → Y such that f ◦ g = h as birational maps
and g∗KX = h∗KY .

Z
g

����
��

��
�

h

���
��

��
��

X
f ��������� Y

This is a standard fact in birational geometry (for example, see [It03, Proposition 2.1]). We consider
g : Z → X (respectively h : Z → Y ) as a resolution of singularities of X (respectively Y ) and
calculate the stringy Hodge numbers of X (respectively Y ). Since g∗KX = h∗KY , we have

E(X;u, v) = Est(X;u, v) = Est(Y ;u, v) = E(Y ;u, v).

Hence we have the equality of the Hodge numbers of X,Y .

3. p-adic integration

In this section, we recall Weil’s p-adic integration developed in [Wei82] which is an important tool
to count the number of rational points valued in a finite field.

3.1 Setup
Let p be a prime number and Qp be the field of p-adic numbers. Let F be a finite extension of Qp,
R ⊂ F be the ring of integers in F , m ⊂ R be the maximal ideal of R, and Fq = R/m be the residue
field of F with q elements, where q is a power of p. For an element x ∈ F , we define the p-adic
absolute value |x|p by

|x|p :=

{
q−v(x) x �= 0,
0 x = 0,

where v : F× → Z is the normalized discrete valuation of F .
Let X be a smooth scheme over R of relative dimension n. We can compute the number of Fq-

rational points |X(Fq)| by integrating a certain p-adic measure on the set of R-rational points X(R).
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We note that X(R) is a compact and totally disconnected topological space with respect to its p-adic
topology.

3.2 p-adic integration of regular n-forms

Let ω ∈ Γ(X,Ωn
X/R) be a regular n-form on X, where Ωn

X/R is the relative canonical bundle of X/R.
We shall define the p-adic integration of ω on X(R) as follows. Let s ∈ X(R) be an R-rational point.
Let U ⊂ X(R) be a sufficiently small p-adic open neighborhood of s on which there exists a system
of local p-adic coordinates {x1, . . . , xn}. Then {x1, . . . , xn} defines a p-adic analytic map

x = (x1, . . . , xn) : U −→ Rn,

which is a homeomorphism between U and a p-adic open set V of Rn. By using the above coordinates,
ω is written as

ω = f(x) dx1 ∧ · · · ∧ dxn.

We consider f(x) as a p-adic analytic function on V . Then we define the p-adic integration of ω on
U by the equation ∫

U
|ω|p :=

∫
V
|f(x)|p dx1 · · · dxn,

where |f(x)|p is the p-adic absolute value of the value of f at x ∈ V and dx1 · · · dxn is the Haar
measure on Rn normalized by the condition∫

Rn

dx1 · · · dxn = 1.

By patching them, we get the p-adic integration of ω on X(R):∫
X(R)
|ω|p.

3.3 p-adic integration of gauge forms

By definition, a gauge form ω on X is a nowhere vanishing global section ω ∈ Γ(X,Ωn
X/R). The most

important property of p-adic integration is that the p-adic integration of a gauge form computes
the number of Fq-rational points.

Proposition 3.1 [Wei82, 2.2.5]. Let X be a smooth scheme over R of relative dimension n and ω
be a gauge form on X. Then ∫

X(R)
|ω|p =

|X(Fq)|
qn

.

Proof. Let

ϕ : X(R) −→ X(Fq)

be the reduction map. For x̄ ∈ X(Fq), ϕ−1(x̄) is a p-adic open set of X(R). Therefore, it is enough
to show ∫

ϕ−1(x̄)
|ω|p =

1
qn

.

Let {x1, . . . , xn} ⊂ OX,x̄ be a regular system of parameters at x̄. Then {x1, . . . , xn} defines a system
of local p-adic coordinates on ϕ−1(x̄) and

x = (x1, . . . , xn) : ϕ−1(x̄) −→ mn ⊂ Rn

1503

https://doi.org/10.1112/S0010437X04001095 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001095


T. Ito

is a p-adic analytic homeomorphism. Let ω be written as ω = f(x) dx1 ∧ · · · ∧ dxn. Since ω is a
gauge form, f(x) is a p-adic unit for all x ∈ ϕ−1(x̄). Therefore |f(x)|p = 1. Then we have∫

ϕ−1(x̄)
|ω|p =

∫
mn

dx1 · · · dxn =
1
qn

,

since mn is an index qn subgroup of Rn.

3.4 Computation of some p-adic integration
Since we treat stringy Hodge numbers rather than usual Hodge numbers in this paper, we need to
compute some p-adic integration slightly more general than Proposition 3.1.

Firstly, we generalize p-adic integration to an r-pluricanonical form with pole for r ∈ Z, r � 1
(see [Wan98]). An r-pluricanonical form on X is a section of (Ωn

X/R)⊗r over X. An r-pluricanonical
form with pole on X is a section of (Ωn

U/R)⊗r over U for some open subscheme U ⊂ X. Let ω be an
r-pluricanonical form with pole on X. As in the case of a regular n-form, locally in p-adic topology,
ω is written as

ω = f(x) (dx1 ∧ · · · ∧ dxn)⊗r

for a system of local p-adic coordinates {x1, . . . , xn}. Note that f(x) is a p-adic analytic function
with pole. Then we put ∫

U
|ω|1/r

p :=
∫

V
|f(x)|1/r

p dx1 · · · dxn,

where U, V are the same as in the case of a regular n-form, if the right-hand side converges. If the
above integral converges for each open neighborhood, by patching them, we get the p-adic integration
of an r-pluricanonical form with pole ω on X(R):∫

X(R)
|ω|1/r

p .

Note that, if ω has no pole, the above integral always converges.

Remark 3.2. For an r-pluricanonical form with pole ω, ω⊗s is an rs-pluricanonical form with pole.
If the p-adic integration of ω converges, then the p-adic integration of ω⊗s also converges and they
are equal: ∫

X(R)
|ω|1/r

p =
∫
X(R)
|ω⊗s|1/rs

p .

Before computing p-adic integration, we recall the notion of relative SNCD.

Definition 3.3. Let f : X → S be a proper smooth morphism of schemes and D =
∑r

i=1 aiDi

(ai ∈ Q, ai �= 0) be a Q-divisor on X. Let SuppD =
⋃r

i=1 Di be the support of D. Then, D is called
a relative SNCD (simple normal crossing divisor) on X/S if all Di are smooth over S and, for all
x ∈ SuppD, the completion of SuppD ↪→ X at x is isomorphic to

Spec(ÔS,f(x)[[x1, . . . , xd]]/(x1 · · · xs)) ↪→ Spec(ÔS,f(x)[[x1, . . . , xd]])

for some s (1 � s � d), where d is the relative dimension of f .

Note that ÔX,x is isomorphic to ÔS,f(x)[[x1, . . . , xd]] because f is smooth of relative dimension d.
In this case, for a nonempty subset J ⊂ {1, . . . , r}, ⋂

j∈J Dj is smooth of relative dimension d− |J |
over S.
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We shall compute some p-adic integration. Let X be a smooth scheme over R of relative
dimension n, and ω an r-pluricanonical form with pole on X. Assume that

div(ω) =
s∑

i=1

aiDi

is a relative SNCD on X/R. Let I := {1, . . . , s}. For any subset J ⊂ I, we set

DJ :=


⋂
j∈J

Dj J �= ∅,

X J = ∅,
D◦

J := DJ

∖ ⋃
j∈I\J

Dj .

Proposition 3.4. Let the notation be as above. If ai > −r for all i ∈ I, then the p-adic integration
of ω on X(R) converges, and we have the following equality:∫

X(R)
|ω|1/r

p =
1
qn

∑
J⊂I

|D◦
J(Fq)|

∏
j∈J

q − 1
q(aj/r)+1 − 1

.

If r = 1 and ω is a gauge form, Proposition 3.4 is nothing but Proposition 3.1.

Proof. The idea of the proof is the same as in Proposition 3.1. Let

ϕ : X(R) −→ X(Fq)

be the reduction map. For x̄ ∈ X(Fq), ϕ−1(x̄) is a p-adic open set of X(R). Therefore, it is enough
to show that ∫

ϕ−1(x̄)
|ω|1/r

p =
1
qn

∏
j∈I | x̄∈Dj(Fq)

q − 1
q(aj/r)+1 − 1

.

Let {j1, . . . , jk} = {j ∈ I | x̄ ∈ Dj(Fq)}. Let {x1, . . . , xn} ⊂ OX,x̄ be a regular system of parameters
at x̄ such that Dji is defined by xi = 0 at x̄ for all i = 1, . . . , k. Then {x1, . . . , xn} defines a system
of local p-adic coordinates on ϕ−1(x̄) and

x = (x1, . . . , xn) : ϕ−1(x̄) −→ mn ⊂ Rn

is a p-adic analytic homeomorphism. Here ω is written as

ω = f(x) · xaj1
1 · · · xajkk (dx1 ∧ · · · ∧ dxn)⊗r,

where f(x) is a p-adic unit for all x ∈ ϕ−1(x̄). Hence we have

|f(x) · xaj1
1 · · · xajkk |1/r

p = |x1|aj1
/r

p · · · |xk|ajk
/r

p ,

and ∫
ϕ−1(x̄)

|ω|1/r
p =

∫
mn

|x1|aj1
/r

p · · · |xk|ajk
/r

p dx1 · · · dxn

=
1

qn−k

(∫
mk

|x1|aj1
/r

p · · · |xk|ajk
/r

p dx1 · · · dxk

)
.

Therefore, it is enough to prove the following lemma.

Lemma 3.5. For k1, . . . , kn ∈ Q, ki > −1, the p-adic integration∫
mn

|x1|k1
p · · · |xn|kn

p dx1 · · · dxn

converges and is equal to

1
qn

n∏
i=1

q − 1
qki+1 − 1

.
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Proof. By iterated integration, we have∫
mn

|x1|k1
p · · · |xn|kn

p dx1 · · · dxn =
(∫

m
|x1|k1

p dx1

)
· · ·

(∫
m
|xn|kn

p dxn

)
.

Therefore, it is enough to prove ∫
m
|x|kp dx =

1
q
· q − 1
qk+1 − 1

for k ∈ Q, k > −1.
We compute the above integration by dividing m as a disjoint union of open subsets as follows:

m =
∞∐
i=1

mi\mi+1.

For x ∈ mi\mi+1, |x|kp = q−ki. The volume of mi is q−i with respect to the normalized Haar measure
on R since mi is an index qi subgroup of R. Therefore, we have∫

m
|x|kp dx =

∞∑
i=1

q−ik vol(mi\mi+1) =
∞∑
i=1

q−ik(q−i − q−(i+1))

= (1− q−1)
∞∑
i=1

(q−(k+1))i.

Since k > −1, this infinite sum converges to

(1− q−1) · q−(k+1)

1− q−(k+1)
=

1
q
· q − 1
qk+1 − 1

.

Hence we have proved Lemma 3.5, and the proof of Proposition 3.4 is complete.

Remark 3.6. A curious reader may notice the similarity between the expression in Proposition 3.4
and Definition 2.4. This is the starting point of our proof of Theorem 1.1. However, to recover
information of the Hodge numbers of an algebraic variety from the number of rational points valued
in finite fields, we need some deep arithmetic results as in §§ 4 and 5.

Remark 3.7. As we easily see in the proof of Lemma 3.5, the p-adic integration∫
mn

|x1|k1
p · · · |xn|kn

p dx1 · · · dxn

does not converge if ki � −1 for some i. This is the reason why we assume singularities are at worst
log-terminal in Theorem 1.1.

4. Local Galois representations

In this section, we recall some results on Galois representations over a p-adic field.

4.1 Setup

Let K be a number field. Let p be a maximal ideal of OK . Let Kp be a p-adic completion of
K, OKp the ring of integers of Kp, Fq = OK/p the residue field of Kp with q elements, and Kp
(respectively Fq) an algebraic closure of Kp (respectively Fq).

We have an exact sequence

0 �� IKp
�� Gal(Kp/Kp) �� Gal(Fq/Fq) �� 0,
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where IKp is called the inertia group at p. The group Gal(Fq/Fq) is topologically generated by
the qth power Frobenius automorphism x 	→ xq of Fq. The inverse of this automorphism is called
the geometric Frobenius element at p and is denoted by Frobp.

Let X be a proper smooth variety over Kp, l be a prime number, and k be an integer. Then
the absolute Galois group Gal(Kp/Kp) acts continuously on the l-adic étale cohomology group
Hk

ét(XKp
, Ql) of XKp

= X ⊗Kp Kp. In the following, we recall some results on this Gal(Kp/Kp)-
representation in two cases.

4.2 The Weil conjecture
Firstly, we assume that p does not divide l and there exists a proper smooth scheme X over OKp

such that X⊗OKp
Kp = X (X is called a proper smooth model of X over OKp).

In this case, the action of IKp on Hk
ét(XKp

, Ql) is trivial (i.e. the action of Gal(Kp/Kp) is
unramified) by the proper smooth base change theorem on étale cohomology. Therefore, the action
of Gal(Kp/Kp) is determined by the action of Frobp.

By the Lefschetz trace formula for étale cohomology, we have

|X(Fq)| =
∑

k

(−1)k Tr(Frobp;Hk
ét(XKp

, Ql)).

Furthermore, the characteristic polynomial Pk(t) = det(1 − t · Frobp;Hk
ét(XKp

, Ql)) has integer
coefficients and all complex absolute values of all conjugates of the roots of Pk(t) are equal to q−k/2

by the Weil conjecture proved by Deligne [Del74a, Del80].

4.3 p-adic Hodge theory
Secondly, we assume p divides l. Let p = l in this subsection to avoid confusion. Here no assumption
is required for a model of X over OKp (see Remark 4.1). In this case, the action of the inertia group
IKp on Hk

ét(XK , Qp) is highly nontrivial.
Let Cp be a p-adic completion of Kp on which Gal(Kp/Kp) acts continuously. We recall the

Tate twists. Let Qp(0) := Qp, Qp(1) :=
(
lim←−µpn

) ⊗Zp Qp. For n � 1, let Qp(n) := Qp(1)⊗n,
Qp(−n) := Hom(Qp(n), Qp). Moreover, for a Gal(Kp/Kp)-representation V over Qp, we define
V (n) := V ⊗Qp Qp(n) on which Gal(Kp/Kp) acts diagonally.

In p-adic Hodge theory the Hodge–Tate decomposition of X is as follows:⊕
i,j

i+j=k

Hj(X,Ωi
X)⊗K Cp(−i) ∼= Hk

ét(XKp
, Qp)⊗Qp Cp.

This is an isomorphism of Gal(Kp/Kp)-representations, where Gal(Kp/Kp) acts on H i(X,Ωj
X )

trivially and on the right-hand side diagonally. This is a p-adic analogue of the usual Hodge decom-
position over C.

As a consequence, we can recover the Hodge numbers of X from its p-adic Galois representations
as follows:

dimKp Hj(X,Ωi
X) = dimKp(H

i+j
ét (XKp

, Qp)⊗Qp Cp(i))Gal(Kp/Kp),

since (Cp)Gal(Kp/Kp) = Kp and (Cp(i))Gal(Kp/Kp) = 0 for all i �= 0 (see [Tat67, Theorem 2]).

Remark 4.1. A proof of Hodge–Tate decomposition was given by Faltings [Fal88] (for recent devel-
opments of Faltings’ theory of almost étale extensions, also see [Fal02]). Tsuji gave another proof by
reducing to the semistable reduction case by de Jong’s alteration [Tsu99]. However, in this paper, we
do not need the full version of the Hodge–Tate decomposition. For example, the result of Fontaine
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and Messing is enough for us [FM87]. They proved the Hodge–Tate decomposition when Kp is
unramified over Qp, dim X < p, and X has a proper smooth model over OKp .

Remark 4.2. Moreover, by Lemma 4.3 below, we see that the semisimplification of the p-adic Galois
representation determines the Hodge numbers by the same formula:

dimKp Hj(X,Ωi
X ) = dimKp(H

i+j
ét (XKp

, Qp)ss ⊗Qp Cp(i))Gal(Kp/Kp),

where ss denotes the semisimplification as a Gal(Kp/Kp)-representation. This is a simple but im-
portant observation to consider the Hodge–Tate decomposition on the level of a Grothendieck group
of Galois representations in § 5.

Lemma 4.3 [It03, Lemma 4.4]. Let 0 → V1 → V2 → V3 → 0 be an exact sequence of finite-

dimensional Gal(Kp/Kp)-representations over Qp. We define hn(Vi) := dim(Vi⊗Qp Cp(n))Gal(Kp/Kp)

for i = 1, 2, 3 and an integer n. Assume that dim V2 =
∑

n hn(V2). Then, we have dim V1 =∑
n hn(V1), dim V3 =

∑
n hn(V3) and hn(V2) = hn(V1) + hn(V3) for all n.

Proof. This lemma seems well known to specialists. However, we give the proof for the reader’s con-
venience. In general, we have an inequality

∑
n hn(Vi) � dim Vi for i = 1, 3 (for example, see [Fon94]).

We shall prove these inequalities are in fact equalities. Since the functor V 	→ V Gal(Kp/Kp) is left
exact,

0 �� (V1 ⊗Qp Cp(n))Gal(Kp/Kp) �� (V2 ⊗Qp Cp(n))Gal(Kp/Kp)

�� (V3 ⊗Qp Cp(n))Gal(Kp/Kp)

is exact. Therefore hn(V2) � hn(V1) + hn(V3) for all n. Then we have

dim V2 =
∑

n

hn(V2) �
∑
n

hn(V1) +
∑
n

hn(V3) � dim V1 + dim V3

= dim V2

and hence Lemma 4.3 is proved.

5. Global Galois representations

In this section, we recall some results on Galois representations over a number field.

5.1 An application of the Chebotarev density theorem
The following proposition is very important to work on the level of a Grothendieck group of Galois
representations over a number field. This is an application of the Chebotarev density theorem in
algebraic number theory.

Proposition 5.1 [Ser68, I.2.3]. Let K be a number field and l be a prime number. Let V, V ′ be
two continuous l-adic Gal(K/K)-representations such that they are unramified outside a finite set
S of maximal ideals of OK and satisfy

Tr(Frobp;V ) = Tr(Frobp;V ′) for all p /∈ S.

Then V and V ′ have the same semisimplifications as Gal(K/K)-representations.

Proof. We only sketch the proof (for details, see [Ser68]). By the representation theory of a group
over a field of characteristic 0, the semisimplification of a Gal(K/K)-representation is determined by
the traces of all elements in Gal(K/K). Roughly speaking, the Chebotarev density theorem claims
the set of conjugates of Frobp for p /∈ S is dense in Gal(K/K). Since V and V ′ are continuous
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representations, the equality of the traces of all Frobp for p /∈ S implies the equality of traces of all
elements in Gal(K/K). Hence we have Proposition 5.1.

5.2 Some Grothendieck groups of Galois representations
Let K be a number field. Let S be a finite set of maximal ideals of OK . We fix a prime number l = p
and a maximal ideal p dividing p. For every maximal ideal q of OK , we fix an inclusion K ↪→ Kq.
Then we consider Gal(Kq/Kq) ⊂ Gal(K/K) for all q.

Definition 5.2. Let K(l, S, p) be an abelian group generated by Gal(K/K)-representations V
satisfying the following conditions modulo an equivalence relation ∼ generated by [V1] + [V3] ∼ [V2]
for an exact sequence 0→ V1 → V2 → V3 → 0:

1) (unramifiedness outside S) For q /∈ S, IKq acts on V trivially.

2) (weight filtration outside S) There exists a unique increasing Gal(K/K)-equivariant filtration
W on V indexed by integers satisfying the following conditions:

a) WkV = 0 for k 
 0, WkV = V for k � 0;
b) for every integer k and q /∈ S, the characteristic polynomial Pk(t) = det(1−t·Frobq; GrW

k V )
has integer coefficients and all complex absolute values of all conjugates of the roots of Pk(t)
are equal to |OK/q|−k/2.

W is called the weight filtration on V .

3) (Hodge–Tate decomposition at p) For integers i, j, we define

hi,j
p (V ) := dimKp(GrW

i+j V ⊗Qp Cp(i))Gal(Kp/Kp).

Then these numbers satisfy
∑

i,j hi,j
p (V ) = dimQp V .

K(l, S, p) is called the Grothendieck group of l-adic Gal(K/K)-representations which are unramified
outside S, have weight filtration, and have Hodge–Tate decomposition at p. Let [V ] denote the class
of V in K(l, S, p). An element in K(l, S, p) is called a virtual Gal(K/K)-representation.

Similarly, for an integer k, we define K(l, S, p, k) as a subgroup of K(l, S, p) generated by V
satisfying GrW

k V = V . The group K(l, S, p, k) is called the Grothendieck group of l-adic Gal(K/K)-
representations which are unramified outside S, have weight k, and have Hodge–Tate decomposition
at p.

By the Jordan–Hölder theorem, K(l, S, p) is a free abelian group generated by simple Gal(K/K)-
representations in K(l, S, p). Since [V ] =

∑
k[GrW

k V ] in K(l, S, p), a simple Gal(K/K)-representa-
tion has only one weight. Therefore we have a direct sum decomposition as follows:

K(l, S, p) =
⊕
k∈Z

K(l, S, p, k).

We define a ring structure on K(l, S, p) by extending the tensor product [V1] · [V2] = [V1 ⊗ V2].
Then K(l, S, p) has a structure of a graded ring by the direct sum decomposition as above.

Definition 5.3. For a Gal(K/K)-representation V in K(l, S, p), we define the p-adic E-function
of V as follows:

Ep(V ;u, v) :=
∑
i,j

hi,j
p (V )uivj .

Remark 5.4. It is easy to see that the p-adic E-function satisfies the following properties (see
Remark 4.2):
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1) for an exact sequence 0→ V1 → V2 → V3 → 0, we have Ep(V1;u, v)+Ep(V3;u, v) = Ep(V2;u, v);

2) for V1, V2, we have Ep(V1 ⊗ V2;u, v) = Ep(V1;u, v) ·Ep(V2;u, v).

Therefore, we can extend the p-adic E-function to a ring homomorphism

Ep : K(l, S, p) −→ Z[u, v].

5.3 A variant: Galois representations with fractional weight filtration
Let d be an integer. Here we introduce a variant of K(l, S, p) whose weight filtration is indexed by
elements of (1/d)Z instead of Z. This generalization is necessary to treat the Q-Gorenstein case in
the proof of Theorem 1.1.

Firstly, we introduce the fractional Tate twists Qp(a) (a ∈ (1/d)Z) as follows (for usual Tate
twists, see § 4.3). Let L be a field and p be a prime number. The twist Qp(1) is a one-dimensional
Gal(L/L)-representation

ρ : Gal(L/L) −→ GL(Qp(1)) ∼= GL(1, Qp) = Q×
p

whose image is contained in Z×
p . There exist open subgroups U ⊂ Z×

p , V ⊂ Zp on which log : U → V
and exp : V → U converge. Therefore, if we replace L by a finite extension of it,

ρ1/d : Gal(L/L) � σ 	→ exp
(

1
d

log(ρ(σ))
)
∈ Q×

p

is a one-dimensional Gal(L/L)-representation. We denote it by Qp(1/d). Then Qp(1/d)⊗d ∼= Qp(1).
For n ∈ Z, n � 1, we define Qp(n/d) := Qp(1/d)⊗n, Qp(−n/d) := Hom(Qp(n/d), Qp). If L is a finite
extension of Qp, we can similarly define Cp(a) (a ∈ (1/d)Z) as in § 4.3.

We define K(l, S, p)1/d as follows. Let the notation be the same as in § 5.2. Then K(l, S, p)1/d

is an abelian group generated by Gal(K/K)-representations V satisfying the following conditions
modulo an equivalence relation ∼ as in Definition 5.2.

1) The conditions 1 and 2 in Definition 5.2 hold, but we allow k to be an element of (1/d)Z
instead of Z.

2) Let L be a finite extension of Kp such that Qp(1/d) exists as a Gal(L/L)-representation.
For i, j ∈ (1/d)Z, we define

hi,j
p (V ) := dimL(GrW

i+j V ⊗Qp Cp(i))Gal(L/L).

Then these numbers satisfy
∑

i,j∈(1/d)Z hi,j
p (V ) = dimQp V. It is easy to see that this condition

is independent of the choice of L.

Similarly, we can define K(l, S, p, k)1/d as in § 5.2. We have a direct sum decomposition as
follows:

K(l, S, p)1/d =
⊕

k∈(1/d)Z

K(l, S, p, k)1/d.

The group K(l, S, p)1/d has a ring structure. Moreover, we can define a p-adic E-function Ep(V ;u, v)
∈ Z[u1/d, v1/d] for a Gal(K/K)-representation V in K(l, S, p)1/d. We can extend this to a ring
homomorphism

Ep : K(l, S, p)1/d −→ Z[u1/d, v1/d].

Example 5.5. Assume that Qp(1/d) exists as a Gal(K/K)-representation. Note that this is satisfied
if we replace K by a finite extension of it. For n ∈ Z, Qp(n/d) is in K(l, S, p,−2n/d)1/d such that
Ep(Qp(n/d);u, v) = u−n/dv−n/d.
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6. Conclusion: the number of Fq-rational points, Galois representations and
Hodge numbers

We combine the results in §§ 4 and 5. Let the notation be the same as in § 5.2.
Let X be a proper smooth variety over K which has a proper smooth model X over (SpecOK)\S.

Then Hk
ét(XK , Ql) is a Gal(K/K)-representation in K(l, S, p, k) by the Weil conjecture and p-adic

Hodge theory (see § 4). Let XK = X ⊗K K and XC = X ⊗K C. We define a virtual representation

[H∗
ét(XK , Ql)] :=

∑
k

(−1)k[Hk
ét(XK , Ql)]

as an element in K(l, S, p). Then we have the equality of two E-functions

E(XC;u, v) = Ep([H∗
ét(XK , Ql)];u, v)

by comparing the Hodge decomposition of XC and the Hodge–Tate decomposition of XKp =
X ⊗K Kp.

6.1 The proper smooth case
By combining results in §§ 4 and 5, we have the following results which connect the number of
rational points and the Hodge numbers.

Proposition 6.1. Let X be a proper smooth variety over K which has a proper smooth model X

over (SpecOK)\S. Then we have

|X(OK/p)| = Tr(Frobp; [H∗
ét(XK , Ql)]) for all p /∈ S.

Proof. This follows from the Lefschetz trace formula for étale cohomology as in § 4.2.

Corollary 6.2. Let X (respectively Y ) be a proper smooth variety over K which has a proper
smooth model X (respectively Y) over (SpecOK)\S. If |X(OK/p)| = |Y(OK/p)| for all p /∈ S, then
[H∗

ét(XK , Ql)] = [H∗
ét(YK , Ql)] in K(l, S, p). Therefore, we have

E(XC;u, v) = Ep([H∗
ét(XK , Ql)];u, v) = Ep([H∗

ét(YK , Ql)];u, v) = E(YC;u, v).

Namely, the Hodge numbers of XC and YC are equal.

Proof. By Proposition 6.1, we have

Tr(Frobp; [H∗
ét(XK , Ql)]) = Tr(Frobp; [H∗

ét(YK , Ql)]) for all p /∈ S.

Hence we have [H∗
ét(XK , Ql)] = [H∗

ét(YK , Ql)] in K(l, S, p) by Proposition 5.1.

6.2 A generalization: the open smooth case
Next we generalize Proposition 6.1 to open smooth varieties by a method of Deligne in [Del71a,
Del71b].

Let X be a smooth variety over K of dimension n which is not necessarily proper. Assume that
there exists a proper smooth variety X ⊃ X over K such that X\X =

⋃r
i=1 Di is a SNCD on X .

Let I = {1, . . . , r}, DJ =
⋂

j∈J Dj for a nonempty subset J ⊂ I, and D∅ = X . We consider the
following formal sum

[H∗
c,ét(XK , Ql)] :=

∑
k

(−1)k[Hk
c,ét(XK , Ql)],

where Hk
c,ét denotes étale cohomology with compact support. By the following Lemma 6.3, we see

that the above is an equality in K(l, S, p).
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Lemma 6.3. Let X be as above. Then we have

E(XC;u, v) =
∑
J⊂I

(−1)|J |E((DJ )C;u, v) ∈ Z[u, v],

[H∗
c,ét(XK , Ql)] =

∑
J⊂I

(−1)|J |[H∗
ét((DJ)K , Ql)] ∈ K(l, S, p).

Furthermore, we have the equality of two E-functions for X:

E(XC;u, v) = Ep([H∗
c,ét(XK , Ql)];u, v).

Proof. Since DJ is a proper smooth variety over K, we have

E((DJ )C;u, v) = Ep([H∗
ét((DJ )K , Ql)];u, v).

Therefore, the second assertion immediately follows from the first assertion.
We only prove the first assertion for E(XC;u, v) since we can prove the case of [H∗

c,ét(XK , Ql)] in
the same way. The Leray spectral sequence for the inclusion XC ↪→ XC induces a spectral sequence

Ei,j
2 =

⊕
J⊂I
|J |=j

H i((DJ )C, Q)(−j)⇒ H i+j(XC, Q),

which defines the canonical mixed Hodge structure on Hk(XC, Q) (see [Del71a, (6.2)] and
[Del71b, § 3.2]). For a finite-dimensional Q-vector space V with mixed Hodge structure, we define
E(V ;u, v) =

∑
i,j hi,j(GrW

i+j V )uivj . Note that

E(XC;u, v) =
2n∑

k=1

(−1)kE(Hk
c (XC, Q);u, v)

by definition. By the above spectral sequence, we have∑
i,j

(−1)i+jE(Ei,j
2 ;u, v) =

2n∑
k=1

(−1)kE(Hk(XC, Q);u, v).

By Poincaré duality, Hk(XC, Q) is dual to H2n−k
c (XC, Q)(n). Then we have

E(Hk(XC, Q);u, v) = (uv)nE(H2n−k
c (XC, Q);u−1, v−1).

On the other hand, since DJ is a proper smooth variety of dimension n − |J |, H i((DJ )C, Q)(−|J |)
is dual to H2n−2|J |−i((DJ)C, Q)(n) by Poincaré duality. Hence we have

E(Ei,j
2 ;u, v) =

∑
|J |=j

(uv)nE(H2n−2|J |−i((DJ )C, Q);u−1, v−1).

By combining them, we have Lemma 6.3.

Next we consider the number of rational points valued in finite fields. For open smooth varieties,
we have the following generalization of Proposition 6.1.

Proposition 6.4. Let X be a smooth variety over K. Assume that there exist a proper smooth
scheme X over (SpecOK)\S and an open subscheme X ⊂ X whose generic fiber is X such that
X\X =

⋃r
i=1 Di is a relative SNCD on X/(SpecOK)\S (see Definition 3.3). Then we have

|X(OK/p)| = Tr(Frobp; [H∗
c,ét(XK , Ql)]) for all p /∈ S.
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Proof. Let I = {1, . . . , r}, DJ =
⋂

j∈J Dj for a nonempty subset J ⊂ I, and D∅ = X. Then, by the
inclusion–exclusion principle, we have

|X(OK/p)| =
∑
J⊂I

(−1)|J ||DJ(OK/p)| for all p /∈ S.

Since DJ is proper and smooth over (SpecOK)\S, we have

|DJ(OK/p)| = Tr(Frobp; [H∗
ét((DJ)K , Ql)])

by Proposition 6.1. On the other hand, we have

Tr(Frobp; [H∗
c,ét(XK , Ql)]) =

∑
J⊂I

(−1)|J | Tr(Frobp; [H∗
ét((DJ )K , Ql)])

by Lemma 6.3. By combining them, we have Proposition 6.4.

We note the following generalization of Corollary 6.2 for open smooth varieties, although we do
not use it later.

Corollary 6.5. Let X (respectively Y ) be a smooth variety over K satisfying the assumptions
in Proposition 6.4. Let X ⊂ X (respectively Y ⊂ Y) be a scheme over (SpecOK)\S as in Propo-
sition 6.4. If |X(OK/p)| = |Y(OK/p)| for all p /∈ S, then [H∗

c,ét(XK , Ql)] = [H∗
c,ét(YK , Ql)] in

K(l, S, p). Therefore, we have

E(XC;u, v) = Ep([H∗
c,ét(XK , Ql)];u, v) = Ep([H∗

c,ét(YK , Ql)];u, v) = E(YC;u, v).

Proof. The proof is the same as for Corollary 6.2. By Proposition 6.4, we have

Tr(Frobp; [H∗
c,ét(XK , Ql)]) = Tr(Frobp; [H∗

c,ét(YK , Ql)]) for all p /∈ S.

Hence we have [H∗
c,ét(XK , Ql)] = [H∗

c,ét(YK , Ql)] in K(l, S, p) by Proposition 5.1. The equality of
the two E-functions follows from Lemma 6.3.

7. Proof of the Main Theorem

Lemma 7.1. Let f : X → T be a proper smooth morphism of schemes of characteristic 0 and
D =

⋃r
i=1 Di be a relative SNCD on X/T (see Definition 3.3). Assume that T is connected. Then, all

fibers of X\D→ T have the same E-functions as defined in Definition 2.1.

Proof. For a nonempty subset J ⊂ {1, . . . , r}, DJ =
⋂

j∈J Dj is proper and smooth over T . Hence by
the theorem of Deligne [Del68, 5.5], the Hodge numbers of all fibers of DJ → T are the same. On the
other hand, the E-function of a fiber of X\D → T can be computed from the Hodge numbers of a
fiber of DJ → T by Lemma 6.3. Therefore, we have Lemma 7.1.

Proof of Theorem 1.1. Let ρ : Y → X and ρ′ : Y ′ → X be as in Theorem 1.1. Let n be the
dimension of X. To avoid confusion, here Est(X;u, v)ρ (respectively Est(X;u, v)ρ′ ) denotes the
stringy E-function of X defined by ρ : Y → X (respectively ρ′ : Y ′ → X) as in Definition 2.4.
We shall prove the equality Est(X;u, v)ρ = Est(X;u, v)ρ′ .

Step 1. Let f : Y ��� Y ′ be a birational map between Y and Y ′ over X. Let Z be a resolution
of singularities of the closure of the graph of f such that the exceptional divisor of Z → X is
a SNCD. Let τ : Z → Y and τ ′ : Z → Y ′ be natural morphisms. Then we have the following
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commutative diagram.

Z
τ

����
��

��
�� τ ′

���
��

��
��

�

Y

ρ
���

��
��

��
�

f ��������� Y ′

ρ′����
��

��
��

X

If we prove Est(X;u, v)ρ = Est(X;u, v)ρ ◦ τ and Est(X;u, v)ρ′ = Est(X;u, v)ρ′ ◦ τ ′ , then we have
Theorem 1.1 since ρ ◦ τ = ρ′ ◦ τ ′. In the following, we only prove Est(X;u, v)ρ = Est(X;u, v)ρ ◦ τ

since we can similarly prove Est(X;u, v)ρ′ = Est(X;u, v)ρ′ ◦ τ ′ .

Step 2. We shall show that we may assume everything is defined over a number field. Since
X,Y,Z, ρ, τ are defined over a subfield K ′ of C which is finitely generated over Q, there exists an
irreducible variety T over a number field K such that the function field of T is K ′. Furthermore,
there exists a proper scheme X̃, proper smooth schemes Ỹ , Z̃, and proper birational morphisms
ρ̃ : Ỹ → X̃ , τ̃ : Z̃ → Ỹ over T such that X̃ ×T Spec C = X, Ỹ ×T Spec C = Y , Z̃ ×T SpecC = Z,
ρ̃×T SpecC = ρ, τ̃ ×T SpecC = τ . We write

KY = ρ∗KX +
r∑

i=1

aiDi, KZ = (ρ ◦ τ)∗KX +
s∑

j=1

bjEj ,

with ai ∈ Q, ai > −1, bj ∈ Q, bj > −1 (see Definition 2.3). Let d be a positive integer such that
(KX)⊗d is a Cartier divisor on X. Then ai, bj are elements of (1/d)Z.

If we replace T by a Zariski open subset of it, (KX)⊗d extends to a Cartier divisor (Ωn
X̃/T

)⊗d on

X̃ over T , and we can write

Ωn
Ỹ /T

= ρ̃∗Ωn
X̃/T

+
r∑

i=1

aiD̃i, Ωn
Z̃/T

= (ρ̃ ◦ τ̃)∗Ωn
X̃/T

+
s∑

j=1

bjẼj ,

where D̃ =
⋃r

i=1 D̃i (respectively Ẽ =
⋃s

j=1 Ẽj) is a relative SNCD on Ỹ /T (respectively Z̃/T ) (see
Definition 3.3). If we replace K by a finite extension of it, there exists a K-rational point t ∈ T (K).
Let X̃t, Ỹt, Z̃t, ρ̃t, τ̃t be the fibers at t. Then Est(X;u, v)ρ = Est(X̃t;u, v)ρ̃t and Est(X;u, v)ρ ◦ τ =
Est(X̃t;u, v)ρ̃t ◦ τ̃t by Lemma 7.1. By replacing X, Y , Z, ρ, τ by X̃t, Ỹt, Z̃t, ρ̃t, τ̃t, we may assume
X, Y , Z, ρ, τ are defined over a number field K.

Step 3. By the same argument as above, there exists a finite set S of maximal ideals of OK ,
a proper scheme X, proper smooth schemes Y,Z, and proper birational morphisms ρ̄ : Y → X,
τ̄ : Z → Y over T = (SpecOK)\S such that generic fibers of X, Y, Z, ρ̄, τ̄ are X, Y , Z, ρ, τ .
By enlarging S, (KX)⊗d extends to a Cartier divisor (Ωn

X/T)
⊗d on X over T and we can write

Ωn
Y/T = ρ̄∗Ωn

X/T +
r∑

i=1

aiDi, Ωn
Z/T = (ρ̄ ◦ τ̄)∗Ωn

X/T +
s∑

j=1

bjEj,

where D =
⋃r

i=1 Di (respectively E =
⋃s

j=1 Ej) is a relative SNCD on Y/T (respectively Z/T).

Step 4. Here we compute p-adic integration. Take a maximal ideal q /∈ S. Let Kq be a q-adic
completion of K and OKq be the ring of integers of Kq. Let q = |OK/q| be the number of elements
of the residue field.
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Let U1, . . . ,Uk be a finite open covering of X over T such that (Ωn
X/T)

⊗d is a trivial line bundle
on each Ui (1 � i � k). Let ωi be a nowhere vanishing section of (Ωn

X/T)
⊗d on Ui.

Then, by Proposition 3.4, we can compute the p-adic integration of ρ̄∗ωi on ρ̄−1Ui(OKq) as
follows: ∫

ρ̄−1Ui(OKq )
|ρ̄∗ωi|1/d

p =
1
qn

∑
J⊂{1,...,r}

|(D◦
J ∩ ρ̄−1Ui)(Fq)|

∏
j∈J

q − 1
qaj+1 − 1

,

where D◦
J are the same as in Proposition 3.4. Note that div(ρ̄∗ωi) =

∑r
i=1 daiDi since ωi is a

nowhere vanishing section of (Ωn
X/T)

⊗d.

Similarly, for (ρ̄ ◦ τ̄)∗ωi, we have∫
(ρ̄ ◦ τ̄)−1Ui(OKq )

|(ρ̄ ◦ τ̄)∗ωi|1/d
p =

1
qn

∑
J ′⊂{1,...,s}

|(E◦
J ′ ∩ (ρ̄ ◦ τ̄)−1Ui)(Fq)|

∏
j′∈J ′

q − 1
qbj′+1 − 1

,

where E◦
J ′ is the same as above.

On the other hand, by the change-of-variable formula for p-adic integration, we have∫
ρ̄−1Ui(OKq )

|ρ̄∗ωi|1/d
p =

∫
(ρ̄ ◦ τ̄)−1Ui(OKq )

|(ρ̄ ◦ τ̄)∗ωi|1/d
p .

Since the same is true for all finite intersections of Ui, by the inclusion–exclusion principle, we
conclude that

1
qn

∑
J⊂{1,...,r}

|D◦
J(Fq)|

∏
j∈J

q − 1
qaj+1 − 1

=
1
qn

∑
J ′⊂{1,...,s}

|E◦
J ′(Fq)|

∏
j′∈J ′

q − 1
qbj′+1 − 1

.

Note that the above argument works for every q /∈ S.

Step 5. Fix a prime number l = p and a maximal ideal p of OK dividing p. By enlarging S, we
may assume that S contains all maximal ideals of OK dividing p. We shall work on the level of the
Grothendieck group K(l, S, p)1/d of Gal(K/K)-representations introduced in § 5.

We rewrite the conclusion of Step 4 in the following form by multiplying with

qn ·
r∏

j=1

(qaj+1 − 1) ·
s∏

j′=1

(qbj′+1 − 1)

on both sides:
s∏

j′=1

(qbj′+1 − 1)
∑

J⊂{1,...,r}

(
|D◦

J(Fq)|
∏
j∈J

(q − 1)
∏
j /∈J

(qaj+1 − 1)
)

=
r∏

j=1

(qaj+1 − 1)
∑

J ′⊂{1,...,s}

(
|E◦

J ′(Fq)|
∏

j′∈J ′
(q − 1)

∏
j′ /∈J ′

(qbj′+1 − 1)
)

.

By replacing K by a finite extension of it, we may assume that Ql(1/d) exists as a Gal(K/K)-
representation (see Example 5.5). Recall that the image of Frobq in Gal(Fq/Fq) is the inverse of the
qth power automorphism x 	→ xq of Fq. Therefore, for m ∈ (1/d)Z, Tr(Frobq; Ql(m)) = q−m.
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Hence, we have the following equality in K(l, S, p)1/d:
s∏

j′=1

([Ql(−bj′ − 1)]− 1)
∑

J⊂{1,...,r}

(
[H∗

c,ét((D
◦
J )K , Ql)]

∏
j∈J

([Ql(−1)]− 1)
∏
j /∈J

([Ql(−aj − 1)]− 1)
)

=
r∏

j=1

([Ql(−aj − 1)] − 1)
∑

J ′⊂{1,...,s}

(
[H∗

c,ét((E
◦
J ′)K , Ql)]

∏
j′∈J ′

([Ql(−1)] − 1)
∏

j′ /∈J ′
([Ql(−bj′ − 1)]− 1)

)
,

since the traces of Frobq on both sides are equal for all q /∈ S (see Propositions 6.4 and 5.1).
Note that 1 ∈ K(l, S, p)1/d denotes the class of the trivial Gal(K/K)-representation.

Since Ep(Ql(m);u, v) = u−mv−m for m ∈ (1/d)Z by Example 5.5, we have
s∏

j′=1

((uv)bj′+1 − 1)
∑

J⊂{1,...,r}

(
E((D◦

J )C;u, v)
∏
j∈J

(uv − 1)
∏
j /∈J

((uv)aj+1 − 1)
)

=
r∏

j=1

((uv)aj+1 − 1)
∑

J ′⊂{1,...,s}

(
E((E◦

J ′)C;u, v)
∏

j′∈J ′
(uv − 1)

∏
j′ /∈J ′

((uv)bj′+1 − 1)
)

by Lemma 6.3. By Definition 2.4, this proves Est(XC;u, v)ρ = Est(XC;u, v)ρ ◦ τ and hence
Theorem 1.1.

Remark 7.2. If we take an appropriate p in Step 5, we can use the result of Fontaine and Messing
[FM87] (see Remark 4.1). Therefore, we do not need the full version of the Hodge–Tate decompo-
sition for Theorem 1.1.
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