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WEAK SOLUTIONS OF DIFFERENTIAL

EQUATIONS IN BANACH SPACES

MNikoLaos S, PAPAGEORGIOU

We consider the Cauchy problem xz(t) = flt,x(t)), =(0) = x, in

a nonreflexive Banach space X and for f: T x X + X a weakly
continuous vector field. Using a compactness hypothesis

involving a weak measure of noncompactness we prove an existence
result that generalizes earlier theorems by Chow-Shur, Kato and

Cramer-Lakshmikantham-Mitchell,

1. Introduction

In recent years the study of ordinary differential equations in a
Banach space has been developed extensively. However almost all of the
work was done using the strong topology (see, for example, Deimling [7],
szufla [12]) while the study of Cauchy problems involving the weak
topology is lagging behind. 1In [!1] sSzep proved a Peano type theorem for
o.d.e. defined in a reflexive Banach space and having a weakly continuous
vector field. His main tools were the Eberlein-Smulian theorem and the
well known fact that in a reflexive Banach space a set is weakly compact
if and only if it is weakly closed and norm bounded (a simple consequence

of Alaoglu's theorem and the fact that in a reflexive Banach space weak
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and weak® topologies coincide). The result of Szep was extended to non-
reflexive Banach spaces by Boundourides [3] and Cramer-Lakshmikantham-
Mitchell [5]. Both papers based their existence result on a compactness
type condition, involving the weak measure of noncompactness introduced
by DeBlasi [6]. It should be noted however that the result of Cramer-
Lakshmikantham-Mitchell [5] is more general than that of Boudourides [3].
Furthermore the proof of the theorem in [3] has a mistake. Specifically,
when the author interprets the notion of weak uniform continuity, he
claims that the corresponding inequality holds for all elements of the
dual space simultaneously (see p. 460). This is not true. The proper

way to define weak uniform continuity can be found in [5, p. 1701].

The purpose of this note is to prove a more general existence
theorem for weak vector fields that includes the above mentioned as well
as some earlier ones obtained by Chow-Shur [ 4] and Kato [9]. We will use
a compactness type condition introduced by Pianigiani [ J0] in connection

with the strong (norm) topology.

2. Preliminaries

Let X be a Banach space and X* its topological dual. By [0,b]

we will denote a bounded, closed interval in 1R+. To economize in the

notation we will write 7 to denote [0,b] .

In [4] DeBlasi introduced the following measure of noncompactness.

Let A be a nonempty, bounded subset of. X ,

B(4) = inf{t > 0: (K e P (X)) (AcK+tB)}
where Pwk(X) ={B cX: B#¢ and B weakly compact} and Bl is the
closed unit ball in X .

The following lemma can be found in [6] and shows that B(') is,
according to the terminology of Banas-Goebel [2], a sublinear measure of

noncompactness.

LEMMA 2.1. If A, B are bounded subsets of X,
then 1) A cB <implies B(A) < B(B) ,

2) B(4)

3) B8(4)

B(w-cld) where w-cl denotes the weak closure,

0 if and only if w-clA is weakly compact,
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4) B(A v B) = max(B(4), B(B)] ,
5) B(A) = Blconv A) ,
8) B(A + B) < B(A) + B(B) ,

7) B(x + 4) = B(4) for all x e X ,
8) B(Xx A) = |\|8(4) forall re R,
3) 8( v ta) = tOB(A) .

0 <t<t

0
The next lemma is a result analogous to the one proved by Ambrosetti

[1] for the Kuratowski measure of noncompactness.
LEMMA 2.2. If E c Cy(T) <is bounded and equicontinuous for the

strong topology, then B(E) = sup B(E(t)) = B(E(T)} where
tel

E(t) = {f(t) : f(-) ¢ E, t ¢ T} .

Proof. The first equality can be found in [3] and its proof is
based on the "weak" Arzela-Ascoli theorem {5, Theorem 1.2]

Now we will show that R(E(T)) < sup B(E(t)) =X .
teT

Since by hypothesis FE 1is an equicontinuous family, given any

€ >0 we can find a & > 0 such that if |t-t'| < & then |[|f(t) -

f(t')|| <e for all f(-) e E. Let {tz}2=o be a partition of T

such that for all 2 e {0,1,...,n-11} |t£+1 - tll <$§ . Also let

K (X) be such that

g € Pwk
E(t,) c K, + (A + e)B; .

n
The claim is that E(T) < v K, + (r+ 28)31 . To see this, let
=0
x € E(T) . Assume that x = f(t), t ¢ {t2}2=0 or otherwise there is

nothing to prove. Then ¢t ¢ (tl’t2+1) for some & ¢ {0,1,...,n-1} and

we can write:

x € fYtQ) + (f(t) - f(tl)) € Kz + (X + 6)51 + eBl = K2 + (A + 25)81

from which the claim follows. Then directly from the definition of B8(-)

we get
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B(E(T)) < A + 2¢ .
let € ¥+ 0 . We have

B(E(T)) < )= sup B(E(t)) . (1}
tel

On the other hand using property 1 in Lemma 2.1 we have

B(E(t)) < B(E(T))

for all ¢t € T . Hence

sup B(E(t)) < B(E(T)) . (2)
tel

Combining (1) and (2) above, we finally get the lemma.
3, The Main Result.
In the sequel by Xm we will denote the Banach space X with the
weak topology. Also by Tt , ve will denote the subinterval [t,t+r]
3
of T (provided t +r <b ). When t is fixed, we will simply write

T.
r

By a Kamke function we mean a function w: T x 1R+ -> 1R+ such that

for all y e R, t~ w(t,y) is measurable and w(t,y) < ¢(t)
with ¢ () ¢ Li . for all t e T, y + w(t,y) is continuous, and

t
y(t) = 0 is the only solution of y(t) < [w(s,y(s))ds, y(0) = 0.
0

Given a weakly continuous vector field f: T x X + X, we will

consider the following Cauchy problem:

xz(t)
{ (*)

Flt,x(t))
x(0) } :

%o

By a solution of (*) we understand a strongly continuous, once
weakly differentiable function x: T + X satisfying (*) on T , with
xz() denoting the weak derivative. 1In this case x(-) is almost
everywhere strongly differentiable and satisfies (%)
with x(+) being the strong derivative,

Our existence result has as follows:
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THEOREM 3.1. If f: T x X > X <s a vector field such that
1) f(-,-) is continuous from TXXw into Xw (that is f(+,*)

18 weakly continuous),
2) for all (t,x), ||f(t,x)|| <W,
3) for all A c X nonempty and bounded we have

lim B(f(T
r+ 0

7 x A)) s w(t,B(4))

where w(-,-) <is a Kamke function,
then (*) adnits a solution.

Proof. Consider the nonlinear integral operator ¢:LipN(T) > LipN(T)
where Lip,(T) = {x() € CylD): x(+) ig8 N-Lipschitz}), defined by
t
(ox)(t) = z, + f f(s,x(s))ds
0
We claim that it is weakly-weakly sequentially continuous. So

w-C
%, x(+) . From Dinculeanu [§, p. 380] we know that

assume that xn(-)

% *
[CX(T)] = MX*(T) = bounded, regular, vector measures from T into X ,

which are of bounded variation. Thus for all m(+) € M ,(T) we have
X

(m,xn(-) -x(*)) >0 as n > o,

*

* * :
Let m=x Gt , where * € X , t e T and Gt is the Dirac

measure concentrated on ¢ . Then we get that
*
(x ,x (t) - x(t)) >0 as n > =,
n

and so

w
xn(t) +x(t) as n >

for all ¢ € T . Then using the weak continuity of the vector field
f(-,-) and the Lebesgue dominated convergence theorem we get that

t w ,t
| fls,z, (s))ds > [ f(s,x(s))ds
0 [/

for all ¢t ¢ T . Now for every m(-) € MX*(T) we have that
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t
(mox - ox) = [L[ (fs, (8)) - f(s,x(s)))dsIdn(t).
n n
TO
t w t
Using the fact that for all t ¢ 7, f f(s,xn(s))ds > f f(s,x(s))ds
0 0
as n » % , and by approximating m(-) , uniformly on LipN(T) , by linear
combinations of Dirac measures, we finally get that
(m, oz - <1>x> +0
as n > o, Hence ¢(-) is weakly-weakly sequentially continuous.

Consider the classical Caratheodory approximations

x for (0 st < 1
0 n
- 1
xn(t) = t- ,
T, * (); f(s,xn(s))ds for <t < T
It is easy to see that for all »n 2 I, xn(-) € CX(T) . Note that:
t
]Ixn(t) - <I>;cn(1:)|| = ||x0 -z, - £ f(s,acn(s))dsH
g 1
< || [ fls,x (s))ds|| s Wt for 0 <t <=
0 n n
and
1
n t
||mn(t) - d>acn(t)|| = on + (f) fle,x (s))ds- z,- g f(s,xn(s))dsll
¢ 1
< | J f(s,xn(s))dsH 3
t-=
n
for -'-Z—S t<T.
n
Thus we see that ||z - ¢x || + 0 as n > =,
n n'le
Set K = {xn(-)}n > 7 and L= 0(K) = {<D:cn(')}n > 7 + We have just
seen that

B(K - L) = B((I - ®)(K)) =0 .
Observe that for all t e€ T
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K(t) < K(t) - L(t) + L(t) = (I - ®)(K(t)) + L(t) ,
and so B(K(t)) < B((I - ®)(K(t))) + B(L(t)) .

Using the fact that B((I - ¢)(XK)) = 0 and Lemma 2.2, we see that
B((I - ¢)(K(t))) = 0 . Hence
B(K(t)) < B(L(t)) . (1)
On the other hand for all ¢ € T , we have

L(t) < L(t) - K(t) + K(t) = K(t) - (T - ¢)(K(¢t)) ,

and so B(L(t)) < B(K(t)) + B((T - &) (K(t))) .
For the same reason as before, B((I - &)(K(t))) = 0 . Hence

B(L(t})) < B(K(t)) . (2)
From (1) and (2) above we get that

B(K(t)) = B(L(t)) = p(t)

Now we claim that L = ¢(K) is an equicontinuous set. So let

t,t' € T , and then
'

|fex(t?) - ox(t)|| = ||z, +

t
0 fls,xls))ds - x, - g fls,x(s))ds||

QY= o+

!

t
s || [ fts,x(s))ds]| < N|t" - ¢]
t
and this shows that L 1is egquicontinuous,
Then employing Lemma 13.2.1 of Banas-Goebel [2] we have that
lp(t’) - p(t)]| < B(Bm ((t! - ¢ )
where mL(-) is the modulus of equicontinuity of the family L , that is
m (r) = sup{||y(t)-y(t)||: t,t" e T, |t' - ¢t| < r,y(+) e L} .
Also recall (see [6]) that B(Bl) <1 . Thus
lpct') - p(t)| sm (|t' - t|) s wlt' - ¢

which shows that p(+) is absolutely continuous, hence differentiable
at all t € T\N, A(N) =0 .
Next fix ¢t ¢ T\N and let ¢ > 0 be given. We can find § > 0

such that
lz - p(t)| <6 implies |w(t,z) - w(t,p(t))]| < e .
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This is possible since w(f,') is continuous, being a Kamke function.
Also let r > @ Dbe such that
Nr < § and t+r T,

Because of hypothesis 3) we can find ¢q such that 0 < g <r and
B(f(Tq x Kr)) < h(t,B(KP)) + €
where Tq = [¢t,t+q] and Kr = {x(s): xz(+) e K, t <8 < t+r} .
From Lemma 2.2 we know that

B(K) = sup 8(K(s)) = p(t)
s € [t,t+r]

for some t e [t,t+r] . Then
0 s 8(k) -p(t) sm (|t -t]) <H|E-¢t| <tir<s.
But then from the choice of § > 0 we get that
Iw(t,B(Kr)) -wlt,p(t))] <e .

Next since f(+,+) is weakly continuous and Pettis integrable, for

all x(-) ¢ K and for v < g we have that

t+v
ox(t+v) = dx(t) + [ fls,x(s))ds < ¢x(t) +v conv v fls,z(s)).
t seT
v
Thus L(t+v) < L(t) + v.conv f(Tv x Kr) s
and so B(L(t+v)) < B(L(t)) + Blv:conv f(Tv X Kr)] .

Using the properties of B(:) 1listed in Lemma 2.1, we have:
B(v-conv f(Tv x Kr)) = v+ B(conv f(Tu x Kr)) = v-B(f(Tv x K?))
< v-w(t,B(Kr)) + vee S vewl(t,p(t)) + 2v-e .
Therefore we can write that

p(t+v) < p(t) + vewl(t,pl(t)) + 2v-¢ ,

and so pltwv) - plt) w(t,p(t)) + 2¢ .

> <
+ .
Passing to the limits as v » 0 and since ¢ ¢ T\N we get that

p(t) < wlt,p(t)+ 2¢ .
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Let € + 0 . We finally have that

p(t) < wlt,p(t))

t
and so p(t) < [ w(s,p(s)ds
0

while p(0) = B(K(0)) = B(L(0)) = B({xo}) = (0 . Since

hypothesis a Kamke function we get that for all ¢ ¢ T

p(t) =0
and so B(K(t)) = 0 .

Employing Lemma 2.2 we deduce that
B(K) = 0

which by Lemma 2.1 implies that w-c¢l K is w-compact in CX(T)

415

is by

Invoking the Eberlein-Smulian theorem and by passing to a subsequence

if necessary, we may assume that

w-CX
> z(+) € CX(T)

x ()
n

We have already seen in the beginning of the proof that &¢(¢)

w-C
w-sequentially continuous. Thus @xn

w-C

x - ¢xn > x - dx as n -

n

Recalling that the norm is w-lower semicontinuous we get that

lim
N >

But we have already seen earlier in the proof that

[lz. -¢ex || +0 as n->w,
n nlle

Therefore we conclude that
[z - ex|| =0,
o

t
and so x(t) = z, + f f(s,x(s))ds .
0

Because f(+,-) is weakly continous, x(+) 1is weakly

differentiable and the weak derivative i(-) satisfies

conclude that x(:) is the desired weak solution of
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Suppose that w({t,r) = w(xz) and that for all 4 < X bounded we
have that B(f(T %x A)) < w(B(A)) . Then for every t ¢ T and for every
r > 0 such that ¢+r < T , we have

f(Ttr x A) < f(T x 4) ,
so B(f(Ttr x A)) < B(F(T x A)) < w(B(4))
and lim B(f(Tt x A)) < w(p(4)) .
r+ 0 r

So hypothesis (Hj) of Cramer-Lakshmikantham-Mitchell [5] implies
our compactness hypothesis. Thus we can recover from our result, as a

corollary, theorem 3.1 of [5].

COROLLARY 3.1. {3]. If f: T x X+ X 1isg a vector hield such that

1) f(-,-) is weakly continuous,

2) for all (t,x) e T x X, ||f(t,v)]|| <M,

3) for all A c X bounded, B(f(T x A)) < w(B(4)) where w(:)

18 a time independent Kamke function,
then (%) admits a solution.

If X is a reflexive Banach space every bounded set is relatively
wedkly compact. So for a weakly conmtinuous vector field f(-,-) our
compactness hypothesis is trivially satisfied. Hence the results of
Chow-Shur [4} and Szep [11] are special cases of Theorem 3.1. Thus we
have for X reflexive:

COROLLARY 3.2. [01]. If f:?x X > X 1is a vector field such that
1) f(.,-) is weakly continuous,
2) for all (t,x) e T x X, |If(t,x)|| <M,

then (*) admits a solution.

For X any Banach space:

COROLLARY 3.3. £91. If fFf:Tx X+ X is a vector field such that
1) f(.,-) is weakly continuous,
2) f(.,-) <s compact (for example w-cl f(T x X) ¢ Pwk(X)) R

then (%) admits a solution.
Remark. If the domain of f(:,:) 1is the set T x Br(xO) , where

Bp(x0)= {x € X: ||z-z,]| < r}, then the local version of Theorem 3.1 is

0!

valid.
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