Nagoya Math. J., 253 (2024), 23-47
DOI 10.1017/nmj.2023.17

ON THE ANTI-CANONICAL GEOMETRY OF WEAK Q-FANO
THREEFOLDS, III

CHEN JIANG® anDp YU ZOU

Abstract. For a terminal weak Q-Fano threefold X, we show that the mth
anti-canonical map defined by | — mKx| is birational for all m > 59.

§1. Introduction

Throughout this paper, we work over an algebraically closed field of characteristic 0 (e.g.,
the complex number field C). We adopt standard notation in [14].

A normal projective variety X is called a weak Q-Fano variety (resp. Q-Fano variety) if
—Kx is nef and big (resp. ample). According to the minimal model program, (weak) Q-Fano
varieties form a fundamental class in birational geometry. Motivated by the classification
theory of three-dimensional algebraic varieties, we are interested in the study of explicit
geometry of (weak) Q-Fano varieties with terminal or canonical singularities. In this
direction, there are a lot of works in the literature (see, e.g., [2], [4]-[6], [L0]-[12], [16]—-
119)).

Given a terminal weak Q-Fano threefold X, the mth anti-canonical map ¢_, x (or simply
©_m,) is the rational map induced by the linear system | —mK x|. We are interested in the
fundamental question of finding an optimal integer c3 such that ¢_,, is birational for
all m > c3. The existence of such c3 follows from the boundedness result in [13]. More
generally, Birkar [1] showed that, for a positive integer d, there exists a positive integer cq
such that ¢_,, is birational for all m > ¢4 and for all terminal weak Q-Fano d-folds, which
is one important step toward the solution of the Borisov—Alexeev—Borisov conjecture. The
following example shows that c3 > 33.

ExaMPLE 1.1 [8, List 16.6, No. 95]. A general weighted hypersurface Xgg C P(1,5,6,
22,33) is a Q-factorial terminal Q-Fano threefold of Picard number 1 with ¢_,, birational
for m > 33 but p_32 not birational.

In [5], it was showed that for a terminal weak Q-Fano threefold X, ¢_,, is birational for
all m > 97, which seems far from being optimal comparing to Example 1.1. Later in [6], it
was showed that any terminal weak Q-Fano threefold is birational to some terminal weak
Q-Fano threefold Y such that ¢_,, y is birational for all m > 52. Moreover, in recent works
[10], [11], we can make use of the behavior of the pluri-anti-canonical maps studied in [5] in
the classification of terminal Q-Fano threefolds. So we believe that a better understanding of
the behavior of the pluri-anti-canonical maps (including new methods developed during the
approach) will help us understand the classification of terminal Q-Fano threefolds better.

The main goal of this paper is to give an improvement of [5], [6] without passing to a
birational model. The main theorem of this paper is the following.
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24 C. JIANG AND Y. ZOU

THEOREM 1.2. Let X be a terminal weak Q-Fano threefold. Then the mth anti-canonical
map o, defined by | —mKx| is birational for all m > 509.

REMARK 1.3. Theorem 1.2 holds for canonical weak Q-Fano threefolds by taking a
Q-factorial terminalization by [14, Ths. 6.23 and 6.25].

For terminal Q-Fano threefolds, we have a slightly better bound.

THEOREM 1.4. Let X be a terminal Q-Fano threefold. Then the mth anti-canonical map
©—m defined by | —mK x| is birational for all m > 58.

To prove the main theorem, we already have several criteria to determine the birationality
in [5], [6], which are optimal in many cases (cf. [5, Exam. 5.12]). In order to study the
birationality of | — mK x|, as indicated in [4]-[6], it is crucial to study when | —mKx]| is
not composed with a pencil. In fact, finding a criterion for | — mK x| not composed with a
pencil is one of the central problems in [5], [6] (see [5, Prob. 1.3], [6, Prob. 1.5]). Comparing
to the birationality criteria, the non-pencil criteria in [5], [6] are not satisfactory. As one
of the main ingredients of this paper, we give a new criterion for | —mK x| not composed

with a pencil.

THEOREM 1.5 (=Theorem 4.2). Let X be a terminal weak Q-Fano threefold. If
hO(X,—mKx) >12m+1

for some positive integer m, then | —mKx| is not composed with a pencil.

The following special case is already interesting for the study of anti-canonical systems of
terminal weak Q-Fano threefolds, and might have applications on upper bounds of degrees
of terminal weak Q-Fano threefolds (cf. [16], [17]).

COROLLARY 1.6. Let X be a terminal weak Q-Fano threefold. If h°(X,—Kx) > 13, then
| — Kx| is not composed with a pencil.

The paper is organized as follows: in §2, we recall basic knowledge. In §3, we recall the
birationality criteria of terminal weak Q-Fano threefolds in [5], [6] with some generalizations.
In §4, we prove the new criterion Theorem 4.2 and give an effective method to apply it. In
85, we prove the main results.

Notation

For the convenience of readers, we list here the notation that will be frequently used in
this paper. Let X be a terminal weak Q-Fano threefold.

P—m The rational map defined by | —mKx|

P, =h%(X,-mKx) The mth anti-plurigenus of X

Bx ={(b;,m:)} The Reid basket of orbifold points of X

Rx ={ri} The collection of local indices of X

rx =lem{r; | € Rx} The Cartier index of Kx

Tmax = max{r; |, € Rx} The maximal local index of X

o(Bx)=23_,bi An invariant of Bx contributing to the Riemann—Roch formula
o (Bx)=>, [;—f An invariant of Bx contributing to the Riemann-Roch formula
Y(Bx)=2Y, % > ri+24 An invariant of Bx from the Miyaoka inequality

Bg?) ={n?, x(1,7)} The initial basket of Bx
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§2. Preliminaries

Let X be a terminal weak QQ-Fano threefold. Denote by rx the Cartier index of Kx.
For any positive integer m, the number P_,, = h°(X,0x(—mKx)) is called the mth anti-
plurigenus of X and ¢_,, denotes the mth anti-canonical map defined by | —mKx]|.

2.1 The fibration induced by |D|
Let X be a terminal weak Q-Fano threefold. Consider a Q-Cartier Weil divisor D on X
with (X, D) > 2. Then there is a rational map defined by |D|:

O X —-» PPOD)I-L

By Hironaka’s desingularization theorem, we can take a projective birational morphism
m: W — X such that:

(i) W is smooth.

(ii) The movable part |M| of |[7*(D)]]| is base-point-free and, consequently, v := @ pjo7
is a morphism.

(iii) The sum of 77 *(D) and the exceptional divisors of 7 has simple normal crossing
support.

Let W —5 T —% Z be the Stein factorization of v with Z := (W) c P""(X:D)=1 We have
the following commutative diagram:

W T
T v S
x--te_ g

If dim(T") > 2, then a general member S of | M| is a smooth projective surface by Bertini’s
theorem. In this case, | D| is said to be not composed with a pencil of surfaces (not composed
with a pencil, for short).

If dim(I') =1, then T = P! as h}(T',Or) < b} (W,0w ) = h'(X,0x) = 0. Furthermore, a
general fiber S of f is a smooth projective surface by Bertini’s theorem. In this case, | D] is
said to be composed with a (rational) pencil of surfaces (composed with a pencil, for short).

In each case, S is called a generic irreducible element of |M|. We can also define a generic
irreducible element of a moving linear system on a surface in the similar way.

DEFINITION 2.1. Keep the same notation as above. Let D’ be another Q-Cartier Weil
divisor on X with h%(X, D’) > 2. We say that | D| and | D’| are composed with the same pencil,
if both of them are composed with pencils and they define the same fibration structure
W — PL. In particular, |D| and |D’| are not composed with the same pencil if one of them
is not composed with a pencil.

2.2 Reid’s Riemann—Roch formula and Chen—Chen’s method
A basket B is a collection of pairs of coprime integers where a pair is allowed to appear
several times, say

{(bj,ri)|i=1,...,8;b; is coprime to 7;}.

https://doi.org/10.1017/nmj.2023.17 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.17
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For simplicity, we will alternatively write a basket as a set of pairs with weights, say, for
example,

B=1{2x(1,2),(1,3),(3,7),(5,11)}.

Let X be a terminal weak Q-Fano threefold. According to Reid [20], there is a basket of

(virtual) orbifold points
Bx = {(bi,ri) li=1,...,50<b; < %;bi is coprime to ri}

associated with X, where a pair (b;,r;) corresponds to an orbifold point @; of type
%(1,—1,1)2'). Denote by Rx the collection of r; (counted with multiplicities) appearing
in Bx, and ry.x = max{r; | r; € Rx}. Note that the Cartier index rx of Kx is just
lem{r; |r; € Rx}.

According to Reid [20], for any positive integer n,

1
P =5n(n+1)(2n+1) (-K%)+(@2n+1)—1l(n+1), (2.1)
where I(n+1) =37,3>7" w and the first sum runs over Reid’s basket of orbifold
points. Here, jb; means the smallest nonnegative residue of jb; mod ;.
2
Set 0(Bx)=1)_,b; and 0/(Bx) = zl;— From (2.1), for n=1,2,
~K% =2P_1+0(Bx)—0'(Bx)—6, (2.2)
U(Bx):10—5p_1 + P_5. (23)
Denote

1
v(Bx) := Zr —Zi:ri+24.
By [13] and [20, 10.3],
v(Bx) > 0. (2.4)
We recall Chen-Chen’s method on basket packing from [2]. Let
B= {(bi,ri) li=1,...,50<b; < %;bi is coprime to ri}
be a basket and assume that biry — bar; = 1, then the new basket
B’ ={(by +ba,r1+712),(b3,73),...,(bs,75)}

is called a prime packing of B. We say that a basket B’ is dominated by B, denoted by
B = B', if B’ can be achieved from B by a sequence of prime packings (including the case
B=DB).

By [2, §2.5], there is a unique basket Bg?), called the initial basket of By, of the form
BY = {nf . x(1,7)|r>2} such that BY = Bx. By [2, §2.7], we have

n{,=5-6P_1+4P_5— P_3, (2.5)

n{s=4-2P_1 —2P 5+3P_3—P_4, (2.6)
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n} ,=143P_1—P_,—2P_3+P 4 —05, (2.7)
where 05 =, ;1Y .. We refer to [2] for more details.

2.3 Auxiliary results
We list here some useful results on terminal weak Q-Fano threefolds.

PROPOSITION 2.2. Let X be a terminal weak Q-Fano threefold. Then:

(1) rx =840 or rx <660 [5, Prop. 2.4].

(2) P_g>2 [2, Th. 1.1]; moreover, if P_1 =0 and P_5 >0, then P_¢ > 2 [2, Case 1 of
Proof of Prop. 3.10].

(3) —K% > 535 [2, Th. 1.1]; moreover, if P_y =0 and P_y >0, then —K% > =5, and if in
addition P_y > 2, then —K% > % [2, (4.1), Lem. 4.2, and Case I of Proof of Th. 4.4].

(4) If P-4 =0, then 2 € Rx [5, Proof of Th. 1.8, p. 106].

LEMMA 2.3. Suppose that {(b;,r;) | 1 <i <k} is a collection of pairs of integers with
0<2b;<r; for1<i<k. Then Zle(ﬁ'* Ly> §Zf:1bi.

T4

Proof. r; > 2b; implies that r; — Ti > %bi. U

83. The criteria for birationality

In this section, we recall the birationality criteria of terminal weak Q-Fano threefolds in
[5], [6]. Here, we remark that all birationality criteria in this section are from [5], [6] except
for Theorem 3.5 and Corollary 3.7 (which are minor generalizations of [6, Th. 5.9]). Also,
we provide Lemma 3.3 in order to apply Corollary 3.7 efficiently. In fact, in [6], [6, Th. 5.9]
is only used for very special cases, but in this paper, thanks to Lemma 3.3, we make use of
Corollary 3.7 in many cases.

3.1 General settings

We recall numerical invariants needed in the birationality criteria, namely, v, mq, a(mqg),
ma, g, and No.

NOTATION 3.1. Let X be a terminal weak Q-Fano threefold.

Let vg be a positive integer such that P_, > 0.

Take a positive integer mg such that P_,,, > 2. Set

( ) 6, 1fm022,
alm =
TN, it mg = 1.

Take my > mg to be an integer with P_,,, > 2 such that | —moKx| and | —m; Kx| are
not composed with the same pencil.

Set D := —mgKx and keep the same notation as in §2.1. Denote S to be a generic
irreducible element of |M_,,,| = Mov |[7*(—moKx)]|. Choose a positive rational number
o such that

pom*(—Kx) — S ~q effective Q-divisor.
Set NO = Tx(ﬂ'*(—Kx)Q . S)

REMARK 3.2 [6, Rem. 5.8]. Here, we explain how to choose pug. In general, by
assumption, we can always take u( = mg. On the other hand, if | —moKx| and | — kK x]|
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are composed with the same pencil for some positive integer k, and ﬁ < myg, then we

k

can take /"L/O = ﬁ

as

kr*(—Kx) ~q (P- —1)S + effective Q-divisor.
LEMMA 3.3. In Notation 3.1, Ng > [ —%—1.

M1V0Tmax
Proof. We may modify m such that |[M_,, [ = Mov|[n*(—mi1Kx)]| is base-point-free.
Pick a generic irreducible element C' of the base-point-free linear system |M_,,,|s|. Since
™ (—=m1Kx) > M_p,, 7™ (—m1Kx)|s > C. Set
CI: (ﬂ*(—Kx) C) = (W*(—Kx)’5~0)s.
By [5, Prop. 5.7(v)], ¢ > —-—. Since 7*(—Kx)|s is nef,

— VY0Tmax
* 2 * 1 1
T (—Kx)*-S>n"(—Kx)|lg-—C > ————.
m1 M1VoTmax
Hence, Ny > [—2X—1 as Ny is an integer by [5, Lem. 4.1]. 0

M1V0Tmax

3.2 Birationality criteria
We recall the birationality criteria of terminal weak Q-Fano threefolds.

THEOREM 3.4 [5, Th. 5.11]. Keep the setting in Notation 3.1. Then the mth anti-
canonical map ©_,, is birational if one of the following conditions holds:

(1) m >max{mo+mi+a(mo),|3py] +3mi}.
(2) m > max{mg+mi+a(myg), L%% + gmlj, L6 | +ma1 + 27 max }-
(3) m >max{mo+my+a(mg), | py] +m1+ 200" max }-

As another criterion, we have the following modification of [6, Th. 5.9].

THEOREM 3.5. Keep the setting in Notation 3.1. Fiz a real number > 8. Then the
mth anti-canonical map p_,, is birational if

4VO"Qmaux

m > max { mo+a(mg), | uy+
1+4,/1-3

=1, [po+ v/ Brx/No|

Proof. The proof is the same as [6, Th. 5.9] by replacing [6, Lem. 5.10] with
Lemma 3.6. O

LEMMA 3.6 [3, Th. 2.8]. Let S be a smooth projective surface, and let L be a nef and
big Q-divisor on S satisfying the following conditions:

(1) L? > B, for some real number 3 > 8, and
(2) (L-Cp)> ﬁ for all irreducible curves Cp passing through any very general point

Pebs.

Then the linear system |Kg+ [L]| separates two distinct points in very general positions.
Consequently, |Ks+ [L]| gives a birational map.

We will use the following version of Theorem 3.5.

COROLLARY 3.7. Keep the setting in Notation 5.1. Then the mth anti-canonical map
Y_m 18 birational if one of the following conditions holds:
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(1) m > max{mo+a(mo), [u(] +4v0rmax — 1, | 11 + /87x /No| }.

(2) Yormax > ;ﬁ,‘o and

rx
> 0+ 20 max +————| ¢-
m > max{mo —|—a(m0), \"MO +2vor + N()I/(]?”maxJ }

Proof. (1) follows directly from [6, Th. 5.9] or Theorem 3.5 with 5 = 8. For (2), take

N, 2
5270 <2V0rmax+rx> 28
rx NoVormax

in Theorem 3.5. Then

4197 max _ 4V07'max\//§
14,/1-8 VB+VB-38

4V07amax\//§
/ No _rx __rx
X <2V0Tmax + NovoTmax + 2V0rmax NovoTmax

)
=/ Brx/No.

So the conclusion follows from Theorem 3.5. 1

Finally, we explain the strategy to apply the birationality criteria to assert the
birationality. It is clear that in order to apply Theorem 3.4 and Corollary 3.7, we need
to control the values of (some of) vy, mg, m1, gy, No, and 7x,Tmax. To be more precise, we
need to give upper bounds of vy, mg, m1, i, Tx, "max and lower bounds of Ny. Here, my
and vy can be controlled by Proposition 2.2 (in particular, we can always take mg = 8), uj
can be controlled by Remark 3.2, Ny can be controlled by Lemma 3.3 (in most cases, we use
the trivial lower bound Ny > 1), and rx and ryax can be controlled by (2.4). So the most
important and difficult part is to bound m;. We will deal with this issue in the next section.

§4. A new criterion for | — mK| not composed with a pencil

In this section, we give a new criterion on when | —mK x| is not composed with a pencil
for a terminal weak Q-Fano threefold X. Such a criterion is essential in order to apply
criteria for birationality in §3 (see also [4]-[6]). In [5], the following proposition is used to
determine when | —mK| is not composed with a pencil.

PROPOSITION 4.1 [5, Cor. 4.2]. Let X be a terminal weak Q-Fano threefold. If
P, >rx(—K%)m+1
for some positive integer m, then | —mK x| is not composed with a pencil.

However, Proposition 4.1 is too weak for application, especially when rx(—K%) is large
(see Example 4.10). In [6], there is a modification of this inequality (cf. [6, Lem. 4.2 and
Prop. 5.2]), but one has to replace X with a birational model. In this paper, by technique
developed recently in [12], we give a new criterion.

THEOREM 4.2. Let X be a terminal weak Q-Fano threefold. If
P ,>12m+1

for some positive integer m, then | —mK x| is not composed with a pencil.
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4.1 A structure theorem of terminal weak QQ-Fano threefolds

We recall the following structure theorem of terminal weak Q-Fano threefolds from [12].
It plays the role of Fano—Mori triples as in [6]. Unlike [6], we do not need to replace by a
birational model (cf. [6, Prop. 3.9]).

PROPOSITION 4.3 [12, Prop. 4.1]. Let X be a terminal weak Q-Fano threefold. Then there
exists a mormal projective threefold Y birational to X satisfying the following properties:

1) Y is Q-factorial terminal.
2) —Ky is big.
For any sufficiently large and divisible positive integer n, | —nKy | is movable.

A~ N N N
=~ W
o — N —

For a general member M € | —nKy |, M is irreducible and (Y, 2 M) is canonical.

There exists a projective morphism g:Y — S with connected fibers where F is a general

fiber of g, such that one of the following conditions holds:

(a) Sis a point and Y is a Q-Fano threefold with p(Y) = 1.

(b) S=P! and F is a smooth weak del Pezzo surface.

(c) S is a del Pezzo surface with at worst Du Val singularities and p(S) =1, and
F ~ P

Here, we remark that in the proof of [12, Prop. 4.1], Y is obtained by running a K-MMP
on a Q-factorialization of X, so the induced map X --+Y is a contraction, that is, it does
not extract any divisor.

4.2 Bounding coefficients of anti-canonical divisors
In this subsection, we discuss coefficients of certain divisors in the Q-linear system of the
anti-canonical divisor in several cases.

LEMMA 4.4. Let S be a smooth weak del Pezzo surface, and let C be a nonzero effective
integral divisor on S which is movable. If —Kg ~g aC + B for some positive rational number
a and some effective Q-divisor B, then a < 4.

Proof. By classical surface theory, it is well known that there is a birational map from
S to P? or the Hirzebruch surface Fy or Fy. So, by taking pushforward, we may replace S
by P2 or Fy or Fy. Here, C' is not contracted by the pushforward as it is movable.

If S =P?2, then intersecting with a general line L, we get a < a(C-L) < (—Kg-L) = 3.

If S =Ty, then we may find a ruling structure ¢ : Fg — P! such that C is not vertical.
Then we get a < 2 by intersecting with a fiber of ¢.

If S =TF,, then we consider the natural ruling structure ¢ : Fo — P!, If C' is not vertical,
then intersecting with a fiber of ¢, we get a < 2. If C' is vertical, then intersecting with
—Kg, we get a(—Kg-C) < K2 which implies that a < 4. 0

LEMMA 4.5. Let Y be a Q-factorial terminal Q-Fano threefold with p(Y') =1, and let D
be an integral divisor with h®(D) > 2. If —Ky ~g aD+ B for some positive rational number
a and some effective Q-divisor B, then a < 7. Moreover, the equality holds if and only if
Y ~P(1,1,2,3), B=0, and Oy (D) ~ Oy (1).

Proof. Suppose that a > 7. As p(Y) =1, we have —Ky ~q tD for some rational number
t > a > 7. Recall that the Q-Fano index of Y is defined by

qQ(Y) = max{q | —Ky ~q qA, A is a Weil divisor}.

https://doi.org/10.1017/nmj.2023.17 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.17

THE ANTI-CANONICAL GEOMETRY OF FANO THREEFOLDS 31

By [18, Cor. 3.4(ii)], t = qQ(Y) > 7. As h°(D) > 2, there are two different effective divisors
Dy, D, € |D| such that —Ky ~q tDq ~q tDs, which implies that Y ~P(1,1,2,3) by [18, Th.
1.4(vi)]. But, in this case, t = ¢qQ(Y) = 7. Hence, a =7, B =0, and Oy (D) ~ Oy (1). 0

LEMMA 4.6. Keep the setting in Proposition 4.3, and suppose that S =P'. If —Ky ~q
wF + E for some positive rational number w and some effective Q-divisor E, then w < 12.

This lemma is from the proof of [12, Prop. 4.2]. For the reader’s convenience, we recall
the proof here.

Proof. We may assume that w > 2. By Proposition 4.3(3)(4), for a sufficiently large and
divisible integer n, | —nKy| is movable, and there exists an effective Q-divisor M ~ —nKy
such that (Y, %M) is canonical. Since —Ky is big, we can write —Ky ~g A+ N, where A
is an ample Q-divisor and N is an effective Q-divisor. Set B, = 1;EM + €N for a rational
number 0 < € < 1. Take two general fibers Fi, F5 of g. Denote

2 2
A=(1-——)B.+—E+F,+ F>.
w w

Then

C(Ky 4+ A) ~g — <1— z> (Ky + B.) ~g <1— 2) eA

w

is ample as w > 2. Hence, by the connectedness lemma [12, Lem. 2.6], Nklt(Y,A) is
connected. By construction, F; U Fy C Nklt(Y,A), then Nklt(Y,A) dominates P'. By the
inversion of adjunction [14, Lem. 5.50], (F, (1— 2)B.|r + 2 E|r) is not klt for a general fiber
F of g. As being klt is an open condition on the coefficients, by the arbitrariness of e, it
follows that (F,(1—2)1M|r+ 2E|p) is not kit for a very general fiber F of g.

On the other hand, as (Y, M) is canonical, (F, 1 M|) is canonical by Bertini’s theorem
(see [14, Lem. 5.17]). Since M is a general member of a movable linear system by assumption,
M]|F is a general member of a movable linear system on F. So each irreducible component
of M|F is nef. Also, we can take M such that M|r and E|r have no common irreducible
component. By construction, %M|p ~q E|p ~9 —Kp. So we can apply [12, Th. 3.3] to
F,LM|p,E|p, which implies that 2 > 1. Hence, w < 12. U

LEMMA 4.7. Keep the setting in Proposition 4.3, and suppose that S is a del Pezzo
surface. Suppose that D is a nonzero effective integral divisor on Y which is movable. If
—Ky ~gwD+E for some positive rational number w and some effective Q-divisor E, then
w < 12.

Proof. As S is a del Pezzo surface with at worst Du Val singularities and p(S) = 1, there
are three cases (see [15], [17, Rem. 3.4(ii)]):

(1) KZ=9 and S~P?.

(2) KZ=8and S~P(1,1,2).
(3) 1<KZ<6.
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Consider the linear system H on S defined by

|Op2(1)], if S~ P2,

_ |Op1,1,2)(2)], if S~P(1,1,2),
| — Ks|, if 2< K2 <6,
| —2Ks], if K2=1.

Then H is base-point-free and defines a generically finite map (cf. [7, Th. 8.3.2]). By Bertini’s

theorem, we can take a general element H € H such that H and G = g~ '(H) = g*H are

smooth. Note that for a general fiber C of g|¢, C ~P!, (-Kg-C) =2, and G|g ~ (H?)-C.
Note that g|¢ is factored through by a ruled surface over H, so K2 <8—8g(H). Then

(—Kyle)® = (—Ke+Gla)?
= KZ+4H?
< 8—8g(H)+4H?
= —4(Kg-H) < 24.

By construction, as |G| defines a morphism from Y to a surface and D is movable, D|¢ is
an effective nonzero integral divisor for a general G. So we may write

*Ky‘G ~Q wD|G+E|G. (4.1)

Take a general fiber C of g|g. If (D|g-C) # 0, then by (4.1) intersecting with C, w < 2.
If (D|g-C) =0, then D|g is vertical over H and thus D|q is numerically equivalent to
a multiple of C. By Proposition 4.3(3), —Ky | is nef. Then, by (4.1), intersecting with
_KY|G7

24> (=Ky|g)? > w(—=Ky|c- D) > w(-Kyl|e-C) = 2w,
which implies that w < 12. O

4.3 A new geometric inequality
Now, we are prepared to prove Theorem 4.2.

Proof of Theorem /j.2. 1t suffices to show that, if | — mK x| is composed with a pencil,
then P_,, <12m+1.

Take g: Y — S to be the morphism in Proposition 4.3. Take a common resolution 7 :
W — X, q: W =Y. We may modify 7 such that f: W — P! is the fibration induced by
| —mKx| as in §2.1. See the following diagram:

Denote by Fy a general fiber of f. Then

7 (=mKx) ~ (P — 1) Fyy + B, (4.2)
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where E is an effective Q-divisor on W. Set w = %. Pushing forward (4.2) to Y, we
have

—Ky ~qwq.Fw + By, (4.3)

where Ey is an effective Q-divisor on Y. Note that ¢, Fy is a general member of a movable
linear system.

Case 1. S is a point.
In this case, w <7 by (4.3) and Lemma 4.5.

Case 2. S =P

If S=P! and ¢, Fw|r =0, then ¢. Fyy ~ F and — Ky ~gwF + Ey. By Lemma 4.6, w < 12.

If S=P! and q.Fw|r # 0, then ¢, Fy |r is a movable effective nonzero integral divisor
on F. Restricting (4.3) on F, we have —Kp ~q w(¢.Fw|r)+ Ey|p. By Lemma 4.4, w <4.

Case 3. S is a del Pezzo surface.

In this case, w <12 by (4.3) and Lemma 4.7.

Combining all above cases, we proved that =w <12 as long as | —mKx]| is
composed with a pencil. 0

P_—1

Applying Proposition 4.1 and Theorem 4.2, we have the following criteria for | —mK|
not composed with a pencil (cf. [6, Prop. 5.4]).

PRrOPOSITION 4.8. Let X be a terminal weak Q-Fano threefold. Let t be a positive real
number, and let m be a positive integer. If m > t,m > %“”‘t, and one of the following

conditions holds:
(1) m > —%—F\/ﬁ—i-ﬁ’r‘x—k%,

( m> — 3+\/t( K3)+ 7}?3+16’

then | —mK x| is not composed with a pencil.
Proof. By [6, Prop. 5.3],

1 2
Py > som(m+1)2m+1)(~K%) +1- Tm

The assumption implies that either P_,, > rx(—K3%)m+1 or P_,, > 12m+ 1. Hence, | —
mK x| is not composed with a pencil by Proposition 4.1 and Theorem 4.2. 0
By the same method, we have the following corollary.

COROLLARY 4.9. Let X be a terminal weak Q-Fano threefold. Let t be a positive

real number, and let m be a positive integer. If m > t,m > T“‘T““‘t, and m > —%—F

\/t~(—112{3°’() + l.(—GKg() + % for some positive real number I, then P_,, —1> 7

We illustrate in the following example on how efficient Proposition 4.8 is comparing to
[5, Cor. 4.2].

EXAMPLE 4.10. Suppose that X is a terminal weak Q-Fano threefold with P_; =0,
Bx = {2x(1,2),(2,5),(3,7),(4,9)}, and —K% = 5. Then [5, Cor. 4.2] implies that
| —mK x| is not composed with a pencil for all m > 61 (see the last paragraph of [5, p. 106]).
On the other hand, by Proposition 4.8, | — mKx| is not composed with a pencil for all

m > 23 (see Case 4 of Proof of Theorem 5.6), which significantly improves the previous
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result. Also, it can be computed directly by (2.1) to get P_go =260 < 12 x 22+ 1, which
tells that the estimates in Proposition 4.8 are efficient enough comparing to directly using
the Riemann—Roch formula.

4.4 A remark on [5, Cor. 4.2]
In this subsection, we discuss the equality case of [5, Cor. 4.2] for terminal Q-Fano

threefolds.
ProrosiTiION 4.11. Let X be a terminal Q-Fano threefold, and let m be a positive
integer. If
P_p=rx(—K¥%)m+1
and | —mKx| is composed with a pencil, then:
(1) rx(-K%)=1.

(2) If, moreover, the Weil divisor class group of X has no m-torsion element, then
(X, ~kKx) =k+1 for all 1 <k <m.

Proof. We recall the proof of [5, Cor. 4.2]. As | —mK x| is composed with a pencil, take
D = —mKx and keep the notation in §2.1, we have
7 (—mKx)~ (P_p—1)S+F, (4.4)
where S is a generic irreducible element of Mov||7*(—mKx)]| and F is an effective Q-
divisor. Then

M(—K%) > (Pl — )" (K x)?8) > —— (P —1)

by [5, Lem. 4.1].
Now, by assumption, the equality holds. So (7*(—Kx)?-F) = 0. This implies that F is
m-exceptional as —K x is ample. So (4.4) implies that

—mKx ~ (P_p, — 1)m.S.
Then

~Kx ~grx(—K3x)m.S. (4.5)
By [9, Lem. 2.3], (m.5)3 > i Then (4.5) implies that

_ 7173 ))3
CK3 > (rx(=Kx)) ’
rx
which implies that rx(—K?%) =1 as it is a positive integer. Under the assumption that the
Weil divisor class group of X has no m-torsion element, (4.5) implies that —Kx ~ m,.S. So
the conclusion follows as —kKx ~ km,.S is composed with a pencil for any 1 <k <m (see

[5, p. 63, Case (fp)]). 0
The following example shows that Proposition 4.11 is nonempty.

ExAaMPLE 4.12 [8, List 16.6, No. 88]. A general weighted hypersurface X4o C P(1,1,
6,14,21) is a terminal Q-Fano threefold with rx(—K3%)=1 and Bx = {(1,2),(1,3),(1,7)}.
By [18, Prop. 2.9], the Weil divisor class group of X is torsion-free. Certainly, P_; =k+1
and | — kK x| is composed with a pencil for 1 <k <5.
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85. Proofs of main results

In this section, we apply the birationality criteria (Theorem 3.4 and Corollary 3.7) and
the non-pencil criteria (Proposition 4.8) to prove the main theorem. The proof will be
divided into several cases:

rx = 840.

P_2 =0.

P 5>0, P41 =0, and ryax > 14.
P_5>0, P.1 =0, and rpax < 13.
P_1 >0 and rp.x > 14.

P_1 >0 and rp.x <13.

AR e

Here, recall that rx =lem{r; | r; € Rx} is the Cartier index of Kx, and ryax = max{r; |
r; € Rx} is the maximal local index.

5.1 The case rx = 840

THEOREM 5.1. Let X be a terminal weak Q-Fano threefold with rx = 840. Then ¢_p,
is birational for all m > 48.

Proof. Keep the setting in Notation 3.1. By [6, Lem. 6.5] and the first line of its proof,
we know that ryn., =8, P_1 > 1, and K3 > 4T Take mg =8 and vy = 1. By Corollary

840"
4.9 (with I =1, t =4.5, and K3 > 4F), we have P_15 —1>12.

If | —12K x| and | — 8K x| are composed with the same pencil, then take pj, = ﬁ <1
by Remark 3.2. By Proposition 4.8(2) (with ¢t = 13.5 and —K% > 25, we can take m; = 36.

By Lemma 3.3, No > [ 840 ] = 3. Then, by Corollary 3.7(1), ¢_,, is birational for all m > 48.
If | -12Kx| and | — 8KX| are not composed with the same pencil, then take m; =12 and
w6 =mo = 8. Then, by Theorem 3.4(3), ¢_,, is birational for all m > 36. [

5.2 The case P_> =0
THEOREM 5.2. Let X be a terminal weak Q-Fano threefold. If P_o =0, then p_,, is
birational for all m > 51.

Proof. Keep the setting in Notation 3.1. In this case, the possible baskets are classified
in [2, Th. 3.5] with 23 cases in total (see Table A.1 in the Appendix). Here, we refer to the
numbering in Table A.1.

For Nos. 1-5 of Table A.1, rx < 84,—K§’< > 84, P_g > 2, and rmax < 11. So we can
take mo = 8. By Corollary 4.9 (with [ =2 and ¢t =5.7), P_ 2 1 > 2L If | - 21K x| and
| -8K x| are composed with the same pencil, then take p( = 7 < 2 by Remark 3.2. By
Proposition 4.8(1) (with ¢ = 6.6), we can take m; = 25. Then by Theorem 3.4(2), pom is
birational for all m >48. If | - 21K x| and | — 8 K x| are not composed with the same pencil,
then take my = 21 and pj = mg = 8. Then, by Theorem 3.4(2), ¢_,, is birational for all
m > 51.

For Nos. 6-13 and Nos. 16-23 of Table A.1, rx <78, K3 30, P_¢>2, and rya < 14.
So we can take my = 6. By Corollary 4.9 (Wlth [=1andt=3. 6) P,17 — 1 >17. 1f |- 17K x|
and | —6K x| are composed with the same pencil, then take jj = 5—— < 1 by Remark
3.2. By Proposition 4.8(1) (with ¢ =4.9), we can take m; = 23. Then by Theorem 3.4(2),
©_m, is birational for all m > 51. If | - 17K x| and | — 6 K x| are not composed with the same
pencil, then take m; =17 and pj = mo = 6. Then, by Theorem 3.4(2), ¢_,, is birational
for all m > 51.
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For No. 14 of Table A.1, ry =210,— K3 = %, P_5 =2, and rmax = 7. So we can take
mo = 5. By Corollary 4.9 (withl=1and t=4.2), P_10—1>10.If | = 10K x| and | - 5K x| are
composed with the same pencil, then take u(, = #2_1 < 1 by Remark 3.2. By Proposition
4.8(2) (with t =12), we can take my = 30. Then, by Theorem 3.4(2), ¢_,, is birational for
all m > 51. If | —10K x| and | —5K x| are not composed with the same pencil, then take
mi =10 and pj =mgo = 5. Then, by Theorem 3.4(2), ¢_,, is birational for all m > 29.

For No. 15 of Table A.1, rx = 120,- K5 = %, P_5 =2, and .« = 8. So we can take
mo =5. By Corollary 4.9 (with[=1and t=4), P_1; —1>11. If | - 11K x| and | - 5K x| are
composed with the same pencil, then take p(, = P,ﬂ—l < 1 by Remark 3.2. By Proposition
4.8(1) (with t =10), we can take my = 27. Then, by Theorem 3.4(2), ¢_,, is birational for
all m >46. If | - 11K x| and | — 5K x| are not composed with the same pencil, then take

my =11 and pf, = mo = 5. Then, by Theorem 3.4(2), ¢_,, is birational for all m >32. [

5.3 The case P_ >0 and P_; =0
LEMMA 5.3. Let X be a terminal weak Q-Fano threefold. If P_1 =0 and P_5 >0, then

v(Bx)>0, 2€Rx, o(Bx)>11. (5.1)

Proof. By (2.3), we have 0(Bx)=10—5P_; +P_5 =10+ P_5 > 11. Other statements
follow from (2.4) and Proposition 2.2(4). 0

THEOREM 5.4. Let X be a terminal weak Q-Fano threefold. If P_o >0, P_1 =0, and
Tmax = 14, then @_,, is birational for all m > 59. Moreover, p_53 may not be birational
only if Bx ={(1,2),2x(1,3),(8,17)} and | —24Kx| is composed with a pencil.

Proof. Keep the setting in Notation 3.1. By [5, Case II of Proof of Th. 3.12] (especially
the last paragraph of Subsubcase II-3-iii) or the second paragraph of [5, Case IV of Proof
of Th. 1.8] (see Table A.2 in the Appendix), we can see that ry,x < 13 provided P_4 = 1.

Hence, by assumption, P_, > 2, and we can always take mg = 4.

Case 1. ry.. > 16.

It is not hard to search by hands or with the help of a computer program to get all
possible By satisfying (5.1) and 7max > 16. Here, note that o(Bx) > 11 implies that ), r; >
20(Bx) > 22.

If 22 < rpax < 24, then there is no Bx satisfying (5.1). If 16 < rpax < 21, then all possible
Bx satisfying (5.1) are listed in Table 1.

Here, we explain briefly how to get Table 1. The algorithm is the following: first, we can
list all possible R x satisfying 2 € Rx and v(Bx) > 0; then we find all possible b; for those
Rx such that o(Bx) > 11. For example, let us consider the case ry.x = 17. As 2 € Ry,
{2,17} C Rx. So we can list all possible Rx with v(Bx) > 0 by enumeration method by
considering the second largest r;:

{2, 5, 17}; {2,2,4,17}; {2, 4,17}
{2, 3,3, 17}k {2,2,3, 17} {2,3,17}
{2,2,2,2,17} {2,2,2,17} {2, 2,17}
{2, 17}.
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Table 1. Baskets satisfying Lemma 5.3 with Tmax > 16.

No. Bx —-K3
1 {(1,2),(10,21)} <0
2 {2x(1, 2)7(10 21)} 5/21
3 {2x(1,2),(9,20)} <0
4 {2%(1,2),(9,19)} <0
5 {(1,2),(1,3),(9,19)} <0
6 {3><(1, ),(9,19)} 9/38
7 {3x(1,2),(8,19)} 5/38
8 {4 % (1,2),(7,18)} 5/18
9 {(1,2),(2,5),(8,17)} <0
10 {3x (1, 2)7(8 17)} <0
11 {2x(1,2),(1,3),(8,17)} <0
12 {2x(1,2),(1,4),(8,17)} <0
13 {(1,2),2 % (1,3),(8,17)} 7/102
14 {4 % (1,2),(8,17)} 4/17
15 {4 % (1,2),(7,17)} 2/17
16 {2x(1,2),(2,5),(7,16)} 11/80
17 {4%(1,2),(7,16)} <0
18 {3x(1,2),(1,3),(7,16)} 5/48
19 {5x(1,2),(7,16)} 7/16

Then all possible Bx with o(Bx) > 11 are listed in Table 1; for instance, there is no such
basket Bx with Rx ={2,4,17} because in this case o(Bx) <1+1+8=10.

For No. 2 of Table 1, —K;’( = 21, and in this case, P_o =2, rx =42, and rp. = 21. We
can take u( = mo = 2. By Proposition 4.8(1) (with ¢ = 2.28), we can take m; = 16. Then,
by Theorem 3.4(1), ¢_,, is birational for all m > 54.

For other cases with — K5 3 >0, we have -Kx 3 > W72 and rpax < 19. By Corollary 4.9 (with
I=1,t=2), P_13—1>13.1f |- 13K x| and | —4KX| are not composed with the same pencil,
then take my = 13 and p = mo = 4. Then, by Theorem 3.4(1), ¢_,, is birational for all
m > 51.

So we may assume that | — 13K x| and | —4Kx| are composed with the same pencil.
Then, in the following, we can take u(, = P_i’_l <1 by Remark 3.2 and mg = 4.

For Nos. 6-8 of Table 1, =K% > =, rx <38, and rmax < 19. By Proposition 4.8(1) (with
t =2.4), we can take my = 16. Then, by Theorem 3.4(1), ¢_,, is birational for all m > 50.

For Nos. 14-16 and Nos. 18 and 19 of Table 1, K3 > 458, rx <80, and rya. < 17. By
Proposition 4.8(1) (with ¢ = 3.88), we can take m; = 22. Then, by Theorem 3.4(2), ¢_,, is
birational for all m > 56.

For No. 13 of Table 1, —K3% = 10%, rx = 102, and ryax = 17. By Proposition 4.8(1) (with
t =3.6), we can take m; = 25. Then, by Theorem 3.4(2), ¢_,, is birational for all m > 59.
Moreover, if | — 24K x| is not composed with a pencil, then take m; = 24. Then, by Theorem

3.4(2), ¢_, is birational for all m > 58.

Case 2. 14 < 7rpax < 15.

For the remaining cases 14 < ryax < 15, we have —K% > % by Proposition 2.2(3) as
P_4>2. By Corollary 4.9 (with [ =1,t =3.4), P17 —1 > 17.

If | -17K x| and | —4K x| are not composed with the same pencil, then take m; =17 and
w6, =mo = 4. Then, by Theorem 3.4(2), ¢_,, is birational for all m > 51.
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17

1< 1

If | -17K x| and | —4K x| are composed with the same pencil, then take ;=
by Remark 3.2 and mg = 4.

If rpax = 15, then we claim that ry < 60. In fact, as {15,2} C Rx, by (2.4), s € Rx
for all s > 7. If 7¢ Rx, then rx divides 60. If 7 € Rx, then Rx = {15,7,2} by (2.4), and
moreover By = {(1,2),(3,7),(7,15)} by o(Bx) > 11. But this basket has —K% <0 by (2.2),
which is absurd. Hence, rx < 60. By Proposition 4.8(1) (with t =4, —K% > 5), we can
take my = 21. Then, by Theorem 3.4(2), ¢_,, is birational for all m > 51.

If rmax = 14, then we claim that Bx = {6 x (1,2),(5,14)}. Suppose that Bx =
{(b1,71),...,(bk,7k),(b,14)} with b€ {1,3,5}. Then o(Bx) > 11 implies that Zle b; > 6.
If there exists some r; > 2, then Zle r; > 22521 b; > 12, that is, Zle r; > 13. So (2.4)
implies that Zle % >3- ﬁ. On the other hand, (2.4) implies that %k—i— 14 — 1—14 < 24,
which says that k£ < 6. So Zle 717 <5 X %—l—% <3-— ﬁ, a contradiction. So all r; =2 and
k> 6. Then v(Byx) > 0 implies that k=6, and o(Bx) > 11 implies that b = 5. We conclude
that Bx = {6 x (1,2),(5,14)}. In this case, —K% = 2 and rx = ryax = 14. By Proposition
4.8(1) (with t = 2), we can take my = 10. Then, by Theorem 3.4(1), ¢_,, is birational for
all m > 32.

Combining all above cases, we have proved the theorem. U

LEMMA 5.5. (cf. [2, Case I of Proof of Th. 4.4]). Let X be a terminal weak Q-Fano
threefold with P_1 =0 and P_5 > 0. If P_4 > 2 and —K} < %, then Bx is dominated by
one of the following initial baskets:

{8x(1,2),3x(1,3)},
{9x(1,2),(1,4),(1,5)},
{9x(1,2),(1,4),(1,6)},
{9%(1,2),2 % (1,5)}.

Note that in the latter three cases, all possible packings have ryax < 9.

Proof. Following [2, Case I of Proof of Th. 4.4], we only need to consider the cases
(P_3,P_4) =(1,2) or (0,2) in [2, Subcase I-3 of Proof of Th. 4.4].

If (P_3,P_4) = (1,2), then [2, Subcase I-3 of Proof of Th. 4.4] shows that By is
dominated by {8 x (1,2),3 x (1,3)}. (Actually, it shows moreover that Bx is dominated
by {7x(1,2),(2,5),2 x (1,3)}.)

If (P_s,P_4) = (0,2), then P_; =0 and P_5 = 1. Then, by (2.5)(2.7), n{ , =9, n{ 3 =0,
and n{ ; +05 = 2. So Bx is dominated by {9 x (1,2),(1,s1),(1,s2)} for some s3 > 51 > 4.
The case (s1,s2) = (4,4) is ruled out by [2, Subcase I-3 of Proof of Th. 4.4]. Hence, we get
the conclusion by (2.4) and [2, Lem. 3.1]. U

THEOREM 5.6. Let X be a terminal weak Q-Fano threefold. If P_1 =0,P_5 >0, and
Tmax < 13, then ¢©_,, is birational for all m > 56.

Proof. Keep the setting in Notation 3.1. By Proposition 2.2, P_g > 2 and —K% > %.
We always take vg = 2.

If Py =1, then P_5 = 1. Following the second paragraph of [5, Case IV of Proof of Th.
1.8] (see Table A.2 in the Appendix), we have rx < 130. By Corollary 4.9 (with [ =1,t =5.5,
and —K% > =), P_os—1>24.If | - 24K x| and | — 6K x| are not composed with the same
pencil, then take m; =24 and pj = mo = 6. Then, by Theorem 3.4(2), ¢_,, is birational
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for all m > 56. If | —24K x| and | —6K x| are composed with the same pencil, then take
mo =6 and pj = P_ij‘_l < 1 by Remark 3.2. By Proposition 4.8(1) (with ¢ =6.9), we can
take my = 30. Then, by Theorem 3.4(2), ¢_,, is birational for all m > 56.

From now on, we assume that P_4 > 2. Note that —K% > % by Proposition 2.2(3). By
Corollary 4.9 (with [ =1 and t =3.6), P_16—1>16. If | - 16K x| and | —4K x| are not
composed with the same pencil, then take m; = 16 and pj = mo = 4. Then, by Theorem
3.4(2), @_m, is birational for all m > 46.

In the following discussions, we assume that | — 16K x| and | — 4K x| are composed with

the same pencil. We can always take mg =4 and ) = 52— < 1 by Remark 3.2.

P61
Case 1. rpax < 6 or rpax € {10,12}.
If rmax < 6, then rx <60. If rpax = 10 (resp. Tmax = 12), then rx <210 (resp. rx < 84)
by [5, p. 107]. Then, by Corollary 3.7(2), ¢_,, is birational for all m > 52.

Case 2. rpax = 7.
If rpax = 7, then rx divides lem(2,3,4,5,6,7) = 420. Hence, either rx = 420 or rx < 210.
If rx =420, then {4,5,7} C Rx and one element of {3,6} is in Rx. Suppose that

Bx ={(b1,r1),...,(bx,7),(1,7),(1,4),(as,5),(ar,7)},

where r € {3,6}, a5 <2, and a7y < 3. Then o(Bx) > 11 implies that Zle b; > 4. Lemma 2.3
implies that

1 1 1 1 3
Bx)<24—(7— 45— +4—-+3—-+4x>) <0 5.2
v(Bx) < ( SHb- A 43 o ><2)< : (5.2)

a contradiction. Hence, rx <210. Then, by Corollary 3.7(2), ¢_,, is birational for all m > 43.

Case 3. rpax = 8.
If rmax = 8, then we claim that rx < 168. In fact, if rx > 168, then {5,7} C Rx. Suppose
that

BX = {(61,7’1),. ..,(bk,rk),(a5,5), (a7,7), (ag,S)},

where a5 <2, a7 <3, and ag < 3. Then o(Byx) > 11 implies that Z?Zl b; > 3. Similar to
(5.2), Lemma 2.3 implies that v(Bx) < 0, a contradiction. Hence, rx < 168.
Then, by Corollary 3.7(2), ¢—_, is birational for all m > 43.

Case 4. rp.x = 9.

If rmax = 9, then we claim that rx <252 or Bx = {2 x(1,2),(2,5),(3,7), (4,9)}.

If 7 and 8 are not in Rx, then rx < 180.

If 8 € Rx, then as {2,8,9} C Rx, we know that 6 and 7 are not in Rx by v(Bx) > 0.
If 5¢Rx, then rx =72. If 5 € Rx, then Rx ={2,5,8,9} as v(Bx) > 0, but in this case,
o(Bx) <10, a contradiction.

If 7€ Rx, then as {2,7,9} C Rx, we know that at most one element of {4,5,6} is in Rx
by v(Bx) > 0. If 5 € Rx, then rx <252. If 5 € Rx, then by ¢(Bx) > 11 and v(Bx) >0,
it is not hard to check that the only possible basket is Bx = {2 x (1,2),(2,5),(3,7),(4,9)}.
This concludes the claim.

If rx <252, then by Corollary 3.7(2), ¢_,, is birational for all m > 50.
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If Bx ={2x(1,2),(2,5),(3,7),(4,9)}, then —K% = 315 By Proposition 4.8(2) (with
t =17.6), we can take m; = 23. Then, by Theorem 3.4(2), ¢_,, is birational for all m > 41.

Case 5. rpax = 11.

If rmax = 11, then we claim that rx <264 or Bx = {3 x (1,2),(1,3),(2,5), (5,11)} or
Bx ={2x(1,2),(1,3),(3,7),(5,11)}.

As {2,11} C Rx, we know that at most one element of {6,7,8,9,10} is in Rx by
v(Bx) > 0.If 10 € Rx, then rx =110 by [5, p. 107]. If 9 € Rx or 8 € Rx, then rx <264
by [5, p. 107]. If 7€ Rx, then 5 ¢ Rx by 7(Bx) > 0. So either rx = 154 or at least one
element of {3,4} is in Rx. For the latter case, it is not hard to check that the only basket
satisfying o(Bx) > 11 and v(Bx) >0 is Bx = {2 x(1,2),(1,3),(3,7),(5,11)}. If 6 € Rx,
then we get a contradiction by Lemma 2.3 as (5.2).

If none element of {6,7,8,9,10} is in R x, then rx divides 660 and rx < 660 by [5, p. 107].
So either rx <220 or rx = 330. Moreover, if rx = 330, then {2,3,5,11} CRx and 4 ¢ Rx,
and it is not hard to check that the only basket satisfying o(Bx) > 11 and v(Bx) >0 is
Bx ={3x(1,2),(1,3),(2,5),(5,11)}. This concludes the claim.

If rx <264, then by Corollary 3.7(2), ¢—_, is birational for all m > 56.

If Bx ={3x(1,2),(1,3),(2,5),(5,11)}, then —K% = 2. By Proposition 4.8(2) (with
t =17.6), we can take mj = 28. Then, by Theorem 3.4(2), cp m 18 birational for all m > 50.
If Bx ={2x(1,2),(1,3),(3,7),(5,11)}, then —K% = 22 By Proposition 4.8(2) (with

t =17), we can take my = 26. Then, by Theorem 3.4(2), ¢_,, is birational for all m > 48.

Case 6. . = 13.

If rpax = 13, then rx <390 or rx = 546 by [5, p. 107].

If rx = 546, then again by [5, p. 107], Bx ={(1,2),(1,3),(3,7),(6,13)} and —K% = 2.
By Proposition 4.8(2) (with ¢ = 6), we can take my = 26. Then, by Theorem 3.4(2), ¢_,, is
birational for all m > 52.

If rx <390 and —K% > 15, then by Proposition 4.8(2) (with ¢ =6.9), we can take
my = 30. Then, by Theorem 3.4(2), ¢—_m is birational for all m > 56.

If rx <390 and —K% < 15, then by Lemma 5.5, Bx is dominated by {8x (1,2),3 x (1,3)}.
AS Tmax = 13, this implies that Bx is dominated by either {3 x (1,2),(6,13),2 x (1,3)} or
{6 x (1,2),(5,13)}. So we get the following possibilities of Bx by v(Bx) > 0:

{3x(1,2),(6,13),2 x (1,3)} — K3 =5/18,
{2x(1,2),(6,13),(2,5),(1,3)} — K3 =19/195,
{2x(1,2),(6,13),(3,8)} — K3 =11/104,
{(1,2),(6,13),(3,7),(1,3)} — K3 =61/546,
{6 x(1,2),(5,13)} —K3=1/13.
In the above list, only the first and the last have —K% < 13- In particular, in these cases,
rx < 78. Then, by Corollary 3.7(2), ¢_,, is birational for all m > 55.
Combining all above cases, we have proved the theorem. U

5.4 The case P_; >0
LEMMA 5.7. Let X be a terminal weak Q-Fano threefold. If P_1 > 0 and rmax > 16, then
P ,>2
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Proof. 1f P_y =1, then P_y = P_3 = 1. Since rmax > 16, by the classification in [2,
Subsubcase II-4f of Proof of Th. 4.4], Bx is dominated by {2 x (1,2),2x (1,3),(1,s1),(1,s2)}
with sy > 51 > 5, which means that s; + s9 = rimax > 16. But in this case 2 x %—1—2 X %—1— 16 —

5 > 24, contradicting (2.4) and [2, Lem. 3.1]. So P_; > 2. U

THEOREM 5.8. Let X be a terminal weak Q-Fano threefold. If P_1 > 0 and rmax > 14,
then p_, is birational for all m > 52.

Proof. Keep the setting in Notation 3.1. We always take vg = 1.

If 14 < rpax < 15, then rx < 210 by [5, p. 104]. By Proposition 2.2(2), we can take
w6 =mo = 8. Then, by Corollary 3.7(2), ¢_,, is birational for all m > 52.

If rmax = 24, then By = {(b,24)} with b € {1,5,7,11}. If P_y =1, then b = 0(Bx) =
5+ P_5>6 by (2.3); hence, b>7 and P_, > 2. By (2.2), we have —K% > 23 Similarly, if
P_y =2, then P_» >2P_1 —1=3, and thus b > 5. Hence, by (2.2), —K% > 57. If P_y >3,
then by (2.2), —K% >b— % > 23 In summary, —K% > 23 and P_, > 2. We can take
ty = mo = 2. By Proposition 4.8(2) (with ¢ = 1), we can take m; = 9. Then, by Theorem
3.4(1), ¢, is birational for all m > 33.

In the following, we consider 16 < ry,y < 23. By Lemma 5.7, we always take u{, =mo =4
and vg = 1.

If 7oy = 23, then By = {(6,23)} with 1 <b < 11. If P_; =1, then b=5+P_5 > 6 and
thus by (2.2) —K% > 32 IfP_l =2, then b= P_5 >2P_; —1=3; hence, by (2.2) —K% > 3.
If Py >3, then —K3 > b—2 > 22 In summary, —K% > 1. By Proposition 4.8(1) (with
t=139%), we can take m; = 12 Then by Theorem 3.4(1 ) gp_m is birational for all m > 48.

If 20 < rmax < 22, then by (2.4), we have ry < 60. Then, by Corollary 3.7(2), p_,, is
birational for all m > 50.

If 18 < rmax < 19, then rx <190 by [5, p. 104]. Then, by Corollary 3.7(2), ¢_,, is
birational for all m > 52.

If 16 < rpax < 17, then rx < 240 by [5, p. 104]. Then, by Corollary 3.7(2), ¢_,, is
birational for all m > 52. U

THEOREM 5.9. Let X be a terminal weak Q-Fano threefold. If P_1 > 0 and ryax < 13,
then p_n, is birational for all m > 58.

Proof. Keep the setting in Notation 3.1. By Theorem 5.1 and Proposition 2.2(1), we
may assume that rxy < 660. By Proposition 2.2(2), we can take my =8 and vy = 1. We take
wi = 8 unless stated otherwise.

Case 1. rp. < 8.

If rmax <8, then rx divides lem(8,7,6,5) = 840. As rx < 660 rx =420 or rx < 280.

If rx =420, then by Proposition 4.8(1) (with t =19.5, —K% > 51), we can take my = 52.
By Lemma 3.3, No > [ 422 - | =2. Then, by Corollary 3.7(1), go_m is birational for all m > 48.

If rx <280, then by Corollary 3.7(1), ¢_, is birational for all m > 55.

Case 2. rpa. = 9.

If romax =9, then rx divides 2,520. As rx <660 and 9 divides rx, we have rx < 360 or
rx € {504,630}.

If rx <360, then by Corollary 4.9 (with [ =4,t=10, and —K% > 515), we have P_30 —-1>
30 If |- 30K x| and | — 8K x| are composed with the same pencil, then take iy, = P,30—1 <4
by Remark 3.2. Then, by Corollary 3.7(1), ¢_,, is birational for all m > 57. If | — 30K x|
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and | — 8K x| are not composed with the same pencil, then take m; =30 and py =mg = 8.
Then, by Theorem 3.4(3), ¢_ m is birational for all m > 56.

If rx =630, then —K% > 5= (note that —K% > flo and rx(—K%) is an integer). By
Corollary 4.9 (with [ =2.8 and ¢t =11), we have P,33 55 If | =33K x| and | -8K x| are
composed with the same pencil, then take jy = == < 2 8 by Remark 3.2. By Proposition

4.8(1) (with t =20 and —K% > 5}z, we can take m1 =63. By Lemma 3.3, Ny > [531011 =2.
Then, by Corollary 3.7(1), ¢_,, is birational for all m > 52. If | =33K x| and | —8K x| are
not composed with the same pencil, then take m; =33 and p, =mg = 8. By Lemma 3.3,
Ny > (630 | = 3. Then, by Corollary 3.7(1), ¢_, is birational for all m > 48.

If rx =504, then Rx = {9,8,7} by (2.4). Write Bx = {(a,7),(b,8),(¢,9)}, where a <
3,b€{1,3} and ce {1,2,4}. If P_; > 2, then by (2.2),

7T—a) b(8—=b) ¢(9—-c¢)
Ky —2p 4 X —6
X 7T T
6 7 8
- ——2>0.6. 5.3
Z7tsTe 7 (5:3)
If P-4 =1, then by (2.2) and (2.3),
7T—a) b8—=b) ¢(9—c)
k= —4
X - + 3 + 9 >0,
o(Bx)=a+b+c=5+P_5>6. (5.4)

So it is easy to check that —K3% > 50 7 by considering all possible values of (a,b,c). By
Proposition 4.8(2) (with ¢t = 7.3 and —K% > £2), we can take m; = 22. By Lemma 3.3,
Ny > (5041 = 3. Then, by Corollary 3.7(1), ¢_,, is birational for all m > 44.

Case 3. r. = 10.

If rmax = 10, then we claim that rx <210 or rx = 420.

By (2.4), at most one element of {7,8,9} is in Rx. If 7¢ Ry, then ry divides either
120 = lem(10,8,60) or 180 = lem(10,9,60). If 7 € Rx, then rx divides 420 = lem(10,7,60),
so either rx <210 or rx = 420. This concludes the claim.

If rx <210, then by Corollary 3.7(1), ¢_,, is birational for all m > 48.

If rx =420, then by (2.4), Rx ={10,7,4,3}. Write Bx = {(1,3),(1,4), (a,7),(b,10)},
where a <3 and b € {1,3}. If P_; > 2, then by (2.2),

3 a(7T—a) b(10-0)

2
~KY=2P +-+° —
b’ 1+3+4+ 7 + 10 6
2 3 6 9
>+ - ——=2>1. 5.5
sta 710 (5:5)

If P_; =1, then by (2.2) and (2.3),

2 3 a(T—a) b(10-0)
K3 =24 % _4
x=3tyatT T T >0,

o(Bx)=2+a+b=5+P_5>6. (5.6)

So it is easy to check that — K% > 41230 by considering all possible values of (a,b). By Corollary
9 (with l =1 and t =4.8), we have P_15—1>16. If | - 16 K x| and | —8K x| are composed
7 <1 by Remark 3.2. Then, by Corollary 3.7(1),

©_m is birational for all m > 58. If | — 16K x| and | — 8K x| are not composed with the same

with the same pencil, then take i, = 52
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pencil, then take m; =16 and pj = mo = 8. Then, by Theorem 3.4(3), ¢_,, is birational
for all m > 44.

Case 4. 1. = 11.

If rmax = 11, then we claim that rx <330 or rx € {385,396,440,462,660}.

By (2.4), at most one element of {7,8,9,10} is in Rx. So rx divides one element of
{1,980,1,320,4,620}. As rx <660 and 11 divides ry, it is clear that rx <330 or rx €
{385,396,440,462,495,660}. Moreover, if rx =495, then {11,9,5} C R x, which contradicts
(2.4). This concludes the claim.

If rx <330, then by Corollary 4.9 (with [ =7.6,t= 7.6, and —K% > 330) P 28 1 >
If | -28K x| and | — 8K x| are composed with the same pencil, then take pj, = szg 7 < 7 6
by Remark 3.2. Then, by Corollary 3.7(1), ¢_,, is birational for all m > 58. If | — 28 K x|
and | —8K x| are not composed with the same pencil, then take m; = 28 and py = mo = 8.
Then, by Theorem 3.4(3), ¢_, is birational for all m > 58.

If rxy =385 (resp. 396) then —K% > 2= (resp. > 325). By Corollary 4.9 (with [ = 1.5 and
=9), P_33 .If | —=33Kx| and | — 8K x| are composed with the same pencil, then
take po = < 1 5 by Remark 3.2. Then, by Corollary 3.7(1), ¢_,, is birational for

all m > 56 (resp >57). If | =33K x| and | —8K x| are not composed Wlth the same pencil,
then take m; = 33 and u{, = mo = 8. By Lemma 3.3, Ny > [&} = 2. Then, by Corollary
3.7(2), @_m, is birational for all m > 47 (resp. > 48).

We claim that if rx € {440,462,660}, then —K% > I or Bx = {(1,2),(2,5),(1,
3),(1,4),(1,11)} with —K% = 2L.

If 7x = 440, then by (2.4), Rx = {11,8,5}. Arguing similarly as (5.3), we get —K% > 0.5
when P_; > 2. Arguing similarly as (5.4), we get constrains for Bx when P_; = 1. By (2.2)
and considering all the possible baskets when P_; =1, we can see that —K% > 49470

If rx =462, then by (24), Rx = {11,7,6} or {11,7,3,2} or {11,7,3,2 2}. Arguing
similarly as (5.5), we get —K% > 0.5 or —K% > 0.9 or —K% > 1 when P_; > 2. Arguing
similarly as (5.6), we get constrains for Bx when P_; = 1. By (2.2) and considering
all the possible baskets when P_; = 1, we can see that —K3% > 55 or —K$ > 25 or

—K% > b unless By ={2x(1,2),(1,3),(2,7),(1,11)} with K3 = %612 But the last gi,ket
has P_5 =0, which is absurd.

If rx =660, then by (2.4), Rx = {11,5,4,3} or {11,5,4,3,2}. Arguing similarly as (5.5),
we get —K% >1or —K% > 1.5 when P_; > 2. Arguing similarly as (5.6), we get constrains
for Bx when P_; =1. By (2.2) and considering all the possible baskets when P_; =1, we
can see that —K% > 8T or —K% > 223 unless Bx ={(1,2),(2,5),(1,3),(1,4),(1,11)} with
—K% = 660

To summarize, we conclude the claim that —K% > % or Bx ={(1,2),(2, 5),(1,3),(1,
4),(1,11)} with —K% = 2L

If —K% > &, then by Proposition 4.8(2) (with ¢t =5.7), we can take my = 21. Then, by
Theorem 3.4(3), ¢_,, is birational for all m > 51.

Now, we consider the case Bx = {(1,2),(2,5),(1,3),(1,4),(1,11)} with —K% = 660 By
Corollary 4.9 (with l=1and t =4.8), P_15—1>18. If | =18 K x| and | — 8K x| are composed

with the same pencil, then take p(, = 7 <1by Remark 3.2. By Proposition 4.8(2) (with
t =14.4), we can take m; = 53. By Lemma 3 3, No > [1660 | =2. Then, by Corollary 3.7(1),
©—_m is birational for all m > 52. If | - 18 Kx| and | — 8KX| are not composed with the same
pencil, then take m; = 18 and u{, = mo = 8. By Lemma 3.3, Ny > (%} = 4. Then, by
Corollary 3.7(2), ¢_, is birational for all m > 45.
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Case 5. rpa = 12.

If riax = 12, then we claim that rx < 132 or rx = 420.

By (2.4), at most one element of {6,7,8,9,10,11} is in Rx. So rx divides one element
of {120,180,420,660}. Recalling that 12 divides rx, it is clear that rx <132 or rx €
{180,420,660}. Moreover, if rx € {180,660}, then {12,9,5} C Rx or {12,11,5} C Rx, which
contradicts (2.4). This concludes the claim.

If rx <132, then by Corollary 3.7(2), ¢_,, is birational for all m > 43.

If rx = 420, then by (2.4), Rx = {12,7,5}. Arguing similarly as (5.3), we get —K% > 23%

420
when P_; > 2. Arguing similarly as (5.4), we get constrains for Bx when P_; = 1. By
(2.2) and considering all the possible baskets when P_; =1, we can see that —K3 > i;%

By Proposition 4.8(2) (with ¢ = 2.75), we can take m; = 11. Hence, by Lemma 3.3, Ny >

1‘;?311 =4. Then, by Corollary 3.7(2), ¢_,, is birational for all m > 40.

Case 6. 1y, = 13.

If riax = 13, then we claim that rx <364 or rx = 390 or rx = 546.

By (2.4), at most one element of {6,7,8,9,10,11,12} is in Rx. So rx divides one element
of {5,460,1,560,2,340,8,580}. Recalling that 13 divides rx and rx < 660, it is clear that
rx <364 or rx € {390,429,455,468, 520,546,572, 585}. Moreover, if rx € {429,455,468,
520,572,585}, then we can see that R x violates (2.4) by discussing the factors. For example,
if rx =455, then {13,7,5} C Rx which violates (2.4). This concludes the claim.

If Py=1, then P_j =1 for 1 <k <4. By [2, Subsubcase II-4f of Proof of Th. 4.4], Bx
is dominated by

{2x(1,2),2x(1,3),(1,s1),(1,s2)}

for some s9 > 51 > 4. AS rpax = 13, (s1,82) = (6,7). Considering all possible packings, we
get the following possibilities of Bx:

Then rx < 273 or By = {(1,2),(2,5),(1,3),(2,13)}.

If rx <273, then by Corollary 3.7(2), ¢_p, is birational for all m > 55.

If Bx ={(1,2),(2,5),(1,3),(2,13)}, then —K% = 2. By Corollary 4.9 (with [ =1 and
t=3), P_13— 1 >13. If | - 13K x| and | —8KX| are composed with the same pencil, then
take pg = 7 <1 by Remark 3.2. Then, by Corollary 3.7(1), ¢_,, is birational for all
m > 56. If ] - 13KX] and | —8K x| are not composed with the same pencil, then take m; =13
and pj =mgo = 8. Then, by Lemma 3.3, Ny > (%} = 3. Then, by Corollary 3.7(2), ¢—m
is birational for all m > 44.

So, from now on, we assume that P_, > 2 and take mo = 4. We take u(, = 4 unless stated
otherwise.

If rx <364, then by Corollary 3.7(1), ¢_,, is birational for all m > 57.

If rx =546, then by (2.4), Rx = {13,7,3,2}. Arguing similarly as (5.5), we get —K% > 0.9
when P_; > 2. Arguing similarly as (5.6), we get constrains for Bx when P_; = 1. By
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(2.2) and considering all the possible baskets when P_; =1, we can see that —K35 > %.

By Proposition 4.8(2) (with ¢t = 3.6), we can take m; = 16. Hence, by Lemma 3.3, Ny >

124;(31} = 3. Then, by Corollary 3.7(2), ¢_,, is birational for all m > 44.

If rx =390, then by (2.4), Rx = {13,6,5} or {13,5,3,2} or {13,5,3,2,2}. Arguing
similarly as (5.5), we get —K% > 0.5 or —K% > 0.8 or —K% > 1 when P_; > 2. Arguing
similarly as (5.6), we get constrains for Bx when P_; = 1. By (2.2) and considering all the

possible baskets when P_; =1, we can see that —K% > 333 or —K% > 23 or —K% > 2=

By Corollary 4.9 (with [ =1,t =3, and —K% > %), P_13—1>13. If | - 13K x| and

| —4K x| are composed with the same pencil, then take pj = Pjg—l < 1 by Remark 3.2.

Then, by Corollary 3.7(1), ¢_,, is birational for all m > 56. If | - 13K x| and | —4K x| are

not composed with the same pencil, then take m; = 13 and u{, = mo = 4. Then, by Lemma

3.3, No > (%} = 3. Then, by Corollary 3.7(2), ¢—_, is birational for all m > 40.
Combining all above cases, we have proved the theorem. U

5.5 Proofs of Theorem 1.2 and Theorem 1.4
Proof of Theorem 1.2. 1t follows from Theorems 5.2, 5.4, 5.6, 5.8, and 5.9. 0

Proof of Theorem 1./. From the proof of Theorem 1.2, 55 may not be birational only
if Bx ={(1,2),2x(1,3),(8,17)}, P_1 =0, and | — 24K x| is composed with a pencil. In this
case, rx(—K%)=7and P_oy =169 =7x24+1 by (2.1). But this contradicts Proposition
4.11. 0

Appendix
The possible baskets with P_s = 0 are the following (cf. [2, Th. 3.5]).

Table A.1. Baskets with P_o = 0.

No Bx -K® P.3 P4, P.s P P.; P
1 {2x(1,2),3 x(2,5),(1,3),(1,4)} 1/60 0 0 1 1 1 2
2 {5x(1,2),2x(1,3),(2,7),(1,4)} 1/84 0 1 0 1 1 2
3 {5x(1,2),2x(1,3),(3,11)} 1/66 0 1 0 1 1 2
4 {5x(1,2),(1,3),(3,10),(1,4)} 1/60 0 1 0 1 1 2
5 {5x(1,2),(1,3),2%x (2,7)} 1/42 0 1 0 1 2 3
6 {4x(1,2),(2,5),2 x (1,3),2x (1,4)}  1/30 0 1 1 2 2 4
7 {3x(1,2),(2,5),5x (1,3)} 1/30 1 1 1 3 3 4
8 {2x(1,2),(3,7),5%x (1,3)} 1/21 1 1 1 3 4 5
9 {(1,2),(4,9),5x (1,3)} 1/18 1 1 1 3 4 5
10 {3x(1,2),(3,8),4 % (1,3)} 1/24 1 1 1 3 3 5
11 {3x(1,2),(4,11),3 x (1,3)} 1/22 1 1 1 3 3 5
12 {3x(1,2),(5,14),2 x (1,3)} 1/21 1 1 1 3 3 5
13 {2x(1,2),2x(2,5),4x (1,3)} 1/15 1 1 2 4 5 7
14 {(1,2),(3,7),(2,5),4 x (1,3)} 17/210 1 1 2 4 6 8
15 {2x(1,2),(2,5),(3,8),3 x (1,3)} 3/40 1 1 2 4 5 8
16 {2x(1,2),(5,13),3 x (1,3)} 1/13 1 1 2 4 5 8
17 {(1,2),3 x (2,5),3 % (1,3)} 1/10 1 1 3 5 7 10
18 {4 x(1,2),5x (1,3),(1,4)} 1/12 1 2 2 5 6 9
19 {4x(1,2),4 % (1,3),(2,7)} 2/21 1 2 2 5 7 10
20 {4 x(1,2),3 x (1,3),(3,10)} 1/10 1 2 2 5 7 10
21 {3x(1,2),(2,5),4 % (1,3),(1,4)} 7/60 1 2 3 6 8 12
22 {3x(1,2),7x(1,3)} 1/6 2 3 4 9 12 17
23 {2x(1,2),(2,5),6 x (1,3)} 1/5 2 3 5 10 14 20
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The possible baskets with P_; =0 and P_5 = P_, =1 are the following (cf. the second
paragraph of [5, Case IV of Proof of Th. 1.8]).

Table A.2. Baskets with P_.1 =0 and P_.o =P_4=1.

No. Bx rXx
1 {9x(1,2),(1,3),(1,7)} 42
2 {8x(1,2),(2,5),(1,7)} 70
3 {8x(1,2),(2,5),(1,6)} 30
4 {7x(1,2),(3,7),(1,6)} 42
5 {6x(1,2),(4,9),(1,6)} 18
6 {7x(1,2),(3,7),(1,5)} 70
7 {6x(1,2),(4,9),(1,5)} 90
8 {5x(1,2),(5,11),(1,5)} 110
9 {4 % (1,2),(6,13),(1,5)} 130
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