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0. Introduction. One of the fundamental results of representation theory is the
identification of the irreducible representations of a semisimple group by their dominant
weights [3]. The purpose of this paper is to establish similar results for a class of reductive
algebraic monoids.

Let k be an algebraically closed field. An algebraic monoid is an affine algebraic
variety M defined over k, together with an associative morphism m:M x A/-»M and a
two-sided unit 1 e M for m.

In [5] the set of normal, algebraic monoids with unit group G = Sl2{k) x k*, Gl2(k)
or PGl2(k) x k* is determined numerically. That construction, however, does not yield
directly any irreducible representations of these monoids. In this paper I produce a
complete list (see 3.7 and 3.11). This list is fundamental for studying the relationship (in
general) of irreducible representations to the system of idempotents of closely related
monoids [4].

1. Preliminaries. Let M be an algebraic monoid, and let

G = G(M) = {x e M \ x~l e M}.

Then G c M is an affine, open, algebraic subgroup. If M is irreducible then G = M
(Zariski closure). If T c G is a maximal torus, then f c M is a maximal, irreducible,
closed D-submonoid. T is determined to within an isomorphism by the commutative
monoid

X{T) = {x e X{T) | x extends to % • t-* k}.

A rational representation of T is simply an Z(f')-graded vector space over k. See [5] for
details and references.

An irreducible, algebraic monoid M is reductive if G(M) is a reductive group.

2. Representations of Sl2(k) x k*. This section is a summary of some of the basic
properties of irreducible representations of Sl2(k) x k*.

Let k, I e N. Then there exists a representation

T/ is the /-th symmetric power of the canonical representation Sl2(k) c Gl2(k). Note that T,
is not in general irreducible. We thus define for each I eN, k e Z,

Pk,,:Sl2(k) x k*^Gll+l(k) = Gl(V(k, I))
by

Pk,i(x, t) = (d
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Let T = k* x k* c Sl2(k) x k* be a maximal torus and let

x=p2:T^k*,

y = Pl:T-+k*.

With respect to the basis {x, y} ̂ X(T), we obtain the following weight decomposition of
(kl):

V = Vte+fy © V)tl+(;_2)>, © . . . @ Vkx-ly

Thus, if p^CO = z i s t h e Zariski closure of pM(7) in End(F), then

X{Z)=(xky',xky'-2,...,xky-'),

the submonoid of X{pkJJ)) generated by {xky',..., xky~'}. (We are using both
additive and multiplicative notation for characters.) Let

ly,...,kx-ly}. (1)

2.1. REMARK. We have canonical morphisms

m:Sl2(k)xk*^>Gl2(k) and c:Sl2(k)x k*-+ PGl2(k)x k*,

both of degree two.
(a) pk, factors through m if and only if it + / is even.
(b) pki factors through c if and only if / is even.

3. Irreducible representations of monoids. This section contains our main result:
the enumeration of all irreducible representations of any normal, irreducible, algebraic
monoid M with unit group Sl2(k) x it*, Gl2(k*) or PGl2(k) x k*. Let us first recall the
way in which these monoids are classified.

3.1. THEOREM [5]. Let G be one of the above groups and let

g(G) = {M | G(M) = G,Mis normal and 0 e M).

There is a canonical one-to-one correspondence

where Q+ denotes the set of positive rational numbers.

For the purposes of this paper we shall need a recipe for the set of characters of the
closure t(r) in Mr(r e Q+, as in 3.1) of a maximal torus T of G. The computation may be
found in section 4.5 of [5]. Here, ( . . . ) denotes "submonoid generated by".

3.2. Sl2{k)xk*.

X(T(r)) = {xeX(T)\kxe(ma + nb,ma-nb) some k>0).

where r = n/m, (n, m) = 1.
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3.3. Gl2(k).

) = {xeX(T)\kxe{(m + n)u + (m-n)v,(m + n)v + (m-n)u) some A:>0},

where r = n/m, (m, n) = 1.

3.4. PGl2{k)xk*.

X(T(r)) = {x e X(T) | k% e (mx + ny, mx - ny) some k > 0},

where r = n/m, (m, n) = 1.

3.5. LEMMA, (a) Let Mr e &(G), G = Sl2(k) x k*. Then

W(k,l)cX{T(r)) iff Uk^r.

(b) Let Mr e g(G), G = Gl2(k). Then W(k, I) c X(f(r)) iff2\k + land l/k < r.
(c) Let Mr e ?(C), G = PG/JC*:) X A:*. Then W(k, I) c X(f (r)) (flF 2 | / a/id //it < 2r.

Proof. It follows from 3.2 that

X(t(r)) = {(ka, Ib) 6X(T) \ -r ^l/k <r}U {(0, 0)}.

Thus, the conclusion follows from (1) above. For (b) and (c), apply (a) using 2.1.

3.6. PROPOSITION [5]. Let M 6 <£(G) and suppose we have morphisms a:G-+M' and
P: T—*M' such that a \T = /3| r . Then there exists a unique morphism p :M—*M' such that
p\G = aand p\f=p.

Proof (sketch). Let e e T be a maximal idempotent, and let T(e) c f b e the unique
open submonoid of T such that E(T(e)) = {1, e}. Let B and B~ be the Borel subgroups
of G that contain T. Then m:BuxT(e)x B~-» M, m(x,y,z)=xyz, is an open
embedding with image, say U (the "big cell"). Notice that £/n(M\G)=£0. Thus,
codim(M\(G U U), M)>2 since M\G is irreducible. Define p ' : {/-»M' by

Then p' |oni/= a lent/- Thus, p' can be extended to G U C/. Hence, by Lemma 5.1 of [2],
p' can be extended to p:M—*M'.

Let G be as above and let M e %(M). Then we let

Rep(M) = {pkF, | pfc; extends to M},

since any such extension is unique. Recall that these representations are not in general
irreducible.

3.7. T H E O R E M , (a) Let G = Sl2(k) xk*,M = Mr.

R

(b) Let G = Gl2(k), M = Mr.
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(c) Let G = PGl2(k) xk*, M = Mr.

Proof. It will suffice to prove (a), (b) and (c) are similar. If pkf,:G—*Gli+\(k)
extends to Mr then W(k, I) c X(f(r)). So by 3.5, Ilk s= r.

Conversely, if llk<r then again by 3.5, pk,i\r extends to T(r) since W(k, l)c
X(T(r)) (see Lemma 4.1 of [5]). But then 3.6 applies to yield the desired extension

'

3.8. SCHOLIUM. In each case Rep(Afr) can be identified with a subset of X(T(r)):

(a) n:Rep(Mr)^X(T(r)), p*,,-> (k, I),

(b) ii:Rep(M,)-+X(t(r)), pt,,-» ((k -1)12, (k + 1)12),

(c) r, :Rep(Mr)->*(f (r)), p * . , - (fc, //2).

3.9. EXAMPLE. Let G = G/2(Jt), M = M(3/2) e

—Z(f(3/2))
—Rep(M(3/2))

L)

3.10. REMARKS. (1) In each case of 3.8, Rep(Mr) contains exactly one element of
each Z2 = NG(T)/T orbit of X(f(r)).

(2) The character r){pkJ) of 3.8 is the element of W(k, I) with "highest slope".

3.11. THEOREM. Let Rep(Mr) be as above. Then there is a canonical one-to-one
correspondence

{(p, V) | p is an irreducible representation of Mr} = Rep(Afr).

In particular, the remarks of 3.10 can be applied to the irreducible representations of Mr.

Proof. If char(fc) = 0 then each p M is irreducible. So assume char k = p > 0.
Let S' denote the /-th symmetric power of k2. Given pM:Mr—^End^S'), let (p, V)

be the irreducible representation of G with highest weight /. Assume here, that
G = Sl2(k)xk*. By [1, A§7.5]

where each n{ is infinitesimally irreducible and nf" is obtained from nt by composition
with the i'th power of the Frobenius morphism. Furthermore, JT, = S1' as S/2(&)-modules
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for some 0 ̂  /, <p, and the highest weight of V is / = X hp'- Hence, we obtain
1=0

where ;", is the inclusion and n is the multiplication map, n(vQ<8>. . . ®vs) = v0-. . .-vs.
Since ^°(<8>/,) is nonzero, it is an embedding of S/2(&)-modules. Thus, n is actually an
Mr-submodule of 5' since it is G(Afr)-stable and G(Mr) is dense in Mr.

Conversely, if p:Mr—>End(V) is irreducible, then

(i) P \k> = Xk, Xkif) = tk, some k.
(ii) p \si2(k) — n (as representations) for some n as above.

But then p\G is the restriction of pkj\c to n c 5'.
Thus we have

and

mW(it, /) c A"(f), some m > 0,

where T c G is a maximal torus (i.e. some multiple of each weight of T on 5 ' is contained
in the semigroup of weights of T on it). Hence, since t is normal [5], W(k, l)c.f
But then 3.5 and 3.7 combine to prove that pkl extends from G to Mr.
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