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THE NUMBER OF K-TONS IN THE COUPON COLLECTOR PROBLEM
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Abstract

Consider the coupon collector problem where each box of a brand of cereal contains a
coupon and there are n different types of coupons. Suppose that the probability of a box
containing a coupon of a specific type is 1/n, and that we keep buying boxes until we
collect at least m coupons of each type. For k ≥ m call a certain coupon a k-ton if we see
it k times by the time we have seen m copies of all of the coupons. Here we determine
the asymptotic distribution of the number of k-tons after we have collected m copies of
each coupon for any k in a restricted range, given any fixed m. We also determine the
asymptotic joint probability distribution over such values of k, and the total number of
coupons collected.
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1. Introduction

Consider the coupon collector problem where each box of a brand of cereal contains a
coupon and there are n different types of coupons. Suppose that the probability of a box con-
taining a coupon of a specific type is 1/n, and that we keep buying boxes until we collect at
least one coupon of each type. It is well known (see, for example, [9]) that the expected number
of boxes we need to buy is nHn, where Hn is the nth harmonic number:

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n
= log n + γ + 1

2n
+ O

(
1

n2

)
,

where γ is the Euler–Mascheroni constant. The expected value of the total number of boxes
collected has been extensively studied. For instance, it was proved in [9] that, if you continue
to collect boxes until you have at least m coupons of each type, then the expected number
of boxes collected is n log n + (m − 1)n log log n + n · Cm + o(n), where Cm is a constant
depending on m.

Definition 1.1. The Gumbel distribution with parameters μ and β, which is denoted as
Gumbel(μ, β), is defined as the probability distribution with cumulative density function
exp[ − e−(x−μ)/β ] for −∞ < x < ∞.

The above result was improved in [5], which proved that, if vm(n) is the total number of
boxes collected, then (vm(n)/n) − log n − (m − 1) log log n ∼ Gumbel( − log ((m − 1)!), 1) as
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n → ∞. The probability distribution of the number of boxes that need to be collected to collect
an + 1 coupons, where 0 ≤ an < n, was studied in [1]. The expected number of boxes need-
ing to be collected if the types of coupons have different probabilities of being in a box was
examined in [2], and [3, 8] looked at the actual probability distribution of the number of boxes
collected if the types of coupons have different probabilities. The case of collecting at least m
coupons of each type has also been examined [4]. Further variations of the problem, where you
have multiple collectors, were studied in [6, 7].

Here we examine the situation where we continue to collect boxes until we have at least m
copies of each type of coupon for any fixed m ∈N.

Definition 1.2. For all k ≥ m, call a certain coupon a k-ton if we see it k times by the time we
have seen m copies of all of the coupons. Let the number of k-tons be denoted as Sk.

In the case of m = 1, [7] determined the expected number of 1-tons, which they called sin-
gletons, to be Hn. Singletons were also studied in [10], but in the case of unequal coupon
probabilities and where the number of coupons collected in total is proportional to the number
of types of coupons; many applications to their study, such as in databases, biological particles,
and communication channels, were noted here. We extend this singleton result by determin-
ing the asymptotic joint probability distribution over values of k in a restricted range and the
total number of coupons collected assuming, as in [7], equal coupon probabilities. We also
determine the asymptotic distribution of the number of k-tons after we have collected m copies
of each coupon for any such values of k, given any fixed m ∈N. While making an analogous
extension to [10] is certainly interesting, we leave it for a future project.

Theorem 1.1. Fix m ∈N, let Tm(n) be the total number of coupons collected to see at least m
copies of each coupon, and let n → ∞. Let k = o(log n) if m = 1 and k = o((log n)/(log log n))
if m ≥ 2, with k ≥ m in either case. Then the joint probability distribution of

(
Tm(n) − n log n − (m − 1)n log log n

n
,

k!Sk

(log n)k−m+1

)

converges to (X, e−X), where X ∼ Gumbel( − log ((m − 1)!), 1).

A simple heuristic argument for Theorem 1.1 may be given as follows. First, from [5], we
know that

Tm(n) − n log n − (m − 1)n log log n

n
∼ Gumbel( − log ((m − 1)!), 1).

Later on, we also see, unsurprisingly, that the number of times a specific type of coupon is seen
is essentially independent of whether or not all types of coupons have been collected at least
m times. Also, unsurprisingly, it turns out that the number of times two different types of
coupons are seen is asymptotically independent. Since the probability of a type of coupon
being seen k times is

(
Tm(n)

k

)(
1

n

)k(
1 − 1

n

)Tm(n)−k

∼ (n log n)ke− log n−(m−1) log log n−x

k!nk
= (log n)k−m+1

nexk! ,

where x = (Tm(n) − n log n − (m − 1)n log log n)/n, the expected number of k-tons is
∼ (log n)k−m+1/exk!, so that k!Sk/(log n)k−m+1 ∼ e−x.
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While Theorem 1.1 provides us with the joint distribution between the total number of
coupons collected and the number of k-tons for minimal k, we can also ask what happens for
maximum values of k. The answer to this is provided in the next theorem.

Theorem 1.2. Fix m ∈N and let Tm(n) be the total number of coupons collected to see at least
m copies of each coupon.

(i) Fix d ∈R. Pick an increasing sequence (nj)j ⊂N and a sequence (dj)j ⊂R such that
limj→∞ dj = d and kj = e log nj +

(
(e − 1)(m − 1) − 1

2

)
log log nj + dj ∈N for all j ∈N.

Then the joint probability distribution of(
Tm(nj) − nj log nj − (m − 1)nj log log nj

nj
, Skj

)

converges to (
X, Pois

(
e(e−1)X−d

√
2πe

))
,

where X ∼ Gumbel( − log ((m − 1)!), 1).

(ii) Let g(n) = o(log log n) with limn→∞ g(n) = ∞, such that k = e log n + (
(e − 1)(m − 1)

− 1
2

)
log log n + g(n) ∈N for all n ∈N. Then Sk converges to 0 with probability 1.

(iii) Let g(n) = o(log log n) with limn→∞ g(n) = ∞, such that k = e log n + (
(e − 1)(m − 1)

− 1
2

)
log log n − g(n) ∈N for all n ∈N. Then the value of P(Sk = 0) converges to 0.

A simple heuristic argument for Theorem 1.2 may be given as follows. The probability of a
type of coupon being seen kj times is(

Tm(nj)

kj

)(
1

nj

)kj
(

1 − 1

nj

)Tm(nj)−kj

.

Assuming that x = (Tm(nj) − nj log nj − (m − 1)nj log log nj)/nj is constant as j → ∞ and kj is
as defined in Theorem 1.2, we have that the above is asymptotic to

1√
2πkj

(
eTm(nj)

njkj

)kj

exp

[
−Tm(nj)

nj

]

∼ 1√
2πe log nj

exp

[
Tm(nj)e − kjnj − Tm(nj)

nj

]

= 1√
2πe log nj

exp

[
− log nj + log log nj

2
+ (e − 1)x − dj

]

= 1√
2πenj

e(e−1)x−dj .

Therefore, by similar reasoning to the heuristic for Theorem 1.1, we can see that the probability
that there are y k-tons is asymptotic to(

n

y

)(
λ

n

)y(
1 − λ

n

)n−y

∼ λye−λ

y! ,
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where λ = e(e−1)x−d/(
√

2πe), which gives the Poisson distribution in Theorem 1.2(i). Parts (ii)
and (iii) can be heuristically argued by letting dj approach ∞ or −∞.

From Theorem 1.1 we can derive the following corollaries.

Corollary 1.1. Fix m ∈N, let n → ∞, and let k = o(log n) if m = 1 and k =
o((log n)/(log log n)) if m ≥ 2, with k ≥ m in either case. Suppose we keep collecting
coupons until we see at least m copies of each coupon. Then

k!Sk

(log n)k−m+1
D−→ Exp

(
1

(m − 1)!
)

.

Corollary 1.1 gives the asymptotic probability distribution of the number of k-tons. If we
fix k, we can also determine the joint asymptotic distribution between the number of m-tons,
m + 1-tons, . . ., and k-tons. We can see that asymptotically all of these variables are linearly
dependent.

Corollary 1.2. Fix k, m ∈N with k ≥ m, and let n → ∞. Suppose we keep collecting coupons
until we see at least m copies of each coupon. Then the joint probability distribution(

m!Sm

(log n)
,

(m + 1)!Sm+1

(log n)2
, . . . ,

k!Sk

(log n)k−m+1

)

converges to X · (1, 1, . . . , 1), where

X ∼ Exp

(
1

(m − 1)!
)

.

2. Proofs

To prove Theorem 1.1 we require the following notation and lemma.

Note 2.1. Suppose we collect x coupons in total, regardless of whether we have collected all
n types of coupons or not. Let Si,x denote the number of types of coupons we collected exactly
i times.

Note 2.2. Throughout this paper, let N(n, f (n)) := n log n + (m − 1)n log log n + f (n).

Lemma 2.1. Let f : N→R be such that − 1
2 n log log n ≤ f (n) ≤ 1

2 n log log n, and N(n, f (n)) ∈
N for all n ∈N. Suppose we collect N(n,f(n)) coupons in total, regardless of whether we
collect m copies of all n different kinds of coupons or not. Let k = o(log n) if m = 1 and
k = o(log n/log log n) if m ≥ 2. If m ≤ k, then as n → ∞

k!Sk,N(n,f (n))

(log n)k−m+1

is asymptotic to e−f (n)/n with probability 1, and

Var

(
k!Sk,N(n,f (n))

(log n)k−m+1

)
= O

(
1√

log n

)
.
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Proof. First, assume that m ≤ k. We can see that, as n → ∞,

E(Sk,N(n,f (n))) = n · P(c0 occurs exactly k times in the collection of N(n, f (n)) coupons)

=
(

N(n, f (n))

k

)(
1 − 1

n

)N(n,f (n))−k 1

nk−1

∼ N(n, f (n))k

k!nk−1
exp

[
− log n − (m − 1) log log n − f (n)

n

]

∼ (log n)k−m+1

k!ef (n)/n
.

Thus, we can deduce that

E

(
k!Sk,N(n,f (n))

(log n)k−m+1

)
= e−f (n)/n(1 + o(1))

as n → ∞. Also,

E(S2
k,N(n,f (n)))

= n(n − 1) · P(c0, c1 both occur exactly k times in the collection of N(n, f (n)) coupons)

+ n · P(c0 occurs exactly k times in the collection of N(n, f (n)) coupons)

= n(n − 1)

(
N(n, f (n))

k

)(
N(n, f (n)) − k

k

)(
1 − 2

n

)N(n,f (n))−2k 1

n2k

+
(

N(n, f (n))

k

)(
1 − 1

n

)N(n,f (n))−k 1

nk−1

≤ (E(Sk,N(n,f (n))))
2
(

1 − 1

n

)−2k

+E(Sk,N(n,f (n))). (2.1)

Notice that
k!e−f (n)/n

(log n)k−m+1
≤ k!

(log n)k−m+ 1
2

. (2.2)

If k is bounded as n → ∞, then the right-hand side of (2.2) O(1/
√

log n). On the other hand,
for k sufficiently large we have k! < kk−m, so even if values of k tend toward ∞, the right-hand
side of (2.2) is O(1/

√
log n). Thus, from (2.1), we obtain

E

((
k!Sk,N(n,f (n))

(log n)k−m+1

)2)
−
(
E

(
k!Sk,N(n,f (n))

(log n)k−m+1

))2

≤
(
E

(
k!Sk,N(n,f (n))

(log n)k−m+1

))2

· O

(
k

n

)
+ (k!)2

E(Sk,N(n,f (n)))

(log n)2k−2m+2

≤ O

(
k
√

log n

n

)
+ O

(
1√

log n

)
= O

(
1√

log n

)
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as n → ∞. Thus,

Var

(
k!Sk,N(n,f (n))

(log n)k−m+1

)
= O

(
1√

log n

)
as n → ∞, so that we obtain our result for m ≤ k. �

Proof of Theorem 1.1. X = (Tm(n) − n log n − (m − 1)n log log n)/n was proved to be
asymptotically Gumbel distributed in [5]. To prove Theorem 1.1, it therefore suffices to show
that

lim
n→∞ P

(
Tm(n) − n log n − (m − 1)n log log n

n
< x,

k!Sk

(log n)k−m+1
< e−y

)
= 0 (2.3)

for any fixed x < y, and that

lim
n→∞ P

(
Tm(n) − n log n − (m − 1)n log log n

n
> x,

k!Sk

(log n)k−m+1
> e−y

)
= 0 (2.4)

for any fixed y < x. To prove (2.3), we first calculate an upper bound for

P

(
Tm(n) ≤ N(n, nx),

k!Sk

(log n)k−m+1
< e−y

)

for all sufficiently large n ∈N. Let M(n) = n log n + (
m − 3

2

)
n log log n. We have

P

(
Tm(n) ≤ N(n, nx),

k!Sk

(log n)k−m+1
< e−y

)

= P

(
Tm(n) < M(n),

k!Sk

(log n)k−m+1
< e−y

)

+ P

(
M(n) ≤ Tm(n) ≤ N(n, nx),

k!Sk

(log n)k−m+1
< e−y

)

≤ P(Tm(n) < M(n)) + P

(
M(n) ≤ Tm(n) ≤ N(n, nx),

k!Sk

(log n)k−m+1
< e−y

)
.

We have

P

(
M(n) ≤ Tm(n) ≤ N(n, nx),

k!Sk

(log n)k−m+1
< e−y

)

=
�N(n,nx)�∑

M=M(n)�
P

(
Tm(n) = M,

k!Sk

(log n)k−m+1
< e−y

)
. (2.5)

Clearly,

P

(
Tm(n) = M,

k!Sk

(log n)k−m+1
< e−y

)
≤ P

(
Sm−1,M−1 = 1, Sm−1,M = 0,

k!Sk,M

(log n)k−m+1
< e−y

)

= 1

n
P

(
Sm−1,M−1 = 1,

k!Sk,M

(log n)k−m+1
< e−y

)

≤ 1

n
P

(
k!Sk,M

(log n)k−m+1
< e−y

)
. (2.6)
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Combining (2.5) and (2.6), we therefore have

P

(
M(n) ≤ Tm(n) ≤ N(n, nx),

k!Sk,M

(log n)k−m+1
< e−y

)

≤
�N(n,nx)�∑

M=M(n)�

1

n
P

(
k!Sk,M

(log n)k−m+1
< e−y

)
. (2.7)

From Chebyshev’s inequality and Lemma 2.1 we have, for sufficiently large n,

P

(
k!Sk,M

(log n)k−m+1
< e−y

)
≤ C√

log n

for some constant C > 0, depending only on x and y. From (2.7), we can thus deduce that

P

(
M(n) ≤ Tm(n) ≤ N(n, nx),

k!Sk,M

(log n)k−m+1
< e−y

)

≤
�N(n,nx)�∑

M=M(n)�

C

n
√

log n

≤ C
(
nx + 1

2 n log log n
)

n
√

log n
= C(2x + log log n)

2
√

log n
(2.8)

for all sufficiently large n.
Now we let n → ∞. From the result quoted at the start of the proof, we can deduce that

limn→∞ P(T < M(n)) = 0. From (2.8) we can also see that

lim
n→∞ P

(
M(n) ≤ Tm(n) ≤ N(n, nx),

k!Sk,M

(log n)k−m+1
< e−y

)
= 0.

These two limits give us (2.3).
We can prove (2.4) similarly, replacing M(n) = n log n + (

m − 3
2

)
n log log n with M′(n) =

n log n + (
m − 1

2

)
n log log n and reversing the appropriate inequalities. �

Proof of Corollaries 1.1 and 1.2. Corollaries 1.1 and 1.2 follow from Theorem 1.1 by
showing that, if X ∼ Gumbel( − log ((m − 1)!), 1), then

e−X ∼ Exp

(
1

(m − 1)!
)

.

Indeed, we have, for any r > 0,

P(e−X ≤ r) = P(X ≥ − log r) = 1 − P(X ≤ − log r)

= 1 − exp
[−e−(−log r+log (m−1)!)]

= 1 − e−r/(m−1)!.

Hence, the result follows. �

To prove Theorem 1.2, we require the following lemma.
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Lemma 2.2. Fix m ∈N. Let f : N→R be such that there exists x ∈R such that
limn→∞ f (n)/n = x and N(n, f (n)) ∈N for all n ∈N. Suppose we collect N(n, f(n)) coupons
in total regardless of whether we collect m copies of all n different kinds of coupons or not.
Pick an increasing sequence (nj)j ⊂N and a sequence (dj)j ⊂R such that limj→∞ dj = d for
some d ∈R and k = e log nj +

(
(e − 1)(m − 1) − 1

2

)
log log nj + dj ∈N for all j ∈N. Then, as

j → ∞,

P(Sm−1,N(nj,f (nj)) = r1, Sk,N(nj,f (nj)) = r2) = 1

r1!r2!
(

e−f (nj)/nj

(m − 1)!
)r1

exp

[−e−f (nj)/nj

(m − 1)!
]

×
(

exp[((e − 1)f (nj)/nj) − d]√
2πe

)r2

× exp

[− exp[((e − 1)f (nj)/nj) − d]√
2πe

]

× (1 + o(1)),

where the implied constant in the error term only depends upon r1 and r2.

Proof. Take some j ∈N. Let the probability that r1 prescribed types of coupons are
(m − 1)-tons and r2 prescribed types of coupons are k-tons be denoted as Wr1,r2 (n). Then,
as j → ∞,

(
nj

r1, r2, nj − r1 − r2

)
Wr1,r2 (nj)

=
(

nj

r1, r2, n − r1 − r2

)
N(nj, f (nj))!

(m − 1)!r1 k!r2 (N(nj, f (nj)) − (m − 1)r1 − kr2)!n(m−1)r1+kr2
j

×
(

1 − r1 + r2

nj

)N(nj,f (nj))−(m−1)r1−kr2

=
(

nj

r1, r2, nj − r1 − r2

)
N(nj, f (nj))!e−(r1+r2)N(nj,f (nj))/nj

(m − 1)!r1 k!r2 (N(nj, f (nj)) − (m − 1)r1 − kr2)!n(m−1)r1+kr2
j

×
(

1 + O

(
log nj

nj

))

= N(nj, f (nj))(m−1)r1+kr2 e−(r1+r2)f (nj)/nj

r1!r2!(m − 1)!r1 k!r2 (log nj)(r1+r2)(m−1)n(m−1)r1+kr2
j

(
1 + O

(
log nj

nj

))

= 1

r1!r2!
(

e−f (nj)/nj

(m − 1)!
)r1
(

e((e−1)f (nj)/nj)−dj

√
2πe

)r2
(

1 + O

(
(log log nj)2

log nj

))
,

where the implied constant in the error term only depends on r1 and r2. By the inclusion–
exclusion formula, we have
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P(Sm−1,N(nj,f (nj)) = r1, Sk,N(nj,f (nj)) = r2)

=
∑

0≤j1+j2≤nj−r1−r2

[
( − 1)j1+j2

(
nj

r1 + j1, r2 + j2, nj − r1 − r2 − j1 − j2

)(
r1 + j1

r1

)(
r2 + j2

r2

)

× Wr1+j1,r2+j2 (nj)

]
. (2.9)

For t ≤ nj − r1 − r2 even:

P(Sm−1,N(nj,f (nj)) = r1, Sk,N(nj,f (nj)) = r2)

≤
∑

0≤j1+j2≤t

[
( − 1)j1+j2

(
nj

r1 + j1, r2 + j2, nj − r1 − r2 − j1 − j2

)(
r1 + j1

r1

)(
r2 + j2

r2

)

× Wr1+j1,r2+j2 (nj)

]
. (2.10)

For t ≤ nj − r1 − r2 odd:

P(Sm−1,N(nj,f (nj)) = r1, Sk,N(nj,f (nj)) = r2)

≥
∑

0≤j1+j2≤t

[
( − 1)j1+j2

(
nj

r1 + j1, r2 + j2, nj − r1 − r2 − j1 − j2

)(
r1 + j1

r1

)(
r2 + j2

r2

)

× Wr1+j1,r2+j2 (nj)

]
. (2.11)

Combining (2.9)–(2.11), we have

P(Sm−1,N(nj,f (nj)) = r1, Sk,N(nj,f (nj)) = r2)

∼ 1

r1!r2!
∞∑

j1,j2=0

( − 1)j1+j2

j1!j2!
(

e−x

(m − 1)!
)r1+j1(e((e−1)x)−d

√
2πe

)r2+j2

= 1

r1!r2!
(

e−x

(m − 1)!
)r1

exp

[ −e−x

(m − 1)!
](

e((e−1)x)−d

√
2πe

)r2

exp

[−e((e−1)x)−d

√
2πe

]
,

as j → ∞. �

Proof of Theorem 1.2. We first prove Theorem 1.2(i). Let d ∈R and pick increasing
sequences (nj)j and (dj)j such that limj→∞ dj = d and kj := e log nj +

(
(e − 1)(m − 1) −

1
2

)
log log nj + dj ∈N for all j ∈N. Let x < y and r ∈N be constants. Consider the probability

P(N(nj, njx) ≤ Tm(n) ≤ N(nj, njy), Sk = r). We have

P(N(nj, njx) ≤ Tm(n) ≤ N(nj, njy), Sk = r) =
�N(nj,njy)�∑

M=N(nj,njx)�
P(T = M, Sk,M−1 = r).

https://doi.org/10.1017/jpr.2022.94 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.94


732 J. C. SAUNDERS

Clearly,

P(Tm(n) = M, Sk,M−1 = r) ≤ P(Sm−1,M−1 = 1, Sm−1,M = 0, Sk,M−1 = r)

= P(Sm−1,M−1 = 1, Sk,M−1 = r)/n. (2.12)

Also, for M ≥ N(nj, njx), if we have Si,M > 0 for some 0 ≤ i ≤ m − 2, then we have
Sl,N(nj,njx)� > 0 for some 0 ≤ l ≤ i. Thus, we can also deduce that

P(N(nj, njx) ≤ Tm(n) ≤ N(nj, njy), Sk = r)

≥
( �N(nj,njy)�∑

M=N(nj,njx)�

P(Sm−1,M−1 = 1, Sk,M−1 = r)

nj

)

− P(there exists 0 ≤ l ≤ m − 2 such that Sl,N(nj,njx)� > 0). (2.13)

For any 0 ≤ l ≤ m − 2, notice that, as j → ∞,

E(Sl,N(nj,njx)�) = n · P(c0 occurs exactly l times in the collection of N(nj, njx)� coupons)

=
(N(nj, njx)�

l

)(
1 − 1

nj

)N(nj,njx)�−l 1

nl−1
j

∼ N(nj, njx)l

l!nl−1
j

e− log nj−(m−1) log log nj−x ∼ (log nj)l−m+1e−x

l! .

Since l ≤ m − 2, we therefore have limj→∞ E(Sl,N(nj,njx)�) = 0, and so

lim
j→∞ P(there exists 0 ≤ l ≤ m − 2 such that Sl,N(nj,njx)� > 0) = 0. (2.14)

For every N(nj, njx) ≤ M ≤ N(nj, njy), let cM,j := (M − nj log nj − (m − 1)nj log log nj)/nj.
By Lemma 2.2, we have

�N(nj,njy)�∑
M=N(nj,njx)�

P(Sm−1,M−1 = 1, Sk,M−1 = r)

n

=
�N(nj,njy)�∑

M=N(nj,njx)�

1

r!n
(

e−cM,j

(m − 1)!
)

exp

[−e−cM,j

(m − 1)!
](

e(e−1)cM,j−d

√
2πe

)r

exp

[−e(e−1)cM,j−d

√
2πe

]

× (1 + o(1))

<

(
e(e−1)y−d

√
2πe

)r

exp

[−e(e−1)x−d

√
2πe

]

×
�N(nj,njy)�∑

M=N(nj,njx)�

1

r!n
(

e−cM,j

(m − 1)!
)

exp

[−e−cM,j

(m − 1)!
]

(1 + o(1)). (2.15)
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Note that

lim
j→∞

�N(nj,njy)�∑
M=N(nj,njx)�

1

n

(
e−cM,j

(m − 1)!
)

exp

[−e−cM,j

(m − 1)!
]

=
∫ y

x

e−t exp
[ −e−t

(m−1)!
]

(m − 1)! ddt

= exp

[ −e−y

(m − 1)!
]

− exp

[ −e−x

(m − 1)!
]

= lim
j→∞ P(N(nj, x) ≤ Tm(nj) ≤ N(nj, y)). (2.16)

Combining (2.12)–(2.16), we obtain

lim sup
j→∞

P(N(nj, njx) ≤ Tm(nj) ≤ N(nj, njy), Sk = r)

≤ 1

r!
(

e(e−1)y−d

√
2πe

)r

exp

[−e(e−1)x−d

√
2πe

]
lim

j→∞ P(N(nj, njx) ≤ Tm(nj) ≤ N(nj, njy)).

By similar reasoning, we can also obtain

lim inf
j→∞ P(N(nj, njx) ≤ Tm(nj) ≤ N(nj, njy), Sk = r)

≥ 1

r!
(

e(e−1)x−d

√
2πe

)r

exp

[−e(e−1)y−d

√
2πe

]
lim

j→∞ P(N(nj, njx) ≤ Tm(nj) ≤ N(nj, njy)).

Since the choices of x < y were arbitrary, we can see that the joint limiting distribution

holds. �

For Theorem 1.2(ii), again let x < y be constants. We will show that

lim
n→∞ P(N(n, nx) ≤ Tm(nj) ≤ N(n, ny), Sk ≥ 1) = 0,

which implies the desired result since x < y are arbitrary. We have

P(N(n, nx) ≤ Tm(n) ≤ N(n, ny), Sk ≥ 1)

≤
�N(n,ny)�∑

M=N(n,nx)�

P(Sm−1,M−1 = 1, Sk,M−1 ≥ 1)

n

≤
�N(n,ny)�∑

M=N(n,nx)�

P(Sk,M−1 ≥ 1)

n

≤
�N(n,ny)�∑

M=N(n,nx)�

n · P(c0 occurs exactly k times in the collection of M − 1 coupons)

n
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=
�N(n,ny)�∑

M=N(n,nx)�
P(c0 occurs exactly k times in the collection of M coupons)

=
�N(n,ny)�∑

M=N(n,nx)�

(
M

k

)(
1 − 1

n

)M−k 1

nk

<
1

k!
�N(n,ny)�∑

M=N(n,nx)�

(
1 − 1

n

)M−k Mk

nk

<
n(y − x)

k!
(

1 − 1

n

)N(n,nx)−k

(log n + (m − 1) log log n + y)k.

As n → ∞, we have

n(y − x)

k!
(

1 − 1

n

)N(n,nx)−k

(log n + (m − 1) log log n + y)k

∼ (y − x)(log n + (m − 1) log log n + y)k

k!(log n)m−1ex

∼ y − x√
2πe(log n)m− 1

2 ex

(
e log n + e(m − 1) log log n + ey

k

)k

∼ (y − x)e

(
m− 1

2

)
log log n+ey−g(n)

√
2πe(log n)m− 1

2 ex

= (y − x)eey−x−g(n)

√
2πe

. (2.17)

We have

lim
n→∞

(y − x)eey−x−g(n)

√
2πe

= 0,

giving us our result.
For Theorem 1.2(iii), again let x < y be constants. We will show that

lim
n→∞ P(N(n, nx) ≤ Tm(n) ≤ N(n, ny), Sk = 0) = 0,

which implies the desired result since x < y are arbitrary. We have

P(N(n, nx) ≤ Tm(n) ≤ N(n, ny), Sk = 0) ≤
�N(n,ny)�∑

M=N(n,nx)�

P(Sm−1,M−1 = 1, Sk,M−1 = 0)

n

≤
�N(n,ny)�∑

M=N(n,nx)�

P(Sk,M−1 = 0)

n
. (2.18)
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Note that

E(Sk,M) =
(

M

k

)(
1 − 1

n

)M−k 1

nk−1
,

E(S2
k,M) =

(
M

k

)(
M − k

k

)(
1 − 2

n

)M−2k (n − 1)

n2k−1
+
(

M

k

)(
1 − 1

n

)M−k 1

nk−1

<

(
M

k

)2(
1 − 1

n

)2M−4k 1

n2k−2
+
(

M

k

)(
1 − 1

n

)M−k 1

nk−1
.

We have

Var(Sk,M) =E(S2
k,M) −E(Sk,M)2 ≤E(Sk,M)2

((
1 − 1

n

)−2k

− 1

)
+E(Sk,M).

Since k < n for sufficiently large n, we have that there exists C1 > 0 such that, for sufficiently
large n,

Var(Sk,M) ≤ C1kE(Sk,M)2

n
+E(Sk,M).

Similarly to the derivation of (2.17), we can deduce that there exists C2 > 0 depending
only on x and y such that, for sufficiently large n, E(Sk,M) < C2eg(n) < C2 log n. Therefore, for
sufficiently large n, we have Var(Sk,M) ≤E(Sk,M) + 1 < 2E(Sk,M). Thus, for sufficiently large
n, σ (Sk,M) <

√
2E(Sk,M). By Chebyshev’s inequality, we therefore have

P(Sk,M = 0) ≤ P(|Sk,M −E(Sk,M)| ≥E(Sk,M))

≤ P

(
|Sk,M −E(Sk,M)| ≥ σ (Sk,M)

√
E(Sk,M)√
2

)
≤ 2

E(Sk,M)
(2.19)

for sufficiently large n. Also, similarly to the derivation of (2.17), we have that there exists
C3 > 0 depending on only x and y such that C3eg(n) <E(Sk,M). Thus, from (2.18) and (2.19),
we have

P(N(n, nx) ≤ Tm(n) ≤ N(n, ny), Sk = 0) ≤
�N(n,ny)�∑

M=N(n,nx)�

2

C3neg(n)
= 2(y − x)

C3eg(n)

for sufficiently large n. Since limn→∞ g(n) = ∞, we have our result. �

3. Future work

There are a few open questions that are worth exploring with respect to the coupon col-
lector’s problem and the number of k-tons. For instance, can we extend our ranges for k?
We have results for k = o(log n) if m = 1 and k = o(log n/log log n) if m ≥ 2, as well as
k = e log n + (

(e − 1)(m − 1) − 1
2

)
log log n + d, but we can also ask similar questions for

values of k between these minimum and maximum values. For instance, we can consider
k = θ (log n) or k = θ (log n/log log n). We can also ask what happens if we have m increas-
ing with n. Also, [3] studied the limiting distribution of Tm(n) in the case of unequal coupon
probabilities. We could also study the limiting distribution of k-tons in the case of unequal
coupon probabilities.
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