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Approximating stationary deformation of flat
and toroidal drops in compressional viscous flow
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Viscous drops, subject to a linear flow in an immiscible viscous fluid, deform. When the
resulting drop shape is simple the problem can be addressed by an asymptotic approach
or by approximating the deformation using known simple shapes. When the resulting
deformation is more complex, the problem is usually addressed numerically. In this paper,
we address the problem of drops that are deforming in an axisymmetric compressional
(bi-axial extensional) flow. Yielded shapes are flat drops, flat drops with dimples and
toroidal drops. The latter two are highly unstable. We propose to approximate the solution
of this problem, approximating the shapes by using generalized Cassini ovals, defined
herein. The analysis reproduced the branches with shapes of stationary stable flat drops
and stationary unstable toroidal drops, available from numerical calculation. Furthermore,
it predicts the point of loss of stability of the flat drop to exhibit the transition branch that
leads into the formation of the toroidal shapes, and shows that this branch shows stationary,
yet unstable, flat drops with ever growing dimples up to collapse.

Key words: drops, boundary integral methods

1. Introduction

The dynamics of drops and bubbles in flowing dispersions has been a primary interest
of researchers ever since the appearance of the pioneering works of Taylor (1932, 1934)
almost a century ago. Much attention was devoted to the deformation of such fluid
particles because of its importance in systems involving interfacial transport and reactions
that are common, e.g. in medical processes, food production and the chemical industry.
Nevertheless, understanding patterns of deformation is also of interest in studies of basic
fluid mechanics where applied mathematics methods are used, since nonlinearity and
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solution multiplicity are encountered in problems that can be superficially regarded as
linear.

A considerable portion of attention was devoted to dilute multiphase systems containing
non-interacting small drops and bubbles embedded in a flowing viscous fluid. In such
dispersions, inertia forces on the dispersed bodies can be neglected and the small scale
of the fluid particle permits a linearization of the macroscopic flow field acting on it.
With these approximations, and with the absence of body forces, the main parameter
controlling the deformation is the capillary number, Ca. Studies involved perturbation
methods, slender body theory and numerical approaches, that were applied to Newtonian
and non-Newtonian systems in which various forcing fields, such as uniform and linear
flows, induce the deformation.

In view of the existing huge body of published material, with various directions of
relevance, only some leading relevant analyses are mentioned below. More literature on
the subject can be found in comprehensive reviews by Rallison (1984) and Stone (1994).
The deformation of a drop when Ca is small was studied by Cox (1969) and by Frankel
& Acrivos (1970) who used a first-order asymptotic expansion method. Barthes-Biesel
& Acrivos (1973) extended the asymptotic approach to a second-order expansion in
Ca. When the capillary number is relatively large and large deformations are expected,
elongated bodies were studied by Buckmaster (1972, 1973) and by Acrivos & Lo (1978)
for drops and bubbles embedded in an extensional flow, where slender body theory was
applied, and by Hinch & Acrivos (1980) for a drop deformed in a shear field. In cases
involving Ca that is not extremely large or small, the general approach is to use numerical
methods such as finite difference, finite elements and level set. For a drop deforming in
creeping flow of a viscous fluid, one of the most celebrated methods is the use of the
boundary integral equation (BIE), developed by Rallison & Acrivos (1978), following the
earlier analysis by Ladyzhenskaya (1969). This equation has been a starting tool for many
analyses to follow.

When a viscous drop, initially spherical at rest, is deforming in an extensional or a shear
flow the works of Taylor (1932), Rallison & Acrivos (1978) and Hinch & Acrivos (1980)
suggest that, with increasing flow rate, the drop can reach a critical shape at which it
loses its stable form and beyond which its shape becomes unstable in the flow. A similar
transition is found by Acrivos & Lo (1978) for a slender body in extensional flow where
more than one branch of the solution of the equations of motion and more than one
stationary shape, stable and unstable, are reported for a given capillary number.

It should be noted that multiple shapes of deformations of drops in extensional and shear
flows are also encountered when the drops are non-Newtonian, e.g. having a power-law
rheology (see Favelukis, Lavrenteva & Nir (2005, 2006), in extensional flow and Favelukis
& Nir (2016), in shear flow). In the former cases, lobes of solutions, containing multiple
branches with only one of them stable, were predicted.

Recently, the multiplicity of such deformed stationary shapes was also reported for
drops deforming in a linear compressional flow (Zabarankin et al. 2013; Zabarankin,
Lavrenteva & Nir 2015; Ee et al. 2018). There, the reported branches of solution were either
stable stationary flat drops or unstable yet stationary toroidal drops. These predictions
comprise dual branches of stationary solutions resulting for a given Ca, and they appeared
to be unconnected. Similar shapes, flat and toroidal, are also reported by Fontelos,
Garcia-Garrido & Kindelan (2011) for drops deforming in rotational flow field. There,
the stationary branches of flat and toroidal drops are connected by a branch of flat discs
having ever growing dimples.

The possible connection between the stationary flat and toroidal branches of drops
deforming in compressional flow, by a branch of flat discs having ever growing dimples, is
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one of the subjects of this work. We aim to demonstrate it by suggesting approximate
solutions that agree well with available numerical data for stationary stable (flat) and
unstable (toroidal) drops and apply it to the connecting branch where exact numerical
solutions are difficult to obtain. In §2 we state the problem of a drop deforming in a
compressional flow field (bi-axial extension), and the principal results are revisited and
discussed. In § 3 we propose an approximate approach to construct branches of stationary
shapes that would connect the flat and toroidal drops reported by Zabarankin et al. (2013,
2015) and by Ee er al. (2018). A discussion of the results is given in § 4.

2. Drops in compressional flow, revisited

Consider a spherical drop of radius a; and viscosity u* to be embedded and deformed in
an unbounded compressional viscous flow. The outer fluid viscosity is w, and the viscosity
ratio is denoted by A= p*/p. It is assumed that both fluids have equal density and that
they are immiscible. The surrounding fluid, in the absence of the drop, is subject to an
undisturbed linear flow

ui® = Gjjxj. 2.1)

1
Here, the shear rate tensor G is constant and is given by G1; = G2 = G, G33 = —2G and
Gjj = 0 when i #j, with G > 0 being a constant characterizing the flow intensity.

Let V* denote the closed domain occupied by the drop, V the open domain occupied by
the ambient fluid with S being the interface between them. Let the velocity and pressure
fields in V and V* be denoted as u, p and u*, p*, respectively. As we assume creeping flow
conditions, these fields satisfy the stationary Stokes equations

0o du; . doj; up
— =0, — =0 mV and — =0, — =0in V", (2.2a,b)
0x; 0x; 0x; 0x;

where 0;; = —pé;; + 1(du;/0x; + du;/dx;) and with a similar expression in V*.

The velocity is continuous at the interface
ui = u; on S, (2.3)

while at infinity u; = u?° and p = 0.
The stress balance across the interface is of the form

" n;
(03 = o)nj =y 5 =nion S, (2.4)
Xj

with the interfacial tension y being constant. Here, n is a unit normal pointing outward into
the ambient phase and V - n is the surface curvature. The kinematic condition denoting
the surface deformation is given by

U,=u,onsS. (2.5)

For a given shape of the drop, the stationary Stokes equations (2.2a,b) with boundary
conditions (2.3) and (2.4) can be reduced to a system of integral equations for the surface
of the viscous drop, S. In the particular case of equal viscosity of the phases these reduce

921 A5-3


https://doi.org/10.1017/jfm.2021.483

https://doi.org/10.1017/jfm.2021.483 Published online by Cambridge University Press

O.M. Lavrenteva, B.K. Ee, 1. Smagin and A. Nir

to the explicit expression

oo Y ang
i(x) = u; — Jij(x —y)nj(y) — () dS, 2.6
ui(x) = u;- (x) 2uGa; #S i (X = »)n;(y) o 2 (2.6)
where the kernels are given by
1 [(&; rir
Jir) = — (2 4 1Y 2.7
1= (|r|+|r|3 @D

In what follows, throughout the paper, the length and the velocity and pressure fields are
scaled with a1, Gaj and WG, respectively, and the capillary number, Ca, is defined to be
Ca = nGay/y. The dimensionless form of (2.6), keeping the respective nomenclature for
the sake of brevity, is

) = 1P ) — S Ji'(x—y)n-(y)%(y)d&. (2.8)
: 2Ca Jf's,™’ 7 o !

Given the axial symmetry of the drop under consideration, a cylindrical coordinate
system (r, ¢, z) with basis (e, e,, e;) is used with the z-axis coinciding with the x3-axis
defined following (2.1). In this coordinate system, the undisturbed flow velocity is given
by u*® = re, — 2ze,, and G =1 can be assumed without loss of generality. Furthermore,
the integral equations (2.6) are integrated over the angular coordinate, ¢, and are reduced
to expressions containing curvilinear integrals over the cross-section of the drop interface
S. The resulting expressions for the kernels can be found e.g. in Pozrikidis (1992).

At each time step, the unit normal to the surface and the surface curvature are calculated
numerically from the newly established surface points after the quasi-steady progress.
Detailed descriptions are given by Zabarankin et al. (2013, 2015) and by Ee et al. (2018).

The algorithm for obtaining the steady shapes, employed by Zabarankin et al. (2013),
was to start the solution from a spherical shape and proceed by deforming the shape in
a quasi-steady manner in the direction of U, until U, = 0 was established to a desired
degree of accuracy. The obtained singly connected stationary shapes do not change for
an indefinitely long time and they are addressed as stable. These shapes vary between a
sphere at Ca =0, via nearly oval shapes at intermediate values of Ca, to flattened shapes
at higher values of Ca, until a critical solution is reached at Ca = Ca,, for each value of
the viscosity ratio beyond which stable shapes were not found.

The algorithm for obtaining the toroidal stationary shapes, used by Zabarankin et al.
(2015) and by Ee et al. (2018), was to start from a torus with a circular cross-section and a
finite major radius, R, and solve problem (2.1)—(2.5) (or the equivalent problem (2.6) and
(2.7) for the velocities at the interface). The consequential deformation is then followed
quasi-steadily in the direction of U,,. It was demonstrated that when the torus R is small,
the torus collapses to the axis, while for higher values of R, it expands indefinitely. When R
belongs to a certain interval, the shape stays visually unchanged for a relatively long time.
The value of R that yields the longest duration of stationary deformed toroidal shape with
[|Un]] < 1, both established to a desired degree of accuracy, is termed R, and the yielded
shape is accepted as a stationary solution. These toroidal shapes are unstable and, with the
passage of time, they either collapse or expand due to unavoidable numerical disturbances.
These shapes vary from a torus of infinite extent with a circular cross-section at Ca =0,
via tori with finite radii having nearly oval cross-sections at intermediate Ca (e.g. around
the minimum of the upper curve in figure 1), to tori with shrinking inner radius at higher
values of Ca having cross-sections with an egg shape, until a solution of an almost totally
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Figure 1. Deformation of a drop in compressional (bi-extensional) viscous flow, A= 1.
(Zabarankin et al. 2015).

collapsed shape is reached at Ca ~ Ca,, for each A, beyond which stationary shapes could
not be numerically established.

Axisymmetric deformation patterns are depicted in figure 1 for equal viscosity ratio,
A=1, where the stationary deformations, denoted by a Taylor deformation parameter,
defined as

_ Ruax — Zmax ’ (2.9)
Ruax + Zmax

are displayed as function of the capillary number, Ca. Here, Ry, and z,,, denote
the maximum distance of the drop surface to the axis of symmetry and half the
maximum thickness of the drop, respectively, and the solid curves correspond to steady
singly connected shapes, while the dashed curves denote stationary toroidal shapes.
These are actually two branches of the solution of problem defined by (2.1)-(2.5)
with U, = 0.

Some characteristics of the system described above deserve further attention. All steady
branches lose their stability at critical points, Ca.,, where the rate of change of the
deformation parameter with Ca becomes infinite. These critical values depend on the
viscosity ratio A. However, the critical deformation parameter and the drop dimensions
appear to be similar for all viscosity ratios, with the only difference between small A and
A > O(1) is the development of small dimples near the axis of symmetry in the latter
cases. These critical Taylor deformation parameters are all near 0.75, indicating that flat
drops in compressional flow cannot become really thin, opposite to the deformation of low
viscosity drops in extensional flow that can become really slender.

While for the simply connected stable solution, it was possible to determine the critical
points numerically, for the toroidal drops it was not possible to do so with a satisfactory
degree of accuracy. As described above, the stationary solutions were determined when
the toroidal deformation became steady for an extended stretch of time, before the loss
of stability due to unavoidable numerical disturbances, after starting the process with a
circular cross-section and a radius R = R,.. However, as the stationary shape of the torus
became close to a complete collapse, these stretches of time became shorter and shorter.
Thus, the deformation curves for these cases were stopped at capillary numbers slightly
below Ca,, with the latter values only estimated also close to 0.75.

In spite of the similarity of the near critical values of deformation, the two branches,
for a given A, are not connected. There is also a shape gap for the corresponding cases
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Figure 2. Shapes in dynamic evolution of an unstable drop. Here, 1 =1 and Ca = 0.2, slightly exceeding the
critical capillary number estimated at Ca,, ~ 0.197. Time, 7, is normalized by G~!.

of A. The simply connected flat drops at Ca,, are not completely collapsed, nor are the
toroidal drops at Ca near the critical one. A calculation of the surface evolution of the
flat drops at Ca,, suggests a family of dynamically (not stationary) evolving shapes, with
ever increasing dimples around the axis of symmetry, as are depicted in figure 2. Similar
dynamic shapes were reported in Stone & Leal (1989). Once the dimples touch each other,
two families of shapes can evolve, as discussed by Fontelos et al. (2011). Toroidal (I), in the
shape of rings, and toroidal (IT) having an inner thin layer of the drop fluid at and around
7=0. The latter tori (II) are not the subject of this paper and, thus, we assume that, once the
dimples touch each other at z = 0, a torus of type (I) is formed. The existence of a branch of
stationary, yet unstable, solutions to (2.1)—(2.5), possibly connecting the stable flat drops
branch and the one of unstable tori, is one of the main objectives of this paper. However, it
was not possible to achieve such stationary solutions by direct numerical approach because
of the unstable nature of the dimpled flat shapes with the dimples dynamically collapsing
to form tori. Thus, an approximate approach is used to estimate this branch as well as the
numerically obtained flat and toroidal shapes.

3. Approximate solutions

A sphere embedded in compressional flow is the zero-order approximation of the shape
of a singly connected drop when the capillary number is near 0. Indeed, when Ca < 1,
this spherical shape can be accepted for further applications. If Ca is slightly increased,
asymptotic expansions were used to estimate the deformation of the drop in terms of
spherical harmonics. The O(Ca) theory shows that the drop deforms into an ellipsoid (see
e.g. Leal 1992). The formal use of the obtained formula for large perturbations predicts
a breakup of the drop at Ca., = 4(1 + 1)/(16 + 194) ~ 0.229 for A =1, while for the
0(Ca?) the deformation in axisymmetric compression. Barthes-Biesel & Acrivos (1973)
reported Ca., = 0.13 at this viscosity ratio. Both are not close to the value Ca,, = 0.197
obtained numerically by Zabarankin et al. (2013). When Ca is further increased and the
drop assumes a shape close to an oblate spheroid or flat disc, approaching the critical
stable form, the deformation can be approximated using some empirical expressions
which are a generalization of the spheroidal shape, or by series expansions using, e.g.

921 A5-6


https://doi.org/10.1017/jfm.2021.483

https://doi.org/10.1017/jfm.2021.483 Published online by Cambridge University Press

Approximating stationary deformation of flat

Chebyshev polynomials. Such approximations are described in Zabarankin et al. (2013),
where comparisons are made with actual numerically calculated shapes emerging from
solution of (2.1)—(2.5). The shapes, spherical and oval, are attractive for use since problems
for these assumed shapes can be formulated and solved without resorting to elaborated
numerical procedures.

Similarly, for toroidal drops, approximations of simple cross-sectional shapes, such as
circular or elliptical, are also attractive. Zabarankin (2016, 2019) derived and solved the
problem of a toroidal drop having circular and elliptical sections, respectively. In these
papers, he used conformal mapping techniques to solve the equations of motion for the
predetermined cross-sectional shapes. With this approach one must suggest an artificial
criterion for stationarity, such as a minimum of some norm of the normal velocity at
the interface or immobility of an identified point on the circle or the ellipse. Of course,
a constant volume stationary torus with circular cross-section exists only when Ca — 0
and when extension is R — oo. When R is arbitrary, considerable deviations from actual
stationary shapes exist and a normal velocity at the surface appears. Indeed, Zabarankin
(2016) calculated such normal velocity profiles along the surface S. When Ca increases
slightly but is still very small, the approximation is good, but any further increase of Ca
yields deviations from the actual cross-sectional shape and results in the appearance of
normal velocity components on S, which he calculated and displayed. For toroidal drops
with cross-sectional shapes that cannot be described as close to elliptical, Zabarankin et al.
(2015) suggested expansions in Chebyshev polynomial that yielded shapes close to the
numerically calculated ones.

In this section we aim to obtain an approximation to stationary shapes that spans the
already available flat and toroidal solutions, and also the highly unstable shapes in the
interval between the point of loss of stability of the flat singly connected drop (e.g. at
Ca=0.197 for A=1) and the point of total collapse of toroidal drops (at Ca > 0.19).
In view of the dynamics described in figure 2, these solutions are expected to be
highly unstable, with the flat shapes showing ever growing dimples until the collapse
toward a toroidal shape is achieved. In this interval 0.19 < Ca < 0.197 one expects to find
dual solutions, stable and unstable, to singly connected drops with a lower deformation
factor for the stable branch and a higher factor for the unstable ones. An algorithm to
achieve this dual-solution state is to extend the finite element description of the surface,
with the number of surface points spanning 200 < N < 2000, substitute it into the BIE
(6 or 8) and minimize a measure of the residual non-zero normal component of the
surface velocity. This algorithm would become an optimization problem with respect
to N parameters, hence a tedious procedure. An alternative algorithm is to assume an
approximate description of the surface involving a known family of shapes, as was
described above with the approximations of circular and elliptical cross-sections used by
Zabarankin (2016, 2019), and perform a similar yet less laborious optimization procedure
with a much smaller number of parameters. The latter algorithm is adopted here and is
described below.

We examine a solution of compressional Stokes flow about a stationary axisymmetric
drop of a given volume embedded in its origin. The shape of the drop is assumed to
belong to some m parametric family. For given values of these parameters, the shape is
discretized. Further, unit normal and curvature are calculated and these are substituted in
the BIE (2.6) or (2.8). To improve the accuracy of computation of the involved singular
integrals, use is made of the singularity subtraction method (see e.g. Pozrikidis 1992).
Surface integrals are reduced to contour ones, taking into account the axial symmetry of
the problem and integrating over the angle. All the integrands are expressed analytically
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via special functions. Numerical integration was performed with a second-order algorithm
and 2000 intervals.

As a result, because the shape is only an approximation and is not an exact stationary
solution, a normal velocity component, U, results over the surface that depends on
m+ 1 parameters (m parameter description of the shape and the capillary number, Ca).
Stationarity is defined if an average norm of U, is minimized. Note that, since the shape
is only approximation, the minimum of the norm is not expected to be zero.

In this study, we have used the norm of Hilbert space L?> of the interfacial velocity
divided by the surface area and define function to be minimized as

U117 :# U2 ds/S = /lrU},dZ//lrdz. 3.1)
S

Note that the number of independent parameters in the used approximations below is
reduced by the constraint that the volume remains constant, i.e. 41t/3. There are three
algorithms that can be applied for the minimization process. Stationarity can be defined by
minimizing (3.1) for a given Ca (defined as method M1). This can be achieved by applying
an inverse method, where Ca is determined by a particular choice of conditions at some
surface points, for example, by the choosing one of the m parameters and requiring that the
normal velocity at » = R4 and z =0 vanish, which implies that the oval radial dimension
does not change (defined as method M2). Of course, the latter choice is rather arbitrary
and not unique as most other surface points are not immobile and will tend to deform the
oval along the resulting local non-zero normal velocity component. Yet another inverse
method (defined here as M3), suggested in Zabarankin et al. (2013), considers only one of
the shape parameters being fixed and all others (including Ca) as independent parameters.
The inverse methods require considerably less computational effort than M1 due to the
simple (quadratic) dependence of the velocity at the interface and of the functional (3.1)
on 1/Ca. For M2 in the case A = 1, the capillary number is found as

1

Ca =
2Rmax

0
P s =m0 as,. (3:2)
s, X

where x;;, = (Rpax, 0) in a cylindrical coordinate system. For M3 in the case 1 =1,

ony ?
# (”i(x) # Jij(x —J’)nj()’)a—(y) dSy) dSy
Ca= > > -

= 3.3)
0
2# (ni(x)us*) <7’li(X) # Jij(x —y)nj(y)a—m‘(y) dSy> ds,
i 5, X

Below, in what follows, we have used all three minimization methods and compared
the resulting deformations and shapes. We examine the applicability of a range of low
parametric approximations with m =2, 3 and 4, for the case A =1, in which case (2.8) and
associated shape parameters (e.g. unit normal, curvature) are used to calculate the residual
norm given in (3.1). Minimization of a function (3.1) was performed numerically making
use of the Matlab function fimincon with the internal point algorithm. In what follows, we
term the shapes obtained by this procedure ‘stationary’. The obtained results are compared
to the previously obtained numerical ones. The approximate shapes that are close to stable
(in the sense of § 2) are addressed to as ‘stable’. All the others are termed ‘unstable’.
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3.1. Cassini ovals, m=2

Consider the family of shapes known as Cassini ovals (see e.g. Boyadzhiev & Boyadzhiev
2018). A common representation of these two-dimensional (2-D) ovals is of the Cartesian
form

[(ax)? + (ay)> + 117 — 4(ax)? = &*, (3.4)

where a and € are constants. The oval is the locus of points (x, y) with distances to two
focal points located at (—1/a,0) and (1/a,0) having a constant product (e a)?. There are
some interesting combinations of a and €. When a— oo the two focal points collapse to
the origin and the oval is a circle. When € = /2 the oval has a flat form just before the
appearance of dimples at the centre x = 0. The special transition case, € =1, is known as
the lemniscate of Bernoulli, where the point (0,0) is joint to two touching ovals, and cases
with € < 1 yield two separated symmetric ovals on both sides of x =0.

If (x, y) is replaced by (r, z) and the 2-D domain is rotated about the z axis the four
cases above describe a sphere, a flat drop, a drop collapsed at the centre and a toroidal
body. Hence, the Cassini rotated oval with two parameters has shapes similar to the two
branches of the drop deforming in a compressional flow (as shown in figure 1), which
are connected continuously and uniformly, by a segment depicting flat shapes with ever
increasing surface dimples at the axis of symmetry. The fixed volume condition results in
an explicit relation between a and €, a=a(e). If V(a, €) is a volume of rotated Cassini
oval defined by (3.4), then for a(¢) = (4w /3V(1, N3, Via(e), e) = 41 /3. Graphical
presentations of the various cases of Cassini ovals can be found in Wikipedia, in Wolfram
MathWorld or in Boyadzhiev & Boyadzhiev (2018).

As a first approximation, we used the ovals (3.4) with a = a(¢) and looked for parameter
€ to minimize (3.1) for a given Ca (M1 method). The results are summarized in table 1,
where € (Ca), a(e (Ca)) and ||U,||? defined by (3.1) are presented. It was found that, at any
Ca, the function (3.1) has two minima, one with € > 1 and another with € < 1, describing
singly connected and toroidal shapes, respectively. For both shapes, € approaches 1 as Ca
increases, but no critical or maximal value for Ca is observed. The residual values of the
functional < O(10~") only for singly connected shapes and Ca < 0.01. The deformation
curve corresponding to the obtained shapes, shown in figure 3 by dashed lines, are
compared to the numerical results of Zabarankin et al. (2013, 2015) shown by the solid
curves. Obviously, for this initial crude m = 2 approximation, the deformation curve is far
from the numerical calculations. For singly connected drops the approximation obtained
by the M1 method is close to the numerical one only for Ca < 0.1, while for higher
Ca, the deformation is underestimated by this method. For toroidal shapes, considerable
underestimation of drop deformation is observed for all values of the capillary number.
Another deviation is characterized by erroneous results obtained for Ca larger than the
critical one obtained numerically by Zabarankin et al. (2015) (Ca.r =0.197) as is shown
in the case Ca =0.25 in table 1.

The inverse methods (M2) and (M3) in the case of two parametric models with a volume
conservation condition lead to an explicit expressions Ca = Cas(€) and Ca = Ca3(€),
respectively. These functions achieve maximum at some € > 1, which can be attributed
as a critical capillary number for this m = 2 approximation. Table 2 presents a(e), Caz(¢€),
Cas(€) and corresponding values of the functional ||U,,| |2 defined by (3.4).

The deformation curves computed with methods M2 and M3 are shown in figure 3
by dotted and dashed-dotted curves, respectively. The existence of the critical Ca
reflects qualitative features of the results by Zabarankin er al. (2013, 2015). However,
the deformation curves corresponding to these shapes differ considerably from the
numerically computed ones and the critical Ca is highly underestimated. One can observe
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Figure 3. Deformation curve of a drop in compressional (bi-extensional) viscous flow, obtained by
two-parameter model, 4 = 1. Dashed-dotted curves — minimization of functional (3.1) (method M1). Solid
curves — condition U, (Rpq) =0 (M2). Dashed curves — (M3). Marked curves — numerical computations
(Zabarankin et al. 2015).

Singly connected Toroidal

Ca € a |U > € a U7

0.01 3.9518 3.9923 0.0010 0.3448 0.2550 0.0457
0.05 1.8481 1.9226 0.0203 0.6664 0.6881 0.0693
0.1 1.3762 1.4595 0.0645 0.9048 0.9243 0.0863
0.15 1.1919 1.1727 0.1219 0.9801 1.0282 0.1364
0.16 1.1688 1.2485 0.1343 0.9862 1.0368 0.1486
0.17 1.1502 1.2289 0.1450 0.9906 1.0429 0.1611

0.18 1.1348 1.2124 0.1597 0.9938 1.0474 0.1738
0.19 1.1220 1.1986 0.1725 0.9960 1.0505 0.1865
0.2 1.1116 1.1873 0.1853 0.99756 1.0527 0.1920
0.25 1.0815 1.1541 0.2462 0.9999 1.0560 0.2980

Table 1. Parameters of the ‘stationary’ Cassini ovals (3.4) found from the minimization of (3.1) for various
given capillary numbers (method M1) and the corresponding minimum values of (3.1).

€  Cap(M2) Caz(M3) a ULI> M2)  ||U,]1> (M3)
0.35 0.0095 0.0104 0.2605 0.0986 0.0462
0.46 0.0184 0.0207 0.3750 0.1135 0.0558
0.68 0.0418 0.0509 0.6315 0.1282 0.0687
0.8 0.0571 0.0717 0.7844 0.1318 0.0734
0.96 0.8320 0.1133 1.0002 0.1865 0.1029
1.03 0.0976 0.1508 1.0943 0.3325 0.1632
1.15 0.0901 0.1319 1.2286 0.2505 0.1159
1.38 0.0694 0.0912 1.4632 0.1272 0.0593
1.82 0.0429 0.0504 1.8951 0.0441 0.0210
2.72 0.0200 0.0216 2.7763 0.0097 0.0045
3.9 0.0099 0.0103 3.9410 0.0022 0.0011

Table 2. Parameters of the ‘stationary’ Cassini ovals (3.4) found by the inverse methods M2 and M3 with
corresponding values of Ca and the functional (3.1).
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Singly connected Toroidal
Ca € b Ul P? € b |UalP?

0.01 13411 09436 7.13x10710  (.3447 0.9878 6.92x10~*
0.05 5.6380 0.7640 9.52x10710  0.6623 0.9240 1.39x1073
0.1  2.8484 0.6385 7.49x10~7  0.8600 0.8152  51x1073
0.15 1.8590 0.5456 4.51x1075  0.9605 0.6514  5.09%x1073
0.16 11613 0.5268 9.37x107>  0.9745 0.6091  4.19x1073
0.17 15353 05117  1.87x107*  0.9861 0.564  3.19x1073
0.18 14098 0.4934 3.85x10~*  0.9943 0.5202  2.5%x1073
0.19 12986 0.4727 8.16x10~*  0.9984 0.4830 2.68x1073
02 12194 04491 1.77x1073  0.9996 0.4526  4.03x1073
025 11460 0.324 0.0165 0.999998  0.3093 0.021

Table 3. Parameters of the ‘stationary’ extended Cassini ovals (3.5) found from the minimization of (3.1) for
various capillary numbers (using method M1), and the minimum corresponding values of (3.1).

that the M3 method, in which only one parameter was predetermined, provides a better,
but not yet satisfactory, approximation of the deformation curve as well as of the critical
capillary number. Note that the highest values of the minimized norm, calculated by (3.1),
are obtained for a singly connected dimpled drop (¢ > 1) near the estimated maximum
Ca.

3.2. Extended Cassini ovals, m =3
As a second approximation the ovals (3.4) are recast in the form

[(abr)? + (az)? + 1% — 4(abr)? = &%, (3.5)

and, in this reorganization, the Cassini rotated oval is slightly extended with one more
independent parameter added, by choosing € to be independent of a and b, and with the
transition from singly connected rotated ovals to toroidal ones kept at € = 1. The fixed
volume condition results in an explicit relation between a, b and €, a = a(e,b). Table 3
presents the results of the minimization of (3.1) for ovals (3.5) with a = a(e,b) with respect
to € and b. As in the previous case, two minima were found at any Ca, withe > 1 and € < 1,
describing singly connected and toroidal shapes, respectively. The residual values of the
functional are several orders of magnitude lower than those obtained for two parametric
model described in the previous sub-section.

The deformation curves corresponding the shapes obtained by method M1, shown in
figure 4 by dashed-dotted lines, are compared to the numerical results of Zabarankin et al.
(2013, 2015), shown by diamonds and circles. Note that the deformation curve for singly
connected drop obtained by the M1 method is close to the numerical one for Ca < 0.18,
extending the corresponding approximation by (3.4), while for higher Ca, the deformation
is underestimated by this method and, again as in the case m =2, provides results for Ca
that exceed the known critical Ca., = 0.197. Note also that the norm there is an order of
magnitude higher. For toroidal shapes, the deformation curve follows the numerical one up
to Ca ~ 0.08 while for higher Ca, an overestimation of drop deformation is observed. At
Ca ~ 0.18, the deformation curve of M1 intersects the numerical one. The residual value
of (3.1) has a minimum in the vicinity of this point.

The results obtained by methods M2 (requiring U,(Rj.) = 0) and M3 (with
considering Ca as an independent parameter for a given value €) are presented in figure 4
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Figure 4. A comparison of numerically calculated deformation values of stationary flat singly connected drop
(lower diamonds) and toroidal drops (upper circles) with stationary solutions of extended Cassini rotated
ovals defined by (3.5) all deformed in compressional flow, A= 1. Dashed-dotted, solid and dashed curves are
computed with methods M1, M2 and M3, respectively. Thick (blue) and thin (red) lines correspond to singly
connected and toroidal shapes, respectively.

by solid and dashed lines, respectively. For both methods, it is seen that three branches
of solution are evident: a branch of stable flat drops, a branch of flat drops containing
dimples and a branch of toroidal drops, all connected continuously. Furthermore, there
appears to be a maximum value for Ca at which the rate of change of D is infinite, denoting
the possible transition from stable flat shapes to unstable flat ones with dimples. Beyond
this point until the point of transition to toroidal shapes, the minimization produces two
minimum values of (3.1) for (3.5) with two flat singly connected shapes, the additional one
exhibiting ever increasing dimples.

The values of parameters obtained by methods M2 and M3 and the residual values
of the functional (3.1) are presented in table 4. In contrast to the two parametric model,
here, the residual values resulting from the use of all three models are of the same
order of magnitude. The deformation curves for flat drops nearly coincide with the one
calculated numerically by Zabarankin et al. (2013) when the shapes are nearly spherical
or spheroidal (Ca < 0.15). And they are close to this curve for Ca < 19. Also, for singly
connected shapes, the deformation curves obtained by all three approximate methods
nearly coincide for all values of the capillary number except for the vicinity of critical
point. For Ca > 0.18, method M2 slightly underestimates the deformation, while method
M3 slightly overestimates it. The maximum value for Ca at which the rate of change of D
is infinite, obtained with model M2, Ca = 0.1976, is surprisingly close to the critical Ca,
obtained in numerical solution.

However, as is evident from comparison with the existing numerical results, the
deformation results suggested by (3.5) deviate considerably from those calculated
numerically by Zabarankin et al. (2015) when Ca is higher than 0.18, and the deformation
at near-critical capillary numbers is underestimated. For toroidal shapes, the deformation
curves obtained the 3 parameter model deviates from numerical one already for Ca > 0.08
for all methods. Hence, the additions of one independent parameter in the Cassini rotated
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€ Ca(M2) CaM3) bM2) bM3) [|Unl> M2) [|U,l> (M3)

0.35 0.0103 0.0104 0.9866 0.9873  7.04x107*  6.69x10~*
0.46 0.0208  0.0208  0.9705 0.9718  8.09x10~* 4.6x10%
0.66 0.0490  0.0497 09194 09232 2.07x1073 1.33x1073
0.76 0.0689  0.7043  0.8774  0.8841 39%1073  2.73x1073
0.88 0.1046 0.1072 0.7835 0.7951  6.84x1073 5.37x1073
0.95 0.1440 0.1455 0.6559 0.6687 5.67x1073 5.2x1073
0.98 0.1696 0.1696 0.5712  0.5704  3.27x1073 3.3%x1073
0.99 0.1793 0.1782 0.54 0.5315  2.67x1073 2.5%1073
0.995  0.1845 0.1825 0.5232  0.5107  2.65x1073 24x1073
0.9999  0.1904 0.1871 0.5043  0.4876  3.26x1073 2.7x1073
1.0001  0.1907 0.1874 0.5032  0.4865 3.36x1073  2.82x1073
1.001  0.1913 0.1880 0.5011  0.4835 3.56x1073  2.99x103
1.005  0.1933 0.1896 0.4947 04772  3.89x1073  3.28x1073
1.01 0.1946 0.1907 0.4905 04731  4.02x1073  3.39x1073
1.05 0.1976 0.1940 04832 04660 3.46x1073  2.91x1073
1.08 0.1974 0.1946 0.4837 0.4673  2.89x1073  2.42x1073

1.1 0.1969 0.1941 0.4850 0.4689  2.55x1073 2.13x1073
1.2 0.1917 0.1900 04941 04799  1.38x1073 1.14x1073
1.5 0.1698 0.1705 0.5253 05156  2.61x107%  2.09x10~*
2.5 0.1126 0.1135 0.6143  0.6109 3.29%x107°  2.45x107°
5.6 0.0503 0.0503 0.7685 0.7683  9.72x10~1° 9.3x10710
13 0.0107 0.0108 0.9397 0.9395 727x10710  716x1071°

Table 4. Parameters of the ‘stationary’ extended Cassini ovals (3.5) found by the inverse methods M2 and
M3 with corresponding obtained values of Ca, and the functional (3.1).

ovals, as described by (3.5), demonstrates qualitatively the expected behaviour but does
not yield an acceptable approximation at intermediate and higher values of the capillary
number, and in particular in the vicinity of the critical Ca and near the transition to toroidal
shapes.

3.3. Generalized Cassini Rotated Ovals, m =4

We extend our approximation by defining and introducing generalized Cassini rotated
ovals of the following form:

[(abr)*® + (az)> + 117 — 4(abr)®® = &*. (3.6)

Again, we require a = a(e, b, o) = (4n/3V(1, &, b, a))1/3, with V(a, €, b, @) denoting the
volume of the rotated oval (3.6) to ensure that the volume of (3.6) equals that of a unit
sphere.

Here, the additional parameter « assists in bringing the oval shapes closer to the
numerically calculated ones in the entire domain of Ca, while the transition from singly
connected drops to toroidal ones is still kept at ¢ = 1. We have used all three definitions
of stationarity, i.e. methods M1, M2 and M3. All three methods follow closely the
numerically calculated results for the stable singly connected flat drop and the unstable
toroidal one and are depicted in figure 5(a,b). The full diamonds and circular points are
the numerical calculations of flat and toroidal drops from Zabarankin er al. (2013) and
Zabarankin et al. (2015), respectively. In figure 5(b) along the region of existing dual
solutions, i.e. Ca < 0.197 for singly connected drops and Ca < 0.187 for toroidal bodies,
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Figure 5. A comparison of deformation curves of stationary flat and toroidal drops, obtained by direct
numerical solution, with stationary solutions of the generalized Cassini rotated ovals defined by (3.6), all
deformed in compressional flow, A= 1. Filled diamonds and circles — numerical results from Zabarankin
et al. (2013, 2015). Dashed-dotted, dashed and solid curves — approximation by methods M1, M2 and M3,
respectively. (a) Total deformation domain. A, B, C and D denote the location of spherical shape, critical
steady flat shape, collapse from dimpled flat to toroidal shape and extended thin toroidal shapes, respectively.
(b) Close up, enlarging region of transitions, with examples of data points for M1, M2 and M3 along the lines
marked by hollow circles, stars and hollow squares, respectively.

we added some of the calculated points as hollow circles, stars and hollow squares showing
several points calculated by methods M1, M2 and M3, respectively, taken from the tables
of data below.

The use of the generalized Cassini oval approximation reveals that the flat drop branch
and the toroidal branch predicted by Zabarankin et al. (2013, 2015) and shown in figure 1,
are extended beyond the available direct numerical solution of problem (2.1)—(2.5).
It is shown that the approximated solution of (2.8) for the case of 4 =1 beyond the loss of
stability of flat drops, at Ca.- =0.197, is connected to a branch of unstable stationary flat
drops with ever growing dimples at their centre and with decreasing values of Ca. Thus,
Ca,, is also a maximum, and there exist dual solutions for Ca < Ca,,. Similarly, the curve
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showing toroidal drops is also characterized by a maximum value of the capillary number,
i.e. Ca;~0.187, and exhibits a similar additional solution there with the second one
unveiling collapsing stationary tori that have a shrinking inner radius at ever decreasing
Ca. The locations indicated by the letters A to D indicate the points of transition from
one branch to another. The two additional branches meet at common Ca and deformation
factors. Extrapolation of the curves to contact provides the values (Cayy,, D,,) = (0.181,
0.799), (0.182, 0.788) and (0.181, 0.794) for methods M1, M2 and M3, respectively.

It should be noted that the turning of the stationary solutions to exhibit multiplicity of
deformation parameters and shapes upon approaching the critical Ca values, for both flat
and toroidal drops, are characteristic to similar deformation patterns in viscous systems.
Fontelos et al. (2011) studied the deformation of the drop undergoing a solid body rotation
in a slightly lighter viscous fluid, demonstrating and extending the classical experiment
of Plateau (1857). Physically, their problem is quite close to that in our manuscript,
while mathematically it can be reduced to ordinary differential equations and solved
with very high accuracy. There, a similar system of branches was found. The point
(Cay,, Dy,) is also the location of an additional bifurcation point where other drops of
toroidal shape emerge (type II, as defined by Fontelos et al. 2011). These are not the
subject of this paper. It is interesting to note that for D < D, there are 3 different regions
of stationary solutions to (2.8). In the interval 0 < Ca < Ca,, there are two solutions,
one unstable toroidal drop and one stable simply connected flat drop; in the interval
Cay < Ca < Cay there are four solutions, one unstable dimpled flat drop, two unstable
toroidal drops and one stable flat drop; and in Ca; < Ca < Ca,., we find two solutions
of singly connected bodies, one unstable dimpled drop and one stable flat drop. This
multiplicity of solutions, having a critical turning point, is not uncommon and appears in
other problems with nonlinear characteristics in viscous flow (e.g. in addition to Fontelos
et al. (2011), discussed above, see Acrivos & Lo (1978), Favelukis et al. (2005); for slender
low viscosity Newtonian and power-law drops in extensional viscous flow, respectively).
Note the difference of approximately 1.5% between the maximum value of Ca; =0.187,
calculated by the approximation method, and the most extended point at Ca =0.19 for
toroidal drops, reported previously, by our group (Zabarankin ez al. 2015). We comment
that, in view of the method of determination of stationarity described by the latter (i.e.
duration of stationarity in the dynamic evolution before losing stability), it is expected that
the exact determination of the critical turning point of the toroidal branch by the numerical
calculation can be biased, and some care should be exercised regarding its precise position.

The values of parameters obtained by methods M1, M2 and M3 and the residual values
of the functional (3.1) are presented in tables 5, 6 and 7, respectively. The residual values
resulting from the use of all three models are of the same order of magnitude and an order
of magnitude lower than those of the 3-parametr model (m = 3) discussed in the previous
section. All three methods yield results that nearly coincide with the ones calculated
numerically by Zabarankin et al. (2013) for flat drops for all Ca < 0.197, and by Zabarankin
et al. (2015) for toroidal drops for all Ca <0.18. Below the critical points, Ca., = 0.197 for
flat drops and Ca; = 0.187 for toroidal drops, and above the point of joining at Ca,, = 0.18]1,
the three methods of approximation yield dual solutions expressed by two values of
deformation in figure 5 and two values of € (the thickness parameter in (3.6)) in the tables
below.

We note that, when applying all three approximation methods, no minima were detected
for Ca>30.19 in the toroidal case. Nevertheless, method M1 finds minima in the
calculation of ||U,||? for pre-assigned values of the capillary number beyond the critical
one (see, e.g. table 5). However, the curves keep diverging as in methods m =2, 3 with
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Singly connected shapes

Ca € b o Uy |?
0.01 13.418 0.9436 1.0000 7.914x 10~
0.05 5.6382 0.7694 1.0000 2.39%x10712
0.1 2.8934 0.6356 1.0007 747x107°
0.15 1.8306 0.5409 1.0051 9.88x10~7
0.16 1.7056 0.5120 1.0216 1.71x107°
0.18 1.6035 0.3128 1.3812 1.36x107°
0.19 1.4952 0.3024 1.4856 3.50x1077
0.196 1.3145 0.2920 1.6774 1.05x107°
0.1969 1.2435 0.2831 1.6642 2.48x107°
0.2 1.2203 0.2919 1.6636 5.19%107°
0.25 1.1389 0.0621 3.8157 8.42x10~*
0.196 1.1304 0.2806 1.5874 3.31%107°
0.19 1.0310 0.2702 1.8801 2.45%107°
0.186 1.0127 0.2658 1.9422 1.01x107°
0.182 1.0019 0.2654 1.9732 1.04x10~7

Toroidal shapes

0.01 0.3447 0.9878 1.0000 6.95x10~8
0.05 0.6551 0.9402 0.9792 2.24x107°
0.1 0.8258 0.9292 0.8556 4.09%x107°
0.15 0.9308 0.7991 0.7899 1.27x1073
0.16 0.9495 0.7438 0.8007 2.25%107°
0.17 0.9671 0.6772 0.8262 3.38x107
0.18 0.9846 0.6871 0.8902 6.56x107
0.185 0.9998 0.4585 1.0829 6.88x107
0.19 0.9907 0.4972 0.8160 No detectable minimum
0.2 0.9999 0.3310 1.4019 No detectable minimum

Table 5. Parameters of the ‘stationary’ generalized Cassini ovals (3.6) found from the minimization of (3.1),
using method M1, for various capillary numbers, and the corresponding minimum values of the norm (3.1).

ever increasing values of the norm Ak by orders of magnitude, and the resulting
deformation branches of flat and toroidal shapes do not connect. Hence, the physical
reality of these diverging results is yet to be validated by more rigorous direct numerical
simulation methods.

3.4. Deformed drops shape

It is interesting to show comparisons of actual shapes of the deformed drops, as predicted
by the direct numerical calculation and by the shapes predicted by (3.6) that minimize the
deviation from the BIE (2.8) as defined by (3.1). For stable flat shapes these are shown in
figures 6 and 7, where the generalized Cassini shapes are calculated using three methods,
M1, M2 and M3. In M1, Ca is fixed while in M2 and M3, € is optimized to brings Ca
close to the one calculated numerically by Zabarankin et al. (2013). Figure 6(a) shows
such a comparison of flattened drops shapes for the intermediate value of Ca =0.1. Here,
the shapes only slightly deviate from spheroidal. The lower portion of the continuous
curve is the approximation using M1 at Ca =0.1, the upper portion is the approximation
using M2 at Ca=0.1044 (solid curve) and M3 with Ca=0.1047 and the pointed curve
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€

0.35
0.88
0.95
0.98
0.99
0.996
0.9985
0.9991
0.9994
0.9999
1.0001
1.005
1.05
1.15
1.25
1.4

1.7

2.

2.5

5.6

13

Ca

0.0104
0.1029
0.1573
0.1741
0.1807
0.1852
0.1868
0.1862
0.1844
0.1822
0.1824
0.1849
0.1929
0.1971
0.1963
0.1927
0.1844
0.1264
0.1043
0.0503
0.0107

b

0.8921
0.8842
0.7445
0.6283
0.5684
0.5059
0.4328
0.3830
0.3272
0.2892
0.2872
0.2917
0.3010
0.3064
0.3067
0.3075
0.5022
0.6331
0.6557
0.7685
0.9397

o

0.9998
0.8235
0.8286
0.8920
0.9461
1.0284
1.1820
1.3337
1.5681
1.7316
1.8162
1.7737
1.6672
1.5820
1.5444
1.5090
1.4278
0.9680
0.9866
1.0000
1.0000

U112

7.03x107*
3.45%107*
9.68x10~*
1.92x1073
2.43%1073
2.65x1073
2.29%x1073
1.83%x1073
1.28x1073
8.28x107
2.76x1073

6.9x1073
1.44x 104
8.69%1073
432x1073
1.84x 1073
1.05x1073
9.89x107°
6.56x10~7
9.72x10~10
7.2x10710

Table 6. Parameters of the ‘stationary’ generalized Cassini ovals (3.6) found by the inverse method M2 with

corresponding values of Ca and minimum values of the functional (3.1).

€

0.35
0.95
0.98
0.99
0.995
0.999
0.9995
0.9999
1.0001
1.005
1.02
1.08
1.12
1.17
1.4

L5

1.8

2.5

5.6

13

Ca

0.0104
0.1572
0.1731
0.1795
0.1826
0.1854
0.1837
0.1813
0.1814
0.1837
0.1879
0.1948
0.1963
0.1969
0.1929
0.1903
0.1827
0.1047
0.0503
0.0107

b

0.9873
0.7446
0.6265
0.5723
0.5175
0.4271
0.3269
0.2775
0.2730
0.2755
0.2799
0.2856
0.2949
0.2984
0.3006
0.3992
0.4958
0.6537
0.7685
0.9396

o

1.0000
0.8143
0.8734
0.9116
0.9857
1.3362
1.5555
1.8836
1.9175
1.8829
1.8213
1.7319
1.6529
1.6095
1.5200
1.4954
1.4335
0.9662
1.0000
1.0000

U117

6.96x10~4
8.25x10~*
1.67x1073
2.16x1073
2.36x1073
1.84x1073
1.02x1073
5.84x1077
3.87x107°
1.94x1073
6.17x107
9.51x1073
8.42x107°
6.35%x107

1.6x1073
8.19%x107¢
2.94%x107°
1.36x 1078
9.28x10~10

7.2x10710

Table 7. Parameters of the ‘stationary’ generalized Cassini ovals (3.6) found by the inverse method M3 with

corresponding values of Ca and minimum values of the functional (3.1).
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Figure 6. A comparison between shapes obtained using (3.6) and direct numerical solution (Zabarankin et al.
2013). (a) Upper portion solid and dashed solid and dashed lines — approximation by method M2 at Ca = 0.1044
and M3 at Ca=0.1047, respectively; lower portion — approximation by method M1 (full curve) and direct
numerical solution (dotted curve) at Ca = 0.1. (b) Upper portion, solid and dashed lines — approximation by
using method M2 at Ca = 0.1522 and M3 Ca =0.1529, respectively; lower portion — approximation by method
M1 (full curve) and direct numerical solution (dotted curve) at Ca =0.15.

shows the numerical results at Ca = 0.1. The three methods produce results that are almost
indistinguishable, and the agreement with the direct numerical calculation is perfect.
The agreement of the three methods and the numerical calculation is still excellent for
a higher capillary number, shown in figure 6(b), were the generalized Cassini result at
Ca =0.1522 using methods M2 and M3 (upper portion) is compared with the results
of method M1(lower portion) and the numerically, calculated at Ca =0.15. At this state,
the drop is further flattened from the near spherical shape, while the match of shapes is
evident. Further, a comparison is also made at the capillary number where a dimple begins
to develop at the axis of symmetry but the shapes are still stable. Here, in figure 7(a),
the generalized Cassini result at Ca = 0.1903 (M2, upper portion) and Ca =0.1913 (M3,
upper portion) and the direct approximation result (M1, lower portion) are compared with
the numerically calculated at Ca =0.19. However, when Ca is slightly increased toward
the point of loss of stability, as is depicted in figure 7(b), the difference in the extension
of the drop is a bit more pronounced. Nevertheless, approximate algorithms result in
stationary shapes that only slightly deviate from the stationary shapes that are obtained
by the numerical solution.

In figures 8 and 9 we show a comparison of shapes of cross-sections of toroidal drops
in the interval between a fully expanded torus and just before collapse, obtained by
direct numerical calculation as reported by Zabarankin et al. (2015) and by the three
approximation methods, M1, M2 and M3, employing the generalized Cassini rotated
ovals (3.6). Recall that the approximated stationary ovals are obtained by minimizing the
criterion (3.1) when the shapes are substituted in the BIE (2.6). In these figures, as was
the case in figures 6 and 7, the lower portion is approximated using the method M1 while
the upper by the inverse methods M2 and M3. Figure 8 shows these comparisons for cases
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Figure 7. A comparison between shapes obtained using (3.6) and direct numerical solution (Zabarankin et al.
2013). (a) Upper portion — approximations by methods M2 at Ca = 0.1903 (solid line) and M3 at Ca =0.1913
(dashed line); lower portion — approximation by method M1 (full curve) and direct numerical solution (dotted
curve) at Ca=0.19; (b) Ca=0.196 near loss of stability. Lower and upper portions of continuous profile are
approximated by methods M1 and M2, respectively. Dashed curve is obtained by method M3. Dotted curve is
numerical solution.

in which the shape of the cross-section is not far from elliptical, i.e. at Ca 0.1 and 0.15. It
is evident that all three approximation methods follow very closely the dotted curve that
was obtained numerically, in both panels (a) and (b).

In figure 9, the toroidal drop is closer to collapse and the cross-section is no longer
near oval but resembles an egg shape. Here, the approximation methods yield profiles that
in close agreement with each other while the numerical result shows a small deviation,
mostly in the inner region of the torus where the curvature is relatively high.

There are no direct numerical results to compare with those obtained using the
generalized Cassini rotated ovals in the interval between the point of loss of stability of
the flat drop and the point of transition to a toroidal drop in figure 5. Recall that, in this
interval, the dynamic evolution of unstable flat drops is as depicted, e.g. in figure 2. The
dynamic shapes suggest the existence of a branch of stationary, yet unstable solutions.
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Figure 8. A comparison between shapes of toroidal cross-section obtained using (3.6) and direct numerical
solution (Zabarankin et al. 2015); (a) Ca=0.1, (b) Ca =0.15. Upper portions — approximation by methods M2
(solid lines) and M3 (dashed lines); lower portions — approximation by method M1 (full curves) and direct
numerical solution (dotted curves).

0.4+

Figure 9. A comparison between shapes of toroidal cross-section obtained using (3.6) and direct numerical
solution (Zabarankin et al. 2015). The latter are depicted by the dotted curves; Ca = 0.18. The upper and lower
solid lines are approximations by method M2 and M1, respectively. Dashed line presents results of M3.

Indeed, singly connected generalized Cassini shapes, when substituted into the BIE
(2.8), yield dual minima for the condition (3.1) in the small interval 0.181 < Ca <0.197
suggesting the existence of an additional branch of stationary singly connected flat drops
with ever increasing dimpled surfaces. These results serve as an approximation to a
stationary unstable branch that connects the stable flat drops and the unstable stationary
toroidal drops. Examples of such shapes obtained by methods M1, M2 and M3 are depicted
in figure 10, by dashed-dotted, solid and dashed lines, respectively. In figure 10 we show a
stable flat shape at Ca =0.19 (curve 1), slight and deep dimpled shapes corresponding to
Ca = 0.1969 near the critical (maximal) capillary number, Ca,, = 0.197 (curves 2), and to
Ca =0.1824 (curves 3). For the stable branch (Ca = 0.19), the shapes obtained by different
methods are undistinguishable.

It is interesting to observe, in figure 11, that the normal velocity component obtained
on stable surfaces of stationary shapes, predicted by the approximation, is negligible at all
points on the interface and is of U, = O(10~2). For unstable, highly dimpled and toroidal
shapes, the residuals become higher, but remain of the same order of magnitude.

921 A5-20


https://doi.org/10.1017/jfm.2021.483

https://doi.org/10.1017/jfm.2021.483 Published online by Cambridge University Press

Approximating stationary deformation of flat

Figure 10. Shapes of stable flat and unstable dimpled stationary drops in the transition branch (B to C in
figure 5) from flat to toroidal drops, computed with algorithms M1 (dashed-dotted lines), M2 (solid lines)
and M3 (dashed lines); 1 — stable shape at Ca =0.19, 2 — critical shape at Ca =0.1969, 3 — unstable shape at
Ca=0.1824.

x1073
e
N — Ca=0.19, flat
— == Ca=0.19, dimpled
/ . —-=- Ca=0.185, toroidal /™

4 s s s |
0 0.5 1.0 1.5 2.0

Figure 11. Normal velocity components of flat (solid line) and dimpled (dashed line) stationary drops at
Ca =0.19, corresponding to cases 1 and 2 in figure 10. Dashed-dotted curve corresponds to near-critical toroidal
drop at Ca =0.185. All calculated by method M1.

To conclude this section, we show in figure 12 a focus on case 3 of figure 10 near the
transition point, that exhibits shapes obtained on both sides of the transition point Ca,.
These are limiting shapes of a flat dimpled drop and a toroidal one, with the dimples
calculated just before the interfaces contact at the plane z=0, and the toroidal shape
of type I created shortly thereafter. Both are calculated by method M2, i.e. by choosing
€ values slightly above and below € =1, the point of transition, and by requiring that
the radial velocity at Ry, vanishes, U,(R;4) = 0. The sensitivity of Ca,, and shape to
minute changes in € is evident. The profiles of the normal velocity components, depicted
in figure 13, calculated locally for the two shapes on both sides of the bifurcation point
are presented in figure 12. They are of O(10~%) everywhere except, naturally, at the almost
collapsed toroidal tip, where the surface curvature — oo and similar numerical accuracy
is not expected.
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Figure 12. (a) Shapes of deformed drops at near transition between singly connected drop and toroidal drop
at Ca=0.1824, € = 1.0001 (dashed line) and Ca = 0.1822, € = 0.9999 (solid line), respectively. (b) Close-up of
the region near »r — 0. In this figure the x and y axes correspond to the  and z dimensions, respectively.

x1073
2 01

Toroidal, Ca = 0.1822
—6F = == : Singly connected, Ca = 0.1824
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0 0.5 1.0 1.5 2.0

7

Figure 13. Normal velocity components on the surfaces of the deformed shapes before and after transition at
Ca=0.1824, € = 1.0001 (dashed line) and Ca =0.1822, € =0.9999 (solid line), respectively.

4. A short discussion

In this paper we propose a method to approximate the stationary shapes of a deformed
viscous drop in compressional flow. These shapes involve stable flat singly connected
bodies as well as unstable multiply connected bodies of toroidal shape that are, in fact,
two branches of solutions to the same problem. We employ, for the approximation of these
shapes, bodies obtained by proper rotation of Cassini ovals about an axis of symmetry.
The limited 2-parameter Cassini ovals were magnified to 3-parameter extended ovals and
further extended to 4-parameter generalized Cassini ovals. The algorithm for obtaining
the stationary solutions for the shape of the generalized Cassini bodies in the Stokes
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flow involved a substitution in the boundary integral representation and minimizing of
a predefined norm, based on the average of the residual normal velocity on the surface.

Stationary deformed shapes obtained by using the generalized Cassini ovals agreed
excellently with the two branches, the stable flat drops and the unstable toroidal drops,
that were calculated numerically by a direct solution of the equations of motion. We show
this agreement in the calculated Taylor deformation factor, in predicting Ca,, at which the
stability of flattened drops is lost, in the span of existence of the toroidal branch and in
actual comparison of the obtained shapes. This remarkable agreement leads us to further
suggest the existence of an intermediate branch of stationary solutions, connecting the
stable flat shapes and the unstable toroidal branch, where the flat drops are highly unstable
and exhibit ever increasing dimples near the axis of symmetry before a toroidal shape
is formed. This structure of connected branches is reminiscent of the one suggested by
Acrivos & Lo (1978) for a slender low viscosity drop extending in an extensional flow.

It is important to state that the process of finding the solutions in this problem is based
on detecting local minima of the said norm, where several more than is desired exist.
These local minima are located close to each other in the small region of Ca, that is, close
to the points of loss of stability and transition to toroidal shapes. For example, there are
also solutions that lead to toroidal type (II) shapes as defined by Fontelos et al. (2011) and
studied also by Stone (1994). Our approximation methods can also produce solutions with
minima, obtained at capillary numbers that are beyond the critical one (see, e.g. Ca =0.25
of method M1 in tables 1, 3 and 5). However, these cases are outside the scope of this
study.
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