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We consider the optimal scheduling problem for a single-server queue without
arrivals. We allow preemptions, and our purpose is to minimize the expected flow
time. The optimal nonanticipating discipline is known to be the Gittins index policy,
which, however, is defined in an implicit way. Until now, its general behavior in this
specific problem has been characterized only in a few special cases. In this article,
we give as complete a characterization as possible. It turns out that the optimal policy
always belongs to the family of multilevel processor sharing disciplines.

1. INTRODUCTION

Consider a single-server queue with n jobs at time 0. Jobs are served according to
a work-conserving and nonanticipating scheduling discipline π that allows preemp-
tions. Let � denote the family of such disciplines. Let Sj denote the random service
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time of job j (a.k.a. processing time). In addition, let Cπ
j denote the random completion

time of job j under the scheduling policy π .
We assume that jobs are statistically identical; that is, that their unknown service

times Sj can be modeled as being independent and identically distributed random
variables, with common distribution function F(x) = P{S ≤ x}, x ≥ 0, which has a
finite mean E[S] < ∞. The tail function is denoted by F(x) = 1 − F(x). We assume
that F(x) > 0 for all x ≥ 0. In addition, we assume that the service time distribution has
a continuous density function f (x), x ≥ 0. The hazard rate h(x), x ≥ 0, is defined by

h(x) = f (x)

F(x)
= f (x)∫ ∞

x f (y) dy
. (1)

The continuity of the hazard rate function h(x) is inherited from the density func-
tion f (x). Our third assumption concerning the service time distribution is that the
hazard rate is piecewise monotonic. To rule out pathological cases, we assume that in
any finite interval the direction of h(x) changes only a finite number of times. Oth-
erwise the distribution is arbitrary. The assumption that h(x) is piecewise monotonic
is not very restrictive, but there do exist continuous functions that are not monotonic
anywhere; an example is the van der Waerden function.

In addition, we define, for all x ≥ 0,

H(x) =
∫ ∞

x f (y) dy∫ ∞
x F(y) dy

= F(x)∫ ∞
x F(y) dy

. (2)

The function H(x) is related to the mean remaining service time (a.k.a. mean residual
lifetime) as follows:

E[S − x | S > x] =
∫ ∞

x F(y) dy

F(x)
= 1

H(x)
. (3)

Throughout the article we use the terms increasing and decreasing in their weak
form so that the corresponding functions need not be strictly increasing or decreasing.
Strict monotonicity is expressed explicitly.

The optimal nonanticipating scheduling discipline π∗ ∈ � minimizes the
expected sum of completion times of all jobs,

n∑
j=1

E[Cπ∗
j ] = min

π∈�

n∑
j=1

E[Cπ
j ]. (4)

In other words, the objective is to minimize the expected flow time. In scheduling
terminology, this is a stochastic version of the scheduling problem 1 | prmp | ∑

Cj

(see, e.g., [7]).
For the present problem, the optimal nonanticipating discipline is known to be

the Gittins index policy [5,10]. Unfortunately, the Gittins index policy is defined in a
highly implicit way. To find out how the optimal policy operates, one is, in general,
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urged to completely fix the service time distribution (including the numerical values
for all the free parameters describing the distribution).

Until now, the Gittins index policy for this specific problem has been charac-
terized only in a few special cases (see [3]). If the service time distribution belongs
to the new-better-than-used-in-expectation (NBUE) class (i.e., H(x) ≥ H(0) for all
x ≥ 0), the Gittins index policy coincides with any nonpreemptive scheduling dis-
cipline (e.g., first come–first served (FCFS) [9]). For the decreasing hazard rate
(DHR) class, for which h(x) is decreasing for all x ≥ 0, the Gittins index pol-
icy is equal to the foreground–background (FB) discipline [8,11], which in this
static setting without arrivals operates just like the processor sharing (PS) dis-
cipline. The third example relates to distributions in which jobs initially behave
like those in the NBUE class, but after receiving a certain amount of service,
they behave like those in the DHR class. In this case, the Gittins index policy
is a two-level priority policy called FCFS + FB [1,3]. We note that the ser-
vice time distribution class given in the third example is a generalization of the
class for which the hazard rate is bitonic (i.e., first increasing and then decreas-
ing) [5].

In this article we give as complete a characterization as possible for the Gittins
index policy in this stochastic single-server scheduling problem without arrivals and
under the assumption that all jobs start with the same amount of attained service (a.k.a.
age). It turns out that the optimal policy is characterized by a sequence of intervals
0, 1, 2, . . . defined by thresholds 0 = α0 < α1 < α2 < · · · . At the start of interval i,
all jobs have the same age, αi, and then either (1) jobs are taken one at a time and
each is served until it completes or its age increases to αi+1 or (2) jobs are served
together (using processor sharing) until such point as their common age is αi+1 (with
some jobs dropping out as they are completed). Intervals of types (1) and (2) alternate.
Thus, the optimal policy always belongs to the family of multi level processor sharing
(MLPS) disciplines, defined in [6]. Recent results concerning the MLPS diciplines in
the single-server scheduling problem with arrivals are summarized in [2].

To enable the characterization, we derive several new properties of the Gittins
index itself in this job-scheduling setting. Notably, we prove that if the hazard rate
function of the service time distribution is continuous and piecewise monotonic, the
corresponding Gittins index function has the same properties. In addition, the Gittins
index is increasing in an interval whenever the hazard rate is increasing in the same
interval or the mean residual lifetime function is decreasing in the interval. When
the hazard rate is decreasing in an interval, there are three different possible alterna-
tives: (1) The Gittins index is decreasing in the interval, (2) the Gittins index is first
decreasing and then increasing in the interval, and (3) the Gittins index is increas-
ing in the interval. Any other (nonmonotonic or even nonregular) behavior can be
ruled out.

The article is organized as follows. Section 2 introduces the Gittins index and the
corresponding index policy. Some prior results related to the Gittins index are given in
Section 3. Sections 4 and 5 include our main contribution. In Section 4 we derive new
properties of the Gittins index needed for the general characterization of the Gittins
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index policy presented in Section 5, which also includes some illustrative numerical
examples. Section 6 concludes the article.

2. GITTINS INDEX POLICY

The optimal nonanticipating scheduling discipline π∗ ∈ � that minimizes the
expected flow time is the policy that computes, separately for each job, an index
based on the age of the job and then chooses any job with the highest index. The
index, defined below, is called the Gittins index, and the corresponding policy is the
Gittins index policy. Gittins derived this result as a byproduct of his ground-breaking
results on the multiarmed bandit problem [5].

A multiarmed bandit is a finite collection of finite-state Markov processes of
which exactly one (the chosen one) is evolving at a time while the other bandits are
frozen. The Gittins index that determines the optimal policy to choose the bandits is,
for each bandit, a function of the state of the bandit. In the job-scheduling setting,
Markovian bandits are replaced by jobs with stochastic service requirements, and the
state of the job is described by a continuous variable indicating its age. Therefore, in
this setting, the Gittins index has some special properties, which we will describe in
the article.

Independently of Gittins, Sevcik [10] studied the optimal scheduling problem in
a single-server queue without arrivals and proved the optimality of the smallest rank
policy. However, the two policies are the same (as they should be), as the reciprocal
of the Sevcik rank is equal to the Gittins index in this setting.

For the definition of the Gittins index, an auxiliary function J(x, �), x, � ≥ 0, is
needed, which is called the efficiency function and defined, for � > 0, by

J(x, �) =
∫ x+�

x f (y) dy∫ x+�

x F(y) dy
= F(x) − F(x + �)∫ x+�

x F(y) dy
. (5)

In addition, let

J(x, 0) = f (x)

F(x)
= h(x), J(x, ∞) = F(x)∫ ∞

x F(y) dy
= H(x). (6)

Note that J(x, �) is continuous with respect to both of the arguments x and �. Note
also that, for any � > 0,

J(x, �) = P{S − x ≤ � | S > x}
E[min{S − x, �} | S > x] . (7)

Thus, for a job that has attained service x and is assigned � units of service, the
efficiency function J(x, �) is the ratio between (1) the probability that the job will
complete within a service quantum of � and (2) the expected service time during this
quantum �.
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The Gittins index G(x), x ≥ 0, is defined by

G(x) = sup
�≥0

J(x, �). (8)

In addition, for any x ≥ 0, we define the optimum quantum of service by

�∗(x) = sup{� ≥ 0 | G(x) = J(x, �)}. (9)

Note that J(x, �∗(x)) = G(x) by definition. From this discussion, we have the
following.

Lemma 1: G(x) ≥ max{h(x), H(x)} for all x, and if G(x) > h(x), then �∗(x) > 0.

3. PRIOR RESULTS

In this section we recall from [3] some prior results for the Gittins index G(x) and the
related functions h(x), H(x), J(x, �), and �∗(x).

Lemma 2 [3, Lemma 1]: Function H(x) is strictly increasing [strictly decreasing] at
x if and only if H(x) > h(x) [H(x) < h(x)] at x. Thus, function H(x) has a critical
point at x if and only if H(x) = h(x) at x.

Lemma 3 [3, Corollary 1]: If �∗(x) > 0, then G(y) ≥ G(x) for all y ∈ [x, x + �∗(x)).

Lemma 4 [3, Lemmas 7 and 8]: If G(y) ≤ G(x) [G(y) ≥ G(x)] for all y ∈ [x, ∞),
then G(x) = h(x) [G(x) = H(x)].

The following lemma is based on the formula

J(x, �) =
∫ x+�

x f (y) dy∫ x+�

x F(y) dy
=

∫ x+�

x h(y)F(y) dy∫ x+�

x F(y) dy
, (10)

and the proof is similar to that of [3, Prop. 1].

Lemma 5: Let a < b. If h(x) is strictly decreasing for all x ∈ (a, b), then J(x, �)

is strictly decreasing (with respect to �) for all x ∈ (a, b) and � ∈ [0, b − x]. The
lemma remains true if “strictly decreasing” is replaced on both sides by “decreasing,”
“constant,” “increasing,” or “strictly increasing.”

The last lemma is easily proved as [3, Prop. 2].

Lemma 6: Let a < b. Now, H(a) < H(b) if and only if J(a, b − a) < J(a, ∞). The
lemma remains true if “<” is replaced on both sides by “≤,” “=,” “≥,” or “>.”
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4. PROPERTIES OFTHE GITTINS INDEX

In this section we derive several new properties of the Gittins index itself. We start
in Section 4.1 with the relationships between the hazard rate h(x) and the Gittins
index G(x), and Section 4.2 concerns the relationships between the functions H(x)
and G(x).

4.1. Relationships Between h(x) and G(x)

Because the hazard rate curve h(x) is continuous and piecewise monotonic, it consists
of a (possibly infinite) number of contiguous intervals in which the hazard rate is
alternately increasing and strictly decreasing. Next, we consider the behavior of the
Gittins index G(x) and the related optimum service quantum �∗(x) within these
intervals.

4.1.1. Implications of the monotonicity of the hazard rate.

Proposition 1: Let a < b ≤ ∞. If h(x) is increasing for all x ∈ (a, b), then G(x) is
increasing and �∗(x) ≥ b − x > 0 for all x ∈ (a, b).

Proof: Assume that h(x) is increasing for all x ∈ (a, b). By Lemma 5, we have, for
all x ∈ (a, b),

�∗(x) ≥ b − x > 0. (11)

Then let a < x < y < b. By (11), we have x < y < b ≤ x + �∗(x). Thus, by
Lemma 3, we conclude that G(y) ≥ G(x). �

Proposition 2: Let a < b ≤ ∞. If h(x) is strictly decreasing for all x ∈ (a, b), then
there is c ∈ [a, b] such that the following hold:

(i) G(x) is strictly decreasing and �∗(x) = 0 for all x ∈ (a, c).

(ii) G(x) is increasing and �∗(x) ≥ b − x > 0 for all x ∈ (c, b).

Proof: Assume that h(x) is strictly decreasing for all x ∈ (a, b). By Lemma 5, we
deduce that J(x, �) is strictly decreasing (with respect to �) for all x ∈ (a, b) and
� ∈ (0, b − x). Thus, for all x ∈ (a, b),

�∗(x) = 0 or �∗(x) ≥ b − x. (12)

If �∗(x) = 0 for all x ∈ (a, b), then, by definition, G(x) = h(x) and, thus, G(x) is
strictly decreasing for all x ∈ (a, b). In this case, the claims are valid with choice c = b.

Assume then that there is x ∈ (a, b) such that �∗(x) ≥ b − x. By Lemma 3,
G(y) ≥ G(x) for all y ∈ (x, b). In addition, as the hazard rate is strictly decreasing,
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we have, for all y ∈ (x, b),

G(y) ≥ G(x) ≥ h(x) > h(y), (13)

implying that �∗(y) > 0 for all y ∈ (x, b) by Lemma 1. Thus, by (12), �∗(y) ≥ b −
x > 0 for all y ∈ (x, b), so from Lemma 3, G(y) is increasing for all y ∈ (x, b) and we
have c = inf{x ∈ [a, b) | �∗(x) ≥ b − x}. �

Note that if c = b in the previous proposition, then G(x) is strictly decreasing in
the whole interval, whereas c = a means that G(x) is increasing in the interval.

4.1.2. Continuity of the Gittins index. It follows from the continuity of
h(x) that the Gittins index in this job-scheduling context is a continuous function. Our
later examples will show that it might not be differentiable, even when h(x) is. On the
other hand, whenever h(x) is strictly decreasing for all x, the Gittins index is equal
to the hazard rate, G(x) = h(x) for all x, by Lemma 5, the proof of which does not
utilize the continuity of h(x). We thus have an example where the Gittins index is not
continuous if the hazard rate is not required to be continuous.

Theorem 1: The Gittins index G(x) is continuous and piecewise monotonic for all
x ≥ 0.

Proof: The proof is presented in the Appendix. �

4.1.3. Characterization of the monotonicity of the Gittins index. It
follows from the previous theorem that the curve G(x) consists of a (possibly infi-
nite) number of contiguous intervals where G(x) is alternately increasing and strictly
decreasing. Furthermore, Propositions 1 and 2 imply that �∗(x) > [=]0 in an interval
whenever G(x) is increasing [strictly decreasing] in the interval. Thus, we get the
following two corollaries.

Corollary 1: Let a < b ≤ ∞. G(x) is increasing for all x ∈ (a, b) if and only if
�∗(x) > 0 for all x ∈ (a, b).

Corollary 2: Let a < b ≤ ∞. G(x) is strictly decreasing for all x ∈ (a, b) if and
only if �∗(x) = 0 for all x ∈ (a, b). In this case, G(x) = h(x) for all x ∈ (a, b).

Additionally, the case that G(x) is decreasing can be characterized.

Proposition 3: Let a < b ≤ ∞. G(x) is decreasing for all x ∈ (a, b) if and only if
G(x) = h(x) for all x ∈ (a, b).
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Proof:

1. Assume first that G(x) is decreasing for all x ∈ (a, b). Let x ∈ (a, b). If�∗(x) =
0, then, by definition, G(x) = J(x, 0) = h(x). Now assume that �∗(x) > 0. By
Lemma 3 and the assumption made above, we have, for all y ∈ (x, x + �∗(x)),

G(y) = G(x). (14)

Let 0 < ε < min{�∗(x), b − x} and define

p =
∫ x+ε

x F(t) dt∫ x+�∗(x)
x F(t) dt

. (15)

Note that p ∈ (0, 1). Now,

G(x) = J(x, �∗(x))

= pJ(x, ε) + (1 − p)J(x + ε, �∗(x) − ε)

≤ pJ(x, ε) + (1 − p)G(x + ε). (16)

On the other hand, J(x, ε) ≤ G(x) and, by (14), G(x + ε) = G(x). Thus,
we conclude that J(x, ε) = G(x). Because this is true for any 0 < ε <

min{�∗(x), b − x}, we have h(x) = J(x, 0) = limε→0+ J(x, ε) = G(x).

2. Assume now that G(x) = h(x) for all x ∈ (a, b). By definition, we have, for
all a < x < y < b,

J(x, y − x) ≤ h(x). (17)

Consider then what happens if h(x) < h(y) for some a < x < y < b. Because
the hazard rate is continuous, there are x < c < d < y such that h(t) > h(c)
for all t ∈ (c, d). Thus,

J(c, d − c) =
∫ d

c h(t)F(t) dt∫ d
c F(t) dt

> h(c), (18)

which contradicts (17). Thus, we conclude that h(x) is decreasing for all
x ∈ (a, b). �

By combining the results of Corollary 1 and Proposition 3, we get the following
corollary.

Corollary 3: Let a < b ≤ ∞. G(x) is constant for all x ∈ (a, b) if and only if G(x) =
h(x) and �∗(x) > 0 for all x ∈ (a, b).

Consider, finally, the case that the Gittins index is strictly increasing in a
finite interval.
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Proposition 4: Let a < b ≤ ∞. G(x) is strictly increasing for all x ∈ (a, b) if and
only if G(x) > h(x) for all x ∈ (a, b).

Proof:

1. Assume first that G(x) is strictly increasing for all x ∈ (a, b). Corollary 1
implies that �∗(x) > 0 for all x ∈ (a, b). In addition, from Corollary 3 we
deduce that there is x ∈ (a, b) such that G(x) > h(x). Define, then, c = inf{x >

a | G(x) > h(x)}. If c > a, then G(x) = h(x) for all x ∈ (a, c), implying by
Corollary 3 that G(x) is constant for all x ∈ (a, c), which contradicts our
assumption above. Thus, c = a so that G(x) > h(x) for all x ∈ (a, b).

2. Assume now that G(x) > h(x) for all x ∈ (a, b). Corollary 1 implies that
G(x) is increasing for all x ∈ (a, b). If G(x) were constant in a subinter-
val (c, d) ∈ (a, b), then, by Corollary 3, we would have G(x) = h(x) for all
x ∈ (c, d), which contradicts our assumption above. Thus, we conclude that
G(x) is strictly increasing for all x ∈ (a, b). �

4.1.4. Characterization of the monotonicity of the Gittins index in
infinite intervals. Next, we show that even stronger results are available when
b = ∞.

Proposition 5: Let a ≥ 0. The following three statements are equivalent:

(i) h(x) is strictly decreasing for all x > a.

(ii) G(x) is strictly decreasing for all x > a.

(iii) �∗(x) = 0 for all x > a.

In this case, G(x) = h(x) for all x > a.

Proof: Note first that the last property follows immediately from (iii). In addition,
(ii) and (iii) are equivalent by Corollary 2 with b = ∞. Thus, it remains to prove the
equivalence of (i) and (iii).

1. Assume first that h(x) is strictly decreasing for all x > a. By Lemma 5, we
deduce that J(x, �) is strictly decreasing (with respect to �) for all x > a and
� ≥ 0. Thus, �∗(x) = 0 for all x > a.

2. Assume now that �∗(x) = 0 (so that G(x) = h(x)) for all x > a. It follows
from Corollary 2 with b = ∞ that h(x) is strictly decreasing for all x > a. �

Proposition 6: Let a ≥ 0. The following three statements are equivalent:

(i) h(x) is decreasing for all x > a.

(ii) G(x) is decreasing for all x > a.

(iii) G(x) = h(x) for all x > a.

For a = 0, statement (i) says that the service time distribution belongs to DHR.
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Proof: Note first that (ii) and (iii) are equivalent by Proposition 3 with b = ∞. Thus,
it remains to prove the equivalence of (i) and (iii).

1. Assume first that h(x) is decreasing for all x > a. By Lemma 5, we deduce
that J(x, �) is decreasing (with respect to �) for all x > a and � ≥ 0. Thus,
G(x) = h(x) for all x > a.

2. Assume now that G(x) = h(x) for all x > a. It follows from Proposition 3 with
b = ∞ that h(x) is decreasing for all x > a. �

4.2. Relationships Between H(x) and G(x)

In addition to the hazard rate, the H(x) function (i.e., the inverse of the mean residual
lifetime function) is continuous and piecewise monotonic consisting thus of a (pos-
sibly infinite) number of contiguous intervals where H(x) is alternately increasing
and strictly decreasing. Next, we consider the behavior of the Gittins index in these
intervals.

4.2.1. Implications of the monotonicity of function H(x)

Proposition 7: Let a < b ≤ ∞. If H(x) is increasing for all x ∈ (a, b), then G(x) is
increasing for all x ∈ (a, b).

Proof: Assume that H(x) is increasing for all x ∈ (a, b). By Lemma 6, we have, for
all a < x < y < b,

J(x, y − x) ≤ J(x, ∞) = H(x), (19)

implying that, for all x ∈ (a, b),

�∗(x) ≥ b − x. (20)

Then let a < x < y < b. By (20), we have x < y < b ≤ x + �∗(x). Thus, by
Lemma 3, we conclude that G(y) ≥ G(x). �

4.2.2. Characterization of the monotonicity of the Gittins index in
infinite intervals

Proposition 8: Let a ≥ 0. The following three statements are equivalent:

(i) H(x) is increasing for all x > a.

(ii) G(x) is increasing for all x > a.

(iii) G(x) = H(x) for all x > a.

For a = 0, statement (i) says that the service time distribution belongs to DMRL.
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Proof: The equivalence of (i) and (iii) follows directly from Lemma 6. That (ii)
implies (iii) follows from Lemma 4, and (i) and (iii) trivially imply (ii). �

Proposition 9: Let a ≥ 0. The following three statements are equivalent:

(i) H(x) ≥ H(a) for all x > a.

(ii) G(x) ≥ G(a) for all x > a.

(iii) G(a) = H(a).

For a = 0, statement (i) says that the service time distribution belongs to NBUE.

Proof: The proof is similar to the proof of Proposition 8. �

Proposition 10: Let a ≥ 0. The following four statements are equivalent:

(i) h(x) is constant for all x > a.

(ii) H(x) is constant for all x > a.

(iii) G(x) is constant for all x > a.

(iv) G(x) = H(x) = h(x) for all x > a.

For a = 0, statement (i) says that the service time distribution is exponential.

Proof: The equivalence of (i) and (ii) follows from Lemma 2. The equivalence of
(iii) and (iv) follows from Propositions 6 and 8. In addition, (iii) and (iv) together
trivially imply (i) and (ii). So it remains to prove that (ii) implies (iii).

If H(x) is constant (and, thus, increasing) for all x > a, then G(x) = H(x) (and,
thus, constant) for all x > a by Proposition 8. �

5. CHARACTERIZATION OFTHE GITTINS INDEX POLICY

In this section, we fully characterize the Gittins index policy in the static single-
server scheduling problem without arrivals, where the policy is known to minimize
the expected flow time (4) among the nonanticipating scheduling disciplines. We will
show that the optimal Gittins index policy always belongs to the family of MLPS
disciplines.

An MLPS discipline π is defined in [6, Sect. 4.7] by a finite set of level thresh-
olds 0 = a0 < a1 < · · · < aN < aN+1 = ∞ defining N + 1 levels, N ≥ 0. As a slight
generalization, we allow an infinite number of levels so that N ≤ ∞. A job belongs
to level n if its age is at least an−1 but less than an. Between these levels, a strict
priority discipline is applied with the lowest level having the highest priority. Thus,
those jobs with age less than a1 are served first. Within each level n, an internal dis-
cipline is applied belonging to {FB, PS, FCFS}, where, for FCFS, we may have any
nonpreemptive discipline. FB refers the foreground–background discipline that gives
the priority to the youngest job. If there are multiple jobs with the same minimum
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age, the discipline shares the service capacity evenly among these jobs. We recall from
Section 1 that, in our static setting without any arrivals, FB operates, in fact, just like PS.

As already mentioned in the beginning of Section 4.1, the hazard rate curve
can be divided into a (possibly infinite) number of contiguous intervals in which the
hazard rate h(x) is alternately increasing and strictly decreasing. Call them increasing
and decreasing intervals (of h(x)), respectively. Let an and bn respectively denote the
starting point and the ending point of the nth decreasing interval of h(x). If h(x) is first
increasing, then b0 = 0 and a1 > 0; otherwise a1 = 0. On the other hand, if the number
of decreasing intervals is finite (say m) and the last interval is an increasing [decreasing]
interval, then an = bn = ∞ [bn−1 = an = ∞] for all n > m. For an illustration, see
Figure 1.

Proposition 11: For any n, there is cn ∈ [an, bn] such that the following hold:

(i) G(x) is strictly decreasing for all x ∈ (an, cn).

(ii) G(x) is increasing for all x ∈ (cn, an+1).

In addition, G(x) = h(x) for all x ∈ (an, cn) and any n.

Proof: According to Proposition 2, for any decreasing interval [an, bn) of h(x), there
is cn ∈ [an, bn] such that G(x) is (1) strictly decreasing for all x ∈ (an, cn) and (2)
increasing for all x ∈ (cn, bn). On the other hand, by Proposition 1, G(x) is increasing
for all x belonging to any increasing interval (bn, an+1) of h(x). Because G(x) is
continuous by Theorem 1, G(x) is increasing for all x ∈ (cn, an+1). The last claim that
G(x) = h(x) for all x ∈ (an, cn) follows from Corollary 2. �

Note that if cn = an in the previous proposition, then there is no decreasing part,
but G(x) is increasing for all x ∈ (an, an+1).

Figure 1, along with Lemma 2, suggests that cn could be determined from the
equality h(cn) = H(cn). This is a good approximation and sometimes even exact but,
unfortunately, not always, as illustrated by Figure 2, which is zoomed from one of
the examples (bottom one) of Figure 1. Figure 2 also demonstrates that even if h(x) is
everywhere continuous and differentiable, G(x) may not be everywhere differentiable.

Definition 1: For any function g(x) defined in [0, ∞), point c ∈ (0, ∞) is called a
location of a left-strict local minimum if there is ε > 0 such that the following hold:

(i) g(x) > g(c) for all x ∈ (c − ε, c).

(ii) g(x) ≥ g(c) for all x ∈ (c, c + ε).

Note that cn defined in Proposition 11 is a location of a left-strict local minimum
of G(x) if (and only if) cn > an. Similarly an is a location of a local maximum of G(x)
if (and only if) cn > an.

Consider now the characterization of the Gittins index policy in this setting. Let
γi denote the locations of the record local minima of function G(x) defined recursively
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FIGURE 1. Functions G(x) (solid black), h(x) (solid gray), and H(x) (dashed gray)
together with changeover points an, cn, and bn for three service time distributions.
Top: h(x) = k(1 + sin x) with k = 0.2; middle: h(x) = k(1 + kx + 2k sin x) with
k = 0.2. Here, H(x) = G(x) except for x ∈ (a2, c2) where they are very close. Bottom:
h(x) = (1 + sin x)/(1 + kx) with k = 0.2.

by letting γ0 = 0, and, for i = 1, 2, . . . ,

γi = inf{c > γi−1 | G(c) < G(γi−1), and

c is a location of the left-strict local minima of G(x)}. (21)
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FIGURE 2. Functions G(x) (solid black), h(x) (solid gray), and H(x) (dashed gray)
for the service time distribution h(x) = (1 + sin x)/(1 + kx) with k = 0.2 zoomed
from Figure 1 (bottom).

If the conditions are not satisfied for some γi, then we let γk = ∞ for all k ≥ i. For
the characterization, we need still another sequence denoted by αi, which is defined
below separately for the two cases depending on whether h(x) is first increasing or
strictly decreasing.

If the hazard rate h(x) is first increasing (so that there is δ > 0 such that h(x) ≥
h(0) for all x ∈ (0, δ)), let α1 = inf{t > 0 | G(t) < G(0)}, and, for k = 1, 2, . . . ,

α2k = γk ,

α2k+1 = inf{t > γk | G(t) < G(γk)}. (22)

Note that for any k, there is j ≥ k such that α2k = cj (cf. Figs. 1 and 3).
However, if the hazard rate h(x) is first strictly decreasing (so that there is δ > 0

such that h(x) < h(0) for all x ∈ (0, δ)), we define, for k = 1, 2, . . . ,

α2k−1 = γk ,

α2k = inf{t > γk | G(t) < G(γk)}. (23)

In this case, for any k there is j ≥ k such that α2k−1 = cj.
As earlier, if the conditions are not satisfied for some αi, then we let αk = ∞ for

all k ≥ i. In addition, let N denote the highest index i for which αi is finite,

N = sup{i = 1, 2, . . . | αi < ∞}. (24)

For an illustration, see Figure 3, where the three distributions are the same as in
Figure 1. These figures illustrate the MLPS nature of the policy, but they also show
that even when h, H, and G change direction multiple times, the policy may not change.
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FIGURE 3. Functions G(x) (solid black), h(x) (solid gray), and H(x) (dashed gray)
with thresholds αn for three service time distributions. Top: h(x) = k(1 + sin x)
with k = 0.2; middle: h(x) = k(1 + kx + 2k sin x) with k = 0.2; bottom:
h(x) = (1 + sin x)/(1 + kx) with k = 0.2.

Theorem 2:

(i) If the hazard rate h(x) is first increasing (so that there is δ > 0 such that
h(x) ≥ h(0) for all x ∈ (0, δ)), then the MLPS policy with N + 1 levels,
thresholds α1, . . . , αN defined in (22), and applying internal disciplines FCFS

https://doi.org/10.1017/S0269964811000015 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000015


284 S. Aalto, U. Ayesta, and R. Righter

and FB alternately (starting with FCFS) minimizes the expected flow time
(4) among all nonanticipating disciplines �.

(ii) If the hazard rate h(x) is first strictly decreasing (so that there is δ > 0 such
that h(x) < h(0) for all x ∈ (0, δ)), then the MLPS policy with N + 1 levels,
thresholds α1, . . . , αN defined in (23), and applying internal disciplines FB
and FCFS alternately (starting with FB) minimizes the expected flow time
(4) among all nonanticipating disciplines �.

Proof:

(i) In the beginning, all jobs by definition have the same age, 0. It follows from
(22) that G(x) ≥ G(0) for all x < α1. Thus, according to the Gittins index
rule, it is optimal to serve jobs one-by-one until they have reached age of α1.
If the service is completed before that, the scheduler starts to serve the next
job without any breaks. We see that the proposed MLPS discipline operates
like this.
As the result of the first phase, all jobs still in the system have exactly the
same age, α1.Assuming that α1 < ∞, it follows from (22) that G(x) is strictly
decreasing for all α1 ≤ x < α2. Thus, according to the Gittins index rule,
it is optimal to share the service evenly among all jobs until their com-
mon age is α2. We again see that the proposed MLPS discipline operates
like this.
Similar reasoning can be continued because, by (22), G(x) ≥ G(α2k) for all
α2k ≤ x < α2k+1, and G(x) is strictly decreasing for all α2k+1 ≤ x < α2k+2.

(ii) A similar argument as in (i) can clearly be applied also in this case. �

Note that the internal discipline FCFS may be replaced with any nonpreemptive
discipline, and the internal discipline FB can be replaced with PS (in this static setting
without arrivals). As special cases, we get the following characterizations.

Corollary 4:

(i) If the service time distribution is NBUE (i.e., H(x) ≥ H(0) for all x ≥ 0),
then FCFS is optimal.

(ii) If the service time distribution is DHR (i.e., h(x) is decreasing for all x ≥ 0),
then FB is optimal.

(iii) If the service time distribution is NBUE + DHR (i.e., there is k > 0 such that
H(x) ≥ H(0) for all x ∈ [0, k) and h(x) is decreasing for all x ∈ [k, ∞)),
then the two-level MLPS policy FCFS + FB with threshold �∗(0) is optimal.

(iv) If the service time distribution is DHR + IHR (i.e., there is k > 0 such that
h(x) is decreasing for all x ∈ [0, k) and increasing for all x ∈ [k, ∞)), then
the two-level MLPS policy FB + FCFS with threshold γ1 is optimal.
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6. CONCLUSIONS

Independently of each other, Sevcik and Gittins characterized the optimal nonantic-
ipating scheduling policy in a single-server queue with generally distributed service
time requirements, which currently is known as the Gittins index policy. Remarkably,
the Gittins index policy is optimal for both the case without arrivals and the case with
Poisson arrivals.

The Gittins index policy assigns an index to each job in the system based on its
age and on the service time distribution and then serves the job with highest index in
the system. Under some additional assumptions, the Gittins index policy has a rather
simple structure—for instance, if the service time distribution belongs to the NBUE
or DHR classes. For the general case, however, it is not straightforward to know a
priori how the Gittins index policy operates.

In this article we provide as complete a characterization as possible for the Gittins
index policy for the problem without arrivals. We first show several properties of the
Gittins index itself that might be of independent interest. For instance, we show that
the Gittins index is a continuous and piecewise monotonic function of the attained
service if the hazard rate is such. The study of the index function allows us to derive
the main result of the article, where we show that the Gittins index policy always
belongs to the family of MLPS disciplines.

In future research, it would be worthwhile to consider the case with arrivals. With
arrivals, the optimal policy will be characterized by the same set of thresholds, and
within each level, the same internal discipline will be used; however, the presence of
new arrivals could modify the priorities across levels—that is, it may no longer be the
case that the lowest level has the highest priority.

Acknowledgment
The anonymous referee is acknowledged for the comments that helped in improving the final version of
the article.

References

1. Aalto, S. & Ayesta, U. (2008). Optimal scheduling of jobs with a DHR tail in the M/G/1 queue. In
Proceedings of ValueTools 2008, Athens.

2. Aalto, S., Ayesta, U., Borst, S., Misra, V., & Núñez-Queija, R. (2007). Beyond processor sharing. ACM
Sigmetrics Performance Evaluation Review 34(4): 36–43.

3. Aalto, S., Ayesta, U., & Righter, R. (2009). On the Gittins index in the M/G/1 queue. Queueing Systems
63: 437–458.

4. Gelenbe, E. & Mitrani, I. (1980). Analysis and synthesis of computer systems. New York: Academic
Press.

5. Gittins, J.C. (1989). Multi-armed bandit allocation indices. New York: Wiley.
6. Kleinrock, L. (1976). Queueing systems, Vol. II: Computer applications. New York: Wiley.
7. Pinedo, M.L. (1995). Scheduling — theory, algorithms, and systems. Englewood Cliffs, NJ:

Prentice Hall.

https://doi.org/10.1017/S0269964811000015 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000015


286 S. Aalto, U. Ayesta, and R. Righter

8. Righter, R. & Shanthikumar, J.G. (1989). Scheduling multiclass single server queueing systems to
stochastically maximize the number of successful departures. Probability in the Engineering and
Informational Sciences 3: 323–334.

9. Righter, R., Shanthikumar, J.G., &Yamazaki, G. (1990). On extremal service disciplines in single-stage
queueing systems. Journal of Applied Probability 27: 409–416.

10. Sevcik, K.C. (1974). Scheduling for minimum total loss using service time distributions. Journal of
the Association for Computing Machinery 21: 66–75.

11. Yashkov, S.F. (1987). Processor sharing queues: Some progress in analysis. Queueing Systems 2: 1–17.

APPENDIX

Proof of Theorem 1: The claim that G(x) is piecewise monotonic follows immediately from
Propositions 1 and 2. Thus, it remains to prove that G(x) is continuous for all x.

1. Consider first an interval (a, b) in which the Gittins index G(x) is increasing. Note that
Propositions 1 and 2 imply that �∗(x) ≥ b − x > 0 for all x ∈ (a, b). In addition, since
G(x) is increasing, the limit G(a+) = limx→a+ G(x) exists. Below, we first show that
G(a) ≥ G(a+) and then that G(a) = G(a+) (i.e., G(x) is continuous from the right at a).
For any x ∈ (a, b),

G(a) ≥ J(a, x + �∗(x) − a) =
∫ x

a f (y) dy + G(x)
∫ x+�∗(x)

x F(y) dy∫ x
a F(y) dy + ∫ x+�∗(x)

x F(y) dy
. (A.1)

Let xn ∈ (a, b) be a decreasing sequence for which xn → a as n → ∞. Consequently,
G(xn) → G(a+). Since, for any n,

0 <

∫ b

x1

F(y) dy ≤
∫ xn+�∗(xn)

xn

F(y) dy ≤
∫ ∞

0
F(y) dy = E[S] < ∞, (A.2)

there is a subsequence zk = xnk such that
∫ zk+�∗(zk)

zk
F(y) dy converges to some finite

and positive value c as k → ∞. On the other hand,
∫ zk

a f (y) dy → 0 and
∫ zk

a F(y) dy → 0
as k → ∞. Thus, considering this subsequence zk , we deduce that

G(a) ≥
∫ zk

a f (y) dy + G(zk)
∫ zk+�∗(zk)

zk
F(y) dy∫ zk

a F(y) dy + ∫ zk+�∗(zk)
zk

F(y) dy
→ G(a+) as k → ∞. (A.3)

Thus, G(a) ≥ G(a+).
If G(a) > G(a+), then G(a) > G(a+) ≥ h(a+) = h(a), implying that �∗(a) > 0. By
Lemma 3, G(x) ≥ G(a) for all x ∈ (a, a + �∗(a)) so that G(a+) ≥ G(a), which is a
contradiction. Thus, G(a) = G(a+).

2. Consider still an interval (a, b) in which the Gittins index G(x) is increasing. Recall
from part 1 that �∗(x) > 0 for all x ∈ (a, b). In addition, since G(x) is increasing, the
limit G(b−) = limx→b− G(x) exists. Next, we show that G(b) = G(b−) (i.e., G(x) is
continuous from the left at b).
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If G(b) < G(b−), then G(b−) > G(b) ≥ h(b) = h(b−) by the continuity of the hazard
rate h(x). By further taking into account that the Gittins index G(x) is increasing, we
conclude that there is c < b such that, for all x ∈ (c, b),

J(x, �∗(x)) − J(x, 0) = G(x) − h(x) ≥ 1

2
(G(b−) − h(b−)) > 0. (A.4)

However, now it follows from the continuity (in the plane) of the efficiency function
J(x, �) that there is c′ < b such that �∗(x) > b − x for all x ∈ (c′, b). By Lemma 3,
G(b) ≥ G(x) for all x ∈ (c′, b) (i.e., G(b) ≥ G(b−)), which is a contradiction. Thus,
G(b) ≥ G(b−).
If G(b) > G(b−), then G(b) > G(b−) ≥ h(b−) = h(b), implying that �∗(b) >

0. Now,

G(x) ≥ J(x, b + �∗(b) − x) =
∫ b

x f (y) dy + G(b)
∫ b+�∗(b)

b F(y) dy∫ b
x F(y) dy + ∫ b+�∗(b)

b F(y) dy

→ G(b) as x → b−, (A.5)

which is a contradiction. Thus, G(b) = G(b−).
Note that parts 1 and 2 together prove that the Gittins index G(x) is continuous in any
interval (a, b) in which it is increasing.

3. Consider now an interval (a, b) in which the Gittins index G(x) is strictly decreasing.
Then, G(x) = h(x) for all x ∈ (a, b) so that the continuity of G(x) in this interval follows
from the assumed continuity of h(x).

4. It remains to consider the points where the “direction” of the Gittins index function
G(x) changes from strictly decreasing to increasing (or vice versa).
Consider first a point c ∈ (a, b) such that G(x) is strictly decreasing for all x ∈ (a, c)
and increasing for all x ∈ (c, b). Note that G(x) = h(x) for all x ∈ (a, c) by Proposition
2, implying that G(c−) = h(c−) = h(c). The continuity of G(x) from the right follows
from part 1. Next, we show that G(c) = G(c−) = h(c) (i.e., G(x) is also continuous
from the left at c).
Assume that G(x) is not continuous from the left at c. Thus, G(c) > h(c), and,
consequently, �∗(c) > 0. In addition, we have, for any x ∈ (a, c),

h(x) = G(x)

≥ J(x, c + �∗(c) − x)

=
∫ c

x f (y) dy + ∫ c+�∗(c)
c f (y) dy∫ c

x F(y) dy + ∫ c+�∗(c)
c F(y) dy

=
∫ c

x f (y) dy + G(c)
∫ c+�∗(c)

c F(y) dy∫ c
x F(y) dy + ∫ c+�∗(c)

c F(y) dy
→ G(c) as x → c−. (A.6)

Thus, letting x → c−, we deduce that h(c) ≥ G(c), which is a contradiction.

5. Consider finally a point c ∈ (a, b) such that G(x) increasing for all x ∈ (a, c) and strictly
decreasing for all x ∈ (c, b). Note that G(x) = h(x) for all x ∈ (c, b) by Proposition 2,
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implying that G(c+) = h(c+) = h(c). The continuity of G(x) from the left follows
from part 2. Next, we show that G(c) = G(c+) = h(c) (i.e., G(x) is also continuous
from the right at c).
Assume that G(x) is not continuous from the right at c. Thus, G(c) > h(c), and,
consequently, �∗(c) > 0. In addition, we have, for any x ∈ (c, c + �∗(c)),

h(x) = G(x) ≥ J(x, c + �∗(c) − x) =
∫ c+�∗(c)

x f (y) dy∫ c+�∗(c)
x F(y) dy

→ G(c) as x → c+.

(A.7)
Thus, letting x → c+, we deduce that h(c) ≥ G(c), which is a contradiction. �
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